15,983 research outputs found

    Combining textual and visual information processing for interactive video retrieval: SCHEMA's participation in TRECVID 2004

    Get PDF
    In this paper, the two different applications based on the Schema Reference System that were developed by the SCHEMA NoE for participation to the search task of TRECVID 2004 are illustrated. The first application, named ”Schema-Text”, is an interactive retrieval application that employs only textual information while the second one, named ”Schema-XM”, is an extension of the former, employing algorithms and methods for combining textual, visual and higher level information. Two runs for each application were submitted, I A 2 SCHEMA-Text 3, I A 2 SCHEMA-Text 4 for Schema-Text and I A 2 SCHEMA-XM 1, I A 2 SCHEMA-XM 2 for Schema-XM. The comparison of these two applications in terms of retrieval efficiency revealed that the combination of information from different data sources can provide higher efficiency for retrieval systems. Experimental testing additionally revealed that initially performing a text-based query and subsequently proceeding with visual similarity search using one of the returned relevant keyframes as an example image is a good scheme for combining visual and textual information

    Activity-driven content adaptation for effective video summarisation

    Get PDF
    In this paper, we present a novel method for content adaptation and video summarization fully implemented in compressed-domain. Firstly, summarization of generic videos is modeled as the process of extracted human objects under various activities/events. Accordingly, frames are classified into five categories via fuzzy decision including shot changes (cut and gradual transitions), motion activities (camera motion and object motion) and others by using two inter-frame measurements. Secondly, human objects are detected using Haar-like features. With the detected human objects and attained frame categories, activity levels for each frame are determined to adapt with video contents. Continuous frames belonging to same category are grouped to form one activity entry as content of interest (COI) which will convert the original video into a series of activities. An overall adjustable quota is used to control the size of generated summarization for efficient streaming purpose. Upon this quota, the frames selected for summarization are determined by evenly sampling the accumulated activity levels for content adaptation. Quantitative evaluations have proved the effectiveness and efficiency of our proposed approach, which provides a more flexible and general solution for this topic as domain-specific tasks such as accurate recognition of objects can be avoided

    Evaluation of automatic shot boundary detection on a large video test suite

    Get PDF
    The challenge facing the indexing of digital video information in order to support browsing and retrieval by users, is to design systems that can accurately and automatically process large amounts of heterogeneous video. The segmentation of video material into shots and scenes is the basic operation in the analysis of video content. This paper presents a detailed evaluation of a histogram-based shot cut detector based on eight hours of TV broadcast video. Our observations are that the selection of similarity thresholds for determining shot boundaries in such broadcast video is difficult and necessitates the development of systems that employ adaptive thresholding in order to address the huge variation of characteristics prevalent in TV broadcast video

    Indexing, browsing and searching of digital video

    Get PDF
    Video is a communications medium that normally brings together moving pictures with a synchronised audio track into a discrete piece or pieces of information. The size of a “piece ” of video can variously be referred to as a frame, a shot, a scene, a clip, a programme or an episode, and these are distinguished by their lengths and by their composition. We shall return to the definition of each of these in section 4 this chapter. In modern society, video is ver

    Understanding the Limitations of CNN-based Absolute Camera Pose Regression

    Full text link
    Visual localization is the task of accurate camera pose estimation in a known scene. It is a key problem in computer vision and robotics, with applications including self-driving cars, Structure-from-Motion, SLAM, and Mixed Reality. Traditionally, the localization problem has been tackled using 3D geometry. Recently, end-to-end approaches based on convolutional neural networks have become popular. These methods learn to directly regress the camera pose from an input image. However, they do not achieve the same level of pose accuracy as 3D structure-based methods. To understand this behavior, we develop a theoretical model for camera pose regression. We use our model to predict failure cases for pose regression techniques and verify our predictions through experiments. We furthermore use our model to show that pose regression is more closely related to pose approximation via image retrieval than to accurate pose estimation via 3D structure. A key result is that current approaches do not consistently outperform a handcrafted image retrieval baseline. This clearly shows that additional research is needed before pose regression algorithms are ready to compete with structure-based methods.Comment: Initial version of a paper accepted to CVPR 201

    Evaluating and combining digital video shot boundary detection algorithms

    Get PDF
    The development of standards for video encoding coupled with the increased power of computing mean that content-based manipulation of digital video information is now feasible. Shots are a basic structural building block of digital video and the boundaries between shots need to be determined automatically to allow for content-based manipulation. A shot can be thought of as continuous images from one camera at a time. In this paper we examine a variety of automatic techniques for shot boundary detection that we have implemented and evaluated on a baseline of 720,000 frames (8 hours) of broadcast television. This extends our previous work on evaluating a single technique based on comparing colour histograms. A description of each of our three methods currently working is given along with how they are evaluated. It is found that although the different methods have about the same order of magnitude in terms of effectiveness, different shot boundaries are detected by the different methods. We then look at combining the three shot boundary detection methods to produce one output result and the benefits in accuracy and performance that this brought to our system. Each of the methods were changed from using a static threshold value for three unconnected methods to one using three dynamic threshold values for one connected method. In a final summing up we look at the future directions for this work

    Scene extraction in motion pictures

    Full text link
    This paper addresses the challenge of bridging the semantic gap between the rich meaning users desire when they query to locate and browse media and the shallowness of media descriptions that can be computed in today\u27s content management systems. To facilitate high-level semantics-based content annotation and interpretation, we tackle the problem of automatic decomposition of motion pictures into meaningful story units, namely scenes. Since a scene is a complicated and subjective concept, we first propose guidelines from fill production to determine when a scene change occurs. We then investigate different rules and conventions followed as part of Fill Grammar that would guide and shape an algorithmic solution for determining a scene. Two different techniques using intershot analysis are proposed as solutions in this paper. In addition, we present different refinement mechanisms, such as film-punctuation detection founded on Film Grammar, to further improve the results. These refinement techniques demonstrate significant improvements in overall performance. Furthermore, we analyze errors in the context of film-production techniques, which offer useful insights into the limitations of our method

    K-Space at TRECVid 2007

    Get PDF
    In this paper we describe K-Space participation in TRECVid 2007. K-Space participated in two tasks, high-level feature extraction and interactive search. We present our approaches for each of these activities and provide a brief analysis of our results. Our high-level feature submission utilized multi-modal low-level features which included visual, audio and temporal elements. Specific concept detectors (such as Face detectors) developed by K-Space partners were also used. We experimented with different machine learning approaches including logistic regression and support vector machines (SVM). Finally we also experimented with both early and late fusion for feature combination. This year we also participated in interactive search, submitting 6 runs. We developed two interfaces which both utilized the same retrieval functionality. Our objective was to measure the effect of context, which was supported to different degrees in each interface, on user performance. The first of the two systems was a ‘shot’ based interface, where the results from a query were presented as a ranked list of shots. The second interface was ‘broadcast’ based, where results were presented as a ranked list of broadcasts. Both systems made use of the outputs of our high-level feature submission as well as low-level visual features
    corecore