224 research outputs found

    Beaconing Approaches in Vehicular Ad Hoc Networks: A Survey

    Full text link
    A Vehicular Ad hoc Network (VANET) is a type of wireless ad hoc network that facilitates ubiquitous connectivity between vehicles in the absence of fixed infrastructure. Beaconing approaches is an important research challenge in high mobility vehicular networks with enabling safety applications. In this article, we perform a survey and a comparative study of state-of-the-art adaptive beaconing approaches in VANET, that explores the main advantages and drawbacks behind their design. The survey part of the paper presents a review of existing adaptive beaconing approaches such as adaptive beacon transmission power, beacon rate adaptation, contention window size adjustment and Hybrid adaptation beaconing techniques. The comparative study of the paper compares the representatives of adaptive beaconing approaches in terms of their objective of study, summary of their study, the utilized simulator and the type of vehicular scenario. Finally, we discussed the open issues and research directions related to VANET adaptive beaconing approaches.Ghafoor, KZ.; Lloret, J.; Abu Bakar, K.; Sadiq, AS.; Ben Mussa, SA. (2013). Beaconing Approaches in Vehicular Ad Hoc Networks: A Survey. Wireless Personal Communications. 73(3):885-912. doi:10.1007/s11277-013-1222-9S885912733ITS-Standards (1996) Intelligent transportation systems, U.S. Department of Transportation, http://www.standards.its.dot.gov/about.aspCheng, L., Henty, B., Stancil, D., Bai, F., & Mudalige, P. (2005). Mobile vehicle-to-vehicle narrow-band channel measurement and characterization of the 5.9 Ghz dedicated short range communication (DSRC) frequency band. IEEE Transactions on Selected Areas in Communications, 25(8), 1501–1516.van Eenennaam, E., Wolterink, K., Karagiannis, G., & Heijenk, G. (2009). Exploring the solution space of beaconing in vanets. In Proceedings of the 2009 IEEE international vehicular networking conference, Tokyo (pp. 1–8).Torrent-Moreno, M. (2007). Inter-vehicle communications: Assessing information dissemination under safety constraints. In Proceedings of the 2007 IEEE conference wireless on demand network systems and services, Austria (pp. 59–64).Lloret, J., Canovas, A., Catalá, A., & Garcia, M. (2012). Group-based protocol and mobility model for vanets to offer internet access. Journal of Network and Computer Applications 2224–2245 doi: 10.1016j.jnca.2012.02.009 .Nzouonta, J., Rajgure, N., Wang, G., & Borcea, C. (2009). Vanet routing on city roads using real-time vehicular traffic information. IEEE Transactions on Vehicular Technology, 58(7), 3609–3626.Fukui, R., Koike, H., & Okada, H. (2002). Dynamic integrated transmission control(ditrac) over inter-vehicle communications. In Proceedings of the 2002 IEEE vehicular technology conference, Birmingham (pp. 483–487).Schmidt, R., Leinmuller, T., Schoch, E., Kargl, F., & Schafer, G. (2010). Exploration of adaptive beaconing for efficient intervehicle safety communication. IEEE Network, 24(1), 14–19.Ghafoor, K., Bakar, K., van Eenennaam, E., Khokhar, R., Gonzalez, A. A fuzzy logic approach to beaconing for vehicular ad hoc networks, Accepted for publication in Telecommunication Systems Journal.Ghafoor, K., & Bakar, K. (2010). A novel delay and reliability aware inter vehicle routing protocol. Network Protocols and Algorithms, 2(2), 66–88.Mittag, J., Thomas, F., Härri, J., & Hartenstein, H. (2009). A comparison of single-and multi-hop beaconing in vanets. In Proceedings of the 2009 ACM international workshop on vehicular internetworking, Beijing (pp. 69–78).Sommer, C., Tonguz, O., & Dressler, F. (2010). Adaptive beaconing for delay-sensitive and congestion-aware traffic information systems. In Proceedings of the 2010 IEEE international vehicular networking conference (VNC), New Jersey (pp. 1–8).Guan, X., Sengupta, R., Krishnan, H., & Bai, F. (2007). A feedback-based power control algorithm design for vanet. In Proceedings of the 2007 IEEE international conference on mobile networking for vehicular environments, USA (pp. 67–72).AL-Hashimi, H., Bakar, K., & Ghafoor, K. (2011). Inter-domain proxy mobile ipv6 based vehicular network. Network Protocols and Algorithms, 2(4), 1–15.Rawat, D., Popescu, D., Yan, G., & Olariu, S. (2011). Enhancing vanet performance by joint adaptation of