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The future of urban mobility is expected to be shared and electric. It is not only a more sustainable paradigm that can reduce
emissions, but can also bring societal benefits by offering a more affordable on-demand mobility option to the general public.
Many car sharing service providers as well as automobile manufacturers are entering the competition by expanding both
their EV fleets and renting/returning station networks, aiming to seize a share of the market and to bring car sharing to
the zero emissions level. During their fast expansion, one determinant for success is the ability of predicting the demand of
stations as the entire system is growing continuously. There are several challenges in this demand prediction problem: First,
unlike most of the existing work which predicts demand only for static systems or at few stages of expansion, in the real
world we often need to predict the demand as or even before stations are being deployed or closed, to provide information and
decision support. Second, for the new stations to be deployed, there is no historical data available to help the prediction of
their demand. Finally, the impact of deploying/closing stations on the other stations in the system can be complex. To address
these challenges, we formulate the demand prediction problem in the context of fast expanding electric vehicle sharing
systems, and propose a data-driven demand prediction approach which aims to model the expansion dynamics directly from
the data. We use a local temporal encoding process to handle the historical data for each existing station, and a dynamic
spatial encoding process to take correlations between stations into account with Graph Convolutional Neural Networks
(GCN). The encoded features are fed to a multi-scale predictor, which forecasts both the long-term expected demand of the
stations and their instant demand in the near future. We evaluate the proposed approach with real-world data collected from
a major EV sharing platform for one year. Experimental results demonstrate that our approach significantly outperforms the
state of the art, showing up to three-fold performance gain in predicting demand for the expanding EV sharing systems.

CCS Concepts: • Human-centered computing → Ubiquitous and mobile computing systems and tools; • Informa-
tion systems → Spatial-temporal systems.

Additional Key Words and Phrases: Electric Vehicle Sharing; Data-driven; Demand Prediction; System Expansion

ACM Reference Format:
Man Luo, Bowen Du, Konstantin Klemmer, Hongming Zhu, Hakan Ferhatosmanoglu, and Hongkai Wen. 2020. D3P: Data-
driven Demand Prediction for Fast Expanding Electric Vehicle Sharing Systems. 1, 1 (April 2020), 21 pages. https://doi.org/10.
1145/nnnnnnn.nnnnnnn

Authors’ addresses: Man Luo, University of Warwick, The Alan Turing Institute, UK; Bowen Du, University of Warwick, UK; Konstantin
Klemmer, University of Warwick, The Alan Turing Institute, UK; Hongming Zhu, Tongji University, China; Hakan Ferhatosmanoglu; Hongkai
Wen, University of Warwick, UK.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.
© 2020 Association for Computing Machinery.
XXXX-XXXX/2020/4-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: April 2020.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


2 • Luo et al.

(a) Station distribution in January.

New stations 
since Jan.

(b) Station distribution in July.

New stations 
since July

(c) Station distribution in December.

0

100

200

300

400

500

600

500

1000

1500

2000

2500

3000

Jan FebMar AprMayJun Jul AugSepOctNovDec

# 
of

 s
ta

tio
ns

# of stations in operation
Closed Stations
Newly Deployed Stations
Net Increase

(d) Statistics of stations over 12 months.

Fig. 1. The expansion process of an EV sharing system in Shanghai during the year 2017. Images better viewed in colour.

1 INTRODUCTION
Cities around the globe struggle with congestion and poor air quality. Vehicle sharing systems have long been
recognized as an environmentally friendly mobility option, reducing vehicles on the road while cutting out
unnecessary CO2 emissions. With the recent advances in battery technologies, a new generation of car sharing
services is going one step further, by offering full electric vehicle (EV) fleets with fast expanding infrastructures
in major cities, e.g. Bluecity [2] in London, WeShare [6] in Berlin, and BlueSG [3] in Singapore. Traditional
car sharing providers have also started to populate their EV fleets, e.g., ZipCar [7] seeks to provide over 9,000
full electric vehicles across London by 2025. According to a recent study [30], the global market of EV sharing
services is poised for even faster growth in the near future, due to the incentives and regulations put in place by
governments across the world to encourage broader EV usages. Electric vehicle sharing services will reshape the
current urban transportation paradigm and potentially offer significant societal benefits, as they provide a more
efficient, sustainable, and affordable mobility option to all citizens, eliminating the necessity of individual car
ownership.

Despite their increased popularity and rapid growth across the globe, there are still many challenges and open
questions with respect to the practicality of current EV sharing systems. A major problem of those systems is that
during their expansion processes, dynamic predictions of user demand and implementing expansion strategies
become substantially more difficult. This is not only complicating decision making as to where and when to
deploy new stations or close the poorly performing ones, but also of great importance to the effective operation of

, Vol. 1, No. 1, Article . Publication date: April 2020.



D3P: Data-driven Demand Prediction for Fast Expanding Electric Vehicle Sharing Systems • 3

New station

A
B

C

(a)

0

1

2

3

Apr May Jun Jul Aug

# 
of

 1
00

0 
O

rd
er

s

A
B
C
New station

(b)

New station

EF

G

(c)

0

2

4

Feb Mar Apr May Jun

# 
of

 1
00

0 
O

rd
er

s

E
F
G
New station

(d)

Fig. 2. Different types of impact when deploying new stations to the current station network. (a)-(b) An example showing
that a new station ‘steals’ the user demand from one of its neighbour stations. (c)-(d) An example showing that a new station
‘boosts’ the demand of its neighbour stations.

currently used stations. Understanding the potential impact of proposed expansions to their demand can provide
valuable insights on a number of vital tasks such as scheduling, pricing, and rebalancing.

