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Abstract
We study the quantum query complexity of minor-closed graph properties, which include such
problems as determining whether an n-vertex graph is planar, is a forest, or does not contain
a path of a given length. We show that most minor-closed properties—those that cannot be
characterized by a finite set of forbidden subgraphs—have quantum query complexity Θ(n3/2).
To establish this, we prove an adversary lower bound using a detailed analysis of the structure
of minor-closed properties with respect to forbidden topological minors and forbidden subgraphs.
On the other hand, we show that minor-closed properties (and more generally, sparse graph
properties) that can be characterized by finitely many forbidden subgraphs can be solved strictly
faster, in o(n3/2) queries. Our algorithms are a novel application of the quantum walk search
framework and give improved upper bounds for several subgraph-finding problems.
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1 Introduction

The decision tree model is a simple model of computation for which we can prove good upper
and lower bounds. Informally, decision tree complexity, also known as query complexity,
counts the number of input bits that must be examined by an algorithm to evaluate a
function. In this paper, we focus on the query complexity of deciding whether a graph has
a given property. The query complexity of graph properties has been studied for almost
40 years, yet old and easy-to-state conjectures regarding the deterministic and randomized
query complexities of graph properties [11, 15, 20, 23] remain unresolved.

The study of query complexity has also been quite fruitful for quantum algorithms. For
example, Grover’s search algorithm [13] operates in the query model, and Shor’s factoring
algorithm [24] is based on the solution of a query problem. However, the quantum query
complexity can be harder to pin down than its classical counterparts. For monotone graph
properties, a wide class of graph properties including almost all the properties considered
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in this paper, the widely-believed Aanderaa–Karp–Rosenberg conjecture states that the
deterministic and randomized query complexities are Θ(n2), where n is the number of vertices.
On the other hand, there exist monotone graph properties whose quantum query complexity
is Θ(n), and others with query complexity Θ(n2). In fact, one can construct a monotone
graph property with quantum query complexity Θ(n1+α) for any fixed 0 ≤ α ≤ 1 using
known bounds for the threshold function [6].

The quantum query complexity of several specific graph properties has been established in
prior work. Dürr, Heiligman, Høyer, and Mhalla [12] studied the query complexity of several
graph problems, and showed in particular that connectivity has quantum query complexity
Θ(n3/2). Zhang [28] showed that the quantum query complexity of bipartiteness is Θ(n3/2).
Ambainis et al. [5] showed that planarity also has quantum query complexity Θ(n3/2). Berzina
et al. [7] showed several quantum lower bounds on graph properties, including Hamiltonicity.
Sun, Yao, and Zhang studied some non-monotone graph properties [26].

Despite this work, the quantum query complexity of many interesting graph properties
remains unresolved. A well-studied graph property whose query complexity is unknown is
the property of containing a triangle (i.e., a cycle on 3 vertices) as a subgraph. The triangle
finding problem was first studied by Buhrman et al. [10], who gave an O(n+

√
nm) query

algorithm for graphs with n vertices and m edges. With m = Θ(n2), this approach uses
O(n3/2) queries, which matches the performance of the simple algorithm that searches for
a triangle over the potential

(
n
3
)
triplets of vertices. This was later improved by Magniez,

Santha, and Szegedy [19] to Õ(n1.3), and then by Magniez, Nayak, Roland, and Santha [18]
to O(n1.3), which is currently the best known algorithm. However, the best known lower
bound for the triangle problem is only Ω(n) (by a simple reduction from the search problem).
This is partly because one of the main lower bound techniques, the quantum adversary
method of Ambainis [2], cannot prove a better lower bound due to the certificate complexity
barrier [25, 28].

More generally, we can consider the H-subgraph containment problem, in which the task
is to determine whether the input graph contains a fixed graph H as a subgraph. Magniez
et al. also gave a general algorithm for H-subgraph containment using Õ(n2−2/d) queries,
where d > 3 is the number of vertices in H [19]. Again, the best lower bound known for
H-subgraph containment is only Ω(n).