transmission power and contention window size. Transactions on Parallel and Distributed Systems, 22(9), 1528–1535.European-ITS (2009) Eits-technical report 102 638 v1.1.1, European Telecommunications Standards Institute (ETSI), http://www.etsi.org/WebSite/homepage.aspxNHTSA, I. Joint program office”, report to congress on the national highway traffic safety administration its program, program progress during 1992–1996 and strategic plan for 1997–2002, US Department of Transportation, Washington, DC.Godbole, D., Sengupta, R., Misener, J., Kourjanskaia, N., & Michael, J. (1998). Benefit evaluation of crash avoidance systems. Transportation Research, 1621(1), 1–9.Reinders, R., van Eenennaam, M., Karagiannis, G., & Heijenk, G. (2004). Contention window analysis for beaconing in vanets. In Proceedings of the 2011 IEEE international conference on wireless communications and mobile computing (IWCMC), Istanbul (pp. 1481–1487).Yang, L., Guo, J., & Wu, Y. (2008). Channel adaptive one hop broadcasting for vanets. In Proceedings of the 2008 IEEE international conference on intelligent transportation systems, Beijing (pp. 369–374).Tseng, Y., Ni, S., Chen, Y., & Sheu, J. (2002). The broadcast storm problem in a mobile ad hoc network. Wireless Networks, 8(2), 153–167.van Eenennaam, E. M., Karagiannis, G., & Heijenk, G. (2010). Towards scalable beaconing in vanets. In Proceedings of the 2010 ERCIM workshop on eMobility, Lulea (pp. 103–108).Ros, F., Ruiz, P., & Stojmenovic, I. (2012). Acknowledgment-based broadcast protocol for reliable and efficient data dissemination in vehicular ad-hoc networks. IEEE Transactions on Mobile Computing, 11(1), 33–46.Torrent-Moreno, M., Santi, P., & Hartenstein, H. (2006). Distributed fair transmit power adjustment for vehicular ad hoc networks. In Proceedings of the 2007 IEEE international conference on sensor and ad hoc communications and networks, Reston, VA (pp. 479–488).Artimy, M. (2007). Local density estimation and dynamic transmission-range assignment in vehicular ad hoc networks. IEEE Transactions on Intelligent Transportation Systems, 8(3), 400–412.Caizzone, G., Giacomazzi, P., Musumeci, L., & Verticale, G. (2005). A power control algorithm with high channel availability for vehicular ad hoc networks. In Proceedings of the 2005 IEEE international conference on communications, Seoul (pp. 3171–3176).Torrent-Moreno, M., Santi, P., & Hartenstein, H. (2009). Vehicle-to-vehicle communication: Fair transmit power control for safety critical information. IEEE Transaction for Vehicular Technology, 58(7), 3684–3703.Torrent-Moreno, M., Schmidt-Eisenlohr, F., Fubler, H., & Hartenstein, H. (2006). Effects of a realistic channel model on packet forwarding in vehicular ad hoc networks. In Proceedings of the 2007 IEEE conference on wireless communications and networking, USA (pp. 385–391).NS, Network simulator (June 2011). http://nsnam.isi.edu/nsnam/index.php/MainPageNakagami, M. (1960). The m-distribution: A general formula of intensity distribution of rapid fadinge. In W. C. Hoffman (Ed.), Statistical method of radio propagation. New York: Pergamon Press.Narayanaswamy, S., Kawadia, V., Sreenivas, R., & Kumar, P. (2002). Power control in ad-hoc networks: Theory, architecture, algorithm and implementation of the compow protocol. In Proceedings of the 2002 European wireless conference next generation wireless networks: technologies, protocols, Italy (pp. 1–6).Cheng, P., Lee, K., Gerla, M., & Harri, J. (2010). Geodtn+ nav: Geographic dtn routing with navigator prediction for urban vehicular environments. Mobile Networks and Applications, 15(1), 61–82.Gomez, J., & Campbell, A. (2004). A case for variable-range transmission power control in wireless multihop networks. In Proceedings twenty-third annual joint conference of the IEEE computer and communications societies, Hong kong (pp. 1425–1436).Ramanathan, R., & Rosales-Hain, R. (2000). Topology control of multihop wireless networks using transmit power adjustment. In Proceedings nineteenth annual joint conference of the IEEE computer and communications societies, Hong kong (pp. 404–413).Artimy, M., Robertson, W., & Phillips, W. (2005). Assignment of dynamic transmission range based on estimation of vehicle density. In Proceedings of the 2nd ACM international workshop on vehicular ad hoc networks, Germany (pp. 40–48).Samara, G., Ramadas, S., & Al-Salihy, W. (2010). Safety