8,471 research outputs found

    D3P : Data-driven demand prediction for fast expanding electric vehicle sharing systems

    Get PDF
    The future of urban mobility is expected to be shared and electric. It is not only a more sustainable paradigm that can reduce emissions, but can also bring societal benefits by offering a more affordable on-demand mobility option to the general public. Many car sharing service providers as well as automobile manufacturers are entering the competition by expanding both their EV fleets and renting/returning station networks, aiming to seize a share of the market and to bring car sharing to the zero emissions level. During their fast expansion, one determinant for success is the ability of predicting the demand of stations as the entire system is growing continuously. There are several challenges in this demand prediction problem: First, unlike most of the existing work which predicts demand only for static systems or at few stages of expansion, in the real world we often need to predict the demand as or even before stations are being deployed or closed, to provide information and decision support. Second, for the new stations to be deployed, there is no historical data available to help the prediction of their demand. Finally, the impact of deploying/closing stations on the other stations in the system can be complex. To address these challenges, we formulate the demand prediction problem in the context of fast expanding electric vehicle sharing systems, and propose a data-driven demand prediction approach which aims to model the expansion dynamics directly from the data. We use a local temporal encoding process to handle the historical data for each existing station, and a dynamic spatial encoding process to take correlations between stations into account with Graph Convolutional Neural Networks (GCN). The encoded features are fed to a multi-scale predictor, which forecasts both the long-term expected demand of the stations and their instant demand in the near future. We evaluate the proposed approach with real-world data collected from a major EV sharing platform for one year. Experimental results demonstrate that our approach significantly outperforms the state of the art, showing up to three-fold performance gain in predicting demand for the expanding EV sharing systems

    Recent Advances in Graph-based Machine Learning for Applications in Smart Urban Transportation Systems

    Full text link
    The Intelligent Transportation System (ITS) is an important part of modern transportation infrastructure, employing a combination of communication technology, information processing and control systems to manage transportation networks. This integration of various components such as roads, vehicles, and communication systems, is expected to improve efficiency and safety by providing better information, services, and coordination of transportation modes. In recent years, graph-based machine learning has become an increasingly important research focus in the field of ITS aiming at the development of complex, data-driven solutions to address various ITS-related challenges. This chapter presents background information on the key technical challenges for ITS design, along with a review of research methods ranging from classic statistical approaches to modern machine learning and deep learning-based approaches. Specifically, we provide an in-depth review of graph-based machine learning methods, including basic concepts of graphs, graph data representation, graph neural network architectures and their relation to ITS applications. Additionally, two case studies of graph-based ITS applications proposed in our recent work are presented in detail to demonstrate the potential of graph-based machine learning in the ITS domain

    CASP-DM: Context Aware Standard Process for Data Mining

    Get PDF
    We propose an extension of the Cross Industry Standard Process for Data Mining (CRISPDM) which addresses specific challenges of machine learning and data mining for context and model reuse handling. This new general context-aware process model is mapped with CRISP-DM reference model proposing some new or enhanced outputs

    A systematic literature review

    Get PDF
    Albuquerque, V., Dias, M. S., & Bacao, F. (2021). Machine learning approaches to bike-sharing systems: A systematic literature review. ISPRS International Journal of Geo-Information, 10(2), 1-25. [62]. https://doi.org/10.3390/ijgi10020062Cities are moving towards new mobility strategies to tackle smart cities’ challenges such as carbon emission reduction, urban transport multimodality and mitigation of pandemic hazards, emphasising on the implementation of shared modes, such as bike-sharing systems. This paper poses a research question and introduces a corresponding systematic literature review, focusing on machine learning techniques’ contributions applied to bike-sharing systems to improve cities’ mobility. The preferred reporting items for systematic reviews and meta-analyses (PRISMA) method was adopted to identify specific factors that influence bike-sharing systems, resulting in an analysis of 35 papers published between 2015 and 2019, creating an outline for future research. By means of systematic literature review and bibliometric analysis, machine learning algorithms were identified in two groups: classification and prediction.publishersversionpublishe