However, in the context of such continuous expanding EV sharing systems, this demand prediction problem
is not trivial. Most of the existing work on demand prediction [11, 17, 22, 23, 27, 39] assumes the stations in
the system are static and different forms of historical data is available for all stations, or only predicts demand
after fixed (one or two) expansion stages where stations are only deployed in batches [24]. These assumptions
often collapse in the real world. For instance, Fig. 1(a)-(c) visualize the expansion process of a major EV sharing
platform in Shanghai during 2017. We see that in the beginning stations are only scattered within limited areas,
while at the end of the year the entire city has been densely covered. As shown in Fig. 1(d), within 12 months the
total number of stations in operation has doubled (from roughly 1500 to more than 3000). In addition, we see
that in each month there are continuously hundreds of stations being deployed or closed. In this case, predicting
demand at those newly deployed or to be deployed stations is challenging, since there is no sufficient historical
data available as prior knowledge.

On the other hand, the new dynamics caused by the expansion process may have complex effects on the entire
EV sharing system. For example, as shown in Fig. 2, deploying stations at various places may have completely
different effects. For example, the new station (denoted as the red dot) in Fig. 2(a) ’steals’ the demand from one
of its neighbors (station A) since its deployment in June (see the changes of their order numbers in Fig. 2(b)).
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We found from the data that the new station was deployed in a major shopping center, and therefore it likely
attracted the users who originally preferred to rent/return cars from/to station A, which is just one block away.
In contrast as shown in Fig. 2(c) and (d), deploying a new station has increased the orders of its neighbor stations
E, F and G collectively. In particular, we found from the data that a large portion of their increased orders have
the new station as the destination. This means that after the new station is deployed, many users tend to rent
EVs from E, F, and G because together with the new station, they offer convenient short-range connections for
them to get to the other side of the airport. In the presence of such dynamics, accurate demand prediction for the
remaining stations becomes very challenging, due to the non-trivial system dynamics caused by the continuous
expansion process.
To address those challenges, we propose a novel data-driven demand prediction approach, which models

the expansion of EV sharing systems with time-varying graphs, and is able to predict the demand of stations
throughout the expansion process. Specifically, for each station that comes in operation, we employ a local
temporal encoding module to capture the correlations within the historical data. The extracted features from
all stations are then compiled by a dynamic spatial encoding module, which considers the spatial dependencies
between them as multiple graphs, and fuses the station-level features with Graph Convolutional Neural Networks
(GCN). Based on the encoded information and future expansion plan (i.e., which stations to be deployed or closed),
we consider a multi-scale predictor which forecasts station demand at different scales: From instant demand
in the immediate near future to the long term expected demand, for both stations to be deployed and the ones
remaining. The technical contributions of this paper are as follows:

• To the best of our knowledge, this is the first work that investigates the demand prediction problem in the
context of continuous expanding electric vehicle sharing systems. We conduct a comprehensive study with
the operational data from a fast growing EV sharing system in the real world, and identify the needs and
benefits of forecasting the accurate user demand as the system continuously expands, which have not been
studied before.

• We propose a novel data-driven approach for demand prediction which is capable of modelling the complex
dynamics caused by the continuous system expansion. The key idea is to model the evolving station
network of the EV sharing system as multiple time-varying graphs, which describe the different types of
correlations between the stations. With those graphs, we propose new encoding approaches which perform
the local temporal encoding and global spatial encoding processes in tandem, to jointly incorporate the
historical knowledge at individual stations and the spatial dependencies between them.

• We design a new multi-scale predictor on top of the encoding processes, which is able to forecast the user
demand of both stations to be deployed and those already existing in the current system. In addition, our
predictor can predict not only the expected future demand of the stations, but also their instant demand
in subsequent timestamps, which allows us to better understand both short and long term impact of the
system expansion.

• We evaluate the proposed demand prediction approach on both real and simulated data collected from a
major EV sharing platform in Shanghai for one year, including data from over 3000 stations and 16,000
electric vehicles in operation. Extensive experiments have shown that our approach significantly outper-
forms the state of the art, offering up to three-fold improvement in prediction accuracy and is robust to
different levels of expansion dynamics.

The rest of this paper is organized as follows. We first formulate the problem of demand prediction for
continuously expanding EV sharing systems in Section 2. Then we present the proposed data-driven demand
prediction approach, where Sections 3 and 4 discuss the local temporal and dynamic spatial encoding techniques
respectively, and Section 5 describes the design of the multi-scale predictor. Section 6 evaluates the performance
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of our approach with real-world EV sharing system data. We review the related work in Section 7 and conclude
the paper in Section 8.

2 PROBLEM FORMULATION
In this section, we first introduce some key concepts used throughout the paper, then we formulate the problem
of demand prediction for expanding EV sharing systems and provide an overview of the proposed framework.

2.1 Preliminaries
2.1.1 Electric Vehicle (EV) Stations. Let si be a station in the Electric Vehicle (EV) sharing system. In this paper,
we assume si can be represented as a tuple (x i ,mi ), where x i are the geographic coordinates (e.g. latitude and
longitude) of station si , andmi is the number of charging docks within si . We also assume that for a given si , we
can extract a number of geospatial features based on its location x i , such as nearby Points of Interest (POI) or the
distribution of road networks within a certain radius.

2.1.2 Instant Station Demand. We define the instant demand of a station si at timestamp t as the rent/return
frequency of si , denoted as di (t). In this paper the granularity of timestamp t is days, i.e., we focus on daily station
demand, but the proposed approach can be extended to adopt other time granularity levels.

2.1.3 Expected Station Demand. For a station si , the expected demand d̄i over a period [ts , te ] can be defined as
the mean d̄i (ts , te ) = |te − ts |

−1 ∑te
t=ts di (t). We consider the expected demand from the current time t towards

the future, and aggregate it according to some index, e.g., days of the week. Without loss of generality, in the
following text we denote the future expected demand of station si as a vector d̄i = [d̄Mo

i , d̄
Tu
i , ..., d̄

Su
i ], d̄i ∈ R7 for

different days of the week.

