
Universidade do Minho
Escola de Ciências

Ana Catarina Pereira Correia

outubro de 2015

Public Keys Quality

An
a

C
at

ar
in

a
Pe

re
ira

 C
or

re
ia

P
u

b
lic

 K
ey

s
Q

u
a

lit
y

U
M

in
ho

|2
01

5

Universidade do Minho
Escola de Ciências

Ana Catarina Pereira Correia

outubro de 2015

Public Keys Quality

Trabalho realizado sob orientação de:
Orientador: Professor Doutor José Pedro Miranda
Mourão Patrício
Co-orientador: Professor Doutor José Carlos Bacelar
Almeida
Tutor: Engenheiro José Martins

Dissertação de Mestrado
Mestrado em Matemática e Computação

Declaração

Nome: Ana Catarina Pereira Correia
Endereço electrónico: catarina.correia.m@gmail.com
Número do Cartão de Cidadão: 13781321

Título dissertação:

Public Keys Quality

Orientador: Professor Doutor José Pedro Miranda Mourão Patrício,
Co-orientador: Professor Doutor José Carlos Bacelar Almeida
Tutor: Engenheiro José Martins

Ano de conclusão: 2015

Designação do Mestrado: Mestrado em Matemática e Computação

É AUTORIZADA A REPRODUÇÃO INTEGRAL DESTA DISSER-
TAÇÃO APENAS PARA EFEITOS DE INVESTIGAÇÃO, MEDIANTE
DECLARAÇÃO ESCRITA DO INTERESSADO, QUE A TAL SE COMPRO-
METE

Universidade do Minho, / /

Assinatura:

Acknowledgements

Firstly I would like to thank my course directors and MULTICERT for giving me this amazing
opportunity.

I would like to thank professor Pedro Patrício and Professor José Carlos Bacelar for the
good theoretical orientations and discussions about the "to dos" in this project. It was really
important to have their background support during my internship in MULTICERT.

I definitely own a huge thanks to José Martins and Nuno Martins for accepting the challenge
of tutoring me at MULTICERT. José Martins, although not professionally, you are a great
teacher. You have a special ability to anticipate the difficulties and the following steps during a
project. You not only orientated me into my thesis but you also guided me into my growth as
a mathematician developer. I lived in Spring all seasons of this year! Nuno Martins, thank you
for your inspirations, for your big dreams and mostly for believing in my project. It was really
important having you as my non official tutor. I also would like to thank Pedro Cunha for the
beautiful discussions we had about Java and programming . I would like to thank all of the people
working in MULTICERT. Thanks for the laughs, for the team work, for the happy lunches, for
the help and for making me feel like I was part of your work family. I had the opportunity to
meet amazing persons.

There would be no chance to forget to acknowledge and thank Professor Eduardo Nunes-
Pereira for his sincere advises, for showing me how sometimes we need to look at the "big
picture". It was a great experience be in an amazing world of light and flights. I still carry with
me all of the knowledge. Thank you for the amazing tutor and human person you are.

I would like to thank Ana Coroas and Nuno Viana for the comments about my work. Sorry
for being a terrible friend. A special thank to my family friends. I know you love to listen me
talking for hours about things you don’t care about.

A lovely thanks to Carlos Sá. Our paths converged more to the same path than what we
expected to and this makes me love us even more. Thanks for taking this journey with me and
for being by my side.

I would like to thank my family for the great support. A special thanks to my mother, my
father, my sister and my grandmother. Not only for the support you gave me this year but for
all the support you gave me my entire life, encouraging me to conquer my dreams and to go
after to what I love in in this life. This work is also yours.

iii

Abstract

The RSA cryptosystem, invented by Ron Rivest, Adi Shamir and Len Adleman ([Rivest et al.,
1978]) is the most commonly used cryptosystem for providing privacy and ensuring authenticity
of digital data. RSA is usually used in contexts where security of digital data is priority. RSA
is used worldwide by web servers and browsers to secure web traffic, to ensure privacy and
authenticity of e-mail, to secure remote login sessions and to provide secure electronic credit-
card payment systems.

Given its importance in the protection of digital data, vulnerabilities of RSA have been
analysed by many researchers. The researches made so far led to a number of fascinating
attacks. Although the attacks helped to improve the security of this cryptosystem, showing that
securely implementing RSA is a nontrivial task, none of them was devastating.

This master thesis discusses the RSA cryptosystem and some of its vulnerabilities as well
as the description of some attacks, both recent and old, together with the description of the
underlying mathematical tools they use. Although many types of attacks exist, in this mas-
ter thesis only a few examples were analysed. The ultimate attack, based in the batch-GCD
algorithm, was implemented and tested in the RSA keys produced by a certificated Hardware
Security Modules Luna SA and the results were commented.

The random and pseudorandom numbers are fundamental to many cryptographic applica-
tions, including the RSA cryptosystems. In fact, the produced keys must be generated in a
specific random way. The National Institute of Standards and Technology, responsible entity for
specifying safety standards, provides a package named "A Statistical Test Suit for Random and
Pseudorandom Number Generators for Cryptography Applications" which was used in this work
to test the randomness of the Luna SA generated numbers. All the statistical tests were tested
in different bit sizes number and the results commented.

The main purpose of this thesis is to study the previous subjects and create an applications
capable to test the Luna SA generated numbers randomness, a well as evaluate the security of
the RSA.

This work was developed in partnership with University of Minho and Multicert.

v

Resumo

O RSA, criado por Ron Rivest, Adi Shamir e Len Adleman ([Rivest et al., 1978]) é o
sistema criptográfico mais utilizado para providenciar segurança e assegurar a autenticação de
dados utilizados no mundo digital. O RSA é usualmente usado em contextos onde a segurança
é a grande prioridade. Hoje em dia, este sistema criptográfico é utilizado mundialmente por
servidores web e por browsers, por forma a assegurar um tráfego seguro através da Internet. É o
sistema criptográfico mais utilizado na autenticação de e-mails, nos inícios de sessões remotos,
na utilização de pagamentos através de cartões multibanco, garantindo segurança na utilização
destes serviços.

Dada a importância que este sistema assume na proteção da informação digital, as suas
vulnerabilidades têm sido alvo de várias investigações. Estas investigações resultaram em vários
ataques ao RSA. Embora nenhum destes ataques seja efetivamente eficaz, todos contribuíram
para um aumento da segurança do RSA, uma vez que as implementações de referência deste
algoritmo passaram a precaver-se contra os ataques descobertos.

Esta tese de mestrado aborda o sistema criptográfico RSA, discutindo algumas das suas
vulnerabilidades, assim como alguns ataques efetuados a este sistema, estudando todos os
métodos matemáticos por estes usados. Embora existam diversos ataques, apenas alguns serão
abordados nesta tese de mestrado. O último ataque, baseado no algoritmo batch-GCD foi
implementado e foram feitos testes em chaves RSA produzidas por um Hardware Security Module
Luna SA certificado e os resultados obtidos foram discutidos.