In this paper we study the quantum query complexity of minor-closed graph properties.
A property is minor-closed if all minors of a graph possessing the property also possess the
property. (Graph minors are defined in Section 2.) Since minor-closed properties can be
characterized by forbidden minors, this can be viewed as a variant of subgraph containment
in which we look for a given graph as a minor instead of as a subgraph. The canonical
example of a minor-closed property is the property of being planar. Other examples include
the property of being a forest, being embeddable on a fixed two-dimensional manifold, having
treewidth at most k, or not containing a path of a given length.

While all minor-closed properties can be described by a finite set of forbidden minors,
some minor-closed properties can also be described by a finite set of forbidden subgraphs,
graphs that do not appear as a subgraph of any graph possessing the property. We call a
graph property (which need not be minor closed) a forbidden subgraph property (FSP) if the
property can be described by a finite set of forbidden subgraphs.

Our main result is that the quantum query complexity of minor-closed properties depends
crucially on whether the property is FSP. In particular, Figure 1 summarizes our understand-
ing of the quantum query complexity of minor-closed graph properties. All subgraph-closed
properties, which include minor-closed properties and FSPs, have an easy lower bound
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Sparse

O(n3/2)
(Theorem 11)

Subgraph closed

Ω(n)
(Theorem 4)

Minor closed

FSP

Θ(n3/2) (Corollary 12) o(n3/2) (Corollary 14)

Figure 1 Summary of the main results.

of of Ω(n) (Theorem 4). Furthermore, all sparse graph properties, which are defined in
Section 2 and which include all minor-closed properties, have an easy upper bound of O(n3/2)
(Theorem 11). On the lower bound side, our main contribution is to show that minor-closed
properties that are not FSP require Ω(n3/2) queries (Theorem 8), which tightly characterizes
their quantum query complexity. Regarding upper bounds, our main contribution is a
quantum algorithm for all sparse graph properties that are FSP, using O(nα) queries for
some α < 3/2 that depends on the property (Corollary 14).

Our lower bounds (Section 3) use the quantum adversary method [2]. The basic idea of
the lower bound is similar to the connectivity lower bound of Dürr et al. [12]. However, it is
nontrivial to show that this approach applies using only the hypothesis that the property is
minor-closed and not FSP. In fact, we show a slightly stronger result, assuming only that the
property is not FSP and can be described by finitely many forbidden topological minors.

Our upper bounds (Section 4) use the quantum walk search formalism [18]. Our approach
differs from previous applications of this formalism in several respects. We use several quantum
walks occurring simultaneously on different Hamming graphs (whereas most previous quantum
walk search algorithms used a single Johnson graph). Although this can be viewed as a single
walk on a larger graph, the salient feature is that the walks on different graphs proceed at
different speeds, i.e., in each time step a different number of steps are taken on each graph.
In addition, we make essential use of the sparsity of the input graph.

By exploiting sparsity, we also improve upon known algorithms for many sparse graph
properties, even if they are not necessarily minor closed. For example, we give improved
algorithms for finding paths of a given length, as well as an algorithm that outperforms the
general H-finding algorithm of Magniez et al. [19] whenever H is a bipartite graph.

Finally, as another application, we consider the C4-subgraph containment problem.
This can be viewed as a natural extension of the triangle problem, which is C3-subgraph
containment. Surprisingly, we show that C4 finding can be solved with only Õ(n1.25) queries,
even faster than the best known upper bound for triangle finding, which is O(n1.3).

STACS’11
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2 Preliminaries

In this paper, all graphs are simple and undirected. Thus a graph on n vertices is specified
by
(
n
2
)
bits. In the query complexity model, the input graph is accessed by querying a black

box to learn any of these
(
n
2
)
bits. Deterministic and randomized algorithms have access to

a black box taking two inputs, u and v, and returning a bit indicating whether (u, v) is an
edge in the graph. To accommodate quantum algorithms, we define a quantum black box in
the standard way. The quantum black box is a unitary gate that maps |u, v, b〉 to |u, v, b⊕ e〉
where (u, v) ∈ V × V , b is a bit, and e is 1 if and only if (u, v) ∈ E.