2.1.4 Station Network. We model the stations of the EV sharing network as a graph G = (S,A), where the nodes
si ∈ S are stations as defined above. An edge ai j ∈ A may encode a certain type of correlation between two
stations si and sj , e.g., the spatial distance between them, or similarity between their POI/road network features.
Section 4.1 will discuss how we construct multiple graphs to capture such inter-station relationships in more
details.

2.1.5 Station Network Dynamics. Unlike existing work, in this paper we assume the station network is evolving
over time, i.e., G = (S,A) is a time-varying graph. More specifically, let Gt−1 = (St−1,At−1) represents the station
network at time t − 1. Without loss of generality, we assume that at time t − 1, there is an expansion plan to be
implemented at time t , which shall expand the current station network from Gt−1 to the planned network G P

t .
Let’s assume during this a set of new stations S+ will be deployed, while existing stations S− will be closed. If the
expansion plan goes through, then at time t the actual station network Gt = (St ,At ) becomes the plannedG P

t ,
where

St = (St−1 − S−) ∪ S+ (1a)
At = (At−1 − {ai j |si ∈ S− or sj ∈ S−}) ∪ {ai j |si ∈ S+ or sj ∈ S+} (1b)

2.2 The Demand Prediction Problem
Suppose that at time t , we have the topology G1, ...Gt and demand D1, ...,Dt of the station network, where
Dt = {di (t)|si ∈ Gt }. Let G P

t+1 be the planned station network at the future timestamp t + 1. The demand
prediction problem addressed in this paper is that given the historical data, for an arbitrary station in the planned
network si ∈ G P

t+1 (deployed or not yet deployed) we aim to estimate both its expected future demand ˆ̄di and
the subsequent k instant demand [d̂i (t + 1), d̂i (t + 2), ..., d̂i (t + k)], which minimise the mean square errors with
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Fig. 3. Overview of the proposed data-driven demand prediction framework.

respect to the ground truth d̄i and di :

δd̄ i
= |d̄i |

−1∥ ˆ̄di − d̄i ∥
2 (2a)

δdi = k
−1

t+k∑
τ=t+1

∥d̂i (τ ) − di (τ )∥
2 (2b)

In practice, the expected demand ˆ̄di can be viewed as a metric for the long-term performance of stations si , e.g.,
if si is a station to be deployed, ˆ̄di quantifies the average level of demand it may be able to attract. On the other
hand, the sequence of instant demand [d̂i (t + 1), d̂i (t + 2), ..., d̂i (t + k)] describes the immediate trend of station
demand under the impact of the expansion plan, which can help to optimise key future operation strategies such
as marketing and resource allocation.

2.3 Framework Overview
Fig. 3 shows the overview of the proposed data-driven demand prediction framework, which consists of three
major components:

2.3.1 Local Temporal Encoding. During the life cycle of a station si (from being deployed to shut down), its
demand can be viewed as a time series, where the current demand di (t) should correlate with the local historical
demand di (t − 1), ...,di (1). In addition, there may exist other temporal factors that can influence the demand of
individual stations, such as weather conditions, air pollution levels, days of the week and public holidays etc. To
model such temporal dependencies, we assign a Long Short-Term Memory (LSTM) network at each individual
station when being deployed, and use them to encode local temporal information at station level.

2.3.2 Dynamic Spatial Encoding. Intuitively, the demand of a station si can be affected also by the other stations
in the network. To capture the spatial correlations, at each time t we construct multiple graphs to encode different
spatial relationships between the stations, e.g., inter-station distances, POI similarity, and road network metrics.
Then we use Graph Convolutional Neural Networks (GCN) to fuse those graphs and encode the previously
computed local features of individual stations. In particular, as the station network is evolving over time, we
develop a dynamic GCN (DGCN) which is able to process such time-varying graphs.
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2.3.3 Multi-scale Demand Prediction. Based on the results of the above temporal and spatial encoding, we aim to
predict both the expected demand and subsequent instant demand of stations after the planned expansion. To
achieve that, we design a multi-scale prediction network, which firstly compiles the previously learned features
into a context vector. For expected demand, it uses a fully connected branch to perform the prediction, while on
the other hand, it considers a decoder LSTM network with attention mechanism to forecast instant demand at
multiple future timestamps.
We are now in a position to elaborate the proposed data-driven demand prediction approach in more detail.

3 LOCAL TEMPORAL ENCODING
Like in many other shared mobility services, we observe that the demand of stations in the EV sharing network
exhibits strong temporal correlations, as shown later in Fig. 6(b). For instance, although it fluctuates largely
over time, the demand at an individual station approximates certain periodical patterns at different days across
the week. In that sense, exploiting such knowledge can help significantly in estimating the future demand of
the existing stations, which will have a positive knock-on effect when predicting demand for the new stations
during expansion. However, those demand patterns are typically influenced by multiple factors such as weather,
air quality and events, and individual stations may react to those factors differently. Therefore, it is often not
optimal to only incorporate the temporal information globally for the station network, but instead we model
such microdynamics at the station level.

Concretely, when a station si is deployed, we instantiate an LSTM network which keeps processing its demand
records and the additional temporal information available, e.g. weather, days of the week and public holiday/events.
In our implementation, we encode such temporal information as feature vectors, e.g. the weather data can be
discretized and represented as one hot vectors, and all the vectors are concatenated as the input to the LSTMs. To
avoid over-fitting, we train the LSTMs with shared weights across stations. At time t , the LSTM encodes the
station’s historical demand di (t),di (t − 1), ... as well as the auxiliary information into a temporal feature vector
fi (t). Moreover, in this paper we also condition fi (t) with a static station feature vector ci , which describes key
attributes of the station si such as its number of available charging docksmi , nearby POIs and environmental
characteristics, etc. We encode the static feature ci in a similar way with the temporal information, e.g. the POI
data can be represented as vectors where each element indicates the number of a particular type of POIs that are
close to the station. Therefore, fi (t) and ci carry important local information about individual stations since they
started operating, which are concatenated and passed on as the input for the later spatial encoding. Fig. 4 shows
the workflow of the proposed approach, where at each timestamp we maintain a collection of local LSTMs to
encode information of individual stations.

