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Abstract
Regular path queries (RPQs) are an essential component of graph query languages. Such queries
consider a regular expression r and a directed edge-labeled graph G and search for paths in G for
which the sequence of labels is in the language of r. In order to avoid having to consider infinitely
many paths, some database engines restrict such paths to be trails, that is, they only consider paths
without repeated edges. In this paper we consider the evaluation problem for RPQs under trail
semantics, in the case where the expression is fixed. We show that, in this setting, there exists a
trichotomy. More precisely, the complexity of RPQ evaluation divides the regular languages into
the finite languages, the class Ttract (for which the problem is tractable), and the rest. Interestingly,
the tractable class in the trichotomy is larger than for the trichotomy for simple paths, discovered
by Bagan et al. [5]. In addition to this trichotomy result, we also study characterizations of the
tractable class, its expressivity, the recognition problem, closure properties, and show how the
decision problem can be extended to the enumeration problem, which is relevant to practice.
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1 Introduction

Graph databases are a popular tool to model, store, and analyze data [25, 33, 27, 35, 12].
They are engineered to make the connectedness of data easier to analyze. This is indeed a
desirable feature, since some of today’s largest companies have become so successful because
they understood how to use the connectedness of the data in their specific domain (e.g.,
Web search and social media). One aspect of graph databases is to bring tools for analyzing
connectedness to the masses.
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7:2 A Trichotomy for Regular Trail Queries

Regular path queries (RPQs) are a crucial component of graph databases, because they
allow reasoning about arbitrarily long paths in the graph and, in particular, paths that are
longer than the size of the query. A regular path query essentially consists of a regular
expression r and is evaluated on a graph database which, for the purpose of this paper, we
view as an edge-labeled directed graph G. When evaluated, the RPQ r searches for paths
in G for which the sequence of labels is in the language of r. The return type of the query
varies: whereas most academic research on RPQs [23, 6, 7, 20, 3] and SPARQL [34] focus on
the first and last node of matching paths, Cypher [26] returns the entire paths. G-Core, a
recent proposal by partners from industry and academia, sees paths as “first-class citizens”
in graph databases [2].

In addition, there is a large variation on which types of paths are considered. Popular
options are all paths, simple paths, trails, and shortest paths. Here, simple paths are paths
without repeated nodes and trails are paths without repeated edges. Academic research has
focused mostly on all paths, but Cypher 9 [26, 14], which is perhaps the most widespread
graph database query language at the moment, uses trails. Since the trail semantics in graph
databases has received virtually no attention from the research community yet, it is crucial
that we improve our understanding.

In this paper, we study the data complexity of RPQ evaluation under trail semantics.
That is, we study variants of RPQ evaluation in which the RPQ r is considered to be fixed.
As such, the input of the problem only consists of an edge-labeled graph G and a pair (s, t)
of nodes and we are asked if there exists a trail from s to t on which the sequence of labels
matches r. One of our main results is a trichotomy on the RPQs for which this problem is in
AC0, NL-complete, or NP-complete, respectively. By Ttract, we refer to the class of tractable
languages (assuming NP 6= NL).

In order to increase our understanding of Ttract, we study several important aspects of this
class of languages. A first set of results is on characterizations of Ttract in terms of closure
properties and syntactic and semantic conditions on their finite automata. In a second set of
results, we therefore compare the expressiveness of Ttract with yardstick languages such as
FO2[<], FO2[<,+], FO[<] (or aperiodic languages), and SPtract. The latter class, SPtract, is
the closely related class of languages for which the data complexity of RPQ evaluation under
simple path semantics is tractable.1 Interestingly, Ttract is strictly larger than SPtract and
includes languages outside SPtract such as a∗bc∗ and (ab)∗ that are relevant in application
scenarios in network problems, genomic datasets, and tracking provenance information of food
products [29] and were recently discovered to appear in public query logs [10, 9]. Furthermore,
every single-occurrence regular expression [8] is in Ttract, which can be a convenient guideline
for users of graph databases, since single-occurrence (every alphabet symbol occurs at most
once) is a very simple syntactical property. It is also popular in practice: we analyzed the
50 million RPQs found in the logs of [11] and discovered that over 99.8% of the RPQs are
single-occurrence regular expressions.

We then study the recognition problem for Ttract, that is: given an automaton, does its
language belong to Ttract? This problem is NL-complete (resp., PSPACE-complete) if the
input automaton is a DFA (resp., NFA). We also treat closure under common operations
such as union, intersection, reversal, quotients and morphisms.

We conclude by showing that also the enumeration problem is tractable for Ttract. By
tractable, we mean that the paths that match the RPQ can be enumerated with only
polynomial delay between answers. Technically, this means that we have to prove that we

1 Bagan et al. [5] called the class Ctract, which stands for “tractable class”. We distinguish between SPtract
and Ttract here to avoid confusion between simple paths and trails.
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Figure 1 Directed, edge-labeled graphs that have a trail from s to t.

cannot only solve a decision variant of the RPQ evaluation problem, but we also need to find
witnessing paths. We prove that the algorithms for the decision problems can be extended
to return shortest paths. This insight can be combined with Yen’s Algorithm [36] to give a
polynomial delay enumeration algorithm.

Related Work. RPQs on graph databases have been studied since the end of the 80’s and
are now finding their way into commercial products. The literature usually considers the
variant of RPQ evaluation where one is given a graph database G, nodes s, t, and an RPQ r,
and then needs to decide if G has a path from s to t (possibly with loops) that matches r.
For arbitrary and shortest paths, this problem is well-known to be tractable, since it boils
down to testing intersection emptiness of two NFAs.