Os números aleatórios e pseudoaleatórios são fundamentais a todas as aplicações criptográ-
ficas, incluindo, portanto, o sistema criptográfico RSA. De facto, as chaves produzidas deverão
ser geradas com alguma aleatoriedade intrínseca ao sistema. O Instituto Nacional de Standards
e Tecnologia, entidade responsável pela especificação dos standards de segurança, disponibiliza
um pacote de testes estatísticos, denominado por "A Statistical Test Suit for Random and
Pseudorandom Number Generators for Cryptography Applications". Estes testes estatísticos
foram aplicados a números gerados pelo Luna SA e os resultados foram, também, comentados.

O objetivo desta tese de mestrado é desenvolver capacidade de compreensão sobre os assun-
tos descritos anteriormente e criar uma aplicação capaz de testar a aleatoriedade dos números
gerados pelo Luna SA, assim como avaliar a segurança do sistema criptográfico RSA.

Este foi um trabalho desenvolvido em parceria com a Universidade do Minho e com a Mul-
ticert.

vii

Contents

Acknowledgements iii

Abstract v

Resumo vii

1 Introduction 1
1.1 Cryptography . 1
1.2 Public Key Cryptography . 3
1.3 Diffie-Hellman Algorithm . 4

2 The RSA Public-Key Cryptosystem 7
2.1 RSA Key Generation, Message Encryption and Decryption 7
2.2 RSA vulnerabilities . 8

2.2.1 The RSA problem . 8
2.2.2 Large integer numbers factorization . 9
2.2.3 Common modulus . 10
2.2.4 Blinding . 11

3 The RSA security and cryptanalysis 13
3.1 Small public exponent . 13

3.1.1 Hastad’s broadcast attack . 14
3.1.2 Franklin-Reiter Related Message Attack 17
3.1.3 Coppersmith’s Short Pad Attack . 17
3.1.4 Partial Key Exposure Attack . 18

3.2 Low private exponent . 19
3.2.1 Wiener’s Attack . 19

3.3 Bleichenbacher’s Attack on PKCS#1 . 21

4 Factorization 23
4.1 Trial Factorization . 23
4.2 Fermat Factorization . 24
4.3 Continued Fraction Method . 24
4.4 Pollard’s p − 1 Factorization Algorithm . 25

ix

x Contents

4.5 Elliptic Curve Method . 27

4.6 Quadratic Sieve . 28

4.7 General Number Field Sieve . 28

4.8 RSA Modulus Factorization . 29

5 Recent Attacks on RSA Keys 31
5.1 How the attack works . 32

5.1.1 Batch-GCD . 33

5.1.2 Coppersmith-style attacks . 34

6 Randomness 37
6.1 Random and Pseudorandom Numbers . 38

6.2 Random Number Generators (RNGs) . 39

6.3 Pseudorandom Number Generators (PRNGs) 39

6.3.1 Failed Algorithms . 41

6.3.2 Cryptographically Strong Sequences . 42

6.4 Theoretical Constructions of Pseudorandom Objects 43

6.5 Testing Randomness . 51

6.5.1 How a Statistical Test Works . 52

6.5.2 Frequency Test . 54

6.5.3 Frequency Test Within a Block . 55

6.5.4 Runs Test . 55

6.5.5 Test for the Longest Run of Ones in a Block 56

6.5.6 Binary Matrix Rank Test . 57

6.5.7 Discrete Fourier Transform (Spectral) Test 58

6.5.8 Non-overlapping Template Matching Test 58

6.5.9 Overlapping Template Matching Test 59

6.5.10 Maurer’s "Universal Statistical" Test 60

6.5.11 Linear Complexity Test . 61

6.5.12 Serial Test . 63

6.5.13 Approximate Entropy Test . 63

6.5.14 Cumulative Sums Test . 64

6.5.15 Random Excursions Test . 65

6.5.16 Random Excursions Variant Test . 66

6.6 Recommendations for Random Numbers Generation. Randomness Require-
ments for Security. 67

6.6.1 Entropy Sources . 68

6.6.2 De-skewing . 71

6.6.3 Mixing . 73

6.7 The Blum Blum Shub Generator Example . 75

Contents xi

7 Quality analysis of generated numbers 77
7.1 Quality analysis of a Hardware Security Module (HSM) generated number of 106

bits . 77
7.1.1 Frequency Test . 78
7.1.2 Frequency Test Within a Block . 78
7.1.3 Runs Test . 79
7.1.4 Test for the Longest Run of Ones in a Block 79
7.1.5 Binary Matrix Rank Test . 79
7.1.6 Discrete Fourier Transform (Spectral) Test 80
7.1.7 Non-overlapping Template Matching Test 81
7.1.8 Overlapping Template Matching Test 82
7.1.9 Maurer’s "Universal Statistical" Test 82
7.1.10 Linear Complexity Test . 83
7.1.11 Serial Test . 84
7.1.12 Approximate Entropy Test . 84
7.1.13 Cumulative Sums Test . 85
7.1.14 Random Excursions Test . 85
7.1.15 Random Excursions Variant Test . 85

7.2 Quality analysis of a Hardware Security Module (HSM) generated number of 109

bits . 86
7.2.1 Frequency Test . 86
7.2.2 Frequency Test Within a Block . 87
7.2.3 Runs Test . 88
7.2.4 Test for the Longest Run of Ones in a Block 88
7.2.5 Binary Matrix Rank Test . 88
7.2.6 Non-overlapping Template Matching Test 89
7.2.7 Overlapping Template Matching Test 90
7.2.8 Maurer’s "Universal Statistical" Test 90
7.2.9 Linear Complexity Test . 91
7.2.10 Serial Test . 91
7.2.11 Approximate Entropy Test . 93
7.2.12 Cumulative Sums Test . 93

7.3 Quality analysis of a Hardware Security Module (HSM) set of generated numbers 94
7.4 Conclusions . 94

8 MQualityTester Application 97

9 Conclusions and Future Work 103
9.1 Conclusions . 103
9.2 Future Work . 104

A Coppersmith’s Theorem 105

xii Contents

B Continued Fraction Method Fundamental Concepts 107
B.1 Continued Fractions . 107
B.2 Factor Basis and Smooth Numbers . 109

C Tables 111

List of Tables

6.1 True status of the data available for analysis and the conclusion arrived by the
usage of the testing procedure. An important observation is that the status of
the data available for analysis is unknown in almost all the cases, in fact, that is
why the statistical tests are made. 53

6.2 Values of N and K according to the values of M. 56
6.3 Acceptable values for M according to the sequence to be tested minimun length,

n. 57
6.4 Representative table of how the values of L, Q and n should be chosen. 62
6.5 Method of recording the values of Ti in v0, v1, . . . , v6. 62
6.6 Bit pairs probability. 72

7.1 Statistics table of the Frequency Test for a 1000000 bits number generated by
a Luna SA HSM. Success means the acceptance of the null hypothesis (the
hypothesis that states the sequence is random). 78

