3,198 research outputs found

    A systematic review of speech recognition technology in health care

    Get PDF
    BACKGROUND To undertake a systematic review of existing literature relating to speech recognition technology and its application within health care. METHODS A systematic review of existing literature from 2000 was undertaken. Inclusion criteria were: all papers that referred to speech recognition (SR) in health care settings, used by health professionals (allied health, medicine, nursing, technical or support staff), with an evaluation or patient or staff outcomes. Experimental and non-experimental designs were considered. Six databases (Ebscohost including CINAHL, EMBASE, MEDLINE including the Cochrane Database of Systematic Reviews, OVID Technologies, PreMED-LINE, PsycINFO) were searched by a qualified health librarian trained in systematic review searches initially capturing 1,730 references. Fourteen studies met the inclusion criteria and were retained. RESULTS The heterogeneity of the studies made comparative analysis and synthesis of the data challenging resulting in a narrative presentation of the results. SR, although not as accurate as human transcription, does deliver reduced turnaround times for reporting and cost-effective reporting, although equivocal evidence of improved workflow processes. CONCLUSIONS SR systems have substantial benefits and should be considered in light of the cost and selection of the SR system, training requirements, length of the transcription task, potential use of macros and templates, the presence of accented voices or experienced and in-experienced typists, and workflow patterns.Funding for this study was provided by the University of Western Sydney. NICTA is funded by the Australian Government through the Department of Communications and the Australian Research Council through the ICT Centre of Excellence Program. NICTA is also funded and supported by the Australian Capital Territory, the New South Wales, Queensland and Victorian Governments, the Australian National University, the University of New South Wales, the University of Melbourne, the University of Queensland, the University of Sydney, Griffith University, Queensland University of Technology, Monash University and other university partners

    Evaluation des Mehrwerts von strukturierter Befundung in der Radiologie

    Get PDF

    Structured reporting: if, why, when, how—and at what expense? Results of a focus group meeting of radiology professionals from eight countries

    Get PDF
    Purpose: To determine why, despite growing evidence that radiologists and referring physicians prefer structured reporting (SR) to free text (FT) reporting, SR has not been widely adopted in most radiology departments. Methods: A focus group was formed consisting of 11 radiology professionals from eight countries. Eight topics were submitted for discussion. The meeting was videotaped, transcribed, and analyzed according to the principles of qualitative healthcare research. Results: Perceived advantages of SR were facilitation of research, easy comparison, discouragement of ambiguous reports, embedded links to images, highlighting important findings, not having to dictate text nobody will read, and automatic translation of teleradiology reports. Being compelled to report within a rigid frame was judged unacceptable. Personal convictions appeared to have high emotional value. It was felt that other healthcare stakeholders would impose SR without regard to what radiologists thought of it. If the industry were to provide ready-made templates for selected examinations, most radiologists would use them. Conclusion: If radiologists can be convinced of the advantages of SR and the risks associated with failing to participate actively in its implementation, they will take a positive stand. The industry should propose technology allowing SR without compromising accuracy, completeness, workflows, and cost-benefit balance

    A study to understand the acceptance of DICOM Structured Reports on Breast Imaging

    Get PDF
    Purpose: To create a Digital Imaging and Communication in Medicine Structured Reports (DICOM-SR) Repository and compare the acceptance of Free Text (FT) versus Structured Reports (SR) in communication of Breast Imaging findings. Materials and Methods: It was conceptualized the MamoCatalogue to the structuring of the Reports and the SR were converted into DICOM-SR and integrated with Dicoogle. After that, seven representative Breast Imaging Reports were selected and evaluated by a group of 25 Physicians. Each Physician evaluated the seven Reports, in FT and SR with a 3 months timelag, about their, Structure, Clarity and assertiveness, Diagnostic/Recommendations, Easiness of reading, Full reading, Partially reading with Breast Imaging Reporting and Data System (BI-RADS) focus and Ambiguity. Results: A DICOM-SR Repository was created and the assessment of the acceptance of the FT vs. SR revealed that there is a global trend favoring FT. Nevertheless, a group wise analysis revealed that for Gynaecologists and General Practitioners (GP) the differences between FT and SR weren't significant, unlike what happens with Radiologists. Conclusion: The DICOM-SR Repository allows the query/retrieve data for Reports and the communication with Gynaecologists and GP by SR was satisfactory. Although, Radiologists acceptance must be reinforced upon global communication and management strategy