Mendelzon and Wood [23] studied the problem for simple paths, which are paths without
node repetitions. They observed that the problem is already NP-complete for regular
expressions a∗ba∗ and (aa)∗. These two results rely heavily on the work of Fortune et al. [13]
and LaPaugh and Papadimitriou [19].

Our work is most closely related to the work of Bagan et al. [5] who, like us, studied the
complexity of RPQ evaluation where the RPQ is fixed. They proved a trichotomy for the case
where the RPQ should only match simple paths. In this paper we will refer to this class as
SPtract, since it contains the languages for which the simple path problem is tractable, whereas
we are interested in a class for trails. Martens and Trautner [22] refined this trichotomy of
Bagan et al. [5] for simple transitive expressions, by analyzing the complexity where the
input consists of both the expression and the graph.

Trails versus Simple Paths. We conclude with a note on the relationship between simple
paths and trails. For many computational problems, the complexities of dealing with simple
paths or trails are the same due to two simple reductions, namely: (1) constructing the line
graph or (2) splitting each node into two, see for example Perl and Shiloach [28, Theorem
2.1 and 2.2]. As soon as we consider labeled graphs, the line graph technique still works, but
not the nodes-splitting technique, because the labels on paths change. As a consequence, we
know that finding trails is at most as hard as finding simple paths, but we do not know if it
has the same complexity when we require that they match a certain RPQ r.

In this paper we show that the relationship is strict, assuming NL 6= NP. An easy example
is the language (ab)∗, which is NP-hard for simple paths [19, 23], but – assuming that a and
b-edges are different – in NL for trails. This is because every path from s to t that matches
(ab)∗ can be reduced to a trail from s to t that matches (ab)∗ by removing loops (in the path,
not in the graph) that match (ab)∗ or (ba)∗. In Figure 1 we depict four small graphs, all of
which have trails from s to t. (In the two rightmost graphs, there is exactly one path labeled
(ab)∗, which is also a trail.)

STACS 2020
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2 Preliminaries

We use [n] to denote the set of integers {1, . . . , n}. By Σ we always denote a finite alphabet,
i.e., a finite set of symbols. We always denote symbols by a, b, c, d and their variants, like a′,
a1, b1, etc. A word is a finite sequence w = a1 · · · an of symbols.

We consider edge-labeled directed graphs G = (V,E), where V is a finite set of nodes
and E ⊆ V × Σ × V is a set of (labeled) edges. A path p from node s to t is a se-
quence (v1, a1, v2)(v2, a2, v3) · · · (vm, am, vm+1) with v1 = s and vm+1 = t and such that
(vi, ai, vi+1) ∈ E for each i ∈ [m]. By |p| we denote the number of edges of a path. A path
is a trail if all the edges (vi, ai, vi+1) are different and a simple path if all the nodes vi are
different. (Notice that each simple path is a trail but not vice versa.) We denote a1 · · · am

by lab(p). Given a language L ⊆ Σ∗, path p matches L if lab(p) ∈ L. For a subset E′ ⊆ E,
path p is E′-restricted if every edge of p is in E′. Given a trail p and two edges e1 and e2 in
p, we denote the subpath of p from e1 to e2 by p[e1, e2].

We define an NFA A to be a tuple (Q,Σ, I, F, δ) where Q is the finite set of states; I ⊆ Q
is a set of initial states; δ ⊆ Q × Σ × Q is the transition relation; and F ⊆ Q is the set
of accepting states. Strongly connected components of (the graph of) A are simply called
components. Unless noted otherwise, components will be non-trivial, i.e., containing at least
one edge.

By δ(q, w) we denote the states reachable from state q by reading w. We denote by
q1  q2 that state q2 is reachable from q1. Finally, Lq denotes the set of all words accepted
from q and L(A) =

⋃
q∈I Lq is the set of words accepted by A. For every state q, we denote by

Loop(q) the set {w ∈ Σ+ | δL(q, w) = q} of all non-empty words that allow to loop on q. For
a word w and a language L, we define wL = {ww′ | w′ ∈ L} and w−1L = {w′ | ww′ ∈ L}.

A DFA is an NFA such that I is a singleton and for all q ∈ Q, σ ∈ Σ |δ(q, σ)| ≤ 1. Let
L be a regular language. We denote by AL = (QL,Σ, iL, FL, δL) the (complete) minimal
DFA for L and by N the number |QL| of states. A language L is aperiodic if and only if
δL(q, wN+1) = δL(q, wN ) for every state q and word w. Equivalently, L is aperiodic if and
only if its minimal DFA of an aperiodic language L does not have simple cycles labeled wk

for k > 1 and w 6= ε. Thus, for “large enough n” we have: uwnv ∈ L iff uwn+1v ∈ L. So, a
language like (aa)∗ is not aperiodic (take w = a and k = 2), but (ab)∗ is. (There are many
characterizations of aperiodic languages [31].)

We study the regular trail query (RTQ) problem for a regular language L.

RTQ(L)
Given: A graph G = (V, E) and (s, t) ∈ V × V .
Question: Is there a trail from s to t that matches L?

A similar problem, which was studied by Bagan et al. [5], is the RSPQ problem. The
RSPQ(L) problem asks if there exists a simple path from s to t that matches L.