7.2 Statistics table of the Frequency Test Within a Block for a 1000000 bits num-
ber generated by a Luna SA HSM. Success means the acceptance of the null
hypothesis (the hypothesis that states the sequence is random). 78

7.3 Statistics table of the Runs Test for a 1000000 bits number generated by a Luna
SA HSM. Success means the acceptance of the null hypothesis (the hypothesis
that states the sequence is random). 79

7.4 Statistics table of the Test for the Longest Run of Ones in a Block for a 1000000

bits number generated by a Luna SA HSM. Success means the acceptance of
the null hypothesis (the hypothesis that states the sequence is random). 79

7.5 Statistics table of the Binary Matrix Rank Test for a 1000000 bits number gen-
erated by a Luna SA HSM. Success means the acceptance of the null hypothesis
(the hypothesis that states the sequence is random). 80

7.6 Statistics table of the Discrete Fourier Transform (Spectral) Test for a 1000000
bits number generated by a Luna SA HSM. Success means the acceptance of
the null hypothesis (the hypothesis that states the sequence is random). 80

7.7 Statistics table of the Non-Overlapping Template Matching Test for a 1000000
bits number generated by a Luna SA HSM. Success means the acceptance of
the null hypothesis (the hypothesis that states the sequence is random). The
complete table is in C, table C.1 . 81

xiii

xiv List of Tables

7.8 Statistics table of the Overlapping Template Matching Test for a 1000000 bits
number generated by a Luna SA HSM. Success means the acceptance of the
null hypothesis (the hypothesis that states the sequence is random). 82

7.9 Statistics table of the Maurer’s "Universal Statistical" Test for a 1000000 bits
number. Success means the acceptance of the null hypothesis (the hypothesis
that states the sequence is random). 83

7.10 Statistics table of the Linear Complexity Test for a 1000000 bits number gener-
ated by a Luna SA HSM. Success means the acceptance of the null hypothesis
(the hypothesis that states the sequence is random). 83

7.11 Statistics table of the Serial Test for a 1000000 bits number generated by a Luna
SA HSM. Success means the acceptance of the null hypothesis (the hypothesis
that states the sequence is random). 84

7.12 Statistics table of the Approximate Entropy Test for a 1000000 bits number gen-
erated by a Luna SA HSM. Success means the acceptance of the null hypothesis
(the hypothesis that states the sequence is random). 84

7.13 Statistics table of the Cumulative Sums (forward) Test for a 1000000 bits num-
ber generated by a Luna SA HSM. Success means the acceptance of the null
hypothesis (the hypothesis that states the sequence is random). 85

7.14 Statistics table of the Cumulative Sums (reverse) Test for a 1000000 bits num-
ber generated by a Luna SA HSM. Success means the acceptance of the null
hypothesis (the hypothesis that states the sequence is random). 85

7.15 Statistics table of the Random Excursions Test for a 1000000 bits number gen-
erated by a Luna SA HSM. Success means the acceptance of the null hypothesis
(the hypothesis that states the sequence is random). 86

7.16 Statistics table of the Random Excursions Variant Test for a 1000000 bits num-
ber generated by a Luna SA HSM. Success means the acceptance of the null
hypothesis (the hypothesis that states the sequence is random). 87

7.17 Statistics table of the Frequency Test for a 109 bits number generated by a Luna
SA HSM. Success means the acceptance of the null hypothesis (the hypothesis
that states the sequence is random). 87

7.18 Statistics table of the Frequency Test Within a Block for a 109 bits number gen-
erated by a Luna SA HSM. Success means the acceptance of the null hypothesis
(the hypothesis that states the sequence is random). 88

7.19 Statistics table of the Runs Test for a 109 bits number generated by a Luna SA
HSM. Success means the acceptance of the null hypothesis (the hypothesis that
states the sequence is random). 88

7.20 Statistics table of the Test for the Longest Run of Ones in a Block for a 109

bits number generated by a Luna SA HSM. Success means the acceptance of
the null hypothesis (the hypothesis that states the sequence is random). 89

7.21 Statistics table of the Binary Matrix Rank Test for a 109 bits number generated
by a Luna SA HSM. Success means the acceptance of the null hypothesis (the
hypothesis that states the sequence is random). 89

List of Tables 1

7.22 Statistics table of the Non-Overlapping Template Matching Test for a 109 bits
number generated by a Luna SA HSM. Success means the acceptance of the null
hypothesis (the hypothesis that states the sequence is random). The complete
table is in C, table C.2 . 90

7.23 Statistics table of the Overlapping Template Matching Test for a 109 bits num-
ber generated by a Luna SA HSM. Success means the acceptance of the null
hypothesis (the hypothesis that states the sequence is random). 91

7.24 Statistics table of the Maurer’s "Universal Statistical" Test for a 109 bits num-
ber. Success means the acceptance of the null hypothesis (the hypothesis that
states the sequence is random). 91

7.25 Statistics table of the Linear Complexity Test for a 109 bits number generated
by a Luna SA HSM. Success means the acceptance of the null hypothesis (the
hypothesis that states the sequence is random). 92

7.26 Statistics table of the Serial Test for a 109 bits number generated by a Luna SA
HSM. Success means the acceptance of the null hypothesis (the hypothesis that
states the sequence is random). 93

7.27 Statistics table of the Approximate Entropy Test for a 109 bits number generated
by a Luna SA HSM. Success means the acceptance of the null hypothesis (the
hypothesis that states the sequence is random). 93

7.28 Statistics table of the Cumulative Sums (forward) Test for a 109 bits number
generated by a Luna SA HSM. Success means the acceptance of the null hy-
pothesis (the hypothesis that states the sequence is random). 94

7.29 Statistics table of the Cumulative Sums (reverse) Test for a 109 bits number gen-
erated by a Luna SA HSM. Success means the acceptance of the null hypothesis
(the hypothesis that states the sequence is random). 94

7.30 Pass rates test for each one of the NIST Statistical Test Suit [Rukhin et al.,
2010] based on 100 tests for 100 106 bits number generated by a Luna SA HSM. 96

C.1 Statistics table of the Non-Overlapping Template Matching Test for a 1000000
bits number generated by a Luna SA HSM. Success means the acceptance of
the null hipothesis (the hipothesis that states the sequence is random). 115

C.2 Statistics table of the Non-Overlapping Template Matching Test for a 109 bits
number generated by a Luna SA HSM. Success means the acceptance of the
null hipothesis (the hipothesis that states the sequence is random). 119

C.3 Pass rates test for each one of the NIST Statistical Test Suit [Rukhin et al.,
2010] based on 100 tests for 100 106 bits number generated by a Luna SA HSM.124

Chapter 1

Introduction

If you think cryptography is the answer to your problem,
then you don’t know what your problem is.

Peter G. Neumann

1.1 Cryptography

By the twentieth century, cryptography was considered an art ([Katz and Lindell, 2007]):
the construction of efficient codes and the break of the existing ones. All this was conceived
through the creativity and skill of each individual. There were no theoretical foundations nor
precise definitions of what defines a code to be considered "a good code" or to be considered
"a bad code" or what can actually be considered to be a safe code.

