
Completing Queries: Rewriting of Incomplete Web
Queries under Schema Constraints

Sacha Berger, François Bry, Tim Furche, and Andreas J. Häusler

Institute for Informatics, University of Munich,
Oettingenstraße 67, D-80538 München, Germany

http://www.pms.ifi.lmu.de/

Abstract. Web queries have been and will remain an essential tool for accessing,
processing, and, ultimately, reasoning with data on the Web. With the vast data
size on the Web and Semantic Web, reducing costs of data transfer and query
evaluation for Web queries is crucial. To reduce costs, it is necessary to narrow
the data candidates to query, simplify complex queries and reduce intermediate
results.
This article describes a static approach to optimization of web queries. We intro-
duce a set of rules which achieves the desired optimization by schema and type
based query rewriting. The approach consists in using schema information for
removing incompleteness (as expressed by ‘descendant’ constructs and disjunc-
tions) from queries. The approach is presented on the query language Xcerpt,
though applicable to other query languages like XQuery. The approach is an ap-
plication of rules in many aspects—query rules are optimized using rewriting
rules based on schema or type information specified in grammar rules.

1 Introduction

Web queries have been and, by all accounts, will remain an essential tool for access-
ing, processing, and, ultimately, reason with data on the Web. They are an essential
component of many Web rule languages for expressing conditions on the information
available on the Web. Web queries occur in so diverse rule languages as XSLT, CSS,
Xcerpt, WebSQL, RVL, and dlvhex. The perceived strength and main contribution of
Web queries and their underlying semi-structured data model is the ability to model
data with little or no (a priori) information on the data’s schema. In this spirit, all semi-
structured query languages are distinguished from traditional relational query languages
in providing core constructs for expressing incomplete queries, i.e., queries where only
some of the sought-for data is specified but that are not affected by the presence of
additional data. Examples of such constructs are regular path expressions in Lorel, the
descendant and following closure axis in XPath and XQuery, descendant and ad-
jacency selectors in CSS, or Xcerpt’s desc and partial query patterns. Incompleteness
constructs often, in particular if concerned with navigation in the graph, resemble to
reachability or transitive closure constructs.

Incomplete query constructs have proved to be both essential tools for expressing
Web queries and a great convenience for query authors able to focus better on the parts
of the query he or she is most interested in. Though some evaluation approaches, e.g.,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Access LMU

https://core.ac.uk/display/18262998?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.pms.ifi.lmu.de/

[5] (usually limited to tree-shaped data) can handle certain incomplete queries (viz.,
those involving descendant or following) efficiently, most approaches suffer from
lower performance for evaluating incomplete queries than for evaluating queries with-
out incompleteness. The latter is particularly true for query processors with limited or
no index support (a typical case in a Web context where query processors are often used
in scenarios where data is transient rather than persistent).

In this paper, we propose a set of equivalences for removing (or introducing) queries
with incomplete constructs. Our main contributions are as follows:

First, we discuss the types of incompleteness that occur in Web query languages and
how they can be rewritten in Section 1.1. In this and the following parts, we have chosen
our own query language Xcerpt for providing examples, mostly as it is able to express
all forms of incompleteness that we consider in this article conveniently. We do not,
however, rely on any specialized evaluation engine. The query rewriting equivalences
are purely static and can be applied separately in a pre-processing step or during log-
ical query optimization. It is worth noting that, where XQuery allows the distinction
between complete and incomplete queries as in the case of the descendant axis, our
equivalences can as well be used for rewriting XQuery expressions.
Second, in Section 2, we introduce the query language Xcerpt and its types, based on a
graph schema language and a convenient automaton model for specifying and checking
schema constraints on graph-shaped semi-structured data. The automaton model is ex-
ploited to be able to specify the equivalences introduced in the second part of the article
concisely.
Third, we introduce a collection of equivalences for removing all forms of incom-
pleteness discussed in the first part. These equivalences (Section 3) can actually be
used in both directions, i.e., they could also be used to introduce incompleteness into a
complete query. In contrast to previous work on minimization and containment under
schema constraints, these equivalences operate on graph schemata and graph queries
instead of tree schemata and queries.
Fourth, we discuss briefly how these equivalences can be exploited for query optimiza-
tion (Section 4), both in a context where incompleteness is undesirable from the point
of evaluation cost and in a context where at least certain incomplete queries can be
evaluated as fast as equivalent complete queries, e.g., [5].