Let the deterministic, randomized, and quantum query complexities of determining
whether a graph possesses property P be denoted as D(P), R(P), and Q(P), respectively,
where for R and Q we consider two-sided bounded error. Clearly, Q(P) ≤ R(P) ≤ D(P) ≤(
n
2
)
. Also note that these query complexities are the same for a property P and its complement

P̄, since any algorithm for P can be turned into an algorithm for P̄ by negating the output,
using no additional queries.

A graph property on n vertices is a property of n-vertex graphs that is independent of
vertex labeling, i.e., isomorphic graphs are considered equivalent. For a graph G on n vertices
and an n-vertex graph property Pn, we write G ∈ Pn to mean that graph G has property Pn.
A graph property P := {Pn}∞n=1 is a collection of n-vertex graph properties Pn for all n ∈ N .
For example, the property “the first vertex is isolated” is not a graph property because it
depends on the labeling, and in particular it depends on which vertex we decide to call the
first one. However, the property “contains an isolated vertex” is a graph property.

An n-vertex graph property Pn is nontrivial if there exists a graph that possesses it and
one that does not. A graph property P = {Pn}∞n=1 is nontrivial if there exists an n0 such
that Pn is nontrivial for all n > n0. Thus a property such as “contains a clique of size 5” is
nontrivial, although it is trivial for graphs with fewer than 5 vertices.

In this paper, Kn and Cn refer to the complete graph and cycle on n vertices, respectively.
Ks,t is the complete bipartite graph with s vertices in one part and t vertices in the other.
A d-path is a path with d edges (i.e., with d+ 1 vertices). For a graph G, V (G) and E(G)
denote the vertex and edge sets of the graph; n := |V (G)| and m := |E(G)|.

A graph H is said to be a subgraph of G, denoted H ≤S G, if H can be obtained
from G by deleting edges and isolated vertices. A graph H is said to be a minor of G,
denoted H ≤M G, if H can be obtained from G by deleting edges, deleting isolated vertices,
and contracting edges. To contract an edge (u, v), we delete the vertices u and v (and all
associated edges) and create a new vertex that is adjacent to all the original neighbors of u
and v. The name “edge contraction” comes from viewing this operation as shrinking the
edge (u, v) to a point, letting the vertices u and v coalesce to form a single vertex.

Another way to understand graph minors is to consider reverse operations: H ≤M G if
G can be obtained from H by adding isolated vertices, adding edges, and performing vertex
splits. In a vertex split, we delete a vertex u and add two new adjacent vertices v and w, such
that each original neighbor of u becomes a neighbor of either v or w, or both. In general,
this operation does not lead to a unique graph, since there may be many different ways to
split a vertex.

A related operation, which is a special case of a vertex split, is known as an elementary
subdivision. This operation replaces an edge (u, v) with two edges (u,w) and (w, v), where
w is a new vertex. A graph H is said to be a topological minor of G, denoted H ≤T G,
if G can be obtained from H by adding edges, adding isolated vertices, and performing
elementary subdivisions. We call G a subdivision of H if it is obtained from H by performing
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any number of elementary subdivisions.
Some graph properties can be expressed using a forbidden graph characterization. Such a

characterization says that graphs have the property if and only if they do not contain any of
some set of forbidden graphs according to some notion of graph inclusion, such as subgraphs
or minors. For example, a graph is a forest if and only if it contains no cycle as a subgraph,
so forests are characterized by the forbidden subgraph set {Ck : k ≥ 3, k ∈ N}. The property
of being a forest can also be characterized by the single forbidden minor C3, since a graph is
a forest if and only if it does not contain C3 as a minor. If a property can be expressed using
a finite number of forbidden subgraphs, we call it a forbidden subgraph property (FSP). A
property is said to be subgraph closed if every subgraph of a graph possessing the property
also possess the property. Similarly, a property is said to be minor closed if all minors of a
graph possessing the property also possess the property. In a series of 20 papers spanning
over 20 years, Robertson and Seymour proved the following theorem [22]:

I Theorem 1 (Graph minor theorem). Every minor-closed graph property can be described by
a finite set of forbidden minors.

