221 research outputs found

    State of the Art Report: Verified Computation

    Full text link
    This report describes the state of the art in verifiable computation. The problem being solved is the following: The Verifiable Computation Problem (Verifiable Computing Problem) Suppose we have two computing agents. The first agent is the verifier, and the second agent is the prover. The verifier wants the prover to perform a computation. The verifier sends a description of the computation to the prover. Once the prover has completed the task, the prover returns the output to the verifier. The output will contain proof. The verifier can use this proof to check if the prover computed the output correctly. The check is not required to verify the algorithm used in the computation. Instead, it is a check that the prover computed the output using the computation specified by the verifier. The effort required for the check should be much less than that required to perform the computation. This state-of-the-art report surveys 128 papers from the literature comprising more than 4,000 pages. Other papers and books were surveyed but were omitted. The papers surveyed were overwhelmingly mathematical. We have summarised the major concepts that form the foundations for verifiable computation. The report contains two main sections. The first, larger section covers the theoretical foundations for probabilistically checkable and zero-knowledge proofs. The second section contains a description of the current practice in verifiable computation. Two further reports will cover (i) military applications of verifiable computation and (ii) a collection of technical demonstrators. The first of these is intended to be read by those who want to know what applications are enabled by the current state of the art in verifiable computation. The second is for those who want to see practical tools and conduct experiments themselves.Comment: 54 page

    State of the Art Report : Verified Computation

    Get PDF
    This report describes the state of the art in verifiable computation. The problem being solved is the following: The Verifiable Computation Problem (Verifiable Computing Problem) Suppose we have two computing agents. The first agent is the verifier, and the second agent is the prover. The verifier wants the prover to perform a computation. The verifier sends a description of the computation to the prover. Once the prover has completed the task, the prover returns the output to the verifier. The output will contain proof. The verifier can use this proof to check if the prover computed the output correctly. The check is not required to verify the algorithm used in the computation. Instead, it is a check that the prover computed the output using the computation specified by the verifier. The effort required for the check should be much less than that required to perform the computation. This state-of-the-art report surveys 128 papers from the literature comprising more than 4,000 pages. Other papers and books were surveyed but were omitted. The papers surveyed were overwhelmingly mathematical. We have summarised the major concepts that form the foundations for verifiable computation. The report contains two main sections. The first, larger section covers the theoretical foundations for probabilistically checkable and zero-knowledge proofs. The second section contains a description of the current practice in verifiable computation. Two further reports will cover (i) military applications of verifiable computation and (ii) a collection of technical demonstrators. The first of these is intended to be read by those who want to know what applications are enabled by the current state of the art in verifiable computation. The second is for those who want to see practical tools and conduct experiments themselves

    Part I:

    Get PDF

    Trivial Transciphering With Trivium and TFHE

    Get PDF
    We examine the use of Trivium and Kreyvium as transciphering mechanisms for use with the TFHE FHE scheme. Originally these two ciphers were investigated for FHE transciphering only in the context of the BGV/BFV FHE schemes; this is despite Trivium and Kreyvium being particarly suited to TFHE. Recent work by Dobraunig et al. gave some initial experimental results using TFHE. We show that these two symmetric ciphers have excellent performance when homomorphically evaluated using TFHE. Indeed we improve upon the results of Dobraunig et al. by at least two orders of magnitude in terms of latency. This shows that, for TFHE at least, one can transcipher using a standardized symmetric cipher (Trivium), without the need for special FHE-friendly ciphers being employed. For applications wanting extra security, but without the benefit of relying on a standardized cipher, our work shows that Kreyvium is a good candidate

    Design and Cryptanalysis of Symmetric-Key Algorithms in Black and White-box Models

    Get PDF
    Cryptography studies secure communications. In symmetric-key cryptography, the communicating parties have a shared secret key which allows both to encrypt and decrypt messages. The encryption schemes used are very efficient but have no rigorous security proof. In order to design a symmetric-key primitive, one has to ensure that the primitive is secure at least against known attacks. During 4 years of my doctoral studies at the University of Luxembourg under the supervision of Prof. Alex Biryukov, I studied symmetric-key cryptography and contributed to several of its topics. Part I is about the structural and decomposition cryptanalysis. This type of cryptanalysis aims to exploit properties of the algorithmic structure of a cryptographic function. The first goal is to distinguish a function with a particular structure from random, structure-less functions. The second goal is to recover components of the structure in order to obtain a decomposition of the function. Decomposition attacks are also used to uncover secret structures of S-Boxes, cryptographic functions over small domains. In this part, I describe structural and decomposition cryptanalysis of the Feistel Network structure, decompositions of the S-Box used in the recent Russian cryptographic standard, and a decomposition of the only known APN permutation in even dimension. Part II is about the invariant-based cryptanalysis. This method became recently an active research topic. It happened mainly due to recent extreme cryptographic designs, which turned out to be vulnerable to this cryptanalysis method. In this part, I describe an invariant-based analysis of NORX, an authenticated cipher. Further, I show a theoretical study of linear layers that preserve low-degree invariants of a particular form used in the recent attacks on block ciphers. Part III is about the white-box cryptography. In the white-box model, an adversary has full access to the cryptographic implementation, which in particular may contain a secret key. The possibility of creating implementations of symmetric-key primitives secure in this model is a long-standing open question. Such implementations have many applications in industry; in particular, in mobile payment systems. In this part, I study the possibility of applying masking, a side-channel countermeasure, to protect white-box implementations. I describe several attacks on direct application of masking and provide a provably-secure countermeasure against a strong class of the attacks. Part IV is about the design of symmetric-key primitives. I contributed to design of the block cipher family SPARX and to the design of a suite of cryptographic algorithms, which includes the cryptographic permutation family SPARKLE, the cryptographic hash function family ESCH, and the authenticated encryption family SCHWAEMM. In this part, I describe the security analysis that I made for these designs

