599 research outputs found

    Context Aware Adaptable Applications - A global approach

    Get PDF
    Actual applications (mostly component based) requirements cannot be expressed without a ubiquitous and mobile part for end-users as well as for M2M applications (Machine to Machine). Such an evolution implies context management in order to evaluate the consequences of the mobility and corresponding mechanisms to adapt or to be adapted to the new environment. Applications are then qualified as context aware applications. This first part of this paper presents an overview of context and its management by application adaptation. This part starts by a definition and proposes a model for the context. It also presents various techniques to adapt applications to the context: from self-adaptation to supervised approached. The second part is an overview of architectures for adaptable applications. It focuses on platforms based solutions and shows information flows between application, platform and context. Finally it makes a synthesis proposition with a platform for adaptable context-aware applications called Kalimucho. Then we present implementations tools for software components and a dataflow models in order to implement the Kalimucho platform

    A survey of parallel algorithms for fractal image compression

    Get PDF
    This paper presents a short survey of the key research work that has been undertaken in the application of parallel algorithms for Fractal image compression. The interest in fractal image compression techniques stems from their ability to achieve high compression ratios whilst maintaining a very high quality in the reconstructed image. The main drawback of this compression method is the very high computational cost that is associated with the encoding phase. Consequently, there has been significant interest in exploiting parallel computing architectures in order to speed up this phase, whilst still maintaining the advantageous features of the approach. This paper presents a brief introduction to fractal image compression, including the iterated function system theory upon which it is based, and then reviews the different techniques that have been, and can be, applied in order to parallelize the compression algorithm

    Opportunistic Composition of Human-Computer Interactions in Ambient Spaces

    Get PDF
    International audienceWe propose an approach based on Adaptive Multi-Agent Systems, using the principles of Meta-User Interfaces and Opportunism in order to solve Human-Computer Interaction Composition in Ambient interactive spaces. The idea of this approach is to see every component as an agent able to interact with other components to compose autonomously in order to opportunistically suggest to users smart compositions of his interactive ambient environment. We present the notions of component, composition, and human-computer interaction composition. We chose mainly two aspects of the composition of human-computer interaction which are the controllability and finality of the composition. Finally, we illustrate our approach with use cases taken from the neoCampus project

    Internet protocol over wireless sensor networks, from myth to reality

    Get PDF
    Internet Protocol (IP) is a standard network layer protocol of the Internet architecture, allowing communication among heterogeneous networks. For a given network to be accessible from the Internet it must have a router that complies with this protocol. Wireless sensor networks have many smart sensing nodes with computational, communication and sensing capabilities. Such smart sensors cooperate to gather relevant data and present it to the user. The connection of sensor networks and the Internet has been realized using gateway or proxy- based approaches. Historically, several routing protocols were specifically created, discarding IP. However, recent research, prototypes and even implementation tools show that it is possible to combine the advantages of IP access with sensor networks challenges, with a major contribution from the 6LoWPAN Working Group. This paper presents the advantages and challenges of IP on sensor networks, surveys the state-of-art with some implementation examples, and points further research topics in this area

    Seamless Infrastructure independent Multi Homed NEMO Handoff Using Effective and Timely IEEE 802.21 MIH triggers

    Full text link
    Handoff performance of NEMO BS protocol with existent improvement proposals is still not sufficient for real time and QoS-sensitive applications and further optimizations are needed. When dealing with single homed NEMO, handoff latency and packet loss become irreducible all optimizations included, so that it is impossible to meet requirements of the above applications. Then, How to combine the different Fast handoff approaches remains an open research issue and needs more investigation. In this paper, we propose a new Infrastructure independent handoff approach combining multihoming and intelligent Make-Before-Break Handoff. Based on required Handoff time estimation, L2 and L3 handoffs are initiated using effective and timely MIH triggers, reducing so the anticipation time and increasing the probability of prediction. We extend MIH services to provide tunnel establishment and switching before link break. Thus, the handoff is performed in background with no latency and no packet loss while pingpong scenario is almost avoided. In addition, our proposal saves cost and power consumption by optimizing the time of simultaneous use of multiple interfaces. We provide also NS2 simulation experiments identifying suitable parameter values used for estimation and validating the proposed mode