1.1 Three Forms of Incompleteness

In Web queries, incompleteness occurs in three forms: breadth, depth, and order. In this
article, we focus mostly on breadth and depth though we briefly consider also order
incompleteness.

1. Incompleteness in depth allows a query to express restrictions of the form “there
is a path between the paper and the author” without specifying the path’s exact
shape. The most common construct for expressing depth incompleteness is XPath’s
descendant or Xcerpt’s desc, an unqualified, arbitrary-length path between two
nodes. Regular path expressions and Xcerpt’s qualified desc allow more specific
restrictions, e.g., “there is a path between paper and author and it contains no insti-
tutions”.

2. Incompleteness in breadth allows a query to express restrictions on some children of
a node without restricting others (“there is an author child of the paper but there may
be other unspecified children”). Breadth incompleteness is an essential ability of all
query languages. Indeed, in many languages breadth completeness is much harder
to express than incompleteness. Nevertheless, breadth completeness allows e.g. in-
dexed access to a node’s children (often preferable to a “search-always” model).

3. Incompleteness in order allows a query to express that the children order of a node
is irrelevant (“there is an author child of the paper and a title child of the same paper
but don’t care about their order”).

In Section 3, we discuss how the first two forms of incompleteness can be rewritten
and briefly mention how the last form could be treated as well.

2 Preliminaries—Brief Introduction to Xcerpt and R2G2 Types

The query and transformation language Xcerpt [15], is a declarative, logic based Web
query language. Its salient features are pattern based query and construction of graph-
shaped semi-structured data, possibly incomplete query patterns reflecting the hetero-
geneity and the semi-structured nature of Web data, rules relating query and construc-
tion, and rule chaining enabling simple inference and query modularization.

As we focus on query rewriting and optimization in this article, Xcerpt queries will
be introduced, construct terms and rules are omitted. For more details about the Xcerpt
query language refer, e.g., to [15].

An Xcerpt term (query- construct- or data term) represents a tree- or graph-like
structure, it consists of a label and a sequence of child terms enclosed in braces or
brackets. Square brackets (i.e., []) denote ordered term specification (as in standard
XML), curly braces (i.e., { }) denote unordered term specification (as is common in
databases). Double braces (i.e., [[]] and {{ }}) are used to denote that a term’s con-
tent is just partially specified—this concept only applies to query terms. This so called
incompleteness in breadth denotes, that additional child terms may be interspersed in
data matching this incomplete query term, among the ones specified in the query.

Graph structure can be expressed using a reference mechanism, but is not further
introduced as not considered in the current rewriting rules.

Queries are connections of zero or more query terms using the n-ary connectives and
and or. A query is always (implicitly or explicitly) associated with a resource.

Query terms are similar to (possibly) non-ground functional programming expres-
sions and logical atoms. Query terms are Xcerpt terms, Xcerpt terms prefixed by the
desc-Keyword, query variables, or F. A query term l[desc a[]] may match a
data term with label l and child term a[] or with any child term that contains a[]
at arbitrary depth as descendant or child term. A variable, e.g. var X, may match any
term, multiple occurrences of the same variable have to match equivalent data terms.
Variables can be restricted, e.g. var X → q denotes, that the variable may only match
with terms matching the query term q. The term F denotes the most general query

matching any data term. It can also be seen as an anonymous variable. While not for-
mally part of Xcerpt, it is under current investigation for further versions of Xcerpt and
it is a short hand for a query term of constant length.

Query terms are unified with database or construct terms using a non-standard uni-
fication called simulation unification, which has been investigated in [7]. Simulation
unification is based on graph simulation [1] which is similar to graph homomorphisms.

Typed Xcerpt is the basis for (static and dynamic) type checking of Xcerpt and for
the optimization presented in this article. In a (fully) typed Xcerpt program, every term
t is annotated with a disjunction of types τ1, . . . ,τn, denoted as t : (τ1| . . . |τn). Types
are defined using a so called “regular rooted graph grammar”, short R2G2. Internally,
types are represented as automata, type automata are used for query rewriting. A type
represents a set of data terms valid w.r.t. the given term. A well typed query w.r.t. a
given type is a query that may match some data terms that are valid w.r.t. the given
type.

R2G2 is a slight extension of regular tree grammars [6], the extensions cope with
typed references (not introduced here) used to model graph shaped data and unordered
child lists (neither introduced) as defined in Xcerpt.