4 DYNAMIC SPATIAL ENCODING

4.1 Constructing Multiple Graphs
As discussed in Section 2.1, at a given time t we represent the station network as a graph Gt = (St ,At ), where St
are the set of current stations and At is the adjacent matrix describing the pairwise correlations between them.
In practice there are often more than one types of correlations, which cannot be effectively captured by a single
graph. Therefore in this paper we construct multiple graphs to encode the complex inter-station relationships [16]
particularly the distance graph, the functional similarity graph, and the road accessibility graph (see Fig. 4).

4.1.1 Distance: In most cases, we observe that the demand of stations close to each other are highly correlated,
e.g., they may be deployed around the same shopping centre, and thus tend to be used interchangeably. We
capture such correlations with a distance graph AD, whose elements are the reciprocal of station distance:

a D
i j = ∥x i − x j ∥

−1
2 (3)
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multi-graph dynamic GCN. The output of the GCN H t encodes both the spatial and temporal features across different
stations, and are fed into the multi-scale prediction networks.

where x i ,x j are the station coordinates, and ∥ · ∥2 is the Euclidean distance. We also set diag (AD) to 1 to include
self loops in the graph.

4.1.2 Functional Similarity. Intuitively, stations deployed in areas with similar functionalities should share
comparable demand patterns. For instance, stations close to university campuses typically have significantly
higher demand during weekends. We characterize the functionalities of stations by considering the distributions
of their surrounding POIs. Suppose we have P different categories of POIs in total, and let pi be the distribution
of the P types of POIs within a certain radius of station si . The functional similarity graph AF is then defined as:

a F
i j = sim (pi ,p j ) (4)

where sim (, ) ∈ [0, 1] is a similarity measure which quantifies the distance between feature vectors. In our
experiments, we use the soft cosine function.

4.1.3 Road Accessibility. Another factor that affects station demand is the accessibility to road networks. Intu-
itively, stations close to major ring roads, or within areas that have densely connected streets would have higher
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demand. To model this, we consider the drivable streets in the vicinity of a station si as a local road network,
containing different types of road segments and their junctions. We extract a feature vector r i from the local
road network, which encodes information such as the road segments density, average junction degree and mean
centrality. Given those features, the road accessibility graph can be defined with a similarity function sim (, ):

a R
i j = sim (r i , r j ) (5)

where we also use soft cosine as the similarity function.

4.2 Dynamic Multi-graph Convolution
At time t−1, given the constructed graphsAt−1 = {AD

t−1,A
F
t−1,A

R
t−1}which describe the inter-station relationships,

we propose a dynamic multi-graph GCN (DGCN) to fuse such spatial knowledge with local features fi (t − 1) and
ci computed by the station-level temporal encoding. In the proposed DGCN, we perform multi-graph convolution
as follows:

H (l )
t−1 = σ

( ∑
At−1∈At−1

f (At−1)H
(l−1)
t−1 W (l−1)

t−1

)
(6)

whereH l−1
t−1 andH l

t−1 are the hidden features of layers l−1 and l respectively, whileW l−1
t−1 ∈ RUl−1×Ul is the feature

transformation matrix learned through end-to-end training. In particular, the input H (0)
t−1 is the collection of local

features computed at individual stations. f (At−1) is a function on graphs At−1, e.g., the symmetric normalized
Laplacian [19] or k-order polynomial function of Laplacian [16], and σ is a non-linear activation function such as
ReLU.

As discussed before, in our case the station network evolves over time, i.e. new/existing stations can be opened
or closed at any time. For simplicity, suppose at t there is only one new station sN has been deployed. To capture
this event, we recalculate the inter-station graphs At−1 by appending new rows and columns to them, where the
new graphs At now contain pairwise correlations between the new s+ and each existing stations. Note that the
DGCN input also changes, i.e. nowH (0)

t has an extra feature for this newly deployed station sN , computed by the
local encoding process.
On the other hand, let sj be the station that has been closed at time t . In our implementation, instead of

removing elements from the graphs, we simply apply a mask of zeros to the corresponding rows and columns of
At , and set the j-th row of the input H (0)

t to zeros since there won’t be local features generated from sj anymore.
The intuition is that in our graph representation, a: , j = 0 means station sj has no correlation with any other
station at all, and thus won’t be able to propagate information in the graph convolution. Therefore in our case, at
different timestamps the dimension of the input to our GCN can be different, i.e., the dimensions of the graphsAt

and input featuresH (0)
t are varying. However this won’t affect the learning process, since the learnable parameters

W l
t at each layer l have fixed dimensions. In addition, note that although f (At ) produces filters with the same

size of the feature H (l )
t at each layer l , Eq. (6) can still be viewed as a local convolution given the graphs At . The

reason is that by definition many elements in At are near zero (e.g. in the distance graph AD
t ), i.e. for a given

station, it will be only affected by the features of stations with sufficiently high correlations with it (having large
non-zero elements in At ). Conceptually, the dynamic GCN (DGCN) operates on snapshots of the inter-station
graphs which are constructed on-the-fly, and fuses the local temporal features at individual stations with the
spatial dependencies encoded in those graphs.

5 MULTI-SCALE DEMAND PREDICTION
As discussed in Section 2.2, the demand prediction problem addressed in this paper is to forecast the future
demand of arbitrary stations in the EV sharing system under the planned expansion, given the historical data and
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Fig. 5. The proposed multi-scale demand predictor. Left: Decoder LSTM with attention mechanism for instant demand
prediction. Here the decoder runs from timestamp u = [t + 1, ..., t + k]. Right: Fully connected network for expected demand
prediction. Note that H ′

t+1 is computed using the planned station network G P
t+1, while H t , H t−1,... are derived from the

actual data until time t .

previous dynamics of the station network. We have shown in the previous sections how we use local LSTMs and
dynamic GCN (DGCN) to encode the spatial-temporal dynamics of the system, and in this section we explain how
to make predictions of the user demand at multiple scales based on the knowledge extracted from the encoding
processes. Fig. 5 shows the architecture of the proposed multi-scale demand prediction network.

