4,117 research outputs found

    A formally verified compiler back-end

    Get PDF
    This article describes the development and formal verification (proof of semantic preservation) of a compiler back-end from Cminor (a simple imperative intermediate language) to PowerPC assembly code, using the Coq proof assistant both for programming the compiler and for proving its correctness. Such a verified compiler is useful in the context of formal methods applied to the certification of critical software: the verification of the compiler guarantees that the safety properties proved on the source code hold for the executable compiled code as well

    Differentially Testing Soundness and Precision of Program Analyzers

    Full text link
    In the last decades, numerous program analyzers have been developed both by academia and industry. Despite their abundance however, there is currently no systematic way of comparing the effectiveness of different analyzers on arbitrary code. In this paper, we present the first automated technique for differentially testing soundness and precision of program analyzers. We used our technique to compare six mature, state-of-the art analyzers on tens of thousands of automatically generated benchmarks. Our technique detected soundness and precision issues in most analyzers, and we evaluated the implications of these issues to both designers and users of program analyzers

    OpenJML: Software verification for Java 7 using JML, OpenJDK, and Eclipse

    Full text link
    OpenJML is a tool for checking code and specifications of Java programs. We describe our experience building the tool on the foundation of JML, OpenJDK and Eclipse, as well as on many advances in specification-based software verification. The implementation demonstrates the value of integrating specification tools directly in the software development IDE and in automating as many tasks as possible. The tool, though still in progress, has now been used for several college-level courses on software specification and verification and for small-scale studies on existing Java programs.Comment: In Proceedings F-IDE 2014, arXiv:1404.578

    REALISTIC CORRECT SYSTEMS IMPLEMENTATION

    Get PDF
    The present article and the forthcoming second part on Trusted Compiler Implementation\ud address correct construction and functioning of large computer based systems. In view\ud of so many annoying and dangerous system misbehaviors we ask: Can informaticians\ud righteously be accounted for incorrectness of systems, will they be able to justify systems\ud to work correctly as intended? We understand the word justification in the sense: design\ud of computer based systems, formulation of mathematical models of information flows, and\ud construction of controlling software are to be such that the expected system effects, the\ud absence of internal failures, and the robustness towards misuses and malicious external attacks\ud are foreseeable as logical consequences of the models.\ud Since more than 40 years, theoretical informatics, software engineering and compiler\ud construction have made important contributions to correct specification and also to correct\ud high-level implementation of compilers. But the third step, translation - bootstrapping - of\ud high level compiler programs to host machine code by existing host compilers, is as important.\ud So far there are no realistic recipes to close this correctness gap, although it is known\ud for some years that trust in executable code can dangerously be compromised by Trojan\ud Horses in compiler executables, even if they pass strongest tests.\ud In the present first article we will give a comprehensive motivation and develop\ud a mathematical theory in order to conscientiously prove the correctness of an initial fully\ud trusted compiler executable. The task will be modularized in three steps. The third step of\ud machine level compiler implementation verification is the topic of the forthcoming second\ud part on Trusted Compiler Implementation. It closes the implementation gap, not only for\ud compilers but also for correct software-based systems in general. Thus, the two articles together\ud give a rather confident answer to the question raised in the title

    KARL: A Knowledge-Assisted Retrieval Language

    Get PDF
    Data classification and storage are tasks typically performed by application specialists. In contrast, information users are primarily non-computer specialists who use information in their decision-making and other activities. Interaction efficiency between such users and the computer is often reduced by machine requirements and resulting user reluctance to use the system. This thesis examines the problems associated with information retrieval for non-computer specialist users, and proposes a method for communicating in restricted English that uses knowledge of the entities involved, relationships between entities, and basic English language syntax and semantics to translate the user requests into formal queries. The proposed method includes an intelligent dictionary, syntax and semantic verifiers, and a formal query generator. In addition, the proposed system has a learning capability that can improve portability and performance. With the increasing demand for efficient human-machine communication, the significance of this thesis becomes apparent. As human resources become more valuable, software systems that will assist in improving the human-machine interface will be needed and research addressing new solutions will be of utmost importance. This thesis presents an initial design and implementation as a foundation for further research and development into the emerging field of natural language database query systems

    CompCert - A Formally Verified Optimizing Compiler

    Get PDF
    International audienceCompCert is the first commercially available optimizing compiler that is formally verified, using machine-assisted mathematical proofs, to be exempt from mis-compilation. The executable code it produces is proved to behave exactly as specified by the semantics of the source C program. This article gives an overview of the design of CompCert and its proof concept and then focuses on aspects relevant for industrial application. We briefly summarize practical experience and give an overview of recent CompCert development aiming at industrial usage. CompCert's intended use is the compilation of life-critical and mission-critical software meeting high levels of assurance. In this context tool qualification is of paramount importance. We summarize the confidence argument of CompCert and give an overview of relevant qualification strategies

    On-stack replacement, distilled

    Get PDF
    On-stack replacement (OSR) is essential technology for adaptive optimization, allowing changes to code actively executing in a managed runtime. The engineering aspects of OSR are well-known among VM architects, with several implementations available to date. However, OSR is yet to be explored as a general means to transfer execution between related program versions, which can pave the road to unprecedented applications that stretch beyond VMs. We aim at filling this gap with a constructive and provably correct OSR framework, allowing a class of general-purpose transformation functions to yield a special-purpose replacement. We describe and evaluate an implementation of our technique in LLVM. As a novel application of OSR, we present a feasibility study on debugging of optimized code, showing how our techniques can be used to fix variables holding incorrect values at breakpoints due to optimizations
    corecore