4,076 research outputs found

    Processing techniques for partial tree-pattern queries on XML data

    Get PDF
    In recent years, eXtensible Markup Language (XML) has become a de facto standard for exporting and exchanging data on the Web. XML structures data as trees. Querying capabilities are provided through patterns matched against the XML trees. Research on the processing of XML queries has focused mainly on tree-pattern queries. Tree-pattern queries are not appropriate for querying XML data sources whose structure is not fully known to the user, or for querying multiple data sources which structure information differently. Recently, a class of queries, called Partial Tree-Pattern Queries (PTPQs) was identified. A central feature of PTPQs is that the structure can be specified fully, partially, or not at all in a query. For this reason. PTPQs can be used for flexibly querying XML data sources. This thesis deals with processing techniques for PTPQs. In particular, it addresses the satisfiability, containment and minimization problems for PTPQs. In order to cope with structural expression derivation issues and to compare PTPQs, a set of inference rules is suggested and a canonical form for PTPQs that comprises all derived structural expressions is defined. This canonical form is used for determining necessary and sufficient conditions for PTPQ satisfiability. The containment problem is studied both in the absence and in the presence of structural summaries of data called dimension graphs. It is shown that this problem cannot be characterized by homomorphisms between PTPQs, even when PTPQs are put in canonical form. In both cases of the problem, necessary and sufficient conditions for PTPQ containment are provided in terms of homomorphisms between PTPQs and (a possibly exponential number of) tree-pattern queries. This result is used to identify a subclass of PTPQs that strictly contains tree-pattern queries for which the containment problem can be fully characterized through the existence of homomorphisms. To cope with the high complexity of PTPQ containment, heuristic approaches for this problem are designed that trade accuracy for speed. The heuristic approaches equivalently add structural expressions to PTPQs in order to increase the possibility for a homomorphism between two contained PTPQs to exist. An implementation and extensive experimental evaluation of these heuristics shows that they are useful in practice, and that they can be efficiently implemented in a query optimizer. The goal of PTPQ minimization is to produce an equivalent PTPQ which is syntactically smaller in size. This problem is studied in the absence of structural summaries. It is shown that PTPQs cannot be minimized by removing redundant parts as is the case with certain classes of tree-pattern queries. It is also shown that, in general, a PTPQ does not have a unique minimal equivalent PTPQ. Finally, sound, but not complete, heuristic approaches for PTPQ minimization are presented. These approaches gradually trade execution time for accuracy

    Comparative Analysis of Five XML Query Languages

    Full text link
    XML is becoming the most relevant new standard for data representation and exchange on the WWW. Novel languages for extracting and restructuring the XML content have been proposed, some in the tradition of database query languages (i.e. SQL, OQL), others more closely inspired by XML. No standard for XML query language has yet been decided, but the discussion is ongoing within the World Wide Web Consortium and within many academic institutions and Internet-related major companies. We present a comparison of five, representative query languages for XML, highlighting their common features and differences.Comment: TeX v3.1415, 17 pages, 6 figures, to be published in ACM Sigmod Record, March 200

    Completing Queries: Rewriting of IncompleteWeb Queries under Schema Constraints

    Get PDF
    Reactive Web systems, Web services, and Web-based publish/ subscribe systems communicate events as XML messages, and in many cases require composite event detection: it is not sufficient to react to single event messages, but events have to be considered in relation to other events that are received over time. Emphasizing language design and formal semantics, we describe the rule-based query language XChangeEQ for detecting composite events. XChangeEQ is designed to completely cover and integrate the four complementary querying dimensions: event data, event composition, temporal relationships, and event accumulation. Semantics are provided as model and fixpoint theories; while this is an established approach for rule languages, it has not been applied for event queries before

    Reasoning & Querying ā€“ State of the Art

    Get PDF
    Various query languages for Web and Semantic Web data, both for practical use and as an area of research in the scientific community, have emerged in recent years. At the same time, the broad adoption of the internet where keyword search is used in many applications, e.g. search engines, has familiarized casual users with using keyword queries to retrieve information on the internet. Unlike this easy-to-use querying, traditional query languages require knowledge of the language itself as well as of the data to be queried. Keyword-based query languages for XML and RDF bridge the gap between the two, aiming at enabling simple querying of semi-structured data, which is relevant e.g. in the context of the emerging Semantic Web. This article presents an overview of the field of keyword querying for XML and RDF

