Beyond Well-designed SPARQL

Mark Kaminski! and Egor V. Kostylev?

1 Department of Computer Science, University of Oxford, UK
2 Department of Computer Science, University of Oxford, UK

—— Abstract
SPARQL is the standard query language for RDF data. The distinctive feature of SPARQL is the
OPTIONAL operator, which allows for partial answers when complete answers are not available
due to lack of information. However, optional matching is computationally expensive — query
answering is PSPACE-complete. The well-designed fragment of SPARQL achieves much better
computational properties by restricting the use of optional matching — query answering becomes

coNP-complete. However, well-designed SPARQL captures far from all real-life queries — in fact,
only about half of the queries over DBpedia that use OPTIONAL are well-designed.

In the present paper, we study queries outside of well-designed SPARQL. We introduce the
class of weakly well-designed queries that subsumes well-designed queries and includes most com-
mon meaningful non-well-designed queries: our analysis shows that the new fragment captures
about 99% of DBpedia queries with OPTIONAL. At the same time, query answering for weakly
well-designed SPARQL remains coNP-complete, and our fragment is in a certain sense maximal
for this complexity. We show that the fragment’s expressive power is strictly in-between well-
designed and full SPARQL. Finally, we provide an intuitive normal form for weakly well-designed
queries and study the complexity of containment and equivalence.

1998 ACM Subject Classification H.2.3 Languages — Query languages
Keywords and phrases RDF, Query languages, SPARQL, Optional matching

Digital Object ldentifier 10.4230/LIPIcs.ICDT.2016.5

1 Introduction

The Resource Description Framework (RDF) 29, 17, 21] is the W3C standard for representing
linked data on the Web. RDF models information in terms of labeled graphs consisting of
triples of resource identifiers (IRIs). The first and last IRIs in such a triple, called subject
and object, represent entity resources, while the middle IRI, called predicate, represents a
relation between the two entities.

SPARQL [35, 20] is the default query language for RDF graphs. First standardised
in 2008 [35], SPARQL is now recognised as a key technology for the Semantic Web. This is
witnessed by a recently adopted new version of the standard, SPARQL 1.1 [20], as well as by
active development of SPARQL query engines in academia and the industry, for instance, as
part of the systems AllegroGraph [1], Apache Jena [2], Sesame [3], or OpenLink Virtuoso [4].

In recent years, SPARQL has been subject to a substantial amount of theoretical research,
based on the foundational work by Pérez et al. [30, 31]. In particular, we now know much
about evaluation [36, 28, 6, 32, 25, 23, 7, 22], optimisation [27, 33, 16, 15, 12, 24], federation
[14, 13], expressive power [5, 34, 25, 39], and provenance tracking [18, 19] for queries from
various fragments and extensions of SPARQL. These studies have had a great impact in the
community, in fact influencing the evolution of SPARQL as a standard.

A distinctive feature of SPARQL as compared to SQL is the OPTIONAL operator
(abbreviated as OPT in this paper). This operator was introduced to “not reject (solutions)
? Mark Kaminski an.d Egor V. Kost)./lev;

5v icensed under Creative Commons License CC-BY
19th International Conference on Database Theory (ICDT 2016).
Editors: Wim Martens and Thomas Zeume; Article No. 5; pp. 5:1-5:18

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICDT.2016.5
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

5:2

Beyond Well-designed SPARQL

P1,rdf:type, foaf :person 7 ™ P1,rdf:type, foaf :person 7 i
yp p yp p
(P2, rdf:type, foaf:person) | P1 | Ana (P2, rdf: type, foaf : person) P1 | Anastasia
(P1, foaf :name, Ana) P2 (P1,v_card:name, Anastasia) | P2
(a) (b) () (d)

Figure 1 (a) Graph G; (b) answers to query (1) over G; (c) graph G'; and (d) answers over G'.

because some part of the query pattern does not match” [35]. For instance, consider the
SPARQL query

SELECT ?i, ?7n WHERE (7?4, rdf : type, foaf : person) OPT (7?4, foaf :name, 7n), (1)

which retrieves all person IDs from the graph together with their names; names, however, are
optional — if the graph does not contain information about the name of a person, the person
ID is still retrieved but the variable ?n is left undefined in the answer. For instance, query (1)
has two answers over the graph G in Figure 1(a), where the second answer is partial (see
Figure 1(b)). However, if we extend G with a triple supplying a name for P2, the second
answer will include this name.

The OPT operator accounts in a natural way for the open world assumption and the
fundamental incompleteness of the Web. However, evaluating queries that use OPT is
computationally expensive — Pérez et al. [31] showed PSPACE-completeness of SPARQL
query evaluation, and Schmidt et al. [36] refined this result by proving PSPACE-hardness
even for queries using no operators besides OPT. This is not surprising given that SPARQL
queries are equivalent in expressive power to first-order logic queries, and translations in
both directions can be done in polynomial time [5, 34, 25].

This spurred a search for restrictions on the use of OPT that would ensure lower complexity
of query evaluation. It was also recognised that queries that are difficult to evaluate are often
unintuive. For instance, they may produce less specified answers (i.e., answers with fewer
bound variables) as the graph over which they are evaluated grows larger.

Perez et al. [31] introduced the well-designed fragment of SPARQL queries by imposing
a syntactic restriction on the use of variables in OPT-expressions. Roughly speaking, each
variable in the optional (i.e., right) argument of an OPT-expression should either appear in the
mandatory (i.e., left) argument or be globally fresh for the query, i.e., appear nowhere outside
of the argument. Well-designed queries have lower complexity of query evaluation — the
problem is CONP-complete (provided all the variables in the query are selected). Moreover,
such queries have a more intuitive behaviour than arbitrary SPARQL queries; in particular,
they enjoy the monotonicity property that we observed for query (1): each partial answer
over a graph can potentially be extended to undefined variables if the graph is completed
with the missing information, and the more information we have the more specified are
the answers. Well-designed queries can be efficiently transformed to an intuitive normal
form allowing for a transparent graphical representation of queries as trees [27, 33]. Hence,
many recent studies concentrate partially [27, 25, 23, 37, 38] or entirely [33] on well-designed
queries.

Such a success of well-designed queries may lead to the impression that non-well-designed
SPARQL queries are just a useless side effect of the early specification. But is this impression
justified by the use of SPARQL in practice? To answer this question, a comprehensive analysis
of real-life queries is required. We are aware of two works that analyse the distribution
of operators in SPARQL queries asked over DBpedia [32, 9]. Both studies show that
OPT is used in a non-negligible amount of practical queries. However, only Picalausa and

M. Kaminski and E. V. Kostylev

Vansummeren [32] go further and analyse how many of these queries are well-designed; and
the result is quite interesting — well-designed queries make up only about half of all queries
with OPT. In other words, well-designed queries are common, but by far not exclusive.

The main goal of this paper is to investigate SPARQL queries beyond the well-designed
fragment. We wanted to see if the well-designedness condition could be extended so as to
include most practical queries while preserving good computational properties. The main
result of our study is very positive — we identified a new fragment of SPARQL queries, called
weakly well-designed queries, that covers about 99% of queries over DBpedia and has the
same complexity of query evaluation as the well-designed fragment. We also show that our
fragment is in a sense maximal for this complexity.