The first known use of cryptography was found in artifacts belonging to the era of the Old
Kingdom of Egypt, thousands of years before Christ [D’Agapeyeff, 2008]. In those times cryp-
tography referred almost exclusively to encryption, which is the process of converting ordinary
information (called plaintext) into unintelligible text (called ciphertext). In its turn, decryption
is the reverse of encryption, i.e. the ciphertext is converted to its original and intelligible format.
This type of data encryption has been used for thousands of years up until now.

In the twentieth century, however, the encryption concept has undergone a big change. The
studies held in cryptography area became more rigorous and it became necessary to formalize
some concepts. This gave rise to theoretical foundations in which cryptography should be based.
Thus, the study of cryptography started to be seen as a science.

Nowadays cryptography comprises much more than secret communications. Actually, these
days, cryptography is used in message authentication, digital signatures, public keys protocols,
authentication protocols, electronic auctions and elections as well as digital cash .

Cryptography is defined as the study and practice of techniques capable of providing secure
communication even when intersected by a third party [Rivest, 1990]. Thus, cryptography
focuses on the construction and analysis of protocols that seek to ensure communication without
the risk that an unauthorised outsider can understand the content of the shared information.

1

2 Chapter 1. Introduction

These constructions and protocols are related to various aspects of information security such as
data confidentiality, data integrity, authentication and non-repudiation.

[Katz and Lindell, 2007] provide a modern cryptography definition as the scientific studies
of techniques for securing digital information, transactions, and distributed computations.

A relevant difference between classical and modern cryptography is related to the type of
individuals who use each one of them. Classical cryptography had great development and im-
portance in military and in intelligence organizations developments, being these their biggest
consumers. Modern cryptography, in its turn, is used worldwide. With computer development
and with the advent of the Internet it was necessary to find protection mechanisms to guarantee
data security. Since World War I and the advent of the computer, the methods used to carry
out cryptology have become increasingly complexes and their application more widespread.

Modern cryptography intersects the disciplines of mathematics, computer science, and elec-
trical engineering. It is heavily based on mathematical theory and computer science practice.
Cryptographic algorithms are designed around computational hardness assumptions, making
them hard to break, in practice, by any adversary. It is theoretically possible to break such
a system, but it is infeasible to do so by any known practical means. These schemes are there-
fore denominated computationally secure.

Thus, cryptography is the basis of security mechanisms that are an integral part of all
computer systems and it is the basis of security provided to each user accessing secure websites
by preventing the information from being intercepted by third parties. Modern cryptography
became a more and more central topic in computer science.

Modern cryptography is based on some basic principles and paradigms that make the dis-
tinction between classical and modern cryptography. The three main principles are:

• The formulation of a rigorous and precise definition of security is the first step to solve
any cryptographic problem.

• When the security of a cryptographic construction relies on an unproven assumption, this
assumption must be precisely stated. Furthermore, the assumption should be as minimal
as possible.

• Cryptographic constructions should carry a rigorous proof of security with respect to a
formulated definition according to the first principle, and relative to an assumption stated
as in the second principle (if an assumption is needed).

These principles are discussed in greater depth in [Katz and Lindell, 2007].
So, in the beginning, encryption/decryption process was achieved by sending messages per-

sonally. With the increase of the amount and distance of communications the method became
impossible to use

As stated, the main goal of cryptography is to enable two people, usually referred as Alice
and Bob, to communicate over a channel without an outsider, Eve, being able to understand the
exchanged messages unless she knows exactly how they were encrypted.This concept is called a
cryptosystem and it is formally described using the following mathematical notation:

1.2. Public Key Cryptography 3

Definition 1. A cryptosystem is a five-tuple (M,C,K, e, d) where the following conditions are
satisfied:

• M is a finite set of possible plaintexts;

• C is a finite set of possible ciphertexts;

• K is the keyspace, i.e., it is a finite set of possible keys;

• e is the encryption function e : M×K → C and d is the decryption function d : C×K →
M, such that dk(ek(m)) = m, with m ∈ M and k ∈ K.

For communicating, Alice and Bob will choose a random key, k ∈ K. Thus, to send a
plaintext m, Alice encrypts it with an a-priori defined key, obtaining the ciphertext c = ek(m).
Alice sends c to Bob, who decrypts it by using the same key, obtaining m = dk(ek(m)). The key
that Alice and Bod chose should be only known by the two of them. Otherwise, Eve can decrypt
the message just by knowing the decryption function. The encryption function ek must be an
injective function because, otherwise, decryption could not be accomplished in an ambiguous
way. For every key k the function dk is the inverse of the function ek ([Hoffstein et al., 2008]).
It also should be notice that if M = C, the encryption function will be nothing but a permutation
of the set elements ([Stinson, 2002]).

The fact that the key chosen by Alice and Bob should be known only by themselves defines
this kind of cryptosystems as Private Key Cryptosystems ([Stinson, 2002]).

Numerous private key cryptosystems were created increasing their complexity but, eventually
they were considered insufficient because this kind of system has as a requirement that the secret
key should be known before exchanging the encrypted messages and therefore it is necessary to
have a secure channel to exchange the secret key.

Then the challenge arose: would Alice and Bob being able to exchange encrypted mes-
sages between them, with Eve knowing all these ciphertexts but without being able to decrypt
them? In 1976, Diffie-Hellman algorithm came up as a solution to this problem, predicting a
coming revolution in cryptography [Diffie and Hellman, 1976] and proposing a new concept of
cryptosystem which would lead to the creation of the RSA algorithm.

1.2 Public Key Cryptography

As said before, the Diffie and Hellman ([Diffie and Hellman, 1976]) publication was an
extremely important event. It set forth the basic definitions and goals of a new field of mathe-
matics/computer science. Indeed, their paper begins with: "We stand today on the brink of a
revolution in cryptography" [Diffie and Hellman, 1976].

The first important contribution of Diffie and Hellman was the definition of a Public Key
Cryptosystem (PKC) and its associated components: one-way functions and trapdoor informa-
tion. A one-way function is an invertible function easy to compute, but whose inverse is difficult
to calculate, meaning that the computation of the inverse function is made in a "reasonable"

4 Chapter 1. Introduction

amount of time and it will almost certainly fail ([Hoffstein et al., 2008]).For a more detailed
discussion about one-way functions see 6.4.

Basically, PKC consists in cryptosystems where there is no need for a secure channel to
exchange any prior information. This time, Alice creates a pair of public, e, and private keys,
d , revealing her public key and therefore allowing anyone to encrypt messages and send them
to her. If Bob wants to receive encrypted messages he should also create a pair of public and
private keys and follow Alice’s procedure. This way, there is no need for a safe channel to agree
on a key since there are no common keys that need to be changed between the several users.
Thus, PKC assumes that the knowledge of the public key, e, does not allow computation of the
private key, d . It assumes the existence of trapdoor one-way functions, which are functions that
are easy to compute but difficult to invert without knowing some extra parameters (in this case,
the private key).

