14 research outputs found

    Modélisation d'hypervolumes constructifs

    Get PDF

    Interactive ray shading of FRep objects

    Get PDF
    In this paper we present a method for interactive rendering general procedurally defined functionally represented (FRep) objects using the acceleration with graphics hardware, namely Graphics Processing Units (GPU). We obtain interactive rates by using GPU acceleration for all computations in rendering algorithm, such as ray-surface intersection, function evaluation and normal computations. We compute primary rays as well as secondary rays for shadows, reflection and refraction for obtaining high quality of the output visualization and further extension to ray-tracing of FRep objects. The algorithm is well-suited for modern GPUs and provides acceptable interactive rates with good quality of the results. A wide range of objects can be rendered including traditional skeletal implicit surfaces, constructive solids, and purely procedural objects such as 3D fractals

    Hybrid modelling of time-variant heterogeneous objects.

    Get PDF
    The physical world consists of a wide range of objects of a diverse constitution. Past research was mainly focussed on the modelling of simple homogeneous objects of a uniform constitution. Such research resulted in the development of a number of advanced theoretical concepts and practical techniques for describing such physical objects. As a result, the process of modelling and animating certain types of homogeneous objects became feasible. In fact most physical objects are not homogeneous but heterogeneous in their constitution and it is thus important that one is able to deal with such heterogeneous objects that are composed of diverse materials and may have complex internal structures. Heterogeneous object modelling is still a very new and evolving research area, which is likely to prove useful in a wide range of application areas. Despite its great promise, heterogeneous object modelling is still at an embryonic state of development and there is a dearth of extant tools that would allow one to work with static and dynamic heterogeneous objects. In addition, the heterogeneous nature of the modelled objects makes it appealing to employ a combination of different representations resulting in the creation of hybrid models. In this thesis we present a new dynamic Implicit Complexes (IC) framework incorporating a number of existing representations and animation techniques. This framework can be used for the modelling of dynamic multidimensional heterogeneous objects. We then introduce an Implicit Complexes Application Programming Interface (IC API). This IC API is designed to provide various applications with a unified set of tools allowing these to model time-variant heterogeneous objects. We also present a new Function Representation (FRep) API, which is used for the integration of FReps into complex time-variant hybrid models. This approach allows us to create a practical multilevel modelling system suited for complex multidimensional hybrid modelling of dynamic heterogeneous objects. We demonstrate the advantages of our approach through the introduction of a novel set of tools tailored to problems encountered in simulation applications, computer animation and computer games. These new tools empower users and amplify their creativity by allowing them to overcome a large number of extant modelling and animation problems, which were previously considered difficult or even impossible to solve

    Modeling and Visualization of Multi-material Volumes

    Get PDF
    The terminology of multi-material volumes is discussed. The classification of the multi-material volumes is given from the spatial partitions, spatial domain for material distribution, types of involved scalar fields and types of models for material distribution and composition of several materials points of view. In addition to the technical challenges of multi-material volume representations, a range of key challenges are considered before such representations can be adopted as mainstream practice

    Hybrid modelling of time-variant heterogeneous objects

    Get PDF
    The physical world consists of a wide range of objects of a diverse constitution. Past research was mainly focussed on the modelling of simple homogeneous objects of a uniform constitution. Such research resulted in the development of a number of advanced theoretical concepts and practical techniques for describing such physical objects. As a result, the process of modelling and animating certain types of homogeneous objects became feasible. In fact most physical objects are not homogeneous but heterogeneous in their constitution and it is thus important that one is able to deal with such heterogeneous objects that are composed of diverse materials and may have complex internal structures. Heterogeneous object modelling is still a very new and evolving research area, which is likely to prove useful in a wide range of application areas. Despite its great promise, heterogeneous object modelling is still at an embryonic state of development and there is a dearth of extant tools that would allow one to work with static and dynamic heterogeneous objects. In addition, the heterogeneous nature of the modelled objects makes it appealing to employ a combination of different representations resulting in the creation of hybrid models. In this thesis we present a new dynamic Implicit Complexes (IC) framework incorporating a number of existing representations and animation techniques. This framework can be used for the modelling of dynamic multidimensional heterogeneous objects. We then introduce an Implicit Complexes Application Programming Interface (IC API). This IC API is designed to provide various applications with a unified set of tools allowing these to model time-variant heterogeneous objects. We also present a new Function Representation (FRep) API, which is used for the integration of FReps into complex time-variant hybrid models. This approach allows us to create a practical multilevel modelling system suited for complex multidimensional hybrid modelling of dynamic heterogeneous objects. We demonstrate the advantages of our approach through the introduction of a novel set of tools tailored to problems encountered in simulation applications, computer animation and computer games. These new tools empower users and amplify their creativity by allowing them to overcome a large number of extant modelling and animation problems, which were previously considered difficult or even impossible to solve.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Hybrid Function Representation for Heterogeneous Objects

    Get PDF
    Heterogeneous object modelling is an emerging area where geometric shapes are considered in concert with their internal physically-based attributes. This paper describes a novel theoretical and practical framework for modelling volumetric heterogeneous objects on the basis of a novel unifying functionally-based hybrid representation called HFRep. This new representation allows for obtaining a continuous smooth distance field in Euclidean space and preserves the advantages of the conventional representations based on scalar fields of different kinds without their drawbacks. We systematically describe the mathematical and algorithmic basics of HFRep. The steps of the basic algorithm are presented in detail for both geometry and attributes. To solve some problematic issues, we have suggested several practical solutions, including a new algorithm for solving the eikonal equation on hierarchical grids. Finally, we show the practicality of the approach by modelling several representative heterogeneous objects, including those of a time-variant nature

    Distance based heterogeneous volume modelling.