3 The Tractable Class

In this section, we define and characterize a class of languages of which we will prove that it
is exactly the class of regular languages L for which RTQ(L) is tractable (if NL 6= NP).

3.1 Warm-Up: Downward Closed Languages
It is instructive to first discuss the case of downward closed languages. A language L is
downward closed (DC) if it is closed under taking subsequences. That is, for every word
w = a1 · · · an ∈ L and every sequence 0 < i1 < · · · < ik < n + 1 of integers, we have that
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ai1 · · · aik
∈ L. Perhaps surprisingly, downward closed languages are always regular [16].

Furthermore, they can be defined by a clean class of regular expressions (which was shown
by Jullien [18] and later rediscovered by Abdulla et al. [1]), which is defined as follows.

I Definition 3.1. An atomic expression over Σ is an expression of the form (a + ε) or
of the form (a1 + · · · + an)∗, where a, a1, . . . , an ∈ Σ. A product is a (possibly empty)
concatenation e1 · · · en of atomic expressions e1, . . . , en. A simple regular expression is of
the form p1 + · · ·+ pn, where p1, . . . , pn are products.

Another characterization is by Mendelzon and Wood [23], who show that a regular language
L is downward closed if and only if its minimal DFA AL = (QL,Σ, iL, FL, δL) exhibits the
suffix language containment property, which says that if δL(q1, a) = q2 for some symbol a ∈ Σ,
then we have Lq2 ⊆ Lq1 .2 Since this property is transitive, it is equivalent to require that
Lq2 ⊆ Lq1 for every state q2 that is reachable from q1.

I Theorem 3.2 ([1, 16, 18, 23]). The following are equivalent:
(1) L is a downward closed language.
(2) L is definable by a simple regular expression.
(3) The minimal DFA of L exhibits the suffix language containment property.

Obviously, RTQ(L) is tractable for every downward closed language L, since it is equivalent
to deciding if there exists a path from s to t that matches L. For the same reason, deciding
if there is a simple path from s to t that matches L is also tractable for downward closed
languages. However, there are languages that are not downward closed for which we show
RTQ(L) to be tractable, such as a∗bc∗ and (ab)∗. For these two languages, the simple path
variant of the problem is intractable.

3.2 Main Definitions and Equivalence
The following definitions are the basis of the class of languages for which RTQ(L) is tractable.

I Definition 3.3. An NFA A satisfies the left-synchronized containment property if there
exists an n ∈ N such that the following implication holds for all q1, q2 ∈ Q:

If q1  q2 and if w1 ∈ Loop(q1), w2 ∈ Loop(q2) with w1 = aw′1 and w2 = aw′2,
then wn

2Lq2 ⊆ Lq1 .

Similarly, A satisfies the right-synchronized containment property if the same condition
holds with w1 = w′1a and w2 = w′2a.

We note that every downward closed language L satisfies the left-synchronized containment
property.

I Definition 3.4. A regular language L is closed under left-synchronized power abbreviations
(resp., closed under right-synchronized power abbreviations) if there exists an n ∈ N such
that for all words w`, wm, wr ∈ Σ∗ and all words w1 = aw′1 and w2 = aw′2 (resp., w1 = w′1a

and w2 = w′2a) we have that w`w
n
1wmw

n
2wr ∈ L implies w`w

n
1w

n
2wr ∈ L.

2 They restrict q1, q2 to be on paths from iL to some state in FL, but the property trivially holds for q2
being a sink-state.

STACS 2020



7:6 A Trichotomy for Regular Trail Queries

We note that Definition 3.4 is equivalent to requiring that there exists an n ∈ N such
that the implication holds for all i ≥ n. The reason is that, given i > n and a word of the
form w`w

i
1wmw

i
2wr, we can write it as w′`wn

1wmw
n
2w
′
r with w′` = w`w

i−n
1 and w′r = wi−n

2 wr,
for which the implication holds by Definition 3.4.

Next, we show that all conditions defined in Definitions 3.3 and 3.4 are equivalent for
DFAs.

I Theorem 3.5. For a regular language L with minimal DFA AL, the following are equivalent:
(1) AL satisfies the left-synchronized containment property.
(2) AL satisfies the right-synchronized containment property.
(3) L is closed under left-synchronized power abbreviations.
(4) L is closed under right-synchronized power abbreviations.

In Theorem 4.1 we will show that, if NL 6= NP, the languages L that satisfy the above
properties are precisely those for which RTQ(L) is tractable. To simplify terminology, we
will henceforth refer to this class as Ttract.

I Definition 3.6. A regular language L belongs to Ttract if L satisfies one of the equivalent
conditions in Theorem 3.5.

For example, (ab)∗ and (abc)∗ are in Ttract, whereas a∗ba∗, (aa)∗ and (aba)∗ are not. The
following property immediately follows from the definition of Ttract.

I Observation 3.7. Every regular expression for which each alphabet symbol under a Kleene
star occurs at most once in the expression defines a language in Ttract.

A special case of these expressions are those in which every alphabet symbol occurs at most
once. These are known as single-occurrence regular expressions (SORE) [8]. SOREs were
studied in the context of learning schema languages for XML [8], since they occur very often
in practical schema languages.

3.3 A Syntactic Characterization
As we have seen before, regular expressions in which every symbol occurs at most once define
languages in Ttract. We will define a similar notion on automata.