We next describe our results and techniques in more detail. Our first step was to identify
most typical real-life queries that are not well-designed. We analysed the USEWOD2013 [10]
and USEWOD2014 [11] query logs for DBpedia 3.8 and 3.9 and found two interesting types
of non-well-designed queries. The first type is exemplified by the following query:

SELECT 7?4, ?7n WHERE
((?4,rdf : type, foaf :person) OPT (7, foaf :name, ?n)) OPT (?¢,v_card:name, ?n).

(2)

This query is clearly not well-designed because variable ?n, binding the name of a person,
appears in two different unrelated optional parts. Let us analyse answers to this query over
different graphs. On graph G in Figure 1(a) the result is exactly the same as for query (1),
shown in Figure 1(b), simply because the IRI v_card:name is not present in G, and so
cannot be matched against the second optional part of the query. Similarly, on graph G’ in
Figure 1(c), where the source of the name and the name itself are different, the result is as
in Figure 1(d). In this case, the first optional part in the query does not match anything
in the graph so the variable ?n is left unbound at this point; then the second optional
is matched, and the variable is assigned with the name from v_card. More interestingly,
query (2) evaluated over the graph GU G’ once again yields the result in Figure 1(b). Indeed,
in this case, the first optional part has a match again and 7n is assigned the value Ana; then,
this variable is already bound and there is no match for the second optional part that agrees
with this value, meaning that the alternative v_card name is disregarded by the query. To
summarise, query (2) is once again looking for person IDs and, optionally, their names. Now,
however, names are collected from two different sources, foaf and v_card, where the first
source is given preference over the second (maybe because it is considered more reliable or
more informative, or for some other reason). In other words, if we know the foaf name of a
person, it is returned as part of the answer regardless of his v_card name; however, if there
is no foaf name, then the v_card name is also acceptable and should be returned; variable
7n is left unbound only if the name cannot be extracted from either source.

Of course, preference patterns encountered in real-life queries are often more complex.

Still, in most cases they do not increase the complexity of query evaluation.
Our second example query is as follows:

SELECT ?i, 7n WHERE ((?4, rdf : type, foaf :person) OPT (74, foaf :name, 7n)) (3)
FILTER (=bound(?n) V =(?n = Ana)).

The query uses FILTER, a standard SPARQL operator that admits only answers conforming
to a specified constraint. Again, this query is not well-designed because the FILTER constraint
mentions the variable ?n, which occurs in the optional part of the query but not in the
mandatory part. However, the intention of the query is quite clear: it searches for people
whose names are not known to be Ana, including people whose names are unknown.

5:3

ICDT 2016

5:4

Beyond Well-designed SPARQL

This use of FILTER is in fact very common in real-life queries. Moreover, it is intuitive as
long as FILTER is essentially the outermost operator in the query, as it is in our example. In
all such cases, however, FILTER cannot lead to an increase in complexity.

Having isolated these typical uses of non-well-designedness, we identify a new fragment
of SPARQL that (a) includes all queries of the above two types, (b) subsumes well-designed
queries, and (c) has the same complexity of query evaluation as well-designed queries. We
call such queries weakly well-designed. They are the maximal fragment without structural
restrictions on conjunctive blocks and filter conditions that has the above properties. Our
analysis shows that about 99% of DBpedia queries with OPT are weakly well-designed.

Besides low complexity of query evaluation, we establish a few more useful properties
of weakly well-designed queries, which are summarised in the following outline of the
paper. After introducing the syntax and semantics of SPARQL in Section 2, we formally
define our new fragment in Section 3. In Section 4, we show that, similarly to the well-
designed case, weakly well-designed queries can be transformed to an intuitive normal form,
which allows for a natural graphical representation as constraint pattern trees. Using this
representation, in Section 5, we formally show that the step from well-designed to weakly
well-designed queries does not increase complexity of query evaluation; minimal relaxations
of weak well-designedness, however, already lead to a complexity jump. In Section 6, we
compare the expressive power of our fragment (and its extensions with additional operators)
with well-designed queries and unrestricted SPARQL queries; in particular, we show that
the expressivity of weakly well-designed queries lies strictly in-between well-designed and
unrestricted queries. In Section 7, we study static analysis problems for weakly well-designed
queries and establish IT5-completeness of equivalence, containment, and subsumption. Finally,
in Section 8, we detail our analysis of DBpedia logs.

2 SPARQL Query Language

We begin by formally introducing the syntax and semantics of SPARQL that we adopt
in this paper. Our formal setup mostly follows [31], which has some differences from the
W3C specification [35, 20]; in particular, we use two-placed OPT and two-valued FILTER
(conditional OPT and errors in FILTER evaluation as in the standard are expressible in our
formalisation [5]), and adopt set semantics, leaving multiset answers for future work.

RDF Graphs. An RDF graph is a labeled graph where nodes can also serve as edge labels.
Formally, let I be a set of IRIs. Then an RDF triple is a tuple (s,p,0) from I x I x I, where
s is called subject, p predicate, and o object. An RDF graph is a finite set of RDF triples.

SPARQL Syntax. Let X be an infinite set {?x, 7y, ...} of variables, disjoint from I. Filter
constraints are conditions of the form

T, 7z = u, 7x =7y, or bound(?z) for 7z, 7y in X and u € I (atomic constraints),

= Ri, Ri AN Ry, or Ry V Ry for filter constraints R; and Rs.
A basic pattern is a set of triples from (IUX) x (IUX) x (IUX). Then, SPARQL (graph)
patterns P are defined by the grammar

P =B |(PAND P) | (POPT P) | (P UNION P) | (P FILTER R),

where B ranges over basic patterns and R over filter constraints. Additionally, we require
all filter constraints to be safe, that is, vars(R) C vars(P) for every pattern (P FILTER R),
where vars(S) is the set of all variables in S (which can be pattern, constraint, etc.) When

M. Kaminski and E. V. Kostylev

needed, we distinguish between patterns by their top-level operator (e.g., OPT-pattern or
FILTER-pattern). The set of all triples in basic patterns of a pattern P is denoted triples(P).
We write U for the set of all patterns. We also distinguish the fragment P of U that
consists of all UNION-free patterns, i.e., patterns that do not use the UNION operator.
Projection is realised in SPARQL by means of queries with select result form, or queries
for short, which are expressions of the form

SELECT X WHERE P, (4)

where X is a set of variables and P is a graph pattern. We write S for the set of all queries.
Note that every pattern P can be seen as a query of the form (4) where X = vars(P).
Hence, all definitions that refer to “queries” implicitly extend to patterns in the obvious way.

SPARQL Semantics. The semantics of graph patterns is defined in terms of mappings,
that is, partial functions from variables to IRIs. The domain dom(u) of a mapping p is the
set of variables on which p is defined. Two mappings 1 and ps are compatible (written
1~ p2) if py(?z) = pe(?z) for all variables 7z € dom(py) Ndom(pz). If wy ~ pe, then
11 U po constitutes a mapping that coincides with p; on dom(ug) and with pg on dom(uz).
Given two sets of mappings €27 and €23, we define their join, union and difference as follows:

M xQy = {1 Upg|p € Q,pe € Q, and py ~ o},
QU = {M|/,LEQlOI'/,LEQQ},
U \Q2 = {w|p € QA pe forall s € Qo).