While R2G2 grammars are convenient for the user, R2G2 is translated into an in-
stance of a tree automaton model appropriate for processing. Tree automata for ranked
trees are well established [10]. As Xcerpt and XML is based on an unranked tree model,
a new automaton model specially tailored for unranked trees has been proposed [2]. A
non-deterministic regular tree automaton M is a 5-tuple (Q,∆ ,F,R,Σ) with label alpha-
bet Σ , states Q, final states F where F ⊆ Q, transitions ∆ where ∆ ⊆ (Q×Σ ×Q×Q)
and a set of root transitions R with R ⊆ ∆ . 1 The unorthodox about these automata are
the edges—they are hyper edges of arity 3. An edge (s, l,c,e) represents a transition
from state s to state e consuming (in the sense of automata acceptance) a data term with
label l and a sequence of child terms accepted by a part of the automaton with start state
c. Figure 1 shows an example automaton used through out the reminder of this article
as example type.

In practice, various atomic data types like string, integer, and boolean also exist, but
as they are arguably not relevant for structure based optimization they are omitted here.

In this article, in a typed term of the shape t : τ we will consider τ to correspond
to an edge in the automaton. The example data term in the caption of figure 2 is hence
type annotated under M as
z[a[c[]:(6,c,8,9),d[]:(9,d,10,11)]:(2,a,6,7)]:(1,z,2,3).

3 Rules for Completing Queries under a Schema

The previous sections have established the formal aspects of the query and schema
language employed and intuitively established the aim of rewriting incomplete queries
under a given schema. The following section defines in a precise and formal manner a
set of rules for this task.

1 Usually we need just one root transition, but for technical reasons it is convenient to have a set
of root transitions.

Fig. 1 This automaton represents the type used in the following rewriting rule example.
An example data term valid w.r.t. this type is e.g. z[a[d[],c[]]]

M = ({ 1, . . . ,20},
{ (1,z,2,3),

(2,y,4,5),
(2,a,6,7),
(6,c,8,9),
(9,d,10,11),
(6,b,12,13),
(13,d,14,15),
(6,b,16,17),
(17,c,18,19),
(19,d,20,21)},

{ 3,4,7,8,10,12,14,16,18,20},
(1,z,2,3),

{ a,b,c,d,y,z})

1 3

25

4

7

69

8

11

10

13

12

15

14

17

16

19

18

21

20

z

y a

cd b d

b c d

Recall, that these are merely equivalence rules and not a full optimization algo-
rithm. Note also, that for simplicity these rules apply only to non-recursive schemata
(no recursion in either depth or breadth). However, this is only needed due to the naive
application of the rules until no further expansion of rules is possible. This limitation
is not needed if these rules are part of an optimization algorithm that chooses when to
further expand and when to stop (e.g., because the size increase offsets the gain from
the reduction of incompleteness—cf. Section 5). Furthermore, no order of application
for the rules is given—see also the outlook for a brief discussion on possible optimiza-
tion strategies incorporating our rules. For the examples in this article, we have chosen
to apply the rules in the most convenient way.

3.1 Prerequisites

There are a number of convenience functions that allow more concise rule definitions:
(1) HORIZONTALPATHSTOENDSTATES(s) (hptes): The hptes function takes as ar-

gument a state s and returns a set {τ1 = [t11 , . . . , t1m1
], . . . ,τn = [tn1 , . . . , tnmn]} containing

lists of paths τi from s to all end states reachable from s.
(2) HORIZONTALPATHSTOSTATES(s1, s2) (hpts): For a given state s1 of an R2G2

graph, the hpts function returns a set of all paths τi through the graph which begin with
s1 and end with state s2.

(3) MAP(T, E): Given an Xcerpt term t and a sequence of transitions (edges) E =
[e1, . . . ,en] in a given R2G2 graph, map returns the sequence [t : e1, . . . , t : en].

3.2 The set of rules

Now the rules for rewriting queries are defined. Afterwards, and before describing how
the rules actually work, we give an example demonstrating the effects of rule application
to an example query (Figure 3.2).