    Public keys quality

    Get PDF
    Dissertação de mestrado em Matemática e ComputaçãoThe RSA cryptosystem, invented by Ron Rivest, Adi Shamir and Len Adleman ([Rivest et al., 1978]) is the most commonly used cryptosystem for providing privacy and ensuring authenticity of digital data. RSA is usually used in contexts where security of digital data is priority. RSA is used worldwide by web servers and browsers to secure web traffic, to ensure privacy and authenticity of e-mail, to secure remote login sessions and to provide secure electronic creditcard payment systems. Given its importance in the protection of digital data, vulnerabilities of RSA have been analysed by many researchers. The researches made so far led to a number of fascinating attacks. Although the attacks helped to improve the security of this cryptosystem, showing that securely implementing RSA is a nontrivial task, none of them was devastating. This master thesis discusses the RSA cryptosystem and some of its vulnerabilities as well as the description of some attacks, both recent and old, together with the description of the underlying mathematical tools they use. Although many types of attacks exist, in this master thesis only a few examples were analysed. The ultimate attack, based in the batch-GCD algorithm, was implemented and tested in the RSA keys produced by a certificated Hardware Security Modules Luna SA and the results were commented. The random and pseudorandom numbers are fundamental to many cryptographic applications, including the RSA cryptosystems. In fact, the produced keys must be generated in a specific random way. The National Institute of Standards and Technology, responsible entity for specifying safety standards, provides a package named "A Statistical Test Suit for Random and Pseudorandom Number Generators for Cryptography Applications" which was used in this work to test the randomness of the Luna SA generated numbers. All the statistical tests were tested in different bit sizes number and the results commented. The main purpose of this thesis is to study the previous subjects and create an applications capable to test the Luna SA generated numbers randomness, a well as evaluate the security of the RSA. This work was developed in partnership with University of Minho and Multicert.O RSA, criado por Ron Rivest, Adi Shamir e Len Adleman ([Rivest et al., 1978]) é o sistema criptográfico mais utilizado para providenciar segurança e assegurar a autenticação de dados utilizados no mundo digital. O RSA é usualmente usado em contextos onde a segurança é a grande prioridade. Hoje em dia, este sistema criptográfico é utilizado mundialmente por servidores web e por browsers, por forma a assegurar um tráfego seguro através da Internet. É o sistema criptográfico mais utilizado na autenticação de e-mails, nos inícios de sessões remotos, na utilização de pagamentos através de cartões multibanco, garantindo segurança na utilização destes serviços. Dada a importância que este sistema assume na proteção da informação digital, as suas vulnerabilidades têm sido alvo de várias investigações. Estas investigações resultaram em vários ataques ao RSA. Embora nenhum destes ataques seja efetivamente eficaz, todos contribuíram para um aumento da segurança do RSA, uma vez que as implementações de referência deste algoritmo passaram a precaver-se contra os ataques descobertos. Esta tese de mestrado aborda o sistema criptográfico RSA, discutindo algumas das suas vulnerabilidades, assim como alguns ataques efetuados a este sistema, estudando todos os métodos matemáticos por estes usados. Embora existam diversos ataques, apenas alguns serão abordados nesta tese de mestrado. O último ataque, baseado no algoritmo batch-GCD foi implementado e foram feitos testes em chaves RSA produzidas por um Hardware Security Module Luna SA certificado e os resultados obtidos foram discutidos. Os números aleatórios e pseudoaleatórios são fundamentais a todas as aplicações criptográficas, incluindo, portanto, o sistema criptográfico RSA. De facto, as chaves produzidas deverão ser geradas com alguma aleatoriedade intrínseca ao sistema. O Instituto Nacional de Standards e Tecnologia, entidade responsável pela especificação dos standards de segurança, disponibiliza um pacote de testes estatísticos, denominado por "A Statistical Test Suit for Random and Pseudorandom Number Generators for Cryptography Applications". Estes testes estatísticos foram aplicados a números gerados pelo Luna SA e os resultados foram, também, comentados. O objetivo desta tese de mestrado é desenvolver capacidade de compreensão sobre os assuntos descritos anteriormente e criar uma aplicação capaz de testar a aleatoriedade dos números gerados pelo Luna SA, assim como avaliar a segurança do sistema criptográfico RSA. Este foi um trabalho desenvolvido em parceria com a Universidade do Minho e com a Multicert

    Advanced Information Systems and Technologies

    Get PDF
    This book comprises the proceedings of the V International Scientific Conference "Advanced Information Systems and Technologies, AIST-2017". The proceeding papers cover issues related to system analysis and modeling, project management, information system engineering, intelligent data processing computer networking and telecomunications. They will be useful for students, graduate students, researchers who interested in computer science

    Advanced Information Systems and Technologies

    Get PDF
    This book comprises the proceedings of the V International Scientific Conference "Advanced Information Systems and Technologies, AIST-2017". The proceeding papers cover issues related to system analysis and modeling, project management, information system engineering, intelligent data processing computer networking and telecomunications. They will be useful for students, graduate students, researchers who interested in computer science

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum
    corecore