    Protocol for a Systematic Literature Review on Adaptative Middleware Support for IoT and CPS

    Get PDF
    This protocol defines the procedure to conduct a systematic literature review on adaptive middleware support for the Internet of Things (IoT) and Cyber-physical Systems (CPS). The mentioned concepts deal with smart interactive objects which provide a set of services, but they look into the problem from various perspectives. We especially look into middleware design decisions for reactive/proactive adaptations. Following a systematic literature review (SLR) in the selection procedure, we selected 62 papers among 4,274 candidate studies. To this end, we applied the classification and extraction framework to select and analyze the most influential domain-related information. In addition to the academic database, we took advantage of the use-cases provided by our industrial partners within the CPS4EU 2 project. This document clarifies the primary studies' selection process. The analysis of the studies, discussion, and solution proposals will be presented separately in a journal article

    THREE TEMPORAL PERSPECTIVES ON DECENTRALIZED LOCATION-AWARE COMPUTING: PAST, PRESENT, FUTURE

    Get PDF
    Durant les quatre derniĂšres dĂ©cennies, la miniaturisation a permis la diffusion Ă  large Ă©chelle des ordinateurs, les rendant omniprĂ©sents. Aujourd’hui, le nombre d’objets connectĂ©s Ă  Internet ne cesse de croitre et cette tendance n’a pas l’air de ralentir. Ces objets, qui peuvent ĂȘtre des tĂ©lĂ©phones mobiles, des vĂ©hicules ou des senseurs, gĂ©nĂšrent de trĂšs grands volumes de donnĂ©es qui sont presque toujours associĂ©s Ă  un contexte spatiotemporel. Le volume de ces donnĂ©es est souvent si grand que leur traitement requiert la crĂ©ation de systĂšme distribuĂ©s qui impliquent la coopĂ©ration de plusieurs ordinateurs. La capacitĂ© de traiter ces donnĂ©es revĂȘt une importance sociĂ©tale. Par exemple: les donnĂ©es collectĂ©es lors de trajets en voiture permettent aujourd’hui d’éviter les em-bouteillages ou de partager son vĂ©hicule. Un autre exemple: dans un avenir proche, les donnĂ©es collectĂ©es Ă  l’aide de gyroscopes capables de dĂ©tecter les trous dans la chaussĂ©e permettront de mieux planifier les interventions de maintenance Ă  effectuer sur le rĂ©seau routier. Les domaines d’applications sont par consĂ©quent nombreux, de mĂȘme que les problĂšmes qui y sont associĂ©s. Les articles qui composent cette thĂšse traitent de systĂšmes qui partagent deux caractĂ©ristiques clĂ©s: un contexte spatiotemporel et une architecture dĂ©centralisĂ©e. De plus, les systĂšmes dĂ©crits dans ces articles s’articulent autours de trois axes temporels: le prĂ©sent, le passĂ©, et le futur. Les systĂšmes axĂ©s sur le prĂ©sent permettent Ă  un trĂšs grand nombre d’objets connectĂ©s de communiquer en fonction d’un contexte spatial avec des temps de rĂ©ponses proche du temps rĂ©el. Nos contributions dans ce domaine permettent Ă  ce type de systĂšme dĂ©centralisĂ© de s’adapter au volume de donnĂ©e Ă  traiter en s’étendant sur du matĂ©riel bon marchĂ©. Les systĂšmes axĂ©s sur le passĂ© ont pour but de faciliter l’accĂšs a de trĂšs grands volumes donnĂ©es spatiotemporelles collectĂ©es par des objets connectĂ©s. En d’autres termes, il s’agit d’indexer des trajectoires et d’exploiter ces indexes. Nos contributions dans ce domaine permettent de traiter des jeux de trajectoires particuliĂšrement denses, ce qui n’avait pas Ă©tĂ© fait auparavant. Enfin, les systĂšmes axĂ©s sur le futur utilisent les trajectoires passĂ©es pour prĂ©dire les trajectoires que des objets connectĂ©s suivront dans l’avenir. Nos contributions permettent de prĂ©dire les trajectoires suivies par des objets connectĂ©s avec une granularitĂ© jusque lĂ  inĂ©galĂ©e. Bien qu’impliquant des domaines diffĂ©rents, ces contributions s’articulent autour de dĂ©nominateurs communs des systĂšmes sous-jacents, ouvrant la possibilitĂ© de pouvoir traiter ces problĂšmes avec plus de gĂ©nĂ©ricitĂ© dans un avenir proche. -- During the past four decades, due to miniaturization computing devices have become ubiquitous and pervasive. Today, the number of objects connected to the Internet is in- creasing at a rapid pace and this trend does not seem to be slowing down. These objects, which can be smartphones, vehicles, or any kind of sensors, generate large amounts of data that are almost always associated with a spatio-temporal context. The amount of this data is often so large that their processing requires the creation of a distributed system, which involves the cooperation of several computers. The ability to process these data is important for society. For example: the data collected during car journeys already makes it possible to avoid traffic jams or to know about the need to organize a carpool. Another example: in the near future, the maintenance interventions to be carried out on the road network will be planned with data collected using gyroscopes that detect potholes. The application domains are therefore numerous, as are the prob- lems associated with them. The articles that make up this thesis deal with systems that share two key characteristics: a spatio-temporal context and a decentralized architec- ture. In addition, the systems described in these articles revolve around three temporal perspectives: the present, the past, and the future. Systems associated with the present perspective enable a very large number of connected objects to communicate in near real-time, according to a spatial context. Our contributions in this area enable this type of decentralized system to be scaled-out on commodity hardware, i.e., to adapt as the volume of data that arrives in the system increases. Systems associated with the past perspective, often referred to as trajectory indexes, are intended for the access to the large volume of spatio-temporal data collected by connected objects. Our contributions in this area makes it possible to handle particularly dense trajectory datasets, a problem that has not been addressed previously. Finally, systems associated with the future per- spective rely on past trajectories to predict the trajectories that the connected objects will follow. Our contributions predict the trajectories followed by connected objects with a previously unmet granularity. Although involving different domains, these con- tributions are structured around the common denominators of the underlying systems, which opens the possibility of being able to deal with these problems more generically in the near future