I Definition 3.8. A component C of some NFA A is called memoryless, if for each symbol
a ∈ Σ, there is at most one state q in C, such that there is a transition (p, a, q) with p in C.

The following theorem provides (in a non-trivial proof that requires several steps) a
syntactic condition for languages in Ttract. The syntactic condition is item (4) of the theorem,
which we define after its statement. Condition (5) emposes an additional restriction on
condition (4), and we later use it to prove that Ttract ⊆ FO2[<,+].

I Theorem 3.9. For a regular language L, the following properties are equivalent:
(1) L ∈ Ttract
(2) There exists an NFA A for L that satisfies the left-synchronized containment property.
(3) There exists an NFA A for L that satisfies the left-synchronized containment property

and only has memoryless components.
(4) There exists a detainment automaton for L with consistent jumps.
(5) There exists a detainment automaton for L with consistent jumps and only memoryless

components.
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Figure 2 Consistent jump condition (simplified, i.e.: without preconditions, counter and update)
used in Theorem 3.12. C1 and C2 are components (not necessarily different) such that C2 is reachable
from C1.

We use finite automata with counters or CNFAs from Gelade et al. [15], that we slightly
adapt to make the construction easier.3 For convenience, we provide a full definition in
Appendix A. Let A be a CNFA with one counter c. Initially, the counter has value 0. The
automaton has transitions of the form (q1, a, P ; q2, U) where P is a precondition on c and
U an update operation on c. For instance, the transition (q1, a, c = 5; q2, c := c− 1) means:
if A is in state q1, reads a, and the value of c is five, then it can move to q2 and decrease
c by one. If we decrease a counter with value zero, its value remains zero. We denote the
precondition that is always fulfilled by true.

We say that A is a detainment automaton if, for every component C of A:
every transition inside C is of the form (q1, a, true; q2, c := c− 1);
every transition that leaves C is of the form (q1, a, c = 0; q2, c := k) for some k ∈ N;4

Intuitively, if a detainment automaton enters a non-trivial component C, then it must stay
there for at least some number of steps, depending on the value of the counter c. The counter
c is decreased for every transition inside C and the automaton can only leave C once c = 0.
We say that A has consistent jumps if, for every pair of components C1 and C2, if C1  C2
and there are transitions (pi, a, true; qi, c := c− 1) inside Ci for all i ∈ {1, 2}, then there is
also a transition (p1, a, P ; q2, U) for some P ∈ {true, c = 0} and some update U .5 We note
that C1 and C2 may be the same component. The consistent jump property is the syntactical
counterpart of the left-synchronized containment property. The memoryless condition carries
over naturally to CNFAs, ignoring the counter.

Proof sketch of Theorem 3.9. The implications (3) ⇒ (2) and (5) ⇒ (4) are trivial. We
sketch the proofs of (1) ⇒ (5) ⇒ (3) and (4) ⇒ (2) ⇒ (1) below, establishing the theorem.

(1) ⇒ (5) uses a very technical construction that essentially exploits that – if the
automaton stays in the same component for a long time – the reached state only depends on
the last N2 symbols read in the component. This is formalized in Lemma 4.3 and allows us
to merge any pair of two states p, q which contradict that some component is memoryless.
To preserve the language, words that stay in some component C for less than N2 symbols
have to be dealt with separately, essentially avoiding the component altogether. Finally,
the left-synchronized containment property allows us to simply add transitions required to
satisfy the consistent jumps property without changing the language.

(5) ⇒ (3) and (4) ⇒ (2): We convert a given CNFA to an NFA by simulating the
counter (which is bounded) in the set of states. The consistent jump property implies
the left-synchronized containment property on the resulting NFA. The property that all
components are memoryless is preserved by the construction.

(2) ⇒ (1): One can show that the left-synchronized containment property is invariant
under the powerset construction. J

3 The adaptation is that we let counters decrease instead of increase. Furthermore, it only needs zero-tests.
4 If q2 is in a trivial component, then k should be 0 for the transition to be useful.
5 The values of P and U depend on whether C1 is the same as C2 or not.
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7:8 A Trichotomy for Regular Trail Queries

aperiodic languages (= FO[<]) (ac∗bc∗)∗

DCSPtract
a

a∗bc∗

Ttract

(ab)∗
FO2[<]

a∗ba∗

FO2[<,+]

a∗ba∗(cd)∗

Figure 3 Expressiveness of subclasses of the aperiodic languages.

3.4 Comparison to Other Classes
We compare Ttract to some closely related and yardstick languages to get an idea of its
expressiveness. For example, every downward closed (DC) language is in Ttract, since Ttract
relaxed the containment property.

Bagan et al. [5] introduced the class SPtract, which characterizes the class of regular
languages L for which the regular simple path query (RSPQ) problem is tractable.

I Theorem 3.10 (Theorem 2 in Bagan et al. [5]). Let L be a regular language.
(1) If L is finite, then RSPQ(L) ∈ AC0.
(2) If L ∈ SPtract and L is infinite, then RSPQ(L) is NL-complete.
(3) If L /∈ SPtract, then RSPQ(L) is NP-complete.
One characterization of SPtract is the following (Theorem 4 in [5]):

I Definition 3.11. SPtract is the set of regular languages L such that there exists an i ∈ N
for which the following holds: for all w`, w, wr ∈ Σ∗ and w1, w2 ∈ Σ+ we have that, if
w`w

i
1ww

i
2wr ∈ L, then w`w

i
1w

i
2wr ∈ L.