Based on these, the left outer join operation is defined as 1 x Qo = (21 X Q) U (Q1 \ Q2).
Given a graph G, the evaluation [P]a of a graph pattern P over G is defined as follows:
if B is a basic pattern, then [B]g = {p: vars(B) = I | u(B) C G};
[(P1 AND P)]c = [Pi]a % [P:]a;
[(PLOPT P)]e = [Pilc ™ [P2]es
[[(Pl UN'ON PQ)HG = [[Plﬂg U [[Pzﬂg;
[(P' FILTER R)]c = {« | # € [Pl and u = R},
where p satisfies a filter constraint R, denoted by p |= R, if one of the following holds:
Ris T;
R is 7z = u, o € dom(p), and p(?z) = u;
Ris Tx =7y, {7z, 7y} C dom(u), and p(?z) = u(?y);
R is bound(?z) and 7z € dom(u);
R is a Boolean combination of filter constraints evaluating to true under the usual
interpretation of =, A, and V.

Ll A

Let p|x be the projection of a mapping u to variables X, that is, p|x(?x) = u(?x) if
?r € X and p|x(?x) is undefined if 7z ¢ X. The evaluation [Q]c of a query @ of the
form (4) is the set of all mappings p|x such that p € [P]¢.

Finally, a solution to a query (or pattern) @ over G is a mapping p such that u € [Q]q-

3 Weakly Well-Designed Patterns

We begin by recalling the notion of well-designed patterns and then formulate our generalisa-
tion. For now, we focus on the AND-OPT-FILTER fragment P, leaving the operators UNION
and SELECT for later sections.

5:5

ICDT 2016

5:6

Beyond Well-designed SPARQL

Note that a given pattern can occur more than once within a larger pattern. In what
follows we will sometimes need to distinguish between a (sub-)pattern P as a possibly
repeated building block of another pattern P’ and its occurrences in P’, that is, unique
subtrees in the parse tree. Then, the left (right) argument of an occurrence i is the subtree
rooted in the left (right) child of the root of ¢ in the parse tree, and an occurrence ¢ is inside
an occurrence j if the root of 7 is a successor of the root of j.

» Definition 1 (Pérez et al. [31]). A pattern P from P is well-designed (or wd-pattern,
for short) if for every occurrence ¢ of an OPT-pattern P; OPT P, in P the variables from
vars(P,) \ vars(P;) occur in P only inside (the labels of) i.

We write Pyq for the fragment of wd-patterns. Such patterns comply with the basic
intuition for optional matching in SPARQL: "do not reject (solutions) because some part
of the query pattern does not match” [20]; indeed, our canonical use case (1) is clearly
well-designed. Evaluation of wd-patterns, that is, checking if y € [P]¢s for a mapping u,
graph G and pattern P € Pyq, is CONP-complete, as opposed to PSPACE-complete for
P [31, 36]. The high complexity of unrestricted patterns is partially due to the fact that
unrestricted combinations of OPT and FILTER allow to express nesting of the difference
operator MINUS with semantics [Py MINUS P]¢ = [Pi]¢ \ [P:]¢ (for non-empty P; and
Pg)l

P, MINUS P, = (P, OPT (P, AND (%2, 7y, ?z))) FILTER —bound(?z). (5)

This property is well-known [5, 31], and has been usually considered the main source of
non-well-designed patterns in practice. We challenge this claim by answering differently the
question on the prevalent structure of real-life queries beyond the well-designed fragment.
This question is not just of theoretical interest: as previous studies [32] show (and our
analysis confirms), about half of queries with OPT asked over DBpedia are not well-designed.

Next we discuss two sources of non-well-designedness in patterns as revealed by the
example queries (2) and (3) in the introduction — one based on OPT and another on FILTER.

Source 1. There are two substantially different ways of nesting the OPT operator in
patterns:

P, OPT (P, OPT P3), (Opt-R) (P; OPT P,) OPT Ps. (Opt-L)

Non-well-designed nesting of type (Opt-R) is responsible for the PSPACE-hardness of query
evaluation [31, 36]. Moreover, such nesting is not very intuitive. On the contrary, as we saw
in the introduction, non-well-designed nesting of type (Opt-L) can be used for prioritising
some parts of patterns to others, and is indeed used in real life. As we will see later, nesting
of type (Opt-L) cannot lead to high complexity of evaluation.

Source 2. Well-designedness can be violated by using “dangerous” variables from the right
side of OPT in filter constraints. In particular, patterns of the form (P; OPT P,) FILTER R
with R using a variable from vars(P;) \ vars(P;) are not well-designed, but rather frequent
in practice. However, such patterns almost never occur inside the right argument of other
OPT-patterns. We will see that if we restrict the usage of such filters to the “top level”, we
preserve the good computational properties of wd-patterns.

Motivated by these observations, we considerably generalise the notion of wd-patterns to
allow for useful queries like (2) and (3) while retaining important properties of such patterns.

M. Kaminski and E. V. Kostylev

We start with two auxiliary notions. Given a pattern P, an occurrence ¢; in P dominates
another occurrence io if there exists an occurrence j of an OPT-pattern such that i; is
inside the left argument of j and iy is inside the right argument. An occurrence i of a
FILTER-pattern P’ FILTER R in P is top-level if there is no occurrence j of an OPT-pattern
such that ¢ is inside the right argument of j.

» Definition 2. A pattern P € P is weakly well-designed (wwd-pattern) if, for each occur-
rence i of an OPT-subpattern P; OPT Py, the variables in vars(P) \ vars(P;) appear outside ¢
only in

subpatterns whose occurrences are dominated by ¢, and

constraints of top-level occurrences of FILTER-patterns.

We write Pywa for the fragment of wwd-patterns. They extend wd-patterns by allowing
variables from the right argument of an OPT-subpattern that are not “guarded” by the left
argument to appear in certain positions outside of the subpattern. Note that the patterns of
queries (4) and (3) are wwd-patterns. Also, patterns which allow only for OPT nesting of
type (Opt-L) are always weakly well-designed, same as the pattern in the right hand side of
(5), which expresses MINUS. However, patterns that have subpatterns of the latter form in
the right argument of OPT are not weakly well-designed. Next we give a few more examples.

» Example 3. Consider the following patterns:

((?z,a,a) OPT ((?x,b, 7y) OPT (?y,c, ?2))) OPT (?x,d,?z), (6)
((?x,a,a) OPT (?z,d, ?z)) OPT ((?,b, ?7y) OPT (?y, ¢, ?2)), (7)
(((?u, f,7v) OPT (?u, g, 7w)) FILTER ?v # ?w) OPT (?u, h, ?s), (8)
(Pu, h,?7s) OPT (((?u, f,?v) OPT (?u, g, ?w)) FILTER ?v # ?w). (9)

Pattern (6) is not well-designed because of variable 7z, but is weakly well-designed since the
occurrence of (?y, ¢, ?z) dominates (?x,d, ?z). However, the similar pattern (7) is not weakly
well-designed because the occurrence of the inner OPT-pattern with the second occurrence of
?z does not dominate the first. Pattern (8) is weakly well-designed since the FILTER-pattern
is top-level (we write 7z # ?y for —(?z = ?y)), but pattern (9) is not, because of variable ?w
in a non-top-level FILTER.