5.1 Predicting Expected Demand
LetGt be the current station network at time t . Without loss of generality, we assume that at the next timestamp
we plan to deploy a candidate new station sN , while will close an existing station sj . Therefore, the goal is
to predict the future demand of each individual station in this planned station network G P

t+1. To achieve that,
for each station in G P

t+1, we run the LSTMs in the local temporal encoding process (Section 3) to generate an
additional feature for time t + 1, and create the new input feature H (0)′

t+1 for the GCN. Note that at this moment
there is no historical data for the planned new station sN since it is not deployed yet, and therefore here we
only include its static features csN while keeping its temporal features fsN (t + 1) as zeros. We also mask the row
corresponding to station sj with zeros in H (0)′

t+1, to mute features from sj which will be removed at t + 1. Then we
process the planned station networkG P

t+1 by applying the same update to the inter-station graphs as discussed in
Section 4.2, i.e., adding and masking the rows and columns corresponding to sN and sj . The generated feature
H (0)′

t+1 is then passed through the multi-graph DGCN, producing an output H ′
t+1. We consider this H ′

t+1 as the
context for prediction, because it not only encodes the current information about the new candidate station sN

and the spatial dependencies between stations, but is also relevant to the available historical information, since
the underlying temporal encoding process uses LSTMs to preserve the temporal correlations.
In this paper, we consider the expected demand of station si over different days of the week, indicating the

mean demand that the station can attract in the future at each week day, i.e., i.e. d̄i = [d̄Mo
i , d̄

Tu
i , ..., d̄

Su
i ]. To

predict d̄i , we plug in a fully connected network to the context vectorH ′
t+1, which is trained to output the future

expected demand (7 values indicating demand on different week days) for each station in the network G P
t+1. For

the station sN , the predicted expected demand of itself and nearby stations indicate the potential benefits of
deploying sN to the current station network. In Section 6.4 we will show that in real-world experiments our
approach significantly outperforms the existing techniques in prediction accuracy.
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5.2 Predicting Instant Demand
We also predict the future instant demand of stations in the planned network G P

t+1 over a certain time window.
This is also of great importance in practice, especially for the planned new station sN , since it forecasts the
immediate impact and future trends of the station network once sN is in operation. However it is more challenging
than predicting the expected demand, because essentially for each station we need to predict a sequence of
concrete demand instead of the aggregated values.
To address that, we design a decoder LSTM network with attention architecture, which takes a sequence of

previous features computed by the dynamic multi-graph GCN as input, and estimates the future k instant demand.
In this case, conceptually the prediction framework becomes an encoder-decoder structure, where the processes
of local temporal encoding and dynamic spatial encoding serve together as the encoder. Let [H t−n, ...,H t ,H

′
t+1]

be the sequence of n + 1 previous features generated by our DGCN. Unlike in the previous case where we only
consider the last output feature H ′

t+1 as the context for prediction, here for each timestamp u in the prediction
window of length k , i.e. u = [t + 1, ..., t + k], we construct the context vectors by fusing the feature sequence
with attention mechanism:

Ctxu =
t+1∑

v=t−n

αuvHv (7)

where αuv are the attention weights determining the contribution of a featureHv (v ∈ [t −n, t + 1]) in predicting
the demand at time u. Those weights αuv are trained through back propagation in the end-to-end optimization.
Then the decoder LSTM consumes the context vectors and predicts the k subsequent future demand. We found in
our experiments that the attention mechanism is very helpful, since the station demand patterns tend to have
strong periodic components, e.g., demand on this Monday is highly correlated with previous Mondays, and a
single context vector is too compressed to encode such correlation. In our implementation we typically set n = k
or n = 2k to better capture such periodical pattern in the station demand.

6 EVALUATION
In this section, we evaluate the performance of the proposed data-driven demand prediction approach on data
from a real electric vehicle sharing platform in Shanghai, China. We first describe the datasets, baseline approaches
and implementation details of our experiments (Sections 6.1, 6.2 and 6.3), and then discuss the experimental
results in Section 6.4.

6.1 Datasets
6.1.1 Electric Vehicle (EV) Sharing Data. Our EV data is collected from real-world operational records of an EV
sharing platform for one year (January to December 2017), containing two sets of data: i) the renting/returning
orders at each stations, and ii)the detailed expansion process of the station network (i.e., when and where a
station was deployed/closed). In particular, there were 1705 stations and 4725 electric vehicles at the beginning of
2017, while as of December 2017 there were 3127 stations with a fleet of 16148 vehicles in operation. In total, the
raw data contains 6,843,737 records, which were generated by approximately 0.36 million active users. Fig. 6(a)
visualizes the spatial distribution of the orders (represented as lines between pick up and return stations) in a
month. Fig. 6(b) shows the numbers of orders at different days-of-month, which exhibit clear periodic patterns
with peaks on weekends.

6.1.2 Simulated System Expansion Data. In addition to the actual EV data, we also simulate additional datasets
for training purposes with different patterns of system expansion. The rationale is that the real expansion data
only represents one sample (run) of system expansion, and it is not sufficient for our models to learn how to
react to the general expansion process. Specifically, given the real EV data (both orders and expansion data), at
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Fig. 6. Visualization of data used in the experiments. (a) Spatial distribution of orders (only showing the most frequent
orders over the year). (b) Number of orders in one month. (c) Road network in Shanghai in a graph format. (d) Weather
distribution of Shanghai in each month of the year 2017.

each timestamp t we randomly pick a subset of existing stations according to a probability p, and treat those
stations as newly deployed, i.e., assuming they don’t have any previous order data. Note that here we select
the stations randomly instead of following certain rules in order to make learning more generalizable. We vary
the probability p from 0 to 1, generating multiple simulated datasets (p = 0.1, ..., p = 1) with different expansion
dynamics. Intuitively, the case where p = 0 is the real EV data without any extra injected expansion dynamics,
while p = 1 is the extreme case where all stations at every timestamp are supposed to be newly deployed. Note
that we only use the simulated data in training, and for testing we always use the real data. As shown later
in Section 6.4, the simulated datasets effectively augment the real EV data, which help the proposed demand
prediction approach to generalize better.