Definition 2. [Diffie-Hellman concept of public key cryptosystem]
[Menezes et al., 1996]
Let K be the keyspace, enc be the encryption function and dec be the decryption function.
Consider an encryption scheme consisting of the sets of encryption and decryption transfor-

mations {ence : e ∈ K} and {decd : d ∈ K}, respectively.
The encryption method is said to be a public-key encryption scheme if for each associated

encryption/decryption pair (e, d), one key, e (the public key), is made publicly available, while
the other, d (the private key), is kept secret. By knowing e it should be easy to encrypt the
messages and by knowing d it should be easy to decrypt messages. For the scheme to be secure
it must be infeasible to compute d from e.

1.3 Diffie-Hellman Algorithm

The Diffie-Hellman algorithm was created considering the protocol created by both (Defini-
tion 2) and by taking advantage of the discrete logarithm problem (Definition 3).

Definition 3. [Discrete Logarithm Problem] [Kiayias, 2009]
Let G = 〈g〉 be a multiplicative finite cyclic group of order n. Thus all the element e of G

can be written as e = gk , k ∈ Zn, and any integer that solves this equality is called a logarithm
(in this case a discrete logarithm). G is a cyclic group and integral logg e exists for all e ∈ G.

G is finite of order n, so logg e is unique only up to congruence modulo n, and the discrete
logarithm amounts to a group isomorphism.

logb : (G; ·)→ (Zn; +) (1.1)

Finding an integer k ∈ Z such that gk = e is called discrete logarithm of base g, and it is a
computationally hard problem to solve.

Let consider again Alice and Bob who want to communicate with each other.

1.3. Diffie-Hellman Algorithm 5

Algorithm 1. [Diffie-Hellman] [Kiayias, 2009]

Let p be a prime number.

1. Alice and Bob choose a finite cyclic group, Gp, with p prime and a generator element, g,
of G, assuming that g is a public parameter. G = Zp

2. Alice chooses a natural random number, a, and sends ga (mod p) to Bob.

3. Bob also chooses a natural random number, b, and sends gb (mod p) to Alice.

4. Alice computes (gb)
a

(mod p).

5. Bob computes (ga)b (mod p).

Since groups are power associative, (gb)
a ≡ (ga)b ≡ gab (mod p), and in the end, both Alice

and Bob have the same value, a value that only the two of them know and that can be used
as a secret key. Thus they can use it as an encryption key, known only by them, for sending
messages across the same open communication channel.

Diffie-Hellman is a key agreement protocol. It enables the use of any symmetric cipher in
order to securely communicate over an open communication channel. For example, suppose
m is a message and an element of the group. This message can be encrypted by computing
e = mgab (mod p). Then, it can be decrypted from e doing the computation of (gab)−1, using
|G|, the order of the group. This can be done in the following way: Bob knows G, b, and
ga (mod p). Using the corollary of Lagrange’s theorem, the order of a generator of a cyclic
group G is |G|. If Bob calculates (ga)|G|−b = ga(|G|−b) = ga|G|−ab = ga|G|g−ab = (g|G|)ag−ab =

1ag−ab = g−ab = (gab)−1 (mod p).
Therefore, Alice sends Bob the encrypted message, e = mgab and then Bob computes

(gab)−1e = mgab(g−ab) = m × 1 = m, which is usually called ElGamal encryption.
For a greater security it is necessary to choose the numbers a, b and p large enough. If they

are large enough, not even the fastest modern computer can find a given only g, p, gb (mod p)

and ga (mod p). This problem, that needs to be solved, is called the discrete logarithm problem.

Chapter 2

The RSA Public-Key Cryptosystem

All human beings have three lives: public, private, and se-
cret.

Gabriel García Márquez

2.1 RSA Key Generation, Message Encryption and Decryption

The RSA cryptosystem, developed by Rivest, Shamir and Adleman and named after its
inventors, is the first ever published public key cryptosystem. The RSA was first presented in
their 1978 article [Rivest et al., 1978] and it was based on the Diffie-Hellman proposal. The
RSA cryptosystem is the most widely used public key cryptosystem. It may be used to provide
both secrecy and digital signatures. Its security is based on the integer factorization problem
which is an intractable problem.

Algorithm 2. [RSA key generation]

The keys used on the RSA cryptosystem are generated as follows (with a b bit modulus):

1. Generate randomly two large prime numbers p and q, each one roughly the same size
(b/2) and distinct from one another.

2. Compute n = pq and Φ(n) = (p − 1)(q − 1), where Φ(n) is the Euler totient function
(number of positive integers less than n which are co-prime with n).

3. Select an integer e such that 1 < e < Φ(n) and that gcd(e,Φ(n)) = 1 (e and Φ(n) are
co-prime).

4. Use the extended Euclidean algorithm to compute the unique integer d , 1 < d < Φ(n),
such that ed ≡ 1 (mod Φ(n)).

7

8 Chapter 2. The RSA Public-Key Cryptosystem

At the end, the pair (n, e) is the public key and the pair (n, d) is the private key. Nevertheless,
p, q, and Φ(n) must also be kept secret since they can be used to calculate d .

In the first step, the generated numbers can be probabilistic tested for its primality.

Suppose Bob wants to send a message to Alice.

Algorithm 3. [Encryption]

• Alice broadcasts her public key (n, e) and keeps her private key (n, d) secret.

• Bob represents the message as an integer, m in the interval [0, n − 1].

• Bob computes c ≡ me (mod n).

• The ciphertext c is sent to Alice.

Alice receives the ciphertext and she can recover the original plaintext using the following
algorithm:

Algorithm 4. [Decryption]

• Alice uses her private key, d , and computes m = cd (mod n).

2.2 RSA vulnerabilities

2.2.1 The RSA problem

The RSA problem consists in finding the integer m such that me ≡ c (mod n). Mathemati-
cally, the problem presented here is finding the eth roots modulo n.

The conditions imposed for n and e ensure that for each integer c ∈ {0, 1, ..., n − 1} there
is exactly one and only one m ∈ {0, 1, ..., n − 1} such that me ≡ c (mod n).

Therefore there is a function f : Zn → Zn defined as f (m) = me (mod n) which is nothing
rather than a permutation.

It is an open question to know whether there is a polynomial time algorithm that calculates
the roots of an equation like me ≡ c (mod n) ([da Costa Boucinha, 2011]). Nowadays, however

2.2. RSA vulnerabilities 9

it is assumed that it is hard to calculate such roots when m ∈ Zn is randomly chosen and n is
generated by random large primes p and q. In fact, there is no efficient algorithm known for this
problem ([Menezes et al., 1996]).

Nevertheless, if the factors of n are known, the RSA problem can be easily solved ([Menezes
et al., 1996]), which is explained in detail in the proof of Fact 1.

2.2.2 Large integer numbers factorization

One possible approach which an adversary could employ to solve the RSA problem is factoring
n and then compute Φ(n) and d . This is similar to do the step 4 of the Algorithm 2. Once d
is calculated, the adversary can decrypt any ciphertext sent and the RSA problem is solved.