message power transmission control for vehicular ad hoc networks. Computer Science, 6(10), 1027–1032.Rezaei, S., Sengupta, R., Krishnan, H., Guan, X., & Student, P. (2008). Adaptive communication scheme for cooperative active safety system.Rezaei, S., Sengupta, R., Krishnan, H., & Guan, X. (2007). Reducing the communication required by dsrc-based vehicle safety systems. In Proceedings of the 2007 IEEE international conference on intelligent transportation systems, Bellevue, WA (pp. 361–366).Sommer, C., Tonguz, O., & Dressler, F. (2011). Traffic information systems: Efficient message dissemination via adaptive beaconing. IEEE Communications Magazine, 49(5), 173–179.Thaina, C., Nakorn, K., & Rojviboonchai, K. (2011). A study of adaptive beacon transmission on vehicular ad-hoc networks. In Proceeding of the 2011 IEEE 13th international conference on communication technology (ICCT), Vancouver (pp. 597–602).Boukerche, A., Rezende, C., & Pazzi, R. (2009). Improving neighbor localization in vehicular ad hoc networks to avoid overhead from periodic messages. In Proceedings of the 2009 IEEE global telecommunications conference, USA (pp. 1–6).Bai, F., Sadagopan, N., & Helmy, A. (2008). Important: A framework to systematically analyze the impact of mobility on performance of routing protocols for adhoc networks. In Proceedings of the 2003 22th annual joint conference of the IEEE computer and communications, USA (pp. 825–835).Nguyen, H., Bhawiyuga, A., & Jeong, H. (2012). A comprehensive analysis of beacon dissemination in vehicular networks. In Proceedings of the 75th IEEE vehicular technology conference, Korea (pp. 1–5).Djahel, S., & Ghamri-Doudane, Y. (2012). A robust congestion control scheme for fast and reliable dissemination of safety messages in vanets. In Proceeding of the 2012 IEEE conference wireless communications and networking, Paris, France (pp. 2264–2269).O. Technologies (Augast 2012) Opnet modeler, http://www.opnet.com/Huang, C., Fallah, Y., Sengupta, R., & Krishnan, H. (2010). Adaptive intervehicle communication control for cooperative safety systems. IEEE Network, 24(1), 6–13.OPNET (June 2012) Opnet modeler, http://www.opnet.com/Kerner, B. (2004). The physics of traffic: Empirical freeway pattern features, engineering applications, and theory. Berlin: Springer.Vinel, A., Vishnevsky, V., & Koucheryavy, Y. (2008). A simple analytical model for the periodic broadcasting in vehicular ad-hoc networks. In Proceedings of the 2008 IEEE international GLOBECOM workshops, Philadelphia, PA (pp. 1–5).Mariyasagayam, N., Menouar, H., & Lenardi, M. (2009). An adaptive forwarding mechanism for data dissemination in vehicular networks. In Proceedings of the 2009 IEEE Vehicular Networking Conference, Boston (pp. 1–5).Hung, C., Chan, H., & Wu, E. (2008). Mobility pattern aware routing for heterogeneous vehicular networks. In Proceedings of the 2008 international conference on wireless communications and networking, Las Vegas (pp. 2200–2205).Yang, K., Ou, S., Chen, H., & He, J. (2007). A multihop peer-communication protocol with fairness guarantee for ieee 802.16-based vehicular networks. IEEE Transactions on Vehicular Technology, 56(6), 3358–3370.Lequerica, I., Ruiz, P., & Cabrera, V. (2010). Improvement of vehicular communications by using 3G capabilities to disseminate control information. IEEE Network Magazine, 24(1), 32–38.Oh, D., Kim, P., Song, J., Jeon, S., & Lee, H. (2005). Design considerations of satellite-based vehicular broadband networks. IEEE Wireless Communications Magazine, 12(5), 91–97.Ko, Y., Sim, M., & Nekovee, M. (2006). Wi-fi based broadband wireless access for users on the road. BT Technology Journal, 24(2), 123–129.Choffnes, D., & Bustamante, F. (2005). An integrated mobility and traffic model for vehicular wireless networks. In Proceedings of the 2005 ACM international workshop on vehicular ad hoc networks, Cologne (pp. 69–78).TIGER (October 2010) Topologically integrated geographic encoding and referencing system, http://www.census.gov/geo/www/tiger/Mittag, J., Thomas, F., Harri, J., & Hartenstein, H. (2009). A comparison of single and multi-hop beaconing in vanets. In Proceedings of the 2009 ACM international workshop on vehiculaar internetworking, Beijing (pp. 69–78).Rappaport, T. (1996). Wireless communications: Principles and practice (2nd ed.). New Jersey: Prentice Hall PTR