    Contextual Structured Reporting in Radiology:Implementation and Long-Term Evaluation in Improving the Communication of Critical Findings

    Get PDF
    Structured reporting contributes to the completeness of radiology reports and improves quality. Both the content and the structure are essential for successful implementation of structured reporting. Contextual structured reporting is tailored to a specific scenario and can contain information retrieved from the context. Critical findings detected by imaging need urgent communication to the referring physician. According to guidelines, the occurrence of this communication should be documented in the radiology reports and should contain when, to whom and how was communicated. In free-text reporting, one or more of these required items might be omitted. We developed a contextual structured reporting template to ensure complete documentation of the communication of critical findings. The WHEN and HOW items were included automatically, and the insertion of the WHO-item was facilitated by the template. A pre- and post-implementation study demonstrated a substantial improvement in guideline adherence. The template usage improved in the long-term post-implementation study compared with the short-term results. The two most often occurring categories of critical findings are "infection / inflammation" and "oncology", corresponding to the a large part of urgency level 2 (to be reported within 6 h) and level 3 (to be reported within 6 days), respectively. We conclude that contextual structured reporting is feasible for required elements in radiology reporting and for automated insertion of context-dependent data. Contextual structured reporting improves guideline adherence for communication of critical findings

    A Systematic Approach for Using DICOM Structured Reports in Clinical Processes: Focus on Breast Cancer