Fact 1. Let (n, e) be an RSA public key. Given the private key d , one can efficiently factor the
modulus n = pq. Conversely, given the factorization of n, one can efficiently recover d .

Proof. ([Boneh, 1999])
Suppose that the private key, d , is known. Given d , k = de − 1 can be computed. By

definition of d and e, it is known that k is a multiple of Φ(n) and since Φ(n) is even, k = 2tr ,
with r odd and t ≥ 1. For every g ∈ Z∗n, gk = 1 and therefore gk/2 is a square root of
the unity modulo n. By the Chinese Remainder Theorem, 1 has four square roots modulo
n = pq. Two of these square roots are ±1. The other two are equal to x , where x satisfies the
conditions x ≡ 1 (mod p) and x ≡ 1 (mod q). Using one of these last two square roots, not
mattering which one, and by computing the gcd(x − 1, n), the factorization of n is disclosed. A
straightforward argument shows that if g is randomly chosen from Z∗n, then, with probability at
least 1/2 (over the choice of g), one of the elements in the sequence gk/2, gk/4, ..., gk/2

t

(mod n)

is a square root of the unity, revealing the factorization of n. All elements in the sequence can
be efficiently computed in time O(n3), where n = log2(n).

So, given d , n can be efficiently factored.
Now, let’s prove the converse statement.
Suppose the factorization of n is known. Thus, Φ(n) can be trivially computed. Since e is

one part of the public key and ed ≡ 1 (mod Φ(n)), d is easily recovered. Once d is known, all
the encrypted messages can be decrypted.

So, exposing the private key and factoring n are equivalent.

Although factorization algorithms have been steadily improving, the current state of the art
is still far from posing a threat to the security of RSA when RSA is used properly [Boneh, 1999].
In fact, factoring large integers is one of the hardest problems of computational mathematics.

As the RSA modulus n is a large number, factoring it is a difficult task given that its prime
factors are randomly and balanced generated. In order to break the system, it will be needed a
large amount of time.

Indeed, there are factorization methods for this kind of attack like Fermat’s Factorization,
Pollard’s ρ Algorithm and Elliptic Curve Method. Despite the existence of these methods for
computational factorization, they do not run in polynomial time and an appropriate choice of

10 Chapter 2. The RSA Public-Key Cryptosystem

the size of n makes this factoring attack infeasible. Since this is the most obvious way of trying
to break RSA, there are published standards with recommendations for the size of n that should
be choose, mostly depending on the amount of time the secret data should be kept secret.

An open question remains and it is to know whether both problems (the RSA and the large
integer factorization problems) have the same complexity or not. It is widely believed that the
RSA and the integer factorization problems are computationally equivalent, although no proof of
this is known [Menezes et al., 1996]. Indeed, if an efficient factoring algorithm exists, then RSA
is insecure. The RSA security relies severely on the assumption that both the RSA Problem and
the Problem of Factoring Large Integers have no polynomial time algorithm that solves it.

2.2.3 Common modulus

To avoid generating a different modulus n = pq for each different user it could be considered
the same n for all users. This n must be provided by a trusted central authority so it could be
reliable. This trusted entity defines a modulus n and provides for each user i a pair of public,
(n, ei), and private, di , valid RSA keys defined modulus Φ(n), but not the factorization of n.

Theorem 1. Let n = pq be a RSA modulus and let (n, e1), (n, e2) be two public keys such that
gcd(e1, e2) = 1. Suppose a plaintext m is encrypted with both public keys.

Knowing c1 = me1 (mod n) , c2 = me2 (mod n) and the public keys, m can be computed in
polynomial time in log(n).

Proof. e1 and e2 are known parameters. Using the Extended Euclidean Algorithm, the integers
a1 and a2 can be computed, in a way that the equation a1e1 + a2e2 = 1 is satisfied. Therefore,

ca11 c
a2
2 ≡ m

a1e1ma2e2 ≡ ma1e1+a2e2 ≡ m (mod n) (2.1)

Both the Extended Euclidean Algorithm and the final computation are done in polynomial
time in log(n). Thus, m can be computed in polynomial time in log(n) ([da Costa Boucinha,
2011]).

Therefore, anyone with access to the public keys and the ciphertexts would be able to
intercept all the plaintexts which would be encrypted twice to different users (note that the
same message has to be encrypted) without factoring the modulus ([Simmons, 1983]).

[Delaurentis, 1984] found out that there is no need for two encryptions of a plaintext to
decrypt a message.

Theorem 2. Let (n, e) be a valid RSA public key with corresponding private key (n, d). Let
(n, e1) be the public key from another user such that e1 6= e. Then a private key (n, d1)

corresponding to (n, e1) can be computed by:

d1 ≡ e−11

(
mod

ed − 1

gcd(e1, ed − 1)

)
(2.2)

in polynomial time in log(n).

2.2. RSA vulnerabilities 11

Proof. From the RSA algorithm (Algorithm 2), ed ≡ 1 (mod Φ(n)). This equation can be
rewritten as ed − 1 = kΦ(n). e1 is a public exponent, so is satisfies gcd(e1,Φ(n)) = 1 and

therefore gcd(e1, kΦ(n)) = k ′, for some k ′ that divides k . Now, let k ′′ =
k

k ′
. The modulus in

the equation (2.2) can be written as

ed − 1

gcd(e1, ed − 1)
=
kΦ(n)

k ′
= k ′′Φ(n) (2.3)

So, e1 and d1 satisfy:

d1 ≡ e−11
(

mod k ′′Φ(n)
)

=⇒ d1e1 ≡ 1
(

mod k ′′Φ(n)
)

(2.4)

Therefore d1 is a valid private exponent corresponding to e1. All computations can be done
in polynomial time in log(n).

So, when implementing RSA, it is recommended not to use the same modulus for different
users.

2.2.4 Blinding

Suppose that (n, d) and (n, e) are Bob’s private and public keys, respectively, and that Eve
wants Bob’s signature on a message m ∈ Z∗n which Bob, obviously, refuses to sign. In order to
access the signature Eve picks a random r ∈ Z∗n, sets m′ = r em (mod n) and then asks Bob to
sign the random message m′. Bob may be agreeable to sign this random message m′ and thus

providing his signature s ′. s ′ = (m′)d (modn) and Eve just needs to compute s =
s ′

r
(modn) to

gather Bob’s signature s on the original message m. Indeed,

se =
(s ′)e

r e
=

(m′)ed

r e
≡
m′

r e
= m (modn)

This approach is called blinding for the simple reason that Eve can obtain a valid signature
on a message of her choice by asking Bob to sign a random "blinded" message that he has no
information about what he is actually signing.

This attack is not a serious concern since signature schemes apply a "one-way hash" to the
message m prior to signing.