» Proposition 4. Checking whether a pattern P belongs to the fragment Pywa can be done
in time O(|P|?), where |P| is the length of the string representation of P.

4 OPT-FILTER-Normal Form and Constraint Pattern Trees

One of the key properties of wd-patterns is that they can always be converted to a so-called
OPT-normal form, in which all AND- and FILTER-subpatterns are OPT-free [31]. Also,
FILTER-free patterns in OPT-normal form can be naturally represented as trees [27, 33],
which gives a good intuition for the evaluation and optimisation of such patterns. In this
section, we show that these notions can be generalised to wwd-patterns.

» Definition 5. A pattern P € P is in OPT-FILTER-normal form (or OF-normal form for
short) if it adheres to the grammar

P := F|(PFILTERR) | (POPTS), S == F|(SOPTS), F := (BFILTERR),

where B ranges over basic patterns and R over filter constraints.

5:7

ICDT 2016

5:8

Beyond Well-designed SPARQL

OPT B OPT B1
AN \ VAN AN
Bi OPT vs. B OPT Bz vs. B B3

VAN \ VAN
B2 B3 B3 Bl B2
(a) (b)

Figure 2 Parse trees vs. constraint pattern trees for patterns (a) B1 OPT (B2 OPT Bs) and (b)
(B1 OPT B2) OPT Bs, with B1, B2, and Bs basic patterns.

In other words, the parse tree of a pattern in OF-normal form can be stratified as follows:
1. (occurrences of) basic patterns as the bottom layer,
2. a FILTER on top of each basic pattern as the middle layer,
3. a combination of OPT and FILTER as the top layer;
moreover, each occurrence of a FILTER-pattern in the top layer is top-level. Note that our
normal form is AND-free: all conjunctions are expressed via basic patterns.

» Example 6. None of the four patterns in Example 3 are in OF-normal form. However, the
first three of them can be easily normalised by replacing each triple ¢ with ¢, where PT is
an abbreviation of P FILTER T for a pattern P. Also, compare the pattern

(((?x,a,a)" OPT (?z,b,?7y) ") OPT ((?z,b,?2) T OPT (?z,¢,7u) ")) FILTER ?u # 72, (10)
which is in OF-normal form, with the very similar pattern
(((?xz,a,a)" OPT (2x,b,?u) ") OPT ((?z,b,?72)" OPT (?2,¢,?u)") FILTER ?u # ?2),
which is not, because the outer FILTER is in the right argument of the outermost OPT.

As shown by Letelier et al. [27], FILTER-free patterns in OPT-normal form can be
represented by means of so-called pattern trees. We next show that this representation can
be naturally extended to patterns in OF-normal form.

Let P be a pattern in OF-normal form. The constraint pattern tree (CPT) T (P) of P is
the directed ordered labelled rooted tree recursively constructed as follows (in this definition
we abuse notation and confuse patterns and their occurrences; strictly speaking, we create a
fresh sub-tree for each occurrence, so the resulting object is indeed always a tree):

1. if B is a basic pattern then 7 (B FILTER R) is a single node v labelled by the pair (B, R);
2. if P’ is not a basic pattern then 7 (P’ FILTER R) is obtained by adding a special node

labelled by R as the last child of the root of T (P’);

3. T(P, OPT P,) is the tree obtained from 7 (P;) and T (P;) by adding the root of T (Ps)

as the last child of the root of T(P).

By definition, there is a one-to-one correspondence between patterns in OF-normal form
and CPTs. Hence, such trees can be seen as a convenient representation of patterns in
OF-normal form.

Unlike parse trees, which represent the syntactic shape of patterns, CPTs show the
semantic structure of OPT and FILTER nesting. Figure 2 shows how OPT nestings of
types (Opt-R) and (Opt-L) are represented in both formats. Note that CPTs treat different
FILTER-subpatterns differently: if the filter is over a basic pattern, the constraint of the
FILTER is paired with this pattern; however, if the filter is over an OPT-subpattern, then
the constraint is represented by a separate special node. Moreover, since in the second case

M. Kaminski and E. V. Kostylev

({2, a,a)},T) ({C2,0,0)},T)
(o b T) b toh T 7t 7s (b)) Tm 47
({(?z,c,‘?u)},T) {(72,5,22)4,T) ({(72,5,72), (22, ¢, 7u)}, T)
(a) (b)

Figure 3 Constraint pattern trees of (a) (((?z,a,a)’ OPT (?z,b,7y)") OPT ((?z,b,?2)" OPT
(?z,¢,7u) ")) FILTER ?u # ?z (i.e., pattern (10)) and (b) equivalent pattern in “flat” form (13).

the FILTER-pattern must be top-level, special nodes can only occur in CPTs as children of
the root. For instance, the CPT of the example pattern (10) is given in Figure 3(a).

Each wwd-pattern can be converted to OF-normal form and hence can be represented
by a CPT. To prove this statement we make use of a number of equivalences. Formally, a
pattern Py is equivalent to a pattern Py (written Py = P) if [Pi]¢ = [P2]¢ holds for any
graph G. There are several equivalences, such as associativity and commutativity of AND,
as well as filter decompositions, such as P FILTER (R; A Ry) = (P FILTER R;) FILTER Ry,
which hold for all patterns (see [36] for an extensive list). Moreover, the key equivalences
used in [31] for normalising wd-patterns can easily be adapted to serve our needs.

» Proposition 7. Let Py, P>, P5 be patterns and R a filter constraint such that vars(Pz) N
vars(Ps3) C vars(Py) and vars(Py) Nvars(R) C vars(Py). Then the following equivalences hold:

(P1 OPT Pg) AND P3 = (Pl AND Pg) OPT PQ,
(P, OPT P,) FILTER R = (P, FILTER R) OPT P;.

Since all the equivalences preserve weak well-designedness, we obtain the desired result.

» Proposition 8. Each wwd-pattern P is equivalent to a wwd-pattern in OF-normal form of
size O(|P|).

Relying on this proposition, in the rest of the paper we silently assume that all wwd-
patterns are in OF-normal form and hence can be represented by CPTs.

We next transfer the notion of weak well-designedness to CPTs. Let < be the strict
topological sorting of the nodes in 7 (P), computed by a depth first search traversal visiting
the children of a node according to their ordering (i.e., v < u holds if v is visited before u).

» Proposition 9. A pattern P in OF-normal form is weakly well-designed if and only if,
for each edge (v,u) in its CPT T(P), every variable Tx € vars(u) \ vars(v) occurs only in
nodes w such that v < w. The pattern is well-designed if and only if for every variable 7z in
P the set of all nodes v in T (P) with 7x € vars(v) is connected.

Note that if a pattern is FILTER-free, its OF-normal form coincides with the OPT-normal
form in [31] (modulo tautological filters), and its CPT is the pattern tree from [27, 33]. In
fact, the second part of Proposition 9 generalises an observation from [27] to the case with
filters. An important difference to pattern trees is that in our case the order of children of a
node is semantically relevant since wwd-patterns do not satisfy the equivalence

(P, OPT P,) OPT Py = (P, OPT P3) OPT P. (11)

This equivalence, established in [30], holds whenever (vars(Pz) Nvars(Ps)) C vars(P;), which
is always the case for wd-patterns but not for wwd-patterns, as can be seen on query (2).