    What you can do with Coordinated Samples

    Full text link
    Sample coordination, where similar instances have similar samples, was proposed by statisticians four decades ago as a way to maximize overlap in repeated surveys. Coordinated sampling had been since used for summarizing massive data sets. The usefulness of a sampling scheme hinges on the scope and accuracy within which queries posed over the original data can be answered from the sample. We aim here to gain a fundamental understanding of the limits and potential of coordination. Our main result is a precise characterization, in terms of simple properties of the estimated function, of queries for which estimators with desirable properties exist. We consider unbiasedness, nonnegativity, finite variance, and bounded estimates. Since generally a single estimator can not be optimal (minimize variance simultaneously) for all data, we propose {\em variance competitiveness}, which means that the expectation of the square on any data is not too far from the minimum one possible for the data. Surprisingly perhaps, we show how to construct, for any function for which an unbiased nonnegative estimator exists, a variance competitive estimator.Comment: 4 figures, 21 pages, Extended Abstract appeared in RANDOM 201

    Eliminating Recursion from Monadic Datalog Programs on Trees

    Full text link
    We study the problem of eliminating recursion from monadic datalog programs on trees with an infinite set of labels. We show that the boundedness problem, i.e., determining whether a datalog program is equivalent to some nonrecursive one is undecidable but the decidability is regained if the descendant relation is disallowed. Under similar restrictions we obtain decidability of the problem of equivalence to a given nonrecursive program. We investigate the connection between these two problems in more detail

    Four Lessons in Versatility or How Query Languages Adapt to the Web

    Get PDF
    Exposing not only human-centered information, but machine-processable data on the Web is one of the commonalities of recent Web trends. It has enabled a new kind of applications and businesses where the data is used in ways not foreseen by the data providers. Yet this exposition has fractured the Web into islands of data, each in different Web formats: Some providers choose XML, others RDF, again others JSON or OWL, for their data, even in similar domains. This fracturing stifles innovation as application builders have to cope not only with one Web stack (e.g., XML technology) but with several ones, each of considerable complexity. With Xcerpt we have developed a rule- and pattern based query language that aims to give shield application builders from much of this complexity: In a single query language XML and RDF data can be accessed, processed, combined, and re-published. Though the need for combined access to XML and RDF data has been recognized in previous work (including the W3Cā€™s GRDDL), our approach differs in four main aspects: (1) We provide a single language (rather than two separate or embedded languages), thus minimizing the conceptual overhead of dealing with disparate data formats. (2) Both the declarative (logic-based) and the operational semantics are unified in that they apply for querying XML and RDF in the same way. (3) We show that the resulting query language can be implemented reusing traditional database technology, if desirable. Nevertheless, we also give a unified evaluation approach based on interval labelings of graphs that is at least as fast as existing approaches for tree-shaped XML data, yet provides linear time and space querying also for many RDF graphs. We believe that Web query languages are the right tool for declarative data access in Web applications and that Xcerpt is a significant step towards a more convenient, yet highly efficient data access in a ā€œWeb of Dataā€

    Beyond Well-designed SPARQL

    Get PDF
    SPARQL is the standard query language for RDF data. The distinctive feature of SPARQL is the OPTIONAL operator, which allows for partial answers when complete answers are not available due to lack of information. However, optional matching is computationally expensive - query answering is PSPACE-complete. The well-designed fragment of SPARQL achieves much better computational properties by restricting the use of optional matching - query answering becomes coNP-complete. However, well-designed SPARQL captures far from all real-life queries - in fact, only about half of the queries over DBpedia that use OPTIONAL are well-designed. In the present paper, we study queries outside of well-designed SPARQL. We introduce the class of weakly well-designed queries that subsumes well-designed queries and includes most common meaningful non-well-designed queries: our analysis shows that the new fragment captures about 99% of DBpedia queries with OPTIONAL. At the same time, query answering for weakly well-designed SPARQL remains coNP-complete, and our fragment is in a certain sense maximal for this complexity. We show that the fragment\u27s expressive power is strictly in-between well-designed and full SPARQL. Finally, we provide an intuitive normal form for weakly well-designed queries and study the complexity of containment and equivalence
    • ā€¦
    corecore