Although this attack is presented as an attack to the RSA, this is actually a good way to see
a useful property of this cryptosystem. In cryptography, a blind signature is a type of a digital
signature in which the content of a message is blinded before signed and in which the resultant
signature can be publicly verified against the original message as any digital signature can. This
is a useful property of RSA and it is used, for example, in cryptographic election systems and
digital cash schemes.

Chapter 3

The RSA security and cryptanalysis

The magic words are squeamish ossifrage.

Plaintext of the message encoded in RSA-129, given in
Martin Gardner’s 1977 "Mathematical Games" column

about RSA

RSA is used all around the world nowadays, so there have been several attacks and types
of attacks on this algorithm. This subsection discusses various security issues related to RSA
cryptosystem.

The task faced by a passive adversary is recovering the plaintext m from the corresponding
ciphertext c , given the public information (n, e) of the intended receiver.

3.1 Small public exponent

In order to improve the efficiency of encryption, it is desirable to select a small encryption
exponent e such as e = 3. Various entities may all have the same encryption exponent e,
however, each entity must have its own distinct modulus n. In fact, in many practical applications,
the encryption process is performed by some limited device, such as a smart card and, in cases
like this, raising m to a high power might be quite expensive in terms of battery power, time,
... Fixing the public exponent to be some small number is an attempt to simplify the encryption
process. In case e = 3, the encryption process simply involves raising a number to the power 3,
which can be done using only two multiplications.

This can also be a problem when sending small messages, because if m < n1/e , then m can
be recovered from the ciphertext c ≡ me (mod n) simply by computing the eth integer root of
c . The method of salting the plaintext messages prevents this kind of problem (this topic is
discussed in Chapter 3.1.1).

However, by using a low public exponent, RSA is still considered secure, when used carefully,
and for that the current public exponent advised is about e = 216 + 1 ([Boneh, 1999]) and the
message should be salted with some pseudorandom bits.

13

14 Chapter 3. The RSA security and cryptanalysis

3.1.1 Hastad’s broadcast attack

The attack presented here is due to [Hastad, 1985] and is known as the Common Plaintext
Attack due to the fact that the same plaintext is encrypted more than once, similar to the
approach described in Chapter 2.2.3.

For this attack it will be needed k messages, k > e, where e is the public exponent used to
encode the k messages.

Suppose Bob wishes to send the same message, m, to k beneficiaries. To do that he obtains
the beneficiaries public keys (ei , ni), for i = 1, ..., k , and uses the same public exponent with value
equal to 3 to send all the messages. So, ei = 3 for all i . Naively Bob computes ci = m3 (mod ni)

and sends it to the i th recipient.
A simple argument shows that as soon as k ≥ 3, the message, m, is no longer secure ([Boneh,

1999]) and that an eavesdrop can recover the message, in this circumstances. Suppose Eve,
the attacker, intercepts the encrypted messages c1, c2, c3, where ci = m3 (mod ni). Let’s
assume that gcd(ni , nj) = 1 for all i 6= j , since otherwise it is possible to factorize some of
the ni ’s. Applying the Chinese Remainder Theorem, Eve can compute c ′ ∈ Z∗n1n2n3 such that
c ′ = m3 (mod n1n2n3). Since m < ni for all i = 1, ..., k , m3 < n1n2n3 and thus c ′ = m3 holds
over the integers. This way, Eve recovers m just by computing the cubic root of c ′ over the
integers.

Generally, an attacker can recover any message sent as soon as k ≥ e. However, this attack
is feasible only when a small e is used.

The problem seems to be able to be avoided by never sending the same message, or even
the same message with known variations, to more than one entity. To prevent against this kind
of attack, a pseudorandomly generated bitstring, independently generated for each encryption,
of an appropriate length should be appended to the plaintext message prior to encryption. This
process is referred to as salting the message.

The following theorem supports the example above.

Theorem 3. Suppose a plaintext, m, is encrypted k times with the public keys (n1, e), (n2, e), ...,

(nk , e) where k ≥ e and n1, n2, ..., nk are pairwised co-prime. Let n0 = min{n1, n2, ..., nk} and

n =

k∏
i=1

ni . If the plaintext satisfies m < n0 then, any attacker, knowing ci ≡ me (mod ni) and

(ni , e) for i = 1, ..., k , can compute the plaintext m in polynomial-time in log(n).

Proof. ni ’s are co-prime, so by the Chinese Remainder Theorem it is possible to compute c ≡
me (mod n). m < n0 so me < n1n2...nk = n and thus c = me . Therefore, all that is needed to
do is to compute the eth root of c over the integers to discover m. All computations can be
done in polynomial-time in log(n) ([Boneh, 1999]).

[Hastad, 1985] reported a much stronger result that improves the attack described above.
Suppose that Bob, knowing about the existence of the previous attack, tries to naively defend
his message from it by applying a pad to the message m prior to encrypting it. Therefore, if m
is k bits long, Bob can send mi = i2n +m and thus the recipients will receive slightly different

3.1. Small public exponent 15

messages. Since the attacker obtains encryptions of different messages, he cannot mount the
previous attack.

Nonetheless, Hastad proved that this linear padding scheme is not secure. Indeed, he proved
that any fixed polynomial applied to the message will result in an insecure scheme, not preventing
the attack.

Now, suppose Bob takes another chance to ensure his messages are protected from the
attacks described above, once he knows their existence. For each of the recipients Bob has a
fixed public polynomial fi ∈ Zni [x] and to broadcast a message, m, he sends the encryption of
fi(m) to each one of the beneficiaries. By eavesdropping, Eve learns ci = fi(m)ei (mod ni) for
i = 1, ..., k . Hastad [Hastad, 1985] showed that if enough parties are involved, Eve can recover
the plaintext m from all the ciphertexts.

The following theorem is a stronger version of Hastad’s original result.

Theorem 4. [Hastad]
Let n1, ..., nk be relatively prime integers and set nmin = mini{ni}. Let gi(x) ∈ Zni [x] be k

polynomials of maximum degree q. Suppose there exists a unique m < nmin satisfying

gi(m) = 0 (mod ni) for all i ∈ {1, ..., k}.

Under the assumption that k > d , there exists an efficient algorithm which, given (ni , gi(x))

for all i , computes m.

Proof. Let n′ = n1n2...nk and since ni ’s are pairwise relatively prime integers, by the Chinese
Remainder Theorem one can compute the coefficients Ti satisfying Ti ≡ 1 (mod ni) and Ti ≡
0
(

mod nj
)
for all i 6= j .

The function g(x) can be set as g(x) =
∑

i
Tigi(x) and one can see that g(m) ≡

0
(

mod n′
)
. Ti are nonzero, so g(x) is not identically zero and if the leading coefficient of

g(x) is not one it can be assumed without loss of generality that g is a monic polynomial
obtained by multiplying this coefficient by its inverse.

The degree of g(x) is at least q. By the Coppersmith’s Theorem (Theorem 14) all integer
roots, x0, that satisfy g(x0) ≡ 0

(
mod n′

)
and |x0| < (n′)

1
q can be computed. Knowing that

m < nmin < (n′)(
1

k
) < (n′)

1
q it is trivial to conclude that m is such a root.