6.1.3 POI Data . We also collect Point Of Interest (POI) data from an online map service provider [1] in China.
In total we have extracted 4,126,844 POI entries in Shanghai, each of which consists of a GPS coordinate and a
category label. The label indicates the particular type and function of the POI, e.g. hospitals, subway stations,
schools etc. In our experiments, for each station we only consider the POIs within 1km radius. Table. 1 shows the
statistics of some POI categories. In our implementation we use one hot vectors to represent the POI features of
the stations, i.e. the elements encode the numbers of particular types of POIs which are close to the station.
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Table 1. Statistics of some POI categories in our data.

POI Type Number POI Type Number
Hospitals 4745 Banks 2988
Tourist attractions 2696 Companies 89,747
Gov. organizations 16,425 Higher education 6922
Airport services 126 Residences 51,089
Subway stations 1,729 Hotels 18,234
Bus stations 41,475 ... ...

6.1.4 Road Network Data . We extract road network data in Shanghai using OSMnx [9] from OpenStreetMap [5],
which is formatted as a graph (visualized in Fig. 6(c)). Similar with the POIs, we consider the subgraphs within
1km radius of the stations, and compile key statistics such as mean degree, length of road segments etc. into the
feature vectors. In our data, on average a subgraph contains road segments of length 13.85km and approximately
39 junctions, with a mean degree of 4.28.

6.1.5 Meteorology Data . Finally, we collect the historical daily weather data in Shanghai for the year 2017 from
a publicly available source [4]. Each record describes weather conditions of the day, which falls into four different
categories: sunny, overcast/foggy, drizzling/light snow and heavy rain/snow. Then natually we encode the data
using one hot vectors as the weather features. Fig. 6(d) shows the distribution of weather conditions in Shanghai
over the 12 months.

6.2 Baselines and Metric
We evaluate two variants of the proposed data-driven demand prediction approach respectively: 1) D3P-Exp,
which predicts the future expected demand of stations; and 2) D3P-Seq, which forecasts the instant demand of
stations in a subsequent time window. Both of the two variants share the same local temporal and dynamic
spatial encoding processes, but they implement the two different branches in our multi-scale demand predictor
and forecast future demand at different scales (as discussed in Section 5).
In particular, for predicting the expected demand, we compare our D3P-Exp approach with the following

baselines:
• KNN, which uses a linear regressor to predict the expected demand of existing stations. For the planned
stations, it estimates their demand with standard KNN, based on the similarity of features (e.g. POIs)
between them and the existing stations.

• Random Forest (RF), which shares the similar idea as KNN, but trains a random forest as the predictor.
• Functional Zone (FZ), which implements the state of the art demand prediction approach for system
expansion in [24]. Note that we don’t have taxi records in our data, but instead we directly feed the ground
truth check-in/out to favour this approach.

For D3P-Seq which computes the instant demand, we consider three competing algorithms:
• ARIMA + KNN, which uses Auto-Regressive Integrated Moving Average (ARIMA) [36] to forecast multi-
step demand at existing stations, and then uses KNN to estimate demand at new station based on station
features such as POIs.

• LSTM + KNN, which is similar with A-KNN, but trains LSTM networks for temporal modelling.
• Multi-graph GCN (MGCN), which implements a similar framework as the state of the art in [11], whose
implementation is not publicly available. More importantly, the original framework in [11] is not able to
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work with time-varying graphs. Therefore, to perform fair comparison, here we use our dynamic multi-
graph GCN implementations that can handle new/closed stations, and consider the same data sources as in
our approach.

For all approaches, we adopt the Root Mean Squared Error (RMSE) and the Error Rate (ER) as the performance
metric:

RMSE =

√√√
1
N

N∑
i=1

(ẑi − zi )2

ER =

∑N
i=1 |ẑi − zi |∑N

i=1 zi

(8)

where ẑi and zi are the predicted and ground truth values respectively.

6.3 Implementation Details
We implement the deep neural networks in the proposed approach with TensorFlow [8] 1.10.0, and use the Adam
optimiser [18] with the learning rate of 0.001. The networks are trained on a single Titan Xp GPU from scratch. To
preserve the temporal dependencies in the data, we partition the data into multiple batches where each of them
contains data of consecutive three months. For example, the first batch includes data from January, February and
March, while the second has data of February, March and April. For each batch, we use both real and simulated
data (p = 0, ..., p = 1 as discussed above) from the first two months for training, and the real data of the third
month for testing. We train the two branches of our predictor networks separately, where the ground truth labels
are obtained from the real world data. We repeat training on all batches and report the best average performance.

6.4 Evaluation Results
6.4.1 Accuracy of Predicting Expected Demand. The first set of experiments evaluate the overall accuracy when
predicting the expected demand of stations. Fig. 7(a) and (b) show the RMSE and ER of the proposed approach
(D3P-Exp) and competing algorithms over different days of the week. We see that comparing to naive KNN, the
random forest based approach (RF) can reduce the RMSE by about 30% while ER by 20%. However, our approach
(D3P-Exp) performs significantly better, and can achieve up to three times improvement in both RMSE and ER. In
particular, on average the RMSE of D3P-Exp is approximately 1.961, which means when predicting a station’s
expected demand, the value estimated by our approach is only about ±2 with respect to the ground truth. This
confirms that the proposed approach can effectively model the complex temporal and spatial dependencies within
the evolving station network, and exploits that to make more accurate predictions. In addition, we observe that
the RMSE tends to increase on weekends compared to weekdays for all algorithms. This is because in practice the
absolute demand on weekends is larger, which often leads to bigger RMSE. Note that the ER remains relatively
consistent across different days.