We also require the following consequence of the graph minor theorem, which follows
using well-known facts about topological minors [21, Theorem 2.1].

I Corollary 2. Every minor-closed graph property can be described by a finite set of forbidden
topological minors.

We call a graph property sparse if there exists a constant c such that every graph G with
the property has |E(G)| ≤ c |V (G)|. Nontrivial minor-closed properties are sparse, which is
an easy corollary of Mader’s theorem [17].

I Theorem 3. Every nontrivial minor-closed graph property is sparse.

We use Õ notation to denote asymptotic upper bounds that neglect logarithmic factors.
Specifically, f(n) = Õ(g(n)) means f(n) = O(g(n) logk g(n)) for some constant k.

3 Lower bounds

The following lower bound follows easily using the adversary methods of Ambainis [2] and
Aaronson [1].

I Theorem 4. For any nontrivial subgraph-closed graph property P, Q(P) = Ω(n), R(P) =
Θ(n2), and D(P) = Θ(n2).

With the exception of general sparse properties, this theorem covers all the properties
considered in this paper, since every property (or its complement) is closed under subgraphs.
Thus all the properties considered in this paper are classically uninteresting from the viewpoint
of query complexity, since their classical (deterministic or randomized) query complexity is
exactly Θ(n2).

In the remainder of this section, we describe our main lower bound result: Every minor-
closed property that is not FSP has Q(P) = Ω(n3/2). We begin by considering H-topological
minor containment properties that are not also H-subgraph containment properties, while
describing some of the tools used to show the more general result.

As a motivating example, consider H = C3. C3-topological minor containment (which
is equivalent to C3-minor containment) is the property of being cyclic; its complementary
property is that of being a forest. We show that Ω(n3/2) queries are required for this property.

STACS’11
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This lower bound is similar to the connectivity lower bound of Dürr et al. [12]. The
intuition is that a long path and a long cycle look the same locally. Since algorithms only have
access to local information, these two graphs should be hard to distinguish. Unfortunately
this is not sufficient, since a path can be easily distinguished from a cycle by searching the
entire graph for a degree-1 vertex, which can be done with O(n) queries. Instead, we try to
distinguish a path from the disjoint union of a cycle and a path. Now both graphs have 2
degree-1 vertices. We require both the cycle and the path to be long, since a short cycle or
path could be quickly traversed. Considering these instances, an adversary argument shows
the following.

I Theorem 5. Deciding if a graph is a forest requires Ω(n3/2) queries.

This construction does not use any particular property of forests, except that all sub-
divisions of C3 are not forests, and that if we delete an edge from a subdivision of C3, the
resulting graph is a forest. More precisely, we use the existence of a graph G (in this case C3)
and an edge (u, v) ∈ E(G) (in this case it can be any edge) such that if (u, v) is subdivided
any number of times, the resulting graph still does not have the property (in this case, of
being a forest) and if (u, v) is replaced by two disjoint paths the resulting graph does have
the property. The following lemma formalizes this intuition.

I Lemma 6. Let P be a graph property closed under topological minors. If there exists a
graph G /∈ P and an edge (u, v) of G, such that replacing the edge (u, v) by two disjoint paths
of any length, one connected to vertex u and the other connected to vertex v, always results
in a graph G′ ∈ P, then Q(P) = Ω(n3/2).

It can be shown that any graph H for which H-topological minor containment does not
coincide with H-subgraph containment contains such an edge, and thus we obtain an Ω(n3/2)
lower bound in this case. In particular, a graph H satisfies this condition if and only if it is
cyclic or contains 2 vertices of degree at least 3 in the same connected component, and any
edge on a cycle or on a path between 2 vertices of degree at least 3 can serve as the edge
(u, v) in Lemma 6.