    Hybrid power control and contention window adaptation for channel congestion problem in internet of vehicles network

    Get PDF
    Technology such as vehicular ad hoc networks can be used to enhance the convenience and safety of passenger and drivers. The vehicular ad hoc networks safety applications suffer from performance degradation due to channel congestion in high-density situations. In order to improve vehicular ad hoc networks reliability, performance, and safety, wireless channel congestion should be examined. Features of vehicular networks such as high transmission frequency, fast topology change, high mobility, high disconnection make the congestion control is a challenging task. In this paper, a new congestion control approach is proposed based on the concept of hybrid power control and contention window to ensure a reliable and safe communications architecture within the internet of vehicles network. The proposed approach performance is investigated using an urban scenario. Simulation results show that the network performance has been enhanced by using the hybrid developed strategy in terms of received messages, delay time, messages loss, data collision and congestion ratio

    Reverse back-off mechanism for safety vehicular ad hoc networks

    Get PDF
    International audienceVehicular ad hoc networks can play an important role in enhancing transportation efficiency and improving road safety. Therefore, direct vehicle-to-vehicle communications are considered as one of the main building blocks of a future Intelligent Transportation System. The success and availability of IEEE 802.11 radios made this technology the most probable choice for the medium access control layer in vehicular networks. However, IEEE 802.11 was originally designed in a wireless local area network context and it is not optimised for a dynamic, ad hoc vehicular scenario. In this paper, we investigate the compatibility of the IEEE 802.11 medium access control protocol with the requirements of safety vehicular applications. As the protocols in this family are well-known for their scalability problems, we are especially interested in high density scenarios, quite frequent on today’s roads. Using an analytical framework, we study the performance of the back-off mechanism and the role of the contention window on the control channel of a vehicular network. Based on these findings, we propose a reverse back-off mechanism, specifically designed with road safety applications in mind. Extensive simulations are carried out to prove the efficiency of the proposed enhancement scheme and to better understand the characteristics of vehicular communications