(desc t : τ) : (s,l,c,e)
l[[(desc t : τ) : (s′,l′,c′,e′)]] : (s,l,c,e) (DESC1)

var X : τ

var X → F : τ
(VAR)

(desc t : τ) : (s,l,c,e)
t : (s,l,c,e) (DESC2)

F : (s,l,c,e)
l [[]] : (s,l,c,e)

(STAR)

l[[t1, t2, . . . , tq]] : (s,l,c,e)

or

 · · ·
l[map(F,z1), t1,map(F,z2), t2, . . . ,map(F,zq), tq,map(F,zq+1)]

· · ·

z1, . . . ,zq+1 ∈ hpts(c,st1)×hpts(et1 ,st2)× . . .×hpts(etq−1 ,stq)×hptes(etq)

(PARTIAL)

Fig. 2 Application of our rules to an example query. The applied rules are stated at each
line to illustrate the way the query changed from line to line.
1:

2:

3:

4:

5:

desc (a[[var X → c]] : (2, a, 6, 7)): (1, z, 2, 3)
DESC1

z[[(desc (a[[var X → c]] : (2, a, 6, 7)): (2, a, 6, 7))]] : (1, z, 2, 3)
DESC2

z[[(a[[var X → c]] : (2, a, 6, 7))]] : (1, z, 2, 3)
PARTIAL

z[(a[[var X → c]] : (2, a, 6, 7))] : (1, z, 2, 3)
PARTIAL

z[or[a[var X → c, d], a[b, var X → c, d]]

The example query 1 binds elements of type c occurring immediately beneath any a
to the variable X. The cs may occur at any position within the list of a’s children. There-
fore, the query contains incompleteness in depth (the desc construct) and in breath (the
double brackets).

The first step in our example applies the DESC1 rule (responsible for descendent
expansion) in order to remove the depth incompleteness. This rule expands a desc t
which is queried against a node with label l by replacing it with a partial subterm spec-
ification for the node with label l. Please note that because of the subterm specification
of the l labelled node being partial after applying this rule, the R2G2 graph node s′

might be any of the states connected (horizontally) to c. Applying the rule results in an
“inwards moved” desc, illustrated in line 2 of Figure 3.2.

Type checking now reveals that a second iteration of this rule is not necessary, be-
cause elements with label a are only allowed to occur immediately beneath z labelled
nodes. This means that the desc in step 2 is not needed anymore and could be removed.
This is achieved by applying rule DESC2 and results in query 3.

Now the depth incompleteness has completely been removed, but the query still
contains incompleteness in breath. In Xcerpt incompleteness in breath means partial
subterm specification. Using the list of “subpaths” provided by the hptes function, a
partial content model can be expanded to become total by the help of the most gen-
eral node F. (The Fs themselves can then in turn be specialized in a possible follow-
up step.) However, in general the double brackets or braces may contain a list of the
subterms the regarding node must possess, but do not preclude additional subterms in

the data (as double brackets or braces indicate partial query terms). The PARTIAL rule
(“partial specification expansion”) covers this (using st as possible start states of the
term t and et as its possible end states). Intuitively, it states that any partial query term t
with sub-terms t1, . . . , tq and content model start state c can be complete to a disjunction
of total query terms in the following way: for each path through the content model of t
that touches also the given sub-terms t1, . . . , tq (in that order), we generate one disjunct
where that path is explicitly unfolded. More precisely, the z1, . . . ,zq+1 represent one
such path through the content model of t that touches, in order, each of the t1, . . . , tq:
the path is partitioned at the t1, . . . , tq with z1 being any possible path from the content
model start state c to st1 (the start state of t1), zi for 1 < i <= q the path from the end
state of ti−1 to the start state of ti, and zn the path from the end state of tq to an end
state of the schema automaton. Each of the zis is a sequence of types representing its
segment. For each combinations of zi’s a disjunct is generated where the actual zi is un-
folded into the missing siblings (using, as above, the F notation for elements restricted
only by their type).

In the example query 3 this rule can be applied twice: once for the outermost partial
term and once for the inner (with a label). The outermost can be simply dropped as
there is just one possible path containing an a label in the R2G2 graph of our schema on
the “child level” of z (omitting the superfluous or which could be rewritten by general
normalization rule, cf. Section 5). This results in step 4, of which the inner partial term
can be addressed. Here, however, we have a choice of several paths through the R2G2
graph containing the required c labelled edge. The final result of the rule application
to our example query is thus step 5, which the expanded list of all a elements possible
under the query’s constraints..

The rules VAR and STAR are added merely for convenience in handling F in the
rewriting process. They have been implicitly applied in steps 4 and 5 and will there-
fore not be illustrated with examples themselves. With VAR (variable specialization), a
variable X of type τ (as might be used in a typed Xcerpt query) can be transformed to
a variable binding, where X is bound to a (concrete) node F of type τ . Here one can
also recognize the flexibility of F: it can represent a node of any type and nevertheless
be handled like any other concretely given node. With the rule of star specialization,
STAR, we can transform the general F to an explicitly labelled term.