From this definition it is easy to see that every language in SPtract is also in Ttract, since our
definition imposes an extra “synchronizing” condition on w1 and w2, namely that they share
the same first (or last) symbol (Definition 3.4). We now fully classify the expressiveness of
Ttract and SPtract compared to yardsticks as DC, FO2[<], and FO2[<,+] (see also Figure 3).

Here, FO2[<] and FO2[<,+] are the two-variable restrictions of FO[<] and FO[<,+]
over words, respectively. By FO[<,+] we mean the first-order logic with unary predicates Pa

for all a ∈ Σ (denoting positions carrying the letter a) and the binary predicates +1 and <
(denoting the successor relation and the order relation among positions). FO[<] is FO[<,+]
without the binary predicate +1.

I Theorem 3.12.
(a) DC ( SPtract ( (FO2[<] ∩ Ttract)
(b) Ttract ( FO2[<,+]
(c) Ttract and FO2[<] are incomparable
Since FO2[<,+] ( FO[<], we also have Ttract ( FO[<]. Thus, every language in Ttract is
aperiodic.

Next, we show where SPtract and Ttract are in the concatenation hierarchy (also known
as Straubing-Thérien hierarchy) and the dot-depth hierarchy (also known as Brzozowski
hierarchy).

I Proposition 3.13.
(a) SPtract is in V3/2, the 3/2th level of the concatenation hierarchy.
(b) Every language L in Ttract ∩ Σ+ is in B1, the 1st level of the dot-depth hierarchy.



W. Martens, M. Niewerth, and T. Trautner 7:9

Thus Proposition 3.13 implies that every language in SPtract can be described by a formula
in Σ2[<] and every language in tractable language Ttract by a boolean combination of formulas
in Σ1[<,+,min,max], see Pin [30, Theorem 4.1].

4 The Trichotomy

This section is devoted to the proof of the following theorem.

I Theorem 4.1. Let L be a regular language.
(1) If L is finite then RTQ(L) ∈ AC0.
(2) If L ∈ Ttract and L is infinite, then RTQ(L) is NL-complete.
(3) If L /∈ Ttract, then RTQ(L) is NP-complete.

We will prove Theorem 4.1 only for simple graphs, but it extends to graphs with multi-
edges, which are graphs with multiple edges with the same label between the same nodes.
Equivalently, this can be seen as a variation of the problem where edges are accompanied
with numbers that say how often they can be traversed. For example, we could say that e1
may be used at most twice, while e2 may be used at most 30 times. Here, the number of
occurrences of edges can even be encoded in binary. We discuss this in Section 4.4.

4.1 Finite Languages
We now turn to proving Theorem 4.1. We start with Theorem 4.1(1). Clearly, we can express
every finite language L as an FO-formula. Since we can also test in FO that no edge is used
more than once, the graphs for which RTQ(L) holds are FO-definable. By Immerman [17],
this implies that RTQ(L) is in AC0.

4.2 Languages in Ttract

We now sketch the proof of Theorem 4.1(2). We note that we define several concepts (trail
summary, local edge domains, admissible trails) that have a natural counterpart for simple
paths in Bagan et al.’s proof of the trichotomy for simple paths [5, Theorem 2]. However, the
underlying proofs of the technical lemmas are quite different. For instance, components of
languages in SPtract behave similarly to A∗ for some A ⊆ Σ, while components of languages
in Ttract are significantly more complex. Furthermore, the trichotomy for trails leads to a
strictly larger class of tractable languages.

For the remainder of this section, we fix the constant K = N2. We first describe the
NL algorithm. Then we observe that, if the algorithm answers “yes”, we can also output
a shortest trail. We will show that in the case where L belongs to Ttract, we can identify
a number of edges that suffice to check if the path is (or can be transformed into) a trail
that matches L. This number of edges only depends on L and is therefore constant for
the RTQ(L) problem. These edges will be stored in a path summary. We will define path
summaries formally and explain how to use them to check whether a trail between the input
nodes that matches L exists.

To this end, we need a few definitions. Let A = (Q,Σ, I, F, δ) be an NFA. We extend δ
to paths, in the sense that we denote by δ(q, p) the set of states that A can reach from q

after reading lab(p). For q0 ∈ Q, we say that a run from q0 of A over a path p = (v1, a1, v2)
(v2, a2, v3) · · · (vm, am, vm+1) is a sequence q0 · · · qm of states such that qi ∈ δ(qi−1, ai), for
every i ∈ [m]. When A is a DFA and q0 its initial state, we also simply call it the run of A
over p.
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7:10 A Trichotomy for Regular Trail Queries

I Definition 4.2. Let p = e1 · · · em be a path and r = q0 · · · qm the run of AL over p. For a
set C of states of AL, we denote by leftC the first edge ei with qi−1 ∈ C and by rightC the
last edge ej with qj ∈ C. A component C of AL is a long run component of p if leftC and
rightC are defined and |p[leftC , rightC ]| > K.

Next, we want to reduce the amount of information that we require for trails. To this
end, we use the following synchronization property for AL.

I Lemma 4.3. Let L ∈ Ttract, let C be a component of AL, let q1, q2 ∈ C, and let w be a
word of length N2. If δL(q1, w) ∈ C and δL(q2, w) ∈ C, then δL(q1, w) = δL(q2, w).

The lemma motivates the use of summaries, which we define next.