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10278-014-9728-6.This paper describes a methodology for redesigning the clinical processes to manage diagnosis, follow-up, and response to treatment episodes of breast cancer. This methodology includes three fundamental elements: (1) identification of similar and contrasting cases that may be of clinical relevance based upon a target study, (2) codification of reports with standard medical terminologies, and (3) linking and indexing the structured reports obtained with different techniques in a common system. The combination of these elements should lead to improvements in the clinical management of breast cancer patients. The motivation for this work is the adaptation of the clinical processes for breast cancer created by the Valencian Community health authorities to the new techniques available for data processing. To achieve this adaptation, it was necessary to design nine Digital Imaging and Communications in Medicine (DICOM) structured report templates: six diagnosis templates and three summary templates that combine reports from clinical episodes. A prototype system is also described that links the lesion to the reports. Preliminary tests of the prototype have shown that the interoperability among the report templates allows correlating parameters from different reports. Further work is in progress to improve the methodology in order that it can be applied to clinical practice.We thank the subject matter experts for sharing their insights through this study. We are especially appreciative of the efforts of the Radiology Unit and Medical Oncology Unit teams at the University Hospital Dr. Peset. This work was partially supported by the Vicerectorat d'Investigacio de la Universitat Politecnica de Valencia (UPVLC) to develop the project "Mejora del proceso diagnostico del cancer de mama" with reference UPV-FE-2013-8.Medina, R.; Torres Serrano, E.; Segrelles Quilis, JD.; Blanquer Espert, I.; Martí Bonmatí, L.; Almenar-Cubells, D. (2015). A Systematic Approach for Using DICOM Structured Reports in Clinical Processes: Focus on Breast Cancer. Journal of Digital Imaging. 28(2):132-145. doi:10.1007/s10278-014-9728-6S132145282Ratib O: Imaging informatics: From image management to image navigation. Yearb Med Inform 2009; 167–172Oakley J. Digital Imaging: A Primer for Radiographers, Radiologists and Health Care Professionals. Cambridge University Press, 2003.Prokosch HU, Dudeck J: Hospital information systems: Design and development characteristics, impact and future architecture. Elsevier health sciences, 1995Foster I, Kesselman C, Tuecke S. The anatomy of the grid: Enabling scalable virtual organizations. Int J High Perform Comput Appl 2001; 15(3):200–222.Oram A: Peer-to-Peer: Harnessing the power of disruptive technologies. O’Reilly Media, 2001National Institute of Standards and Technology. The NIST Definition of Cloud Computing. 2011. http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf (accessed 29 Jan 2013)Oster S, Langella S, Hastings S, Ervin D, Madduri R, Phillips J, Kurc T, Siebenlist F, Covitz P, Shanbhag K, Foster I, Saltz J. caGrid 1.0: An enterprise grid infrastructure for biomedical research. J Am Med Inform Assoc 2008; 15:138–149.Natter MD, Quan J, Ortiz DM, et al. An i2b2-based, generalizable, open source, self-scaling chronic disease registry. J Am Med Inform Assoc 2013; 20:172–179.Ohno-Machado L, Bafna V, Boxwala AA, et al. iDASH: Integrating data for analysis, anonymization, and sharing. J Am Med Inform Assoc 2012; 19:196–201.Channin DS, Mongkolwat P, Kleper V, Rubin DL. Computing human image annotation. Conf Proc IEEE Eng Med Biol Soc 2009; 1:7065–8.Sittig DF, Wright A, Osheroff JA, et al. Grand challenges in clinical decision support. J Biomed Inform 2008; 41(2):387–392.Wagholikar KB, Sundararajan V, Deshpande AW. Modeling paradigms for medical diagnostic decision support: a survey and future directions. J Med Syst 2012; 36(5):3029–3049.Rubin DL. Creating and curating a terminology for radiology: Ontology modeling and analysis. J Digit Imaging 2008; 21(4):355–362.Kahn CE, Jr., Langlotz CP, Burnside ES, Carrino JA, Channin DS, Hovsepian DM, et al. Toward best practices in radiology reporting. Radiology 2009; 252(3):852–856.Taira PK, Soderlang SG, JAbovits RM. Automatic structuring of radiology free-text reports. Radiographics 2001; 21(1); 237–245.Fujii H, Yamagishi H, Ando Y, Tsukamoto N, Kawaguchi O, Kasamatsu T, et al. Structuring of free-text diagnostic report. Stud. Health Technol. Inform. 2007; 129: 669–673.Murff HJ, FitzHenry F, Matheny ME, Gentry N, Kotter KL, Crimin K, Dittus RS, Rosen AK, Elkin PL, Brown SH, Speroff T. Automated identification of postoperative complications within an electronic medical record using natural language processing. JAMA 2011; 306(8):848–855.Clunie DA: DICOM structured reporting. PixelMed Publishing, 2000D’Avolio LW, Nguyen TM, Farwell WR, Chen Y, Fitzmeyer F, Harris OM, Fiore LD. Evaluation of a generalizable approach to clinical information retrieval using the automated retrieval console (ARC). J Am Med Inform Assoc 2012; 17:375–382.Napel SA, Beaulieu CF, Redriguez C, Cui J, Xu J, Grupta A, et al. Automated retrieval of CT images of liver lesions on the basis of image similarity: Method and preliminary results. Radiology 2010; 256(1): 243–252.Langlotz CP. RadLex: A new method for indexing online educational materials. Radiographics 2006; 26(6):1595–1597.Crestania F, Vegas J, de la Fuente P. A graphical user interface for the retrieval of hierarchically structured documents. Inf Process Manag 2004; 40(2):269–289.Weiss DL, Langlotz CP. Structured reporting: Patient care enhancement or productivity nightmare? Radiology 2008. 