To conclude the discussion of the rewriting rules, please note that though we have
given only rewriting rules concerning ordered subterm specifications, this is no limita-
tion to the approach. On the level of the rewriting rules, the difference between ordered
and unordered subterms is just notationally. In each of the above rules, the brackets may
be replaced by braces. Therefore, the details of handling unordered subterm specifica-
tions are left out.

4 Related Work

Rewriting and minimization of queries is as central to Web queries as it has been to
queries on relational databases. Often some form of normalization to rewrite undesir-
able language features into equivalent expressions is employed, e.g., the removal of
reverse axis in XPath optimization [14].

On the remaining language, previous work has mostly concentrated on removing
depth incompleteness (in form of regular path expressions (short RPEs) or XPath’s
descendant axis).

For Web queries using regular path expressions (short RPEs), [11] gives a practical
algorithm for rewriting RPEs containing wild cards and a closure axis like XPath’s
descendant. They employ, as we do in this work, graph schemata and automata for
processing such schemata. However, as the queries they consider are only regular path
expressions, they can also use an automaton for (each of) the regular path expressions
to be rewritten. Our approach is at the same time broader and more focused: Due to the
limitation to RPEs they can only consider rewriting of depth incompleteness, whereas
we consider also breadth (and briefly order) incompleteness. However, their approach
can obtain rewritings in cases where our approach fails or produces undesirably large
results.

On XPath containment and minimization, the essential results for our work are posi-
tive (polynomial time algorithms exist) if only tree pattern queries (understood as XPath
queries with only child and descendant axis and no wild card labels) are considered, for
details see [16].

Our approach differs from these works in rewriting not only vertical path expres-
sions (involving only child and descendant) axis, but in considering also breadth (and
briefly order) incompleteness. In this aspect, it is more closely related to approaches
from area (3) such as [9], where a heuristic optimization technique for XQuery is pro-
posed: Based on the PAT algebra, a number of normalizations, simplification, reorder-
ing, and access path equivalences are specified and a deterministic algorithm developed.
Though the algorithm does not necessarily return an optimal query plan it is expected
and experimentally verified to return a reasonably good one. Our approach could be
employed in such a framework assuming a cost model where depth, breadth or order
incompleteness is considered more expensive than complete, but under a given schema
equivalent queries .

Whereas none of the above discussed approaches considers breadth and order in-
completeness in the way we do in this work, some relation regarding such incomplete-
ness to works on using schema information for pruning query processing against XML
streams is noticeable. [17] proposes such a use of schema information.

Again, our proposed techniques for removing breadth incompleteness can be ex-
ploited in such a scenario. In case the schemata are rather regular, our techniques might
even give rise to fixed memory constraints for the streamed processing, cf. [13]. How-
ever, the details of such an exploitation are still open.

5 Outlook and Conclusion

The previous section concludes the discussion of the equivalences for reducing or in-
troducing (depending on the reading direction) incompleteness in Web queries. These
equivalences, however, are only the first step to an automatic optimization of Web
queries w.r.t. incompleteness. To be of practical use, they need to be integrated into
an (necessarily heuristic, cf. Section 4) optimization algorithm such as [9].

It is worth noting, that elimination of any kind of incompleteness leads to no practi-
cally useful heuristic: Eliminating all breadth incompleteness, i.e., rewriting all partial
subterm lists in total subterm lists. This is clearly infeasible, if types may occur in many
different combinations as siblings of a node, as, e.g., in HTML where most element
types may be combined with most other element types. In many cases it is even impos-
sible, as repetition in breadth (i.e., any content model with kleene-stars involved) of a
schema gives rise to infinite disjunctive query completions. A practical heuristic needs
to implement some cut-off point where this expansion is no longer useful. Similar ar-
guments apply for the elimination of all depth and order incompleteness. Infinite query
completions arise with recursive schemata in depth, though completion of depth incom-
pleteness is often more promising, as most practical Web documents and schemata have
rather limited nesting depths. Despite these remarks, simple heuristics may be applica-
ble if certain assumptions on the schemata are made such as upper limits on the number
of possible parent and sibling types a given schema type may combine with.

The proposed equivalences are a small, though, in our opinion, important part of the
optimization rules applicable for Web queries. Combination and integration with other
forms of query optimization and rewriting for Web queries has not yet been considered.

If the proposed equivalences are to be employed in an XPath or XQuery context,
the rewriting of reverse axes such as ancestor, cf. [14], in XPath is required as a
precondition, since the discussed rules assume forward-only expressions (since these
have mostly the same expressiveness as expressions allowing also reverse axes).