    Forth Industrial Revolution (4 IR) : digital disruption of cyber-physical systems

    Get PDF
    Article focus of the disruptive character of technological innovations brought by Fourth Industrial Revolution (4IR), withits unprecedented scale and scope, and exponential speed of incoming innovations, described from the point view of 'unintended consequences' (cross cutting impact of disruptive technologies across many sectors and aspects of human life). With integration of technology innovations emerging in number of fields including advanced robotics, pervasive computing, artificial intelligence, nano-and bio-technologies, additive and smart manufacturing, Forth Industrial Revolution introduce new ways in which technology becomes embedded not only within the society, economy and culture, but also within human body and mind (described by integration of technologies, collectively referred to as cyber-physical systems). At the forefront of digital transformation, based on cyber physical systems, stands Industry 4.0, referring to recent technological advances, where internet and supporting technologies (embedded systems) are serving as framework to integrate physical objects, human actors, intelligent machines, production lines and processes across organizational boundaries to form new kind of intelligent, networked value chain, called smart factory. Article presents broader context of 'disruptive changes (innovations)' accompanying 4IR, that embrace both economical perspective of 'broaderrestructuring' of modern economy and society (described in second part of the article as transition from second to third and forth industrial revolution), and technological perspective of computer and informational science with advances in pervasive computing, algorithms and artificial intelligence (described in third part of article with different stages of web development : web 1.0, web 2.0, web 3.0, web 4.0). What's more important, article presents hardly ever described in literature, psychological and philosophical perspective, more or less subtle reconfiguration made under the influence of these technologies, determining physical (body), psychological (mind) and philosophical aspect of human existence (the very idea of what it means to be the human), fully depicted in the conclusion of the article. The core element (novelty) is the attempt to bring full understanding and acknowledgment of disruptive innovations', that "change not only of the what and the how things are done, but also the who we are", moving beyond economical or technological perspective, to embrace also psychological and philosophical one
    • 

    corecore