5:9

ICDT 2016

5:10

Beyond Well-designed SPARQL

We conclude this section with a property that is unique to wwd-patterns: each wwd-
pattern is equivalent to a pattern whose corresponding CPT has depth one.

» Definition 10. A pattern in P is in depth-one normal form if it has the structure

(-~ ((Bopy S1)opy S2) - ++) op,, S, (12)

where B is a basic pattern and each op; S;, 1 < i < n, is either OPT (B; FILTER R;) with
B; a basic pattern and R; a filter constraint, or just FILTER R;.

To show that each wwd-pattern can be brought to this form we use another equivalence.

» Proposition 11. For patterns Py, Ps, Ps with vars(Py) Nvars(Ps) C vars(Pz) it holds that
P, OPT (P, OPT P3) = (P, OPT P,) OPT (P> AND Ps). (13)

Applied from left to right, equivalence (13) preserves weak well-designedness (but not
well-designedness). Each such application transforms a weakly well-designed OPT nesting of
type (Opt-R) to a nesting of type (Opt-L), decreasing the depth of the CPT.

» Corollary 12. Every wwd-pattern is equivalent to a wwd-pattern in depth-one normal form.

For instance, pattern (10) is equivalent to the pattern
((((?x,a,a)"OPT(?z,b, 2y) ")OPT (?2,b, ?2) " YOPT{(?x,b, ?2), (2, ¢, 7u)})FILTER ?u # 7,

represented by the CPT in Figure 3(b). Such “flat” patterns are attractive in practice because
of their regular structure. However, “flattening” a pattern can incur an exponential blowup
in size. Hence, in the rest of the paper we consider arbitrary wwd-patterns in OF-normal
form rather than restricting our attention to depth-one-normal patterns.

5 Evaluation of wwd-Patterns

In this section, we look at the query answering problem for wwd-patterns and their extensions
with union and projection. We show that in all three cases, complexity remains the same as
for wd-patterns. To obtain these results, we develop several new techniques.

Formally, we look at the following decision problem for a given SPARQL fragment L.

EvAL(L) Input: Graph G, query @ € £, and mapping p
Question: Does p belong to [Q]a?

It is known that EVAL(U) for general patterns U is PSPACE-complete [31], and the result
easily propagates to queries with projection (i.e., §) [27]. For wd-patterns, the evaluation
problem is CONP-complete, and can be solved by exploiting the following idea [27].

Suppose we are given a wd-pattern P in OPT-normal form (for simplicity, suppose P is
FILTER-free), a graph G, and a mapping u. First, we look for a subtree of 7 (P) that includes
the root of T (P), contains precisely the variables in dom(u), and “matches” G under p (i.e.,
images of all its triples under p are contained in). This is doable in polynomial time. If
such a subtree does not exist, then p cannot be a solution. Otherwise, the subtree witnesses
that p is a part of a solution to P. Finally, to verify that p is a complete solution, we need
to check that the subtree is maximal, that is, cannot be extended to any more nodes in 7 (P)
with a match in G. There are linearly many such nodes to check, and each check can be
performed in CONP. So, the overall algorithm runs in CONP.

M. Kaminski and E. V. Kostylev

Inspired by this idea, we next show that the low evaluation complexity of wd-patterns
transfers to wwd-patterns by developing a CONP algorithm for EVAL(Pywd)-

Let P be a wwd-pattern in OF-normal form. An r-subtree of T (P) is a subtree containing
the root of T(P) and all its special children. Every r-subtree is also a CPT representing a
wwd-pattern that can be obtained from P by dropping the right arguments of some OPT-
subpatterns (i.e., a pattern P’ with P’ < P in the notation of [31]). A child of an r-subtree
T(P") of T(P) is a node in 7 (P) that is not contained in 7 (P’) but whose parent is.

» Definition 13. A mapping p is a potential partial solution (or pp-solution for short)
to a wwd-pattern P over a graph G if there is an r-subtree 7(P’) of 7 (P) such that
dom(p) = vars(P’), u(triples(P’)) C G, and p |= R for the constraint R of any ordinary node
in T(P).

A pp-solution p to P over G can be witnessed by several r-subtrees. However, the union of
such r-subtrees is also a witness. Hence, there exists a unique maximal witnessing r-subtree,
denoted T (P,), with P, being the corresponding wwd-pattern.

Potential partial solutions generalise “partial solutions” as defined in [31] for wd-patterns.
There, every “partial solution” is either a solution or can be extended to one. This is not the
case for wwd-patterns. While every solution is clearly a pp-solution, not every pp-solution
can be extended to a real one. Real solutions may not just extend pp-solutions by assigning
previously undefined variables but can also override variable bindings established in some
node v of 7(P,) by extending 7 (P,) to a child that precedes v according to the order <.

An additional complication is the presence of non-well-designed top-level filters. Note that
pp-solutions are only required to satisfy the constraints of ordinary nodes in the corresponding
CPT, thus ignoring top-level filters. Indeed, requiring pp-solutions to satisfy constraints of
top-level filters would be too strong since real solutions do not generally satisfy this property,
as demonstrated by the following example.

» Example 14. Consider the graph G = {(1,a,1),(3,a,3)} and wwd-pattern
P = (((?z,a,1) OPT (?y,a,2)) FILTER —bound(?y)) OPT (?y, a, 3).
The mapping p = {7z — 1,7y — 3} is a solution to P over G, but p [~ —bound(?y).

We now present a characterisation of solutions for wwd-patterns in terms of pp-solutions
that (a)takes into account that not every pp-solution can be extended to a real solution and
(b) ensures correct treatment of non-well-designed top-level filters. For this we need some
more notation. Given a wwd-pattern P, a node v in 7 (P), a graph G, and a pp-solution p
to P over G, let ul, be the projection u|x of u to the set X of all variables appearing in
nodes u of T(P,) such that u < v. A mapping p; is subsumed by a mapping ps (written
w1 E po) if py ~ po and dom(pg) C dom(ps) (this notion is from [31, §]).

» Lemma 15. A mapping p is a solution to a wwd-pattern P over a graph G if and only

if

1. p is a pp-solution to P over G;

2. for any child v of T(P,) labelled with (B, R) there is no p' such that pl, C 1/, pf/ = R,
and ' (B) C G;

3. uls E R for any special node s in T (P) labelled with R.

Intuitively, a pp-solution p needs to satisfy two conditions to be a real solution to a
wwd-pattern P. First, u|, (as opposed to u for wd-patterns) must be non-extendable to v for
any child v of 7(P,). Indeed, if such an extension exists, then it is either possible to provide

5:11

ICDT 2016

5:12

Beyond Well-designed SPARQL

bindings for some variables that are undefined in u, or some variables from dom(u) can be
assigned different values of higher “priority” than the corresponding values in u. Second,
every top-level filter R labelling a node s needs to be satisfied by u|s, which is precisely the
part of i bound by the subpattern of P that is paired with R in the FILTER-pattern.

Checking whether a mapping p satisfies this characterisation is feasible in CONP: testing
whether p is a pp-solution takes polynomial time, same as computing the maximal witnessing
tree T (P,); to check that (the relevant part of) 7(P,) is not extendable to any of its children
we need to consider linearly many children, and each check is in CONP; finally, the checks
for top-level filters are again polynomial. Hence, we obtain the following theorem, where the
hardness part follows from the CONP-hardness for wd-patterns [31].