6.4.2 Planned vs. Existing Stations. This experiment investigates the prediction performance of different ap-
proaches on the planned new stations which haven’t been deployed yet, and existing stations which are already
been in operation. Fig. 7(c) and (d) show the average RMSE and ER of the proposed approach (D3P-Exp) and
the competing algorithms on the planned, existing, and all stations respectively. We see that all of approaches
perform better on the existing stations than the planned. This is expected because for existing stations we have
access to their historical demand data, which is not available for planned stations. We also observe that although
the functional zone based approach (FZ) performs better than the baselines for the planned stations, it fails on
the existing stations (performs worse than RF). This is because by design FZ is tuned to predict demand of new
stations in the context of system expansion, but not for existing ones. Finally, we see that for both planned and
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Fig. 7. Performance on predicting the expected demand. (a) RMSE and (b) ER of all stations across different days in the week.
(c) RMSE and (d) ER of existing vs. newly deployed stations vs. all stations averaged over all days of the week.
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Fig. 8. Performance on predicting the instant demand. (a) RMSE and (b) ER of the competing approaches.

existing stations our approach (D3P-Exp) performs consistently the best. For the planned stations, it halves the
errors comparing to the state of the art approach FZ, while for the existing stations, it offers about three-fold
improvement over the baselines.

6.4.3 Accuracy of Predicting Instant Demand. This set of experiments evaluates the performance of different
approaches when predicting the future instant demand. Here we only consider the planned stations, since it is
straightforward to predict for the existing stations given their historical data. We ask all approaches to predict
the instant demand over the next seven days, and report the average accuracy. Fig. 8 shows the RMSE and ER
of the proposed approach (D3P-Seq) and the competing algorithms. We see that in this challenging case, our
approach (D3P-Seq) can still achieve an average RMSE of 2.903, which is over 30% lower than the baselines
(similar gap can be observed in ER). It is also superior to the state of the art MGCN approach which also uses
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Fig. 9. (a) RMSE and (b) ER of the predicted instant demand for different prediction lengths.

multi-graph GCN, with about 20% reduction in RMSE and ER. This confirms that even for the planned stations
without historical data, our approach can still accurately predict their future instant demand within a certain
time window. In addition, we find that the attention mechanism in our approach is very effective. Without using
attention architecture in the decoder, the performance of our approach drops by approximately 15%, which is still
better than the state of the art.

6.4.4 Accuracy vs. Prediction Length. This experiment studies the accuracy of competing approaches when
predicting instant demand over different time intervals. As in the previous experiment, here we also only consider
prediction performance for the planned station. We vary the length of the prediction time window from 1 to 7,
i.e. from predicting the demand of stations on the immediate next day t + 1, to that on the subsequent seven
days t + 7. Fig. 9 shows the RMSE and ER of the approaches under different time windows. We observe that in
general, the RMSE increases as the length of the time window grows, especially for our approach (D3P-Seq) and
the state of the art MGCN. This makes sense because clearly predicting demand over a longer time window is
more difficult. On the other hand, we see that the ER of baselines are higher for short window lengths comparing
to the MGCN or our approach. We find that this is because the baselines tend to report random estimations on
the future demand, where for shorter windows this can lead to larger ER, but will be averaged out for longer
time windows as the ground truth demand grows in later days. Finally, we see that MGCN can offer comparable
performance with our approach (D3P-Seq) when predicting for the immediate next timestamp. However as the
prediction length increases, our approach consistently outperforms MGCN, with a performance gap of up to 26%.

6.4.5 Impact of Different System Expansion Dynamics. The last set of experiments investigates the impact of
different levels of system expansion dynamics on the proposed demand prediction approach, and the validity
of using the simulated data for training. As discussed in Section 6.3, the reason why we use simulated data in
addition to real data for training is that the real data only represents one sample (or run) of system expansion,
which is not sufficient for our models to pick up the general expansion process. Therefore, we simulate more
datasets by randomly selecting a subset of existing stations according to a probability p, and assume those stations
as newly deployed. This allows us to generate datasets with different levels of extra injected expansion dynamics.
In particular, we varied p from 0 to 1, where p = 0 is the real data without any extra dynamics, and p = 1 leads to
the extreme case where all the stations are considered as newly deployed at each timestamp. Therefore, we train
our models with both the real (p = 0) and simulated (p = [0.1, ..., 0.9]) data, but in all experiments we evaluated
our approach with the real data. As shown in Fig. 10, we see that as p increases from zero, our approach tends to
make more accurate predictions for both expected and instant demand (lower errors). This confirms the validity
of our simulation approach, in that by artificially injecting the simulated dynamics, we essentially force the GCN
to learn how to better react to the deployment of new stations. We also observed that for larger p values, the
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Fig. 10. Prediction performance of our approach trained on datasets with different levels of system expansion dynamics. (a)
RMSE and (b) ER.

errors (both RMSE and ER) tend to increase for both types of demand. This is also expected because in those
cases the excessive injected dynamics would mute the useful information coming from local LSTMs at individual
stations and confuse the GCN, leading to deterioration of performance. Therefore, this means with carefully
selected p, the simulated data can help the learning process to capture the dynamics caused by system expansion,
leading to more accurate predictions. Empirically we find that p with values around 0.4∼0.6 would achieve the
desired balance between incorporating the historical information and learning from the expansion dynamics.