We have not yet integrated the discussed equivalences into an optimization algo-
rithm, and thus experimental results on their practical use are still open.

Conclusion

In this paper, we present a novel look on incompleteness in Web queries expressed, e.g.,
in Xcerpt or XQuery. Incompleteness is one of the distinguishing features of Web query
languages compared to languages such as SQL. However, incomplete queries are often
considerably more expensive to evaluate than complete queries. Moreover, manually
eliminating incompleteness robs Web query languages of one of the most used and
most convenient features, the ability to specify data of interest without considering the
context. Therefore, we propose to exploit schema information for automatic rewriting
of Web queries containing incompleteness where applicable.

We propose a set of equivalences for rewriting graph-shaped Web queries on graph-
shaped semi-structure data that allows the introduction or removal of all three forms of
incompleteness (though order incompleteness is only briefly discussed). These equiv-
alences form the foundation of a flexible treatment of incomplete Web queries beyond
just the treatment of depth incompleteness as in previous work.

Ongoing work is on the development of an heuristic optimization algorithm that
chooses when to apply these equivalences and to experimentally verify the practical
improvement to query evaluation that can be obtained through these equivalences.

Acknowledgments. This research has been funded by the European Commission and
by the Swiss Federal Office for Education and Science within the 6th Framework Pro-
gramme project REWERSE number 506779 (cf. http://rewerse.net).

http://rewerse.net

References

1. S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web: From Relations to Semistructured
Data and XML. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2000.

2. S. Berger. An Automaton Model for Xcerpt Type Checking and XML Schema Validation.
REWERSE-TR-2007-01, Inst. for Computer Science, Univ. of Munich, Germany, 2007.

3. S. Berger and F. Bry. Towards Static Type Checking of Web Query Language. In Proc.
Workshop über Grundlagen von Datenbanken (GvD). 2005.

4. S. Berger, E. Coquery, W. Drabent, and A. Wilk. Descriptive Typing Rules for Xcerpt. In
PPSWR, LNCS 3703. Springer, 2005.

5. P. Boncz, T. Grust, M. van Keulen, S. Manegold, J. Rittinger, and J. Teubner. MonetDB/X-
Query: a fast XQuery Processor powered by a Relational Engine. In SIGMOD, 2006.

6. A. Brüggemann-Klein, M. Murata, and D. Wood. Regular tree and regular hedge languages
over unranked alphabets. HKUST-TCSC-2001-0, Hongkong Univ. of Science & Tech., 2001.

7. F. Bry and S. Schaffert. Towards a Declarative Query and Transformation Language for
XML and Semistructured Data: Simulation Unification. In ICLP, LNCS 2401. 2002.

8. D. Chamberlin, P. Frankhauser, D. Florescu, M. Marchiori, and J. Robie. XML Query Use
Cases. Working draft, W3C, 2005.

9. D. Che, K. Aberer, and T. Özsu. Query Optimization in XML Structured-document
Databases. The VLDB Journal, 15(3):263–289, 2006.

10. H. Common, M. Dauchet, R. Gilleron, , F. J. D. Lugiez, S. Tison, and M. Tommasi. Tree
automata techniques and applications. http://www.grappa.univ-lille3.fr/tata/, 1999.

11. M. F. Fernandez and D. Suciu. Optimizing Regular Path Expressions Using Graph Schemas.
In Proc. Int’l. Conf. on Data Engineering (ICDE), 1998.

12. C. Koch. On the Complexity of Nonrecursive XQuery and Functional Query Languages on
Complex Values. In Proc. ACM Symp. on Principles of Database Sys. (PODS), 2005.

13. D. Olteanu. SPEX: Streamed and Progressive Evaluation of XPath. IEEE Transactions on
Knowledge and Data Engineering, 2007.

14. D. Olteanu, H. Meuss, T. Furche, and F. Bry. XPath: Looking Forward. In Proc. EDBT
Workshop on XML-Based Data Management, volume 2490 of LNCS. Springer-Verlag, 2002.

15. S. Schaffert and F. Bry. Querying the Web Reconsidered: A Practical Introduction to Xcerpt.
In Proc. Extreme Markup Languages, 2004.

16. T. Schwentick. XPath Query Containment. SIGMOD Record, 33(1):101–109, 2004.
17. H. Su, E. A. Rundensteiner, and M. Mani. Semantic Query Optimization for XQuery over

XML Streams. In Proc. Int’l. Conf. on Very Large Data Bases (VLDB), 2005.