» Theorem 16. EVAL(Pywa) is CONP-complete.

Pérez et al. [31] extended wd-patterns to UNION by considering unions of wd-patterns,
that is, patterns of the form P; UNION ... UNION P, with all P; € Pyq. We denote the
resulting fragment by Uy,q. This syntactic restriction on the use of UNION in U4 is motivated
by the fact that any pattern in U can be equivalently expressed as a union of UNION-free
patterns [31]. We denote the fragment of all queries over patterns in Uyq as Syq. Similarly,
we write Uywa for unions of wwd-patterns and Sy,wq for queries over unions of wwd-patterns.

Analogously to the well-designed case, Theorem 16 extends to fragments Uywa and Sywd-

» Corollary 17. EVAL(Uywa) is CONP-complete and EVAL(Sywa) is X5-complete.

The coNP-algorithm for Uyyq is obtained simply by applying the algorithm for Pywa to
each pattern in the union. Hardness for Sywq follows from the hardness of the well-designed
case [27], while for membership we just guess the values of the existential variables and then
call a cONP-oracle for Uyywq on the resulting mapping and the normalised body of the query.

Hence, the complexity of evaluation for wwd-patterns is the same as for wd-patterns. We
next show that wwd-patterns are, in a certain sense, a maximal extension of wd-patterns that
preserves CONP evaluation complexity (under the usual complexity-theoretic assumptions).

There are two possible minimal relaxations of weak well-designedness that allow for basic
patterns and filter constraints of arbitrary shape. We show that both lead to IT5-hardness.

The first such relaxation is to allow for at least some non-well-designed OPT-nesting
of type (Opt-R). However, even a minimal extension of this sort increases complexity. To
see this, consider the fragment Py, of patterns of the form B; OPT (B, OPT Bs), where
B1, By and B3 are basic patterns. Intuitively, Popi.r allows for the most simple form of
non-well-designed nesting of type (Opt-R).

The other syntactic relaxation is to allow for some non-well-designed non-top-level filters.
However, while requiring special nodes to be children of the root may look somewhat ad-
hoc, it cannot be substantially relaxed. Consider the fragment Pgiter.o of patterns of the
form B; OPT ((Bg OPT Bj3) FILTER R), where By, Bo and Bs are basic patterns such that
vars(Bs) Nvars(B;) C vars(Bs), and R is a filter constraint. Intuitively, Paiter-2 allows for the
simplest form of “second-level” filters.

» Proposition 18. The problems EVAL(Poptr) and EVAL(Phiter-2) are I15-complete.

Proposition 18 implies that Pywq is a maximal fragment of P that does not impose
structural restrictions on basic patterns or filter constraints and has a CONP evaluation
algorithm (assuming CONP # I15). Hence, going beyond wwd-patterns while preserving
good computational properties requires more refined restrictions, as done, for example, in [27,
Section 4].

M. Kaminski and E. V. Kostylev

6 Expressivity of wwd-Patterns and their Extensions

In this section, we analyse the expressive power of our fragments. Formally, a language £
has the same expressive power as a language Lo (written £, ~ Lo) if for every query Q2 in
Lo there is a query Q1 in £ such that Q2 = @1 and vice versa; £y is strictly more expressive
than Lo (written £o < L£7) if the property holds in the forward but not in the backward
direction. We begin by establishing Pywq < Pwwd < P. Then we proceed to unions, showing
that Uyq < Uwwa < U. Finally, we establish Sywq ~ S, i.e., wwd-patterns with union and
projection have the full expressive power of SPARQL (whereas it is known that Syq < S [31],
which then implies Syaq < Swwd)-

Following [31, 8], a set of mappings ; is subsumed by a set of mappings Qo (written
Q1 C Qo) if for every p; € £ there exists a mapping us € Qo such that p; C ps. A query
Q is weakly monotone if [Q]a, C [Q]¢, for any two graphs G and Gy with G7 C Ga, and
a fragment L is weakly monotone if it contains only weakly monotone queries. Arenas and
Pérez [8] showed that, unlike P, the fragment Pyq is weakly monotone, and hence Pyq < P.

» Example 19 (Pérez et al. [31]). Consider the non-well-designed pattern
P = (?z,a,1) OPT ((?y,a,2) OPT (?z,a,3))

as well as graphs G; = {(1,a,1),(2,a,2)} and G2 = G1 U{(3,a,3)}. Then pu; = {7z —
1,7y — 2} is the only mapping in [P]¢, while us = {72 — 1} is the only mapping in [P]g,.
Hence [P]a, Z [P]¢,, meaning P is not weakly monotone.

Analogously, we show that Pyq < Pwwa by observing that Pywa is not weakly monotone.
Indeed, the pattern in example query (2) violates weak monotonicity: if a graph G contains
the triple (P1,v_card:name, Anastasia) but no triple of the form (P1, foaf:name,u) for any
IRI u, then extending G with (P1, foaf :name, Ana), that is, adding more reliable information
about the name of P1, does not extend the original solution {?i — P1, ?n — Anastasia} but
modifies it by overriding the value of ?n. Since Pywq C Pwwd, we conclude that Pyq < Pywwd-

To distinguish Pywq from P we need a different property.

» Definition 20. A query @ is non-reducing if for any two graphs G1, G2 such that G; C G»
and any mapping p1 € [Q]q, there is no us € [Q] g, such that ps T py (ie., po C py and
ta 7 p1). A fragment L is non-reducing if it contains only non-reducing queries.

Intuitively, for a non-reducing query extending a graph cannot result in a previously
bound answer variable becoming unbound. Weakly monotone queries are non-reducing but
not vice versa. Moreover, it is easily seen that wwd-patterns are non-reducing.

This property is not generally satisfied by patterns that are not weakly well-designed. For
instance, consider again pattern P, graphs G1, G2, and mappings p1, pe from Example 19.
Pattern P is not non-reducing since p; € [P]g, and pg € [Pla, but ps C .

» Theorem 21. It holds that Pywq < Pwwa < P.

We next compare Uywa t0 Uwg and U, and Sywda to Swa and S (note that neither UNION
nor projection via SELECT can be expressed by means of the other operators [37], so adding
either construct makes each fragment strictly more expressive). It is easily seen that Uyq and
Sywa inherit weak monotonicity from Pyq [31, 27], and hence Uyq < Uwwa and Sya < Swwd-
Non-reducibility, however, propagates neither to unions nor to projection.

5:13

ICDT 2016

5:14

Beyond Well-designed SPARQL

» Example 22. Consider the following Us,q-pattern with G, G2 and pq, p2 from Example 19:
P = ((?r,a,1) OPT (?y,a,2)) UNION (?z,a,1).

We have uy € [P]g, and ps € [P]a, but us T p1, which is due to the fact that po is already
contained in [P]g, along with p;. This is only possible in the presence of UNION since all
mappings in the evaluation of a UNION-free pattern are mutually non-subsuming [31].

Thus, to account for UNION, we introduce the following, more delicate property.