    Get PDF
    Natural objects, such as bones and watermelons, often have a heterogeneous composition and complex internal structures. Material properties inside the object can change abruptly or gradually, and representing such changes digitally can be problematic. Attribute functions represent physical properties distribution in the volumetric object. Modelling complex attributes within a volume is a complex task. There are several approaches to modelling attributes, but distance functions have gained popularity for heterogeneous object modelling because, in addition to their usefulness, they lead to predictability and intuitiveness. In this thesis, we consider a unified framework for heterogeneous volume modelling, specifically using distance fields. In particular, we tackle various issues associated with them such as the interpolation of volumetric attributes through time for shape transformation and intuitive and predictable interpolation of attributes inside a shape. To achieve these results, we rely on smooth approximate distance fields and interior distances. This thesis deals with outstanding issues in heterogeneous object modelling, and more specifically in modelling functionally graded materials and structures using different types of distances and approximation thereof. We demonstrate the benefits of heterogeneous volume modelling using smooth approximate distance fields with various applications, such as adaptive microstructures, morphological shape generation, shape driven interpolation of material properties through time and shape conforming interpolation of properties. Distance based modelling of attributes allows us to have a better parametrization of the object volume and design gradient properties across an object. This becomes more important nowadays with the growing interest in rapid prototyping and digital fabrication of heterogeneous objects and can find practical applications in different industries

    Hybrid modelling of heterogeneous volumetric objects.

    Get PDF
    Heterogeneous multi-material volumetric modelling is an emerging and rapidly developing field. A Heterogeneous object is a volumetric object with interior structure where different physically-based attributes are defined. The attributes can be of different nature: material distributions, density, microstructures, optical properties and others. Heterogeneous objects are widely used where the presence of the interior structures is an important part of the model. Computer-aided design (CAD), additive manufacturing, physical simulations, visual effects, medical visualisation and computer art are examples of such applications. In particular, digital fabrication employing multi-material 3D printing techniques is becoming omnipresent. However, the specific methods and tools for representation, modelling, rendering, animation and fabrication of multi-material volumetric objects with attributes are only starting to emerge. The need for adequate unifying theoretical and practical framework has been obvious. Developing adequate representational schemes for heterogeneous objects is in the core of research in this area. The most widely used representations for defining heterogeneous objects are boundary representation, distance-based representations, function representation and voxels. These representations work well for modelling homogeneous (solid) objects but they all have significant drawbacks when dealing with heterogeneous objects. In particular, boundary representation, while maintaining its prevailing role in computer graphics and geometric modelling, is not inherently natural for dealing with heterogeneous objects especially in the con- text of additive manufacturing and 3D printing, where multi-material properties are paramount as well as in physical simulation where the exact representation rather than an approximate one can be important. In this thesis, we introduce and systematically describe a theoretical and practical framework for modelling volumetric heterogeneous objects on the basis of a novel unifying functionally-based hybrid representation called HFRep. It is based on the function representation (FRep) and several distance-based representations, namely signed distance fields (SDFs), adaptively sampled distance fields (ADFs) and interior distance fields (IDFs). It embraces advantages and circumvents disadvantages of the initial representations. A mathematically substantiated theoretical description of the HFRep with an emphasis on defining functions for HFRep objects’ geometry and attributes is provided. This mathematical framework serves as the basis for developing efficient algorithms for the generation of HFRep objects taking into account both their geometry and attributes. To make the proposed approach practical, a detailed description of efficient algorithmic procedures has been developed. This has required employing a number of novel techniques of different nature, separately and in combination. In particular, an extension of a fast iterative method (FIM) for numerical solving of the eikonal equation on hierarchical grids was developed. This allowed for efficient computation of smooth distance-based attributes. To prove the concept, the main elements of the framework have been implemented and used in several applications of different nature. It was experimentally shown that the developed methods and tools can be used for generating objects with complex interior structure, e.g. microstructures, and different attributes. A special consideration has been devoted to applications of dynamic nature. A novel concept of heterogeneous space-time blending (HSTB) method with an automatic control for metamorphosis of heterogeneous objects with textures, both in 2D and 3D, has been introduced, algorithmised and implemented. We have applied the HSTB in the context of ‘4D Cubism’ project. There are plans to use the developed methods and tools for many other applications

    Search-Based Procedural Content Generation: A Taxonomy and Survey

    Full text link
    corecore