    Data-Driven Multi-step Demand Prediction for Ride-Hailing Services Using Convolutional Neural Network

    Get PDF
    Ride-hailing services are growing rapidly and becoming one of the most disruptive technologies in the transportation realm. Accurate prediction of ride-hailing trip demand not only enables cities to better understand people's activity patterns, but also helps ride-hailing companies and drivers make informed decisions to reduce deadheading vehicle miles traveled, traffic congestion, and energy consumption. In this study, a convolutional neural network (CNN)-based deep learning model is proposed for multi-step ride-hailing demand prediction using the trip request data in Chengdu, China, offered by DiDi Chuxing. The CNN model is capable of accurately predicting the ride-hailing pick-up demand at each 1-km by 1-km zone in the city of Chengdu for every 10 minutes. Compared with another deep learning model based on long short-term memory, the CNN model is 30% faster for the training and predicting process. The proposed model can also be easily extended to make multi-step predictions, which would benefit the on-demand shared autonomous vehicles applications and fleet operators in terms of supply-demand rebalancing. The prediction error attenuation analysis shows that the accuracy stays acceptable as the model predicts more steps

    Representation learning on heterogeneous spatiotemporal networks

    Get PDF
    “The problem of learning latent representations of heterogeneous networks with spatial and temporal attributes has been gaining traction in recent years, given its myriad of real-world applications. Most systems with applications in the field of transportation, urban economics, medical information, online e-commerce, etc., handle big data that can be structured into Spatiotemporal Heterogeneous Networks (SHNs), thereby making efficient analysis of these networks extremely vital. In recent years, representation learning models have proven to be quite efficient in capturing effective lower-dimensional representations of data. But, capturing efficient representations of SHNs continues to pose a challenge for the following reasons: (i) Spatiotemporal data that is structured as SHN encapsulate complex spatial and temporal relationships that exist among real-world objects, rendering traditional feature engineering approaches inefficient and compute-intensive; (ii) Due to the unique nature of the SHNs, existing representation learning techniques cannot be directly adopted to capture their representations. To address the problem of learning representations of SHNs, four novel frameworks that focus on their unique spatial and temporal characteristics are introduced: (i) collective representation learning, which focuses on quantifying the importance of each latent feature using Laplacian scores; (ii) modality aware representation learning, which learns from the complex user mobility pattern; (iii) distributed representation learning, which focuses on learning human mobility patterns by leveraging Natural Language Processing algorithms; and (iv) representation learning with node sense disambiguation, which learns contrastive senses of nodes in SHNs. The developed frameworks can help us capture higher-order spatial and temporal interactions of real-world SHNs. Through data-driven simulations, machine learning and deep learning models trained on the representations learned from the developed frameworks are proven to be much more efficient and effective”--Abstract, page iii

    Modeling Heterogeneous Relations across Multiple Modes for Potential Crowd Flow Prediction

    Full text link
    Potential crowd flow prediction for new planned transportation sites is a fundamental task for urban planners and administrators. Intuitively, the potential crowd flow of the new coming site can be implied by exploring the nearby sites. However, the transportation modes of nearby sites (e.g. bus stations, bicycle stations) might be different from the target site (e.g. subway station), which results in severe data scarcity issues. To this end, we propose a data driven approach, named MOHER, to predict the potential crowd flow in a certain mode for a new planned site. Specifically, we first identify the neighbor regions of the target site by examining the geographical proximity as well as the urban function similarity. Then, to aggregate these heterogeneous relations, we devise a cross-mode relational GCN, a novel relation-specific transformation model, which can learn not only the correlations but also the differences between different transportation modes. Afterward, we design an aggregator for inductive potential flow representation. Finally, an LTSM module is used for sequential flow prediction. Extensive experiments on real-world data sets demonstrate the superiority of the MOHER framework compared with the state-of-the-art algorithms.Comment: Accepted by the 35th AAAI Conference on Artificial Intelligence (AAAI 2021
    • …
    corecore