» Definition 23. A query Q is extension-witnessing (e-witnessing) if for any two graphs
G1 C G5 and mapping p € [Q]q, such that u ¢ [Q]¢, there is a triple ¢ in @ such that
vars(t) C dom(u) and p(t) € G2 \ G1. A fragment is e-witnessing if so are all of its queries.

Informally, a query @ is e-witnessing if whenever an extension of a graph leads to a new
answer, this answer is justified by a triple pattern in () which maps to the extension. Unions
of wwd-patterns can be shown e-witnessing. On the other hand, U is not e-witnessing, as can
be seen on the pattern and graphs in Example 19. Hence, we obtain the following theorem.

» Theorem 24. It holds that Uyq < Ugwa < U.
In contrast, queries over unions of wwd-patterns are as expressive as full SPARQL.
» Theorem 25. It holds that Sywq ~ S.

As a consequence, every SPARQL query can be rewritten to a query over a union of “flat”
patterns in depth-one normal form (Definition 10), albeit at the expense of a worst-case
exponential blow-up in size.

7 Static Analysis of wwd-Patterns

In this section, we look at the general static analysis problems of query equivalence, contain-
ment, and subsumption. Formally, equivalence for a language £ is defined as follows.

EQUIVALENCE(L) Input: Queries @ and Q' from £
Question: Is Q =Q’?

This problem is commonly generalised to CONTAINMENT (L), in which one checks whether @
is contained in @', that is, whether [Q]¢ C [Q']¢ holds for every graph G. We have Q = Q'
if and only if @ and @’ contain each other. Furthermore, Letelier et al. [27] proposed the
problem SUBSUMPTION(L), where one checks whether @ is subsumed by @', that is, whether
[Qlc E [Q']¢ holds for every G.

These problems have been studied for FILTER-free wd-patterns in [27, 33], establishing
NP-completeness of equivalence and containment, and IT5-completeness of subsumption.
Moreover, all three problems are IT5-complete for unions of FILTER-free wd-patterns, and
undecidable for fragments with projection. Finally, from the results in [38] it follows that
containment and subsumption are undecidable for ¢/. On the other hand, nothing seems to
be known so far for well-designed patterns with FILTER.

We next show that equivalence, containment, and subsumption are all IT5-complete for
Puwd and Uywa (whereas Sywa is undecidable by the results in [33]). The upper bound for
containment follows from a small counterexample property: if P € P’ for some P and P’
from Uywa, then there is a witnessing mapping of size O(|P| + |P’|). Given this property, a

M. Kaminski and E. V. Kostylev

Table 1 Structure of query patterns in DBpedia logs.

DBpedia 3.8 DBpedia 3.9
unique fraction fraction| wunique fraction fraction
patterns of total of OPT | patterns of total of OPT

total | 7014249 100% 27854 100%
patterns with OPT 742002 10.58% 100% 1639 5.83% 100%
unions of wd-patterns| 238995 341% 32.32% 972 3.49% 59.31%

unions of wwd-patterns| 736051 10.49% 99.19% 1620 5.82% 98.84%

1% algorithm for containment is straightforward — we guess a mapping u and a graph G of
linear size, check that u ¢ [P']q, and then call a CONP oracle for checking u € [P]g. As a
corollary, EQUIVALENCE (Uywa) is also in II5. The argument for subsumption is analogous.

Hardness of subsumption and equivalence is established by a reduction from V33SAT,
while containment is IT5-hard by the results in [33].

» Theorem 26. Problems EQUIVALENCE(L), CONTAINMENT(L) and SUBSUMPTION(L) are
115 -complete for any L€ {Pwwd, Uwwd }-

Hence, for UNION- and FILTER-free patterns the step from well-designed to weakly well-
designed OPT incurs a complexity jump for containment and equivalence. However, for the
fragments with UNION or projection complexity remains the same in all three cases. As far
as we are aware, these are the first decidability results on query equivalence and related
problems for SPARQL fragments with OPT and FILTER.

8 Analysis of DBpedia Logs

In this section, we present a preliminary analysis of query logs over DBpedia, which suggests
that the step from wd- to wwd-patterns makes a dramatic difference in real life: while only
about half of the queries with OPT have well-designed patterns, almost all of these patterns
fall into the weakly well-designed fragment.

DBpedia [26] is a project providing access to RDF data extracted from Wikipedia via a
SPARQL endpoint. DBpedia query logs are well suited for analysing the structure of real-life
SPARQL queries as they contain a large amount of general-purpose knowledge base queries,
generated both manually and automatically. DBpedia query logs have been analysed by
Picalausa and Vansummeren [32], who reported that, over a period in 2010, about 46.38% of a
total of 1344K distinct DBpedia queries used OPT. However, only 47.80% of the queries with
OPT had well-designed patterns. Another analysis of DBpedia logs from the USEWOD2011
data set performed by Arias Gallego et al. [9] concluded that 16.61% of about 5166K queries
contain OPT; however, detailed structure of queries was not analysed.

We considered query logs over DBpedia 3.8 from USEWOD2013 [10] and DBpedia 3.9
logs from USEWOD2014 [11]. The DBpedia 3.8 set is a random selection of almost 12M
queries from 2012 while the DBpedia 3.9 set contains only 253K queries, from 2013 and
beginning of 2014. We removed syntactically incorrect queries as well as queries outside
of § (in particular, queries using operators specific to SPARQL 1.1). Also, we rewrote the
patterns of the remaining queries to unions of UNION-free patterns as proposed in [31] and
eliminated duplicates, which left us with just over 7M queries over DBpedia 3.8 and 28K
queries over DBpedia 3.9 (the decrease from 253K to 28K for DBpedia 3.9 is mostly due
to duplicate elimination — with duplicates, we still have 197K queries). Finally, we isolated
queries involving OPT and counted how many of their patterns were in Uywq and in Usyq.

5:15

ICDT 2016

5:16

Beyond Well-designed SPARQL

The results are given in Table 1. They confirm that a non-negligible number of DBpedia
queries use OPT; the exact fraction, however, varies considerably between the logs. In both
cases, however, by far not all queries with OPT are well-designed (only 32% for DBpedia 3.8
and 59% for DBpedia 3.9), which is consistent with the results in [32]. On the other hand,
almost all of the patterns with OPT (around 99% in both cases) are weakly well-designed,
which we consider as the main practical justification for wwd-patterns.

9 Conclusion and Future Work

In this paper, we introduced a new fragment of SPARQL patterns called weakly well-
designed patterns. This fragment extends the widely studied well-designed fragment by
allowing variables from the optional side of an OPT-subpattern that are not “guarded” by
the mandatory side to occur in certain positions outside of the subpattern. We showed that
queries with wwd-patterns enjoy the same low complexity of evaluation as well-designed
queries but cover almost all real-life queries. Moreover, our fragment is the maximal CONP
fragment that does not impose structural restrictions on basic patterns and filter conditions.
We studied the expressive power of the fragment and the complexity of its query optimisation
problems.

For future work, we want to extend wwd-patterns to allow for non-top-level occurrences
of UNION and projection. Also, we want to take into account features of SPARQL 1.1 [20]
such as GRAPH, NOT EXISTS and property paths. Finally, we would like to implement our
ideas in a prototype and compare its performance with existing SPARQL engines.

—— References

1 AllegroGraph. URL: http://franz.com/agraph/allegrograph/.

Apache Jena. URL: http://jena.apache.org.