249(3):739–747.Yen PY, Bakken S. Review of health information technology usability study methodologies. J Am Med Inform Assoc 2012; 19(3):413–422.Patrick R, Julien G, Christian L, Antoine G. Automatic medical encoding with SNOMED categories. BMC Med Inform Decis Mak 2008; 8(Suppl 1): S1–S6.Lopez-Garcia P, Boeker M, Illarramendi A, Schulz S. Usability-driven pruning of large ontologies: The case of SNOMED CT, J Am Med Inform Assoc 2012; 19:e102-e109.World Health Organization. International Statistical Classification of Diseases and Related Health Problems 10th Revision. http://apps.who.int/classifications/apps/icd/icd10online/ (accessed 29 Jan 2013)American College of Radiology (ACR) Breast Imaging Reporting and Data System Atlas (BI-RADS® Atlas)World Health Organization. International Classification of Diseases for Oncology, 3rd Edition (ICD-O-3). http://www.who.int/classifications/icd/adaptations/oncology/en/index.html (accessed 29 Jan 2013)Greene FL. TNM: Our language of cancer. CA Cancer J Clin 2004; 54(3):129–130.American Joint Committee of Cancer (AJCC). AJCC Cancer Staging Manual. Seventh Edition. Springer, 2010Hussein R, Engelmann U, Schroeter A, Meinzer HP. DICOM structured reporting: Part 1. Overview and characteristics, Radiographics 2004; 24(3):891–896.Sluis D, Lee KP, Mankovich N. DICOM SR - integrating structured data into clinical information systems. Medicamundi 2002; 46(2):31–36.Percha B, Nassif H, Lipson J, Burnside E, Rubin D. Automatic classification of mammography reports by BI-RADS breast tissue composition class. J Am Med Inform Assoc 2012; 19(5):913–916.Ciatto S, Houssami N, Apruzzese A, Bassetti E, Brancato B, Carozzi F, Catarzi S, Lamberini MP, Marcelli G, Pellizzoni R, Pesce B, Risso G, Russo F, Scorsolini A. Reader variability in reporting breast imaging according to BI-RADS assessment categories (the Florence experience). Breast 2006; 15(1):44–51.National Electrical Manufacturers Association (NEMA). Digital Imaging and Communications in Medicine (DICOM). Part 16: Content Mapping Resource. http://medical.nema.org/dicom/2004/04_16PU.PDF (accessed 29 Jan 2013)Dolin RH, Alschuler L, Boyer S, Beebe C, Behlen FM, Biron PV, Shvo AS. HL7 clinical document architecture, release 2. J Am Med Inform Assoc 2006; 13:30–39.Blanquer I, Hernández V, Meseguer JE, Segrelles D. Content-based organisation of virtual repositories of DICOM objects. Future Gener Comput Syst 2009; 25(6):627–637.Blanquer I, Hernández V, Segrelles D, Torres E. Enhancing privacy and authorization control scalability in the grid through ontologies. IEEE Trans Inf Technol Biomed 2009; 12(1):16–24.Salavert J, Maestre C, Segrelles D, Blanquer I, Hernández V, Medina R, Martí L: Grid prototype to support cancer of breast diagnostics in clinic practice. Proc of the 4th. Iberian Grid Infrastructure Conf. Netbiblo, 2010Segrelles D, Franco JM, Medina R, Blanquer I, Salavert J, Hernandez V, Martí L, Díaz G, Ramos R, Guevara MA, González N, Loureiro J, Ramos I. Exchanging data for breast cancer diagnosis on heterogeneous grid platforms. Computing and Informatics 2012; 31(1):3–15.Ali MS, Consens M, Lalmas M. Extended structural relevance framework: A framework for evaluating structured document retrieval. Inf Retrieval 2012; 15:558–590.Welter P, Riesmeier J, Fischer B, Grouls C, Kuhl C, Deserno, TM. Bridging the integration gap between imaging and information systems: A uniform data concept for content-based image retrieval in computer-aided diagnosis. J Am Med Inform Assoc 2011; 18:506–510.Jenkins CW. Application prototyping: A case study. Perform Eval Rev 1981; 10(1):21–27.Generalitat Valenciana. Conselleria de Sanitat. Oncoguía de Cáncer de Mama Comunidad Valenciana. http://publicaciones.san.gva.es/publicaciones/documentos/V.2478-2006.pdf (accessed 29 Jan 2013)Maestre C, Segrelles-Quilis JD, Torres E, Blanquer I, Medina R, Hernández V, Martí L. Assessing the usability of a science gateway for medical knowledge bases with TRENCADIS. J Grid Computing 2012; 10:665–688.Lewis J. IBM computer usability satisfaction questionnaires: Psychometric evaluation and instructions for use. Int J Hum-Comput Interact 1995; 7(1):57–78.Lewis JR. Psychometric evaluation of the PSSUQ using data from five years of usability studies. Int J Hum-Comput Interact 2002; 14(3–4):463–488.Shapiro SS, Wilk MB. An analysis of variance test for normality (complete samples). Biometrika 1965; 52(3–4):591–611.Chhatwal J, Alagoz O, Lindstrom MJ, Kahn Jr CE, Shaffer KA, Burnside ES. A logistic regression model based on the national mammography database format to aid breast cancer diagnosis. AJR Am J Roentgenol 2009; 192:1117–1127