This result can be applied to the problem of broadcasting RSA. Suppose the i th plaintext
is padded with a polynomial fi(x) so that ci ≡ (fi(m))ei (mod ni). The polynomials gi(x) =

(fi(m))ei − ci (mod ni) satisfy the above relation and the message m can be recovered by an
attacker from the given ciphertexts whenever k > maxi(ei · deg(fi(x))). Particularly, if Bob
sends messages linearly related, Eve, the attacker, can recover the plaintext as soon as k > e.

Hastad’s original theorem is weaker than the one stated above, requiring k = O(q2) messages
where q = maxi(ei · deg(fi(x))) ([Boneh, 1999]).

So, a proper way to defend against the broadcast attack above is using a randomized padding
in RSA encryption.

16 Chapter 3. The RSA security and cryptanalysis

Another attack, known as the Related Plaintext Attack, allows for the encrypted messages
to be different but related by known polynomials. However, this attack requires a larger number
of messages to be encrypted. The result, due to Bleichenbacher, is ([Franklin et al., 1996]):

Theorem 5. Given the public keys (n1, e1), (n2, e2), ..., (nk , ek) where the modulus are pairwise

co-prime, and f1(x) ∈ Zn1 [x], ..., fk(x) ∈ Znk [x], set n0 = min{n1, n2, ..., nk} and n =

k∏
i=1

ni .

For a plaintext m < n0, if k ≥ maxi(ei · deg(fi(x))) then given ci = fi(m) (mod ni) and
(ni , ni) for i = 1, 2, ..., k , the plaintext m can be computed in time polynomial in log(n) and
maxi(ei · deg(fi(x))).

Proof. Suppose all fi(x) are monic functions. If they are not, one can turn them into monic
functions by multiplying them with the leading coefficients inverse. If the inverse does not exist
for fj(x), one can find a factor of nj and from cj we find m. Let us set δ = maxi(ei ·deg(fi(x)))

and also hi = δ− deg(fi(x)ei) for i = 1, 2, ..., k . The k th monic polynomials of degree δ can be
defined as follows:

gi(x) = xhi (fi(x)ei − ci) ∈ Zni , for i = 1, ..., k

Noting that gi(m) ≡ 0 (mod ni) for i = 1, ..., k , and using the Chinese Remainder Theorem
with gi(x) and ni as inputs, a new degree δ monic polynomial G(x) ∈ Zn[x] can be computed
satisfying:

G(m) ≡ 0 (mod n)

where m < n0 < n
1
l < n

1
D . This makes all the conditions to use Coppersmith’s result (Theorem

14). Therefore, m can be computed in time polynomial in log(n) and δ.

May and Ritzenhofen [May and Ritzenhofen, 2008] have improved the bound for the number
of ciphertexts required to compute the plaintext. Let δi = ei · deg(fi(x)). If the inequality

k∑
i=1

1

δi
≥ 1

is satisfied then the plaintext m can be recovered from the k ciphertexts.

If transmitting the same (or related) message massively is not possible, one way to prevent
this type of broadcast attacks is by ensuring that this last inequality is not satisfied. For this
to happen it is only needed to transform the messages with polynomials of high degree or
alternatively use high public key exponents.

3.1. Small public exponent 17

3.1.2 Franklin-Reiter Related Message Attack

Franklin and Reiter ([Coppersmith et al., 1996]) identified an attack against RSA for a small
exponent e if two messages differ only by a known fixed difference between them and if they are
RSA encrypted under the same modulus n. Franklin and Reiter stated that in that conditions,
it is possible to recover both messages.

Suppose m1, m2 ∈ Z∗n are two distinct messages that satisfy m1 = f (m2) (mod n) for
some f ∈ Zn[x]. So, the messages are related under the same modulus. Bob wants to send
both messages to Alice and to do that he encrypts the messages and transmits the resulting
ciphertexts c1, c2. For any small e, Eve can easily recover the original plain texts, m1, m2.

For the following lemma, in order to simplify the proof, let us consider e = 3.

Lemma 1. [Franklin-Reiter]
Let’s set the encryption key e = 3 and let (e, n) the RSA public key. Let m1 6= m2 ∈ Z∗n

satisfying m1 = f (m2) (mod n) for some linear polynomial f (x) = ax + b ∈ Zn[x] with b 6= 0

and let c1, c2 be the encryption of m1, m1, respectively. Then, given (n, e, c1, c2, f), an attacker
can recover the original plaintexts m1, m2 in time quadratic in log(n).

Proof. There is no need to restrict e in this first part of the proof, so let’s consider an arbitrary
e and keep this part of the proof general. Since c1 = me1 (mod n), m2 is a root of the polynomial
g1(x) = f (x)e−c1 ∈ Zn[x]. Similarly, m2 is a root of g2(x) = xe−c2 ∈ Zn[x]. The linear factor
x −m2 divides both polynomials. Therefore, using the Euclidean algorithm the gcd(g1, g2) can
be computed and if it turns out to be linear, m2 is found. The great common divisor can be
computed in quadratic time in e and log(n).

When e = 3, the great common divisor must be linear. The polynomial x3 − c2 factors
both modulus p and q into a linear factor and an irreducible quadratic factor (recalling that
gcd(e,Φ(n)) = 1 and hence x3 − c2 has only one root in Zn). Since g2 cannot divide g1, the
gcd must be linear.

Once the attacker knows (n, e, c1, c2, f) he/she can compute

b(c2 + 2a3c1 − b3)
a(c2 − a3c1 + 2b3

≡
m1(3a3bm21 + 3a2b2m1 + 3ab3)

3a3bm21 + 3a2b2m1 + 3ab3
≡ m1 (mod n)

All calculations are done in time polynomial in log(n).
For e > 3 the gcd is almost always linear. However, for some rare m1, m2 and for some rare

f , it is possible to obtain a nonlinear gcd. In such cases the attack will fail.

For e > 3 the attack takes time quadratic in e. Consequently, it can be applied only when
a small public exponent is used. For larger values of e, the computation of the great common
divisor is not feasible.

3.1.3 Coppersmith’s Short Pad Attack

Coppersmith showed that a simplistic randomized message padding may put in danger the
security of RSA [Coppersmith, 1997]. If a naive random padding algorithm puts in question the

18 Chapter 3. The RSA security and cryptanalysis

security of RSA and if randomized padding is used with RSA then, a question arises: how many
bits of randomness are needed to consider a message properly-padded?

Suppose Bob sends a padded encryption of a message m to Alice using a small random pad
before encrypting m. An attacker, Eve, can intercept the transmission of m, preventing it from
reaching its destination, prompting Bob to resend the message. Bob, noticing that Alice did not
received his message decides to resend m to Alice. In order to do that, Bob sends the message
once again, but with a new random pad. Eve now has two ciphertexts corresponding to two
encryptions of the same message using two different random pads and even though she does
not know the random pads used, she can still recover m if the random pads are too short.

The follow theorem generalises the illustrated situation above:

Theorem 6