7 RELATED WORK

7.1 Electric Vehicle (EV) Systems
The electrification of urban mobility systems has introduced a number of new challenges, such as route planning
and optimization [29], vehicle charging scheduling [33, 38, 42], and infrastructure planning [29]. The work in [32]
conducted a comprehensive measurement investigation to study the long-term evolving mobility and charging
patterns of electric taxis in a city, using real-world data collected over five years. Our work complements those
existing studies which primarily consider the electric taxis or buses, in that we focus on the EV sharing systems,
which operate in a very different way. For instance, for electric taxis or buses their networks of stations [32]
are mainly used for charging, whose service coverage also depends on the fixed bus routes or individual taxi
drivers. However in our case, the users can only access (renting, returning and charging) vehicles at the available
stations, and thus the expansion of the station network will have much more direct and complex impact on the
entire system.

7.2 Demand Prediction for Shared Mobility Services
Predicting user demand in shared mobility services (e.g. taxis and bike- or vehicle-sharing systems) has received
considerable interest in various research communities. Most of the existing work takes the historical usage (e.g.
picking-up and returning records), geospatial data such as POIs, and other auxiliary information (e.g. weather) into
account, and builds prediction models that can forecast demand over certain periods or aggregated time slots. They
also predict the demand at different spatial granularity, e.g. over the entire systems [35, 41], grids/regions [16],
station clusters [15, 22, 27], or individual stations [11–13, 17, 23, 34, 39, 43]. This paper falls into the last category
since we aim to predict station-level demand of EV sharing systems. However, our work is fundamentally different
in that we assume the station network is not static, but dynamically evolving, i.e. stations can be deployed or
closed at arbitrary times. This has not been investigated by the existing work, and in this case, state of the
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art station-level demand predictors (e.g. [17]) do not address our problem because they rely heavily on station
historical data to make predictions, which are not available for those newly deployed stations.

7.3 Shared Mobility System Expansion
There is also a solid body of work focusing on modeling the expansion process of shared mobility systems, e.g.
planning for optimal new stations [12, 23, 37], or increasing the capacity of existing stations [14]. However, most
of the existing work assumes that historical information on demand of the stations (renting and returning) are
either known, or can be estimated from other data sources such as taxi records, which is fundamentally different
from our work. On the other hand, the work in [24] proposes a functional zone based hierarchical demand
predictor for shared bike systems, which can estimate the average demand at newly deployed stations across
different expansion stages. Our work shares similar assumptions with [24], yet differs substantially: 1) instead
of fixed stages, we can predict demand while the entire station network is dynamically expanding; 2) we are
able to estimate both the instant and expected demand of new or existing stations, while [24] can only predict
aggregated demand patterns; and finally 3) we do not require historical mobility data in the newly expanded
areas, like the taxi trip records required in [24].

7.4 Urban Computing and Analysis
The demand prediction problem for EV sharing studied in this paper also falls in the broader area of urban
computing, which investigates the acquisition, integration, and analysis of the heterogeneous and large amount
of data generated by various sources in urban spaces [45]. In that sense, our work shares similar challenges
and settings with the other urban computing and analysis problems, such as crowd prediction [31, 44], traffic
analysis [20], anomalies detection [28, 46], etc. However, this paper is fundamentally different from those work.
First of all, most of the existing work considers events or data generated across fixed 2D space or road networks,
while our problem aims to understand the future demand at the EV stations within a station network, which
is a graph dynamically growing over time. In addition, the technical approaches proposed in our paper is also
different from those considered in the existing work. We consider a novel dynamic GCN approach that can
handle the time-varying graph of the growing EV station network), while most of the recent work, e.g. those on
crowd prediction [31, 44] assume the space (modeled as graphs where different regions are nodes) is stationary.
Essentially, the graphs considered in the crowd prediction work can be viewed as static containers of the crowd,
as they represent regions of the space. Thus their approaches cannot be applied to our demand prediction problem
where the graphs themselves are variables evolving over time.

7.5 Graph-based Deep Learning
Due to their non-Euclidean nature, many real-world problems such as demand/traffic/air quality forecasting that
require spatio-temporal analysis have been tackled with the emerging graph-based deep learning techniques [11,
16, 21, 25, 26, 40]. In particular, existing work often employs the graph convolutional neural network [10] to
capture the spatial correlations, where temporal dependencies are typically modelled with recurrent neural
networks. For instance, [21] models the traffic flow as a diffusion process on directed graphs for traffic forecasting,
while [40] and [16] propose frameworks that use multi-graph convolutional neural networks (CNNs) to predict
demand for taxi and ride-hailing services. Another work in [11] uses an encoder-decoder structure on top of
multi-graph CNNs to estimate flow between stations in bike sharing systems, which bears a close resemblance to
this paper. However, unlike [11] who only output demand at the immediate next timestamp, our work considers a
sequence to sequence model with attention mechanism to perform multi-step forecasting towards future demand.
In addition, none of the above approaches can work on new stations where historical data is not available, i.e.
they do not address continuous system expansion.
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8 CONCLUSION AND FUTURE WORK
In this paper, we propose a data-driven demand prediction approach for continuously growing Electric Vehicle
(EV) sharing systems. The proposed approach is able to capture the complex spatial and temporal dynamics from
the system expansion, and can predict demand for both existing stations and the planned new stations. To achieve
that, we first encode the local temporal information at the individual station level, and then fuse the extracted
features with a novel Dynamic Graph Convolutional Neural Network (DGCN) to take the spatial dependencies
between different stations into account. The demand of stations is then estimated by a multi-scale prediction
network, which forecasts both the long-term expected demand and the instant future demand. We evaluate our
approach on data collected from a real-world EV sharing platform in Shanghai for a year. Extensive experiments
on real and simulated data have shown that our approach consistently and substantially outperforms the state of
the art in predicting both the long-term expected and the immediate future demand of the expanding system.
Our proposed method may help businesses or public operators to reliably evaluate planned system changes
and expansions, offering valuable decision support. For future work, we would like to study the effectiveness
and generalizability of our approach in more cities, and explore new approaches that can transfer the learned
knowledge to new settings.
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