I Definition 4.4. Let Cuts denote the set of components of AL and Abbrv = Cuts × (V ×
Q)×EK . A component abbreviation (C, (v, q), eK · · · e1) ∈ Abbrv consists of a component
C, a node v of G and state q ∈ C to start from, and K edges eK · · · e1. A trail π matches a
component abbreviation, denoted π |= (C, (v, q), eK · · · e1), if δL(q, π) ∈ C, it starts at v, and
its suffix is eK · · · e1. Given an arbitrary set of edges E′, we write π |=E′ (C, (v, q), eK · · · e1)
if π |= (C, (v, q), eK · · · e1) and all edges of π are from E′ ∪ {e1, . . . , eK}. For convenience,
we write e |=∅ e.

If p is a trail, then the summary Sp of p is the sequence obtained from p by replacing, for
each long run component C the subsequence p[leftC , rightC ] by the abbreviation (C, (v, q), psuff),
where v is the source node of the edge leftC , q is the state in which AL is immediately before
reading leftC , and psuff is the suffix of length K of p[leftC , rightC ].

We note that the length of a summary is always bounded by O(N3), i.e., a constant that
depends on L. Indeed, AL has at most N components and, for each of them, we store at
most K + 3 many things (namely, C, v, q, and K edges). Our goal is to find a summary
S and replace all abbreviations with matching pairwise edge-disjoint trails which do not
use any other edge in S, because this results in a trail that matches L. However, not every
sequence of edges and abbreviations is a summary, because a summary needs to be obtained
from a trail. So, we will work with candidate summaries instead.

I Definition 4.5. A candidate summary S is a sequence of the form S = α1 · · ·αm with
m ≤ N where each αi is either (1) an edge e ∈ E or (2) an abbreviation (C, (v, q), eK · · · e1) ∈
Abbrv. Furthermore, all components and all edges appearing in S are distinct. A path p that
is derived from S by replacing each αi ∈ Abbrv by a trail pi such that pi |= αi is called a
completion of the candidate summary S.

The following corollary is immediate from the definitions and Lemma 4.3, as the lemma
ensures that the state after reading p inside a component does not depend on the whole path
but only on the labels of the last K edges, which are fixed.

I Corollary 4.6. Let L be a language in Ttract. Let S be the summary of a trail p that
matches L and let p′ be a completion of S. Then, p′ is a path that matches L.

Together with the following lemma, Corollary 4.6 can be used to obtain an NL algorithm
that gives us a completion of a summary S. The lemma heavily relies on other results on the
structure of components in AL.

I Lemma 4.7. Let L ∈ Ttract, let (C, (v, q), eK · · · e1) be an abbreviation and E′ ⊆ E. There
exists an NL algorithm that outputs a shortest trail p such that p |=E′ (C, (v, q), eK · · · e1) if
it exists and rejects otherwise.
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v

e
π

Edgei ∪ {e1, . . . eK}

v
eK · · · e1

e

π

Edge` ∪ {e1, . . . , eK}

Figure 4 Sketch of case (1) and (2) in the proof of Lemma 4.10.

Using the algorithm of Lemma 4.7 we can, in principle, output a completion of S that
matches L using nondeterministic logarithmic space. However, such a completion does not
necessarily correspond to a trail. The reason is that, even though each trail pC we guess for
some abbreviation involving a component C is a trail, the trails for different components
may not be disjoint. Therefore, we will define pairwise disjoint subsets of edges that can be
used for the completion of the components.

The following definition fulfills the same purpose as the local domains on nodes in Bagan et
al. [5, Definition 5]. Since our components can be more complex, we require extra conditions
on the states (the δL(q, π) ∈ C condition).

I Definition 4.8 (Local Edge Domains). Let S = α1 · · ·αk be a candidate summary and E(S)
be the set of edges appearing in S. We define the local edge domains Edgei ⊆ Ei inductively
for each i from 1 to k, where Ei are the remaining edges defined by E1 = E \ E(S) and
Ei+1 = Ei \ Edgei. If there is no trail p such that p |= αi or if αi is a simple edge, we define
Edgei = ∅.

Otherwise, let αi = (C, (v, q), eK · · · e1). We denote by mi the minimal length of a trail p
with p |=Ei

αi and define Edgei as the set of edges used by trails π that start at v, only use
edges in Ei, are of length at most mi −K, and satisfy δL(q, π) ∈ C.

We note that the sets E(S) and (Edgei)i∈[k] are always disjoint.

I Definition 4.9 (Admissible Trail). We say that a trail p is admissible if there exist a
candidate summary S = α1 · · ·αk and trails p1, . . . , pk such that p = p1 · · · pk is a completion
of S and pi |=Edgei

αi for every i ∈ [k].

We show that shortest trails that match L are always admissible. Thus, the existence of
a trail is equivalent to the existence of an admissible trail.

I Lemma 4.10. Let G and (s, t) be an instance for RTQ(L), with L ∈ Ttract. Then every
shortest trail from s to t in G that matches L is admissible.

Proof sketch. We assume towards a contradiction that there is a shortest trail p from s to t
in G that matches L and is not admissible. That means there is some ` ∈ N, and an edge e
used in p` with e /∈ Edge`. There are two possible cases: (1) e ∈ Edgei for some i < ` and (2)
e /∈ Edgei for any i. In both cases, we construct a shorter trail p that matches L, which then
leads to a contradiction. We depict the two cases in Figure 4. We construct the new trail by
substituting the respective subtrail with π. J

So, if there is a solution to RTQ(L), we can find it by enumerating the candidate summaries
and completing them using the local edge domains. We next prove that testing if an edge is
in Edgei can be done in logarithmic space. We will name this decision problem Pedge(L) and
define it as follows:
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7:12 A Trichotomy for Regular Trail Queries

Pedge(L)
Given: A graph G = (V, E), nodes s, t, a candidate summary S, an edge e ∈ E and an

integer i.
Question: Is e ∈ Edgei?

