18,200 research outputs found

    Combinatorial symbolic powers

    Get PDF
    Symbolic powers are studied in the combinatorial context of monomial ideals. When the ideals are generated by quadratic squarefree monomials, the generators of the symbolic powers are obstructions to vertex covering in the associated graph and its blowups. As a result, perfect graphs play an important role in the theory, dual to the role played by perfect graphs in the theory of secants of monomial ideals. We use Gr\"obner degenerations as a tool to reduce questions about symbolic powers of arbitrary ideals to the monomial case. Among the applications are a new, unified approach to the Gr\"obner bases of symbolic powers of determinantal and Pfaffian ideals.Comment: 29 pages, 3 figures, Positive characteristic results incorporated into main body of pape

    Comparing Powers of Edge Ideals

    Get PDF
    Given a nontrivial homogeneous ideal Ik[x1,x2,,xd]I\subseteq k[x_1,x_2,\ldots,x_d], a problem of great recent interest has been the comparison of the rrth ordinary power of II and the mmth symbolic power I(m)I^{(m)}. This comparison has been undertaken directly via an exploration of which exponents mm and rr guarantee the subset containment I(m)IrI^{(m)}\subseteq I^r and asymptotically via a computation of the resurgence ρ(I)\rho(I), a number for which any m/r>ρ(I)m/r > \rho(I) guarantees I(m)IrI^{(m)}\subseteq I^r. Recently, a third quantity, the symbolic defect, was introduced; as ItI(t)I^t\subseteq I^{(t)}, the symbolic defect is the minimal number of generators required to add to ItI^t in order to get I(t)I^{(t)}. We consider these various means of comparison when II is the edge ideal of certain graphs by describing an ideal JJ for which I(t)=It+JI^{(t)} = I^t + J. When II is the edge ideal of an odd cycle, our description of the structure of I(t)I^{(t)} yields solutions to both the direct and asymptotic containment questions, as well as a partial computation of the sequence of symbolic defects.Comment: Version 2: Revised based on referee suggestions. Lemma 5.12 was added to clarify the proof of Theorem 5.13. To appear in the Journal of Algebra and its Applications. Version 1: 20 pages. This project was supported by Dordt College's undergraduate research program in summer 201

    Quantum query complexity of minor-closed graph properties

    Get PDF
    We study the quantum query complexity of minor-closed graph properties, which include such problems as determining whether an nn-vertex graph is planar, is a forest, or does not contain a path of a given length. We show that most minor-closed properties---those that cannot be characterized by a finite set of forbidden subgraphs---have quantum query complexity \Theta(n^{3/2}). To establish this, we prove an adversary lower bound using a detailed analysis of the structure of minor-closed properties with respect to forbidden topological minors and forbidden subgraphs. On the other hand, we show that minor-closed properties (and more generally, sparse graph properties) that can be characterized by finitely many forbidden subgraphs can be solved strictly faster, in o(n^{3/2}) queries. Our algorithms are a novel application of the quantum walk search framework and give improved upper bounds for several subgraph-finding problems.Comment: v1: 25 pages, 2 figures. v2: 26 page

    A Trichotomy for Regular Trail Queries

    Get PDF
    Regular path queries (RPQs) are an essential component of graph query languages. Such queries consider a regular expression r and a directed edge-labeled graph G and search for paths in G for which the sequence of labels is in the language of r. In order to avoid having to consider infinitely many paths, some database engines restrict such paths to be trails, that is, they only consider paths without repeated edges. In this paper we consider the evaluation problem for RPQs under trail semantics, in the case where the expression is fixed. We show that, in this setting, there exists a trichotomy. More precisely, the complexity of RPQ evaluation divides the regular languages into the finite languages, the class T_tract (for which the problem is tractable), and the rest. Interestingly, the tractable class in the trichotomy is larger than for the trichotomy for simple paths, discovered by Bagan et al. [Bagan et al., 2013]. In addition to this trichotomy result, we also study characterizations of the tractable class, its expressivity, the recognition problem, closure properties, and show how the decision problem can be extended to the enumeration problem, which is relevant to practice

    Dynamical properties of profinite actions

    Get PDF
    We study profinite actions of residually finite groups in terms of weak containment. We show that two strongly ergodic profinite actions of a group are weakly equivalent if and only if they are isomorphic. This allows us to construct continuum many pairwise weakly inequivalent free actions of a large class of groups, including free groups and linear groups with property (T). We also prove that for chains of subgroups of finite index, Lubotzky's property (τ\tau) is inherited when taking the intersection with a fixed subgroup of finite index. That this is not true for families of subgroups in general leads to answering the question of Lubotzky and Zuk, whether for families of subgroups, property (τ\tau) is inherited to the lattice of subgroups generated by the family. On the other hand, we show that for families of normal subgroups of finite index, the above intersection property does hold. In fact, one can give explicite estimates on how the spectral gap changes when passing to the intersection. Our results also have an interesting graph theoretical consequence that does not use the language of groups. Namely, we show that an expander covering tower of finite regular graphs is either bipartite or stays bounded away from being bipartite in the normalized edge distance.Comment: Corrections made based on the referee's comment

    Symbolic powers of ideals

    Get PDF
    We survey classical and recent results on symbolic powers of ideals. We focus on properties and problems of symbolic powers over regular rings, on the comparison of symbolic and regular powers, and on the combinatorics of the symbolic powers of monomial ideals. In addition, we present some new results on these aspects of the subject.Comment: 31 pages. Comments welcom
    corecore