RDF4J. URL: http://rdf4j.org.

Virtuoso Universal Server. URL: http://virtuoso.openlinksw.com.

Renzo Angles and Claudio Gutierrez. The expressive power of SPARQL. In ISWC, pages

114-129, 2008.

6 Marcelo Arenas, Sebastidn Conca, and Jorge Pérez. Counting beyond a yottabyte, or
how SPARQL 1.1 property paths will prevent adoption of the standard. In WWW, pages
629-638, 2012.

7 Marcelo Arenas, Georg Gottlob, and Andreas Pieris. Expressive languages for querying the
semantic web. In PODS, pages 14-26, 2014.

8 Marcelo Arenas and Jorge Pérez. Querying semantic web data with SPARQL. In PODS,
pages 305-316, 2011.

9 Mario Arias Gallego, Javier D. Fernandez, Miguel A. Martinez-Prieto, and Pablo de la
Fuente. An empirical study of real-world SPARQL queries. In USEWOD, 2011.
arXiv:1103.5043.

10 Bettina Berendt, Laura Hollink, Markus Luczak-Résch, Knud Moller, and David Vallet.
USEWOD2013: 3rd international workshop on usage analysis and the web of data. In
ESWC, 2013.

11 Bettina Berendt, Laura Hollink, Markus Luczak-Résch, Knud Moller, and David Vallet.
USEWOD2014: 4th international workshop on usage analysis and the web of data. In
ESWC, 2014.

12 Stefan Bischof, Markus Krotzsch, Axel Polleres, and Sebastian Rudolph. Schema-agnostic
query rewriting in SPARQL 1.1. In ISWC, pages 584-600, 2014.

a s~ O0ODN

http://franz.com/agraph/allegrograph/
http://jena.apache.org
http://rdf4j.org
http://virtuoso.openlinksw.com

M

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

. Kaminski and E. V. Kostylev

Carlos Buil-Aranda, Marcelo Arenas, and Oscar Corcho. Semantics and optimization of
the SPARQL 1.1 federation extension. In ESWC, pages 1-15. Springer, 2011.

Carlos Buil Aranda, Axel Polleres, and Jiirgen Umbrich. Strategies for executing federated
queries in SPARQL1.1. In ISWC, pages 390405, 2014.

Melisachew Wudage Chekol, Jérome Euzenat, Pierre Geneves, and Nabil Layaida. SPARQL
query containment under RDF'S entailment regime. In IJCAR, pages 134-148, 2012.
Melisachew Wudage Chekol, Jérome Euzenat, Pierre Geneves, and Nabil Layaida. SPARQL
query containment under SHI axioms. In AAAI pages 10-16, 2012.

Richard Cyganiak, David Wood, and Markus Lanthaler. RDF 1.1 concepts and abstract
syntax. W3C recommendation, W3C, February 2014. URL: http://www.w3.org/TR/
rdfll-concepts/.

Floris Geerts, Grigoris Karvounarakis, Vassilis Christophides, and Irini Fundulaki. Algeb-
raic structures for capturing the provenance of SPARQL queries. In ICDT, pages 153-164,
2013.

Harry Halpin and James Cheney. Dynamic provenance for SPARQL updates. In ISWC,
pages 425-440, 2014.

Steve Harris and Andy Seaborne. SPARQL 1.1 query language. W3C recommendation,
W3C, March 2013. URL: http://www.w3.org/TR/sparqlll-query/.

Patrick J. Hayes and Peter F. Patel-Schneider. RDF 1.1 semantics. W3C recommendation,
W3C, February 2014. URL: http://www.w3.org/TR/rdf11-mt/.

Roman Kontchakov, Martin Rezk, Mariano Rodriguez-Muro, Guohui Xiao, and Michael
Zakharyaschev. Answering SPARQL queries over databases under OWL 2 QL entailment
regime. In ISWC, pages 552-567, 2014.

Egor V. Kostylev and Bernardo Cuenca Grau. On the semantics of SPARQL queries with
optional matching under entailment regimes. In ISWC, pages 374-389, 2014.

Egor V. Kostylev, Juan L. Reutter, Miguel Romero, and Domagoj Vrgoc. SPARQL with
property paths. In ICWC, pages 3-18, 2015.

Egor V. Kostylev, Juan L. Reutter, and Martin Ugarte. CONSTRUCT queries in SPARQL.
In ICDT, pages 212-229, 2015.

Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas, Pablo N.
Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick van Kleef, Séren Auer, and Chris-
tian Bizer. DBpedia — A large-scale, multilingual knowledge base extracted from Wikipedia.
Semantic Web, 6(2):167-195, 2015.

Andrés Letelier, Jorge Pérez, Reinhard Pichler, and Sebastian Skritek. Static analysis and
optimization of semantic web queries. ACM Transactions on Database Systems, 38(4:25),
2013.

Katja Losemann and Wim Martens. The complexity of evaluating path expressions in
SPARQL. In PODS, pages 101-112, 2012.

Frank Manola, Eric Miller, and Brian McBride. RDF 1.1 primer. W3C working group note,
W3C, June 2014. URL: http://www.w3.org/TR/rdf11-primer/.

Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics and complexity of SPARQL.
In ISWC, pages 30-43, 2006.

Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics and complexity of SPARQL.
ACM Transactions on Database Systems, 34(3), 2009.

Frangois Picalausa and Stijn Vansummeren. What are real SPARQL queries like? In
SWIM, 2011.

Reinhard Pichler and Sebastian Skritek. Containment and equivalence of well-designed
SPARQL. In PODS, pages 39-50, 2014.

Axel Polleres and Johannes Peter Wallner. On the relation between SPARQL1.1 and answer
set programming. Journal of Applied Non-Classical Logics, 23(1-2):159-212, 2013.

5:17

ICDT 2016

http://www.w3.org/TR/rdf11-concepts/
http://www.w3.org/TR/rdf11-concepts/
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/rdf11-mt/
http://www.w3.org/TR/rdf11-primer/

5:18

Beyond Well-designed SPARQL

35

36

37

38

39

Eric Prud’hommeaux and Andy Seaborne. SPARQL query language for RDF. W3C re-
commendation, W3C, January 2008. URL: http://www.w3.org/TR/rdf-sparql-query/.
Michael Schmidt, Michael Meier, and Georg Lausen. Foundations of SPARQL query op-
timization. In ICDT, pages 4-33, 2010.

Xiaowang Zhang and Jan Van den Bussche. On the primitivity of operators in SPARQL.
Information Processing Letters, 114(9):480-485, 2014.

Xiaowang Zhang and Jan Van den Bussche. On the satisfiability problem for SPARQL
patterns, 2014. arXiv:1406.1404.

Xiaowang Zhang and Jan Van den Bussche. On the power of SPARQL in expressing
navigational queries. The Computer Journal, 58(11):2841-2851, 2015.

http://www.w3.org/TR/rdf-sparql-query/

	Introduction
	SPARQL Query Language
	Weakly Well-Designed Patterns
	OPT-FILTER-Normal Form and Constraint Pattern Trees
	Evaluation of wwd-Patterns
	Expressivity of wwd-Patterns and their Extensions
	Static Analysis of wwd-Patterns
	Analysis of DBpedia Logs
	Conclusion and Future Work