From H-topological minor containment, we move on to properties that can be described
by a finite set of forbidden topological minors. While this case is conceptually similar to the
case of a single forbidden minor, it is more technically challenging. The final result, however,
is easy to state:

I Lemma 7. For any graph property P that is not FSP and that is described by a finite
set of forbidden topological minors, there exists a graph G /∈ P and an edge (u, v) ∈ E(G)
satisfying the conditions of Lemma 6.

Combining this with Corollary 2 and Lemma 6, we get our main lower bound result.

I Theorem 8. For any nontrivial minor-closed property P that is not FSP, Q(P) = Ω(n3/2).

This lower bound cannot be improved due to a matching algorithm shown in Section 4.
It cannot be extended to minor-closed properties that are also FSP because, as we also show
in Section 4, every property of this type has query complexity o(n3/2).

4 Algorithms

We now turn to quantum algorithms for deciding minor-closed graph properties, as well as
related algorithms for subgraph-finding problems.
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4.1 Sparse graph detection and extraction
We begin by describing some basic tools that allow us to detect whether a graph is sparse
and to optimally extract the adjacency matrix of a sparse graph.

To tell whether a graph is sparse, we can apply quantum counting to determine approxi-
mately how many edges it contains. In particular, Theorem 15 of [9] can be applied to show
the following.

I Lemma 9. For any constant ε > 0 and function f : Z+ → Z+ there is a quantum algorithm
using O(

√
n2/f(n) log 1

δ ) queries that accepts graphs with m ≥ (1 + ε)f(n) and rejects graphs
with m ≤ (1− ε)f(n) with probability at least 1− δ.

We also use a procedure for extracting all marked items in a search problem.

I Lemma 10. Let f : {1, . . . , N} → {0, 1} be a black-box function with |f−1(1)| = K. The
bounded-error quantum query complexity of determining f−1(1) is O(

√
NK) if K > 0, and

O(
√
N) if K = 0.

This result and its optimality appear to be folklore (see for example [4]).
An easy consequence of these results is that sparse graph properties can be decided in

O(n3/2) queries.

I Theorem 11. If P is a sparse graph property, then Q(P) = O(n3/2).

Combining this with Theorem 3 and Theorem 8, an immediate consequence is

I Corollary 12. If P is nontrivial, minor closed, and not FSP, then Q(P) = Θ(n3/2).

Note that this provides an alternative proof that the quantum query complexity of
planarity is Θ(n3/2) [5].

For minor-closed graph properties that are also FSP, the lower bounds from Section 3 do
not rule out the possibility of an improvement over Theorem 11. In fact, we show that an
improvement is possible for all such properties.

4.2 Quantum walk search
Our algorithms use the quantum walk search framework of Magniez et al. (Theorem 3 of
[18]), which builds on the work of Ambainis [3] and Szegedy [27]. However, our application
of this framework differs from previous applications in several ways.

In nearly all previous quantum walk search algorithms, the graph on which the walk
occurs is the Johnson graph J(N,K), whose vertices are the

(
N
K

)
subsets of {1, . . . , N} of

size K, with an edge between subsets that differ in exactly one item. The parameters N
and K are chosen based on the input size. For example, the triangle finding algorithm [19]
fixes N = n and K = n3/5, where n is the number of vertices in the input graph (not to be
confused with the graph on which the quantum walk occurs). Each vertex of the Johnson
graph has an associated data structure. Populating this data structure typically requires
queries to the input. In the setup step, the walk begins in a uniform superposition over all
the vertices of the Johnson graph. A step of the quantum walk corresponds to moving to
one of the neighbors of the current vertex and updating the data structure; this is called
the update step. Some of the vertices are designated as “marked” and the objective of the
walk is to determine if there are any such vertices. Every few steps of the walk, we have a
checking step which determines if the current vertex is marked.