I Lemma 4.11. Pedge(L) is in NL for every L ∈ Ttract.

With this, we can finally give an NL algorithm that decides whether a candidate summary
can be completed to an admissible trail that matches L.

I Lemma 4.12. Let L ∈ Ttract and L be infinite. Then, RTQ(L) is NL-complete.

I Corollary 4.13. Let L ∈ Ttract, G be a graph, and s, t be nodes in G. If there exists a trail
from s to t that matches L, then we can output a shortest such trail in polynomial time (and
in nondeterministic logarithmic space).

4.3 Languages not in Ttract

The proof of Theorem 4.1(3) is by reduction from the following NP-complete problem:

TwoEdgeDisjointPaths
Given: A language L, a graph G = (V, E), and two pairs of nodes (s1, t1), (s2, t2).
Question: Are there two paths p1 from s1 to t1 and p2 from s2 to t2 such that p1 and p2

are edge-disjoint?

The proof is very close to the corresponding proof for simple paths by Bagan et al. [5,
Lemma 2] (which is a reduction from the two vertex-disjoint paths problem).

4.4 Extension to Multigraphs
We believe that Theorem 4.1 can be extended to graphs with multi-edges. For each edge e,
denote by maxe the number of occurrences of e in the multigraph. First, consider the case
where L is a finite language. Let m be the length of longest word in L. Notice that m is a
constant, since it only depends on L. Every edge can be used at most m times in paths that
match L, so we can check in FO whether an edge e is used at most ne = min{m,maxe}
times. The rest of the argument is analogous to Section 4.1.

We now turn to languages in Ttract. The length of the candidate summaries S (Defini-
tion 4.5) only depends on L and is therefore constant. Instead of testing whether all edges
appearing in S are distinct, we have to check if they occur at most the maximal number
of times. (Therefore, listing all candidate summaries is still in O((log |G|)N ), and thus in
polynomial time.) For the local edge domains (Definition 4.8), we define E1 as an ordinary
graph, i.e., non-multigraph, containing all edges that have not exhausted their maximal
number of occurrences in S already. With this graph we can continue just as for ordinary
graphs.

5 Recognition and Closure Properties

The following theorem establishes the complexity of deciding if a regular language is in Ttract.

I Theorem 5.1. Testing whether a regular language L belongs to Ttract is
(1) NL-complete if L is given by a DFA and
(2) PSPACE-complete if L is given by an NFA or by a regular expression.
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We wondered if, similarly to Theorem 3.2, it could be the case that languages closed under
left-synchronized power abbreviations are always regular, but this is not the case. For
example, the (infinite) Thue-Morse word [32, 24] has no subword that is a cube (i.e., no
subword of the form w3) [32, Satz 6]. The language containing all prefixes of the Thue-Morse
word thus trivially is closed under left-synchronized power abbreviations (with i = 3), yet it
is not regular.

We now give some closure properties of SPtract and Ttract.

I Lemma 5.2. Both classes SPtract and Ttract are closed under (i) finite unions, (ii) finite
intersections, (iii) reversal, (iv) left and right quotients, (v) inverses of non-erasing morphisms,
(vi) removal and addition of individual strings.

This lemma implies that SPtract and Ttract each are a positive Cne-variety of languages, i.e., a
positive variety of languages that is closed under inverse non-erasing homomorphisms.

I Lemma 5.3. The classes SPtract and Ttract are not closed under complement.

Proof. Let Σ = {a, b}. The language of the expression b∗ clearly is in SPtract and Ttract. Its
complement is the language L containing all words with at least one a. It can be described by
the regular expression Σ∗aΣ∗. Since biabi ∈ L for all i, but bibi /∈ L for any i, the language
L is neither in SPtract nor in Ttract. J

It is an easy consequence of Lemma 5.2 (vi) that there do not exist best lower or upper
approximations for regular languages outside SPtract or Ttract.

I Corollary 5.4. Let C ∈ {SPtract,Ttract}. For every regular language L such that L /∈ C and
for every upper approximation L′′ of L (i.e., L ( L′′) with L′′ ∈ C it holds that there
exists a language L′ ∈ C with L ( L′ ( L′′;
for every lower approximation L′′ of L (i.e., L′′ ( L) it holds that there exists a language
L′ ∈ C with L′′ ( L′ ( L.

The corollary implies that Angluin-style learning of languages in SPtract or Ttract is not
possible. However, learning algorithms for single-occurrence regular expressions (SOREs)
exist [8] and can therefore be useful for an important subclass of Ttract.

6 Enumeration

In this section we state that – using the algorithm from Theorem 4.1 – the enumeration
result from [36] transfers to the setting of enumerating trails matching L.

I Theorem 6.1. Let L be a regular language, G be a graph and (s, t) a pair of nodes in G.
If NL 6= NP, then one can enumerate trails from s to t that match L in polynomial delay in
data complexity if and only if L ∈ Ttract.