    Congestion Control in Vehicular Ad Hoc Networks

    Get PDF
    The equipment of vehicles with wireless communication devices in order to improve road safety is a major component of a future intelligent transportation system. The success and availability of IEEE 802.11-based products make this technology the main competitor for the Medium Access Control (MAC) layer used in vehicle-to-vehicle communication. The IEEE 802.11p amendment has been specially designed in this special context of wireless access in vehicular environments. However, as all the other approaches based on Carrier Sense Multiple Access (CSMA), this protocol presents scalability problems, which leads to poor performance in high density scenarios, quite frequent in the case of a vehicular ad hoc network (VANET). This thesis studies the congestion control problem in the context of safety vehicular communications, with a special focus on the back-off mechanism and the carrier sense function. First of all, a number of important characteristics presented by the safety messages are discovered and understood by the means of an analytical framework. Second, the lessons learned from the analytical study are put into practice with the design of two adaptive mechanisms (one for the contention window and the other one for the carrier sense threshold) that take into account the local vehicular density. These mechanisms remain simple, but highly efficient, while also being straightforward to integrate in IEEE 802.11 devices. Finally, by taking into account the most important properties of a safety VANET, a new CSMA-based MAC protocol is proposed. This new access method, named Safety Range CSMA (SR-CSMA), relies on the idea that collisions can not be avoided in a high density network. However, by increasing the number of simultaneous transmissions between geographically distant nodes, SR-CSMA manages to better protect the immediate neighborhood, the most important area for safety applications

    ContrĂ´le de Congestion dans les RĂ©seaux VĂ©hiculaires

    Get PDF
    Cette thèse analyse la possibilité d'utiliser des communications sans fil inter-véhiculaires pour améliorer la sécurité routière. Les performances du nouveau réseau ainsi créé (réseau ad-hoc véhiculaire) sont étudiées analytiquement et par des simulations dans un environnement réaliste. La thèse se concentre surtout sur des scénarios avec une forte densité de véhicules. Dans ce cas, l'accès au support devient un problème essentiel, en principal pour les applications de sécurité routière qui nécessitent une qualité de service élevée pour fonctionner dans un tel contexte. Ce travail montre que la version actuelle du standard IEEE 802.11, proposé comme méthode d'accès dans les réseaux véhiculaires, ne peut pas résoudre ce problème de passage à l'échelle pour supporter correctement les applications de sécurité routière. Plusieurs améliorations possibles sont analysées, liées à l'utilisation optimale de certains paramètres du protocole comme la taille de la fenêtre de contention ou bien le seuil de détection de la porteuse. Des nouveaux mécanismes adaptatifs visant ces paramètres sont proposés et les améliorations ainsi obtenues sont non-négligeables. Finalement, une nouvelle méthode d'accès est définie, en tenant compte des caractéristiques des applications de sécurité routière. Toujours basée sur des techniques CSMA, cette technique donne des résultats largement supérieurs à la version standard actuelle. ABSTRACT : The equipment of vehicles with wireless communication devices in order to improve road safety is a major component of a future intelligent transportation system. The success and availability of IEEE 802.11-based products make this technology the main competitor for the Medium Access Control (MAC) layer used in vehicle-to-vehicle communication. The IEEE 802.11p amendment has been specially designed in this special context of wireless access in vehicular environments. However, as all the other approaches based on Carrier Sense Multiple Access (CSMA), this protocol presents scalability problems, which leads to poor performance in high density scenarios, quite frequent in the case of a vehicular ad hoc network (VANET). This thesis studies the congestion control problem in the context of safety vehicular communications, with a special focus on the back-off mechanism and the carrier sense function. First of all, a number of important characteristics presented by the safety messages are discovered and understood by the means of an analytical framework. Second, the lessons learned from the analytical study are put into practice with the design of two adaptive mechanisms (one for the contention window and the other one for the carrier sense threshold) that take into account the local vehicular density. These mechanisms remain simple, but highly efficient, while also being straightforward to integrate in IEEE 802.11 devices. Finally, by taking into account the most important properties of a safety VANET, a new CSMA-based MAC protocol is proposed. This new access method, named Safety Range CSMA (SR-CSMA), relies on the idea that collisions can not be avoided in a high density network. However, by increasing the number of simultaneous transmissions between geographically distant nodes, SR-CSMA manages to better protect the immediate neighborhood, the most important area for safety applications
    • …
    corecore