    Increasing the Efficiency on Producing Radiology Reports for Breast Cancer Diagnosis by Means of Structured Reports

    Full text link
    Background: Radiology reports are commonly written on free-text using voice recognition devices. Structured reports (SR) have a high potential but they are usually considered more difficult to fill-in so their adoption in clinical practice leads to a lower efficiency. However, some studies have demonstrated that in some cases, producing SRs may require shorter time than plain-text ones. This work focuses on the definition and demonstration of a methodology to evaluate the productivity of software tools for producing radiology reports. A set of SRs for breast cancer diagnosis based on BI-RADS have been developed using this method. An analysis of their efficiency with respect to free-text reports has been performed. Material and Methods: The methodology proposed compares the Elapsed Time (ET) on a set of radiological reports. Free-text reports are produced with the speech recognition devices used in the clinical practice. Structured reports are generated using a web application generated with TRENCADIS framework. A team of six radiologists with three different levels of experience in the breast cancer diagnosis was recruited. These radiologists performed the evaluation, each one introducing 50 reports for mammography, 50 for ultrasound scan and 50 for MRI using both approaches. Also, the Relative Efficiency (REF) was computed for each report, dividing the ET of both methods. We applied the T-Student (T-S) test to compare the ETs and the ANOVA test to compare the REFs. Both tests were computed using the SPSS software. Results: The study produced three DICOM-SR templates for Breast Cancer Diagnosis on mammography, ultrasound and MRI, using RADLEX terms based on BIRADs 5th edition. The T-S test on radiologists with high or intermediate profile, showed that the difference between the ET was only statistically significant for mammography and ultrasound. The ANOVA test performed grouping the REF by modalities, indicated that there were no significant differences between mammograms and ultrasound scans, but both have significant statistical differences with MRI. The ANOVA test of the REF for each modality, indicated that there were only significant differences in Mammography (ANOVA p = 0.024) and Ultrasound (ANOVA p = 0.008). The ANOVA test for each radiologist profile, indicated that there were significant differences on the high profile (ANOVA p = 0.028) and medium (ANOVA p = 0.045). Conclusions: In this work, we have defined and demonstrated a methodology to evaluate the productivity of software tools for producing radiology reports in Breast Cancer. We have evaluated that adopting Structured Reporting in mammography and ultrasound studies in breast cancer diagnosis improves the performance in producing reports.INDIGO - DataCloud receives funding from the European Union's Horizon 2020 research and innovation programme under grant agreement RIA 653549.Segrelles Quilis, JD.; Medina, R.; Blanquer Espert, I.; Marti Bonmati, L. (2017). Increasing the Efficiency on Producing Radiology Reports for Breast Cancer Diagnosis by Means of Structured Reports. Methods of Information in Medicine. 56:1-13. https://doi.org/10.3414/ME16-01-0091S1135

    State of the art in abdominal MRI structured reporting: a review

    Get PDF
    In the management of several abdominal disorders, magnetic resonance imaging (MRI) has the potential to significantly improve patient's outcome due to its diagnostic accuracy leading to more appropriate treatment choice. However, its clinical value heavily relies on the quality and quantity of diagnostic information that radiologists manage to convey through their reports. To solve issues such as ambiguity and lack of comprehensiveness that can occur with conventional narrative reports, the adoption of structured reporting has been proposed. Using a checklist and standardized lexicon, structured reports are designed to increase clarity while assuring that all key imaging findings related to a specific disorder are included. Unfortunately, structured reports have their limitations too, such as risk of undue report simplification and poor template plasticity. Their adoption is also far from widespread, and probably the ideal balance between radiologist autonomy and report consistency of has yet to be found. In this article, we aimed to provide an overview of structured reporting proposals for abdominal MRI and of works assessing its value in comparison to conventional free-text reporting. While for several abdominal disorders there are structured templates that have been endorsed by scientific societies and their adoption might be beneficial, stronger evidence confirming their imperativeness and added value in terms of clinical practice is needed, especially regarding the improvement of patient outcome
    • …
    corecore