Proof sketch. The algorithm is an adaptation of Yen’s algorithm [36] that enumerates the k
shortest simple paths for some given number k, similar to what was done by Martens and
Trautner [22, Theorem 18]. It uses the algorithm from Corollary 4.13 as a subprocedure. J
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7:14 A Trichotomy for Regular Trail Queries

7 Conclusions and Lessons Learned

We have defined the class Ttract of regular languages L for which finding trails in directed
graphs that are labeled with L is tractable iff NL 6= NP. We have investigated Ttract in
depth in terms of closure properties, characterizations, and the recognition problem, also
touching upon the closely related class SPtract (for which finding simple paths is tractable)
when relevant.

In our view, graph database manufacturers can have the following tradeoffs in mind
concerning simple path (SPtract) and trail semantics (Ttract) in database systems:

SPtract ( Ttract, that is, there are strictly more languages for which finding regular
paths under trail semantics is tractable than under simple path semantics. Some of
the languages in Ttract but outside SPtract are of the form (ab)∗ or a∗bc∗, which were
found to be relevant in several application scenarios involving network problems, genomic
datasets, and tracking provenance information of food products [29] and appear in query
logs [10, 9].
Both SPtract and Ttract can be syntactically characterized but, currently, the characteriza-
tion for SPtract (Section 3.5 in [5]) is simpler than the one for Ttract. This is due to the
fact that connected components for automata for languages in Ttract can be much more
complex than for automata for languages in SPtract.
On the other hand, the single-occurrence condition, i.e., each alphabet symbol occurs at
most once, is a sufficient condition for regular expressions to be in Ttract. This condition
is trivial to check and also captures languages outside SPtract such as (ab)∗ and a∗bc∗.
Moreover, the condition seems to be useful: we analyzed the 50 million RPQs found in
the logs of [11] and discovered that over 99.8% of the RPQs are single-occurrence.
In terms of closure properties, learnability, or complexity of testing if a given regular
language belongs to SPtract or Ttract, the classes seem to behave the same.
The tractability for the decision version of RPQ evaluation can be lifted to the enumeration
problem, in which case the task is to output matching paths with only a polynomial delay
between answers.

As an open question remains the trichotomy for 2RPQs, that is, when we allow RPQs to
follow a directed edge also in its reverse direction. We briefly discuss why this is challenging.
Let us denote by â the backward navigation of an edge labeled a. Then, the case of ordinary
RPQs can be seen as a special case of 2RPQs on directed graphs: it only has bidirectional
navigation of the form (a + â). It has been open problem since 1991 whether evaluating
(aaa)∗ on undirected graphs is in P or NP-complete [4].
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A Background on NFAs with Counters

We recall the definition of counter NFAs from Gelade et al. [15]. We introduce a minor
difference, namely that counters count down instead of up, since this makes our construction
easier to describe. Furthermore, since our construction only requires a single counter, zero
tests, and setting the counter to a certain value, we immediately simplify the definition to
take this into account.

Let c be a counter variable, taking values in N. A guard on c is a statement γ of the form
true or c = 0. We denote by c |= γ that c satisfies the guard γ. In the case where γ is true,
this is trivially fulfilled and, in the case where γ is c = 0, this is fulfilled if c equals 0. By
G we denote the set of guards on c. An update on c is a statement of the form c := c− 1,
c := c, or c := k for some constant k ∈ N. By U we denote the set of updates on c.

I Definition A.1. A non-deterministic counter automaton (CNFA) with a single counter
is a 6-tuple A = (Q, I, c, δ, F, τ) where Q is the finite set of states; I ⊆ Q is a set of initial
states; c is a counter variable; δ ⊆ Q×Σ×G×Q× U is the transition relation; and F ⊆ Q
is the set of accepting states. Furthermore, τ ∈ N is a constant such that every update is of
the form c := k with k ≤ τ .

Intuitively, A can make a transition (q, a, γ; q′, π) whenever it is in state q, reads a, and
c |= γ, i.e., guard γ is true under the current value of c. It then updates c according to
the update π, in a way we explain next, and moves into state q′. To explain the update
mechanism formally, we introduce the notion of configuration. A configuration is a pair
(q, `) where q ∈ Q is the current state and ` ∈ N is the value of c. Finally, an update π
defines a function π : N → N as follows. If π = (c := k) then π(`) = k for every ` ∈ N. If
π = (c := c− 1) then π(`) = max(`− 1, 0). Otherwise, i.e., if π = (c := c), then π(`) = `. So,
counters never become negative.

An initial configuration is (q0, 0) with q0 ∈ I. A configuration (q, `) is accepting if q ∈ F
and ` = 0. A configuration α′ = (q′, `′) immediately follows a configuration α = (q, `) by
reading a ∈ Σ, denoted α→a α

′, if there exists (q, a, γ; q′, π) ∈ δ with c |= γ and `′ = π(`).
For a string w = a1 · · · an and two configurations α and α′, we denote by α ⇒w α′

that α →a1 · · · →an
α′. A configuration α is reachable if there exists a string w such that

α0 ⇒w α for some initial configuration α0. A string w is accepted by A if α0 ⇒w αf where
α0 is an initial configuration and αf is an accepting configuration. We denote by L(A) the
set of strings accepted by A.

It is easy to see that CNFA accept precisely the regular languages. (Due to the value τ ,
counters are always bounded by a constant.)

https://www.tigergraph.com/
https://www.w3.org/TR/sparql11-query/
https://www.wikidata.org/
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