13 research outputs found

    Automatic semantic video annotation in wide domain videos based on similarity and commonsense knowledgebases

    Get PDF
    In this paper, we introduce a novel framework for automatic Semantic Video Annotation. As this framework detects possible events occurring in video clips, it forms the annotating base of video search engine. To achieve this purpose, the system has to able to operate on uncontrolled wide-domain videos. Thus, all layers have to be based on generic features. This framework aims to bridge the "semantic gap", which is the difference between the low-level visual features and the human's perception, by finding videos with similar visual events, then analyzing their free text annotation to find a common area then to decide the best description for this new video using commonsense knowledgebases. Experiments were performed on wide-domain video clips from the TRECVID 2005 BBC rush standard database. Results from these experiments show promising integrity between those two layers in order to find expressing annotations for the input video. These results were evaluated based on retrieval performance

    Top-Down and Bottom-Up Semantic Indexing of Multimedia

    Get PDF
    The aim of this work consists in proposing a dual approach for the sake of semantic indexing of audio-visual documents. We present two dierent algorithms based respectively on a bottom-up and a top-down strategy. Considering the top-down approach, we propose an algorithm which implements a nite-state machine and uses low-level motion indices extracted from an MPEG compressed bit-stream. Simulation results show that the proposed method can eectively detect the presence of relevant events in sport programs. Using the bottom-up approach, the indexing is performed by means of Hidden Markov Models (HMM), with an innovative approach: the input signal is considered as a non-stationary stochastic process, modeled by a HMM in which each state is associated with a different property of audio-visual material. Several samples from the MPEG-7 content set have been analyzed using the proposed scheme, demonstrating the performance of the overall approach to provide insights about the content of audio-visual programmes. Moreover, what appears quite attractive instead is to use low-level descriptors in providing a feedback for non-expert users of the content of the described audio-visual programme. The experiments have demonstrated that, by adequate visualization or presentation, low-level features carry instantly semantic information about the programme content, given a certain programme category, which may thus help the viewer to use such low-level information for navigation or retrieval of relevant events

    A framework for automatic semantic video annotation

    Get PDF
    The rapidly increasing quantity of publicly available videos has driven research into developing automatic tools for indexing, rating, searching and retrieval. Textual semantic representations, such as tagging, labelling and annotation, are often important factors in the process of indexing any video, because of their user-friendly way of representing the semantics appropriate for search and retrieval. Ideally, this annotation should be inspired by the human cognitive way of perceiving and of describing videos. The difference between the low-level visual contents and the corresponding human perception is referred to as the ‘semantic gap’. Tackling this gap is even harder in the case of unconstrained videos, mainly due to the lack of any previous information about the analyzed video on the one hand, and the huge amount of generic knowledge required on the other. This paper introduces a framework for the Automatic Semantic Annotation of unconstrained videos. The proposed framework utilizes two non-domain-specific layers: low-level visual similarity matching, and an annotation analysis that employs commonsense knowledgebases. Commonsense ontology is created by incorporating multiple-structured semantic relationships. Experiments and black-box tests are carried out on standard video databases for action recognition and video information retrieval. White-box tests examine the performance of the individual intermediate layers of the framework, and the evaluation of the results and the statistical analysis show that integrating visual similarity matching with commonsense semantic relationships provides an effective approach to automated video annotation

    Video browsing interfaces and applications: a review

    Get PDF
    We present a comprehensive review of the state of the art in video browsing and retrieval systems, with special emphasis on interfaces and applications. There has been a significant increase in activity (e.g., storage, retrieval, and sharing) employing video data in the past decade, both for personal and professional use. The ever-growing amount of video content available for human consumption and the inherent characteristics of video data—which, if presented in its raw format, is rather unwieldy and costly—have become driving forces for the development of more effective solutions to present video contents and allow rich user interaction. As a result, there are many contemporary research efforts toward developing better video browsing solutions, which we summarize. We review more than 40 different video browsing and retrieval interfaces and classify them into three groups: applications that use video-player-like interaction, video retrieval applications, and browsing solutions based on video surrogates. For each category, we present a summary of existing work, highlight the technical aspects of each solution, and compare them against each other

    Transformation of an uncertain video search pipeline to a sketch-based visual analytics loop

    Get PDF
    Traditional sketch-based image or video search systems rely on machine learning concepts as their core technology. However, in many applications, machine learning alone is impractical since videos may not be semantically annotated sufficiently, there may be a lack of suitable training data, and the search requirements of the user may frequently change for different tasks. In this work, we develop a visual analytics systems that overcomes the shortcomings of the traditional approach. We make use of a sketch-based interface to enable users to specify search requirement in a flexible manner without depending on semantic annotation. We employ active machine learning to train different analytical models for different types of search requirements. We use visualization to facilitate knowledge discovery at the different stages of visual analytics. This includes visualizing the parameter space of the trained model, visualizing the search space to support interactive browsing, visualizing candidature search results to support rapid interaction for active learning while minimizing watching videos, and visualizing aggregated information of the search results. We demonstrate the system for searching spatiotemporal attributes from sports video to identify key instances of the team and player performance. © 1995-2012 IEEE

    Motion recognition using nonparametric image motion models estimated from temporal and multiscale co-occurrence statistics

    Full text link

    On the use of computable features for film classification

    Full text link

    Recognition of Dynamic Video Contents With Global Probabilistic Models of Visual Motion

    Full text link
    corecore