STACS’11
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Our walk differs from this in several ways. For our purposes it will be more convenient
to replace the Johnson graph J(N,K) by the Hamming graph H(N,K), with vertex set
{1, . . . , N}K and edges between two K-tuples that differ in exactly one coordinate. This
choice simplifies the implementation of our setup step. Although the order of the items has
no significance, and the possibility of repeated items only slows down the algorithm, the
effect is not significant.

Furthermore, our algorithms involve a walk on several different Hamming graphs. Each
Hamming graph may have very different value of N and K, and these values depend not
only on the input size, but on the actual input itself. This means that queries are required
even to decide which graph is being walked on. Moreover, the walks on different graphs may
occur at different speeds.

4.3 Detecting subgraphs of sparse graphs
We now describe algorithms that determine whether a sparse graph G contains a given
subgraph H. We begin with an informal overview before stating the general result.

For concreteness, consider the problem of detecting a clique of size 5 in a sparse graph.
The idea is to look for the 5 vertices separately (using 5 quantum walks), and use the checking
step to verify that the 5 vertices do form a clique. The data structure stores a list of the
neighbors of each vertex under consideration.

First, let us assume that a clique of size 5 exists; if our algorithm fails to detect one we
can conclude that our assumption was incorrect and reject the input. Second, we guess the
approximate degrees of all the vertices we are looking for, up to a constant multiplicative
factor. Since Θ(logn) guesses cover the entire range between 1 and n, up to a multiplicative
overhead of poly(logn), we can assume that we already know the approximate degrees of all
the vertices we are looking for. Let these degrees be qi for 1 ≤ i ≤ 5.

Then we use quantum counting to estimate the number of vertices with approximate
degree qi. Let this value be ti. Now we set up 5 quantum walks, with the ith walk searching
over ki-tuples of the ti vertices of degree near qi. To optimize the overall walk, we take
αi steps for the ith component, with carefully chosen values of the kis and the αis. Since
we store the list of neighbors for each vertex, no queries are needed to check whether a set
of 5 vertices forms a clique; queries are used only in the setup step (preparing the initial
superposition) and the update step (taking αi steps on the ith Hamming graph for each i).

Storing the list of neighbors is costly for high-degree vertices, but cheap for low-degree
vertices. However, since we know the graph is sparse, there cannot be too many high-degree
vertices, so we are able to accept a high cost for such vertices. On the other hand, there may
be many low-degree vertices, but since they are cheap to process, the total cost associated
with all the vertices of a given approximate degree is about the same. This is why we break
up the search space by grouping together vertices of similar degree. Note that the sparsity of
the input graph is essential to upper bound the number of high-degree vertices in the graph.

Finally, note that it was unnecessary to search for all 5 vertices of the clique. Since we
store the list of neighbors of each vertex, we can instead search for only 4 vertices, using
the neighbor lists to determine whether they share a common neighbor. This idea naturally
generalizes to storing a vertex cover of the graph H we are looking for, a subset C of the
vertices of H such that each edge of H involves at least one vertex from C. Given neighbor
lists for any particular subset of vertices, we can determine whether that subset includes a
vertex cover of H with no further queries.

Our general strategy is to search over tuples of the vertices of G for one containing a
vertex cover of H. We exploit sparsity by separately considering cases where the vertices
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of the vertex cover have given (approximate) degrees. Letting vc(H) denote the smallest
number of vertices in any vertex cover of H, we have the following result.

I Theorem 13. Let P be the property that a graph either has more than cn edges (for some
constant c) or contains a given subgraph H. Then Q(P) = Õ

(
n

3
2−

1
vc(H)+1

)
.

The analysis proceeds roughly as follows. First we reject non-sparse graphs using
Lemma 9. Then the quantum walk search algorithm uses O(S + 1√

ε
( 1√

δ
U + C)) queries,

where S,U,C are the setup, update, and checking costs, respectively; ε is the fraction of
marked states; and δ is the spectral gap of the walk [18]. We have S = O(

∑
i kin/

√
ti),

U = O(
∑
i αin/

√
ti), and C = 0. Furthermore, ε = Ω(

∏
i ki/ti) and δ = Ω(mini αi/ki). By

choosing αi/αj = ki/kj =
√
ti/tj , α1 = 1 (assuming without loss of generality that this

is the smallest αi), and k1 =
√
t1n

1
2−

1
vc(H)+1 , we obtain the stated running time. Various

technical issues that arise only increase the running time by a polylogarithmic factor.
We can apply this algorithm to decide sparse graph properties, and in particular minor-

closed properties, that are also FSP: we simply search for each of the forbidden subgraphs,
accepting if none of them are present. For minor-closed properties, the non-sparseness
condition of Theorem 13 can be removed due to Theorem 3. Thus, since vc(H) is a constant
for any fixed graph H, we have the following.

I Corollary 14. If P is sparse and FSP, then Q(P) = o(n3/2).

For many subgraphs, we can improve Theorem 13 further by storing more information
about the vertices in the vertex cover: in addition to storing their neighborhoods, we can
store basic information about their second neighbors. In particular, we have the following.

I Theorem 15. Let P be the property that a graph either has more than cn edges (for some
constant c) or contains a given subgraph H. Let H ′ be the graph obtained by deleting all
degree-one vertices of H that are not part of an isolated edge. Then Q(P) = Õ

(
n

3
2−

1
vc(H′)+1

)
.

Theorem 15 gives an improvement over Theorem 13 for properties that are characterized
by a single forbidden minor (and equivalently, a single forbidden subgraph). For example,
we have the following.

I Theorem 16. A d-path with d ≥ 3 can be detected using Õ(n
3
2−

1
dd/2e ) quantum queries.

In particular, the quantum query complexity of detecting a d-path for d ∈ {1, 2, 3, 4} is Θ̃(n).

Note that even the improved result from Theorem 15 has zero checking cost. We can
sometimes obtain a further improvement by performing nontrivial checking. For example, we
can detect 7-paths in the same complexity that Theorem 16 gives for 5- and 6-paths and we
can detect 9- and 10-paths in the same complexity that Theorem 16 gives for 7- and 8-paths:

I Theorem 17. H-subgraph containment has query complexity Õ(n7/6) if H is a 7-path and
Õ(n5/4) if H is a 9- or 10-path.

Similar improvements are also possible for longer paths; we omit the details here.

4.4 Relaxing sparsity
So far we have focused on sparse graphs, since this is the relevant case for minor-closed
properties. However, our algorithms easily generalize to the case where the number of edges
is at most any prescribed upper bound, leading to further applications.
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I Theorem 18. Let P be the property that an n-vertex graph has at most m̄ edges (where m̄ =
Ω(n)) and contains a given subgraph H. Let H ′ be the graph obtained by deleting all degree-one
vertices of H that are not part of an isolated edge. Then Q(P) = Õ(

√
m̄n

1− 1
vc(H′)+1 ).

In conjunction with the Kövári-Sós-Turán theorem [16], this algorithm has applications
to subgraph-finding problems that are not equivalent to minor-finding problems.

I Theorem 19 (Kövári-Sós-Turán). If a graph G on n vertices does not contain Ks,t as a
subgraph, where 1 ≤ s ≤ t, then |E(G)| ≤ cs,t n2− 1

s , where cs,t is a constant depending only
on s and t.

Suppose H is a d-vertex bipartite graph. Theorem 19 shows that if |E(G)| > cn2− 2
d (for

some constant c), then G must contain Ks,d−s for all 1 ≤ s ≤ d/2, and in particular, must
contain H. Combining this with the fact that vc(H ′) ≤ vc(H) ≤ d/2, we have the following.

I Theorem 20. If H is a d-vertex bipartite graph, then H-subgraph containment has quantum
query complexity Õ(n2− 1

d−
2

d+2 ) = Õ(n2− 3d+2
d(d+2) ).

Recall that for d > 3, Theorem 4.6 of [19] gives an upper bound of Õ(n2− 2
d ) for finding a

d-vertex subgraph. For bipartite subgraphs, Theorem 20 is a strict improvement.
Note that a better bound may be possible by taking the structure of H into account. In

general, if H is a bipartite graph with the ith connected component having vertex bipartition
Vi ∪ Ui with 1 ≤ |Vi| ≤ |Ui|, then we can replace d/2 by

∑
i |Vi|, since a graph that contains

K∑
i
|Vi|,
∑

i
|Ui| must contain H, and vc(H ′) ≤ vc(H) =

∑
i |Vi|. As a simple example, if

H = K1,t is a star on t+ 1 vertices, then H-subgraph containment can be solved with Õ(n)
quantum queries (which is essentially optimal due to Theorem 4).

Just as mentioned at the end of Section 4.3, we can sometimes improve over Theorem 18
by introducing a nontrivial checking cost. The following is a simple example of such an
algorithm, using a result on the sparsity of graphs that exclude C4 [8].

I Theorem 21. C4-subgraph containment can be solved in Õ(n1.25) quantum queries.

This may seem unexpected, since C4 finding is a natural generalization of triangle finding
to a larger subgraph. Indeed, the previous best known quantum algorithm for C4 finding used
Õ(n1.5) queries [19], more than the O(n1.3) queries for triangle finding. Our improvement
shows that 4-cycles can be found in fewer quantum queries than in the best known quantum
algorithm for finding 3-cycles.

5 Conclusions and open problems

In this paper, we have studied the quantum query complexity of minor-closed graph properties.
The difficulty of such problems depends crucially on whether the property can also be
characterized by a finite set of forbidden subgraphs. Minor-closed properties that are not
characterized by forbidden subgraphs have matching upper and lower bounds of Θ(n3/2)
(Corollary 12), whereas all minor-closed properties that can be expressed in terms of forbidden
subgraphs can be solved strictly faster, in o(n3/2) queries (Corollary 14).

Since the best known lower bound for the latter class of problems is the simple Ω(n) lower
bound from Theorem 4, an obvious open question is to give improved upper or lower bounds
for subgraph-finding problems. While the standard quantum adversary method cannot prove
a better lower bound, it might be possible to apply the negative weights adversary method
[14] or the polynomial method [6]. Note that sparsity makes forbidden subgraph properties
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potentially more difficult to lower bound; this is precisely the feature we took advantage of
in the algorithms of Section 4. Proving a superlinear lower bound for any subgraph-finding
problem—even one for which dense graphs might not contain the subgraph, such as in the
case of triangles—remains a major challenge. On the algorithmic side, note that while our
algorithms take advantage of sparsity, minor-closed families of graphs have other special
properties, such as bounded degeneracy, that might also be exploited.

The algorithms described in Section 4 have several features not shared by previous
quantum walk search algorithms for graph properties: queries are required even to identify
which vertices of the input graph to search over (namely, to find vertices of a certain degree),
and the performance of the walk is optimized by making different transitions at different
rates. We hope these techniques might prove useful in other quantum algorithms.

Note that Theorem 13 can be applied to find induced subgraphs (just as with the
algorithms of [19]). However, the improvements described in Theorem 15 and Theorem 18 do
not apply to induced subgraphs, and in general it could be easier or more difficult to decide
whether a given graph is present as an induced subgraph rather than a (not necessarily
induced) subgraph. It might be fruitful to explore induced subgraph finding more generally.

It might also be interesting to focus on finding natural families of subgraphs such as paths.
Recall that we showed the quantum complexity of this problem is Θ̃(n) for lengths up to 4
and Õ(n7/6) for lengths of 5, 6, and 7, with nontrivial algorithms for longer paths as well
(Theorem 16 and Theorem 17). The case of paths of length 5, the smallest case for which
our algorithm is not known to be optimal, appears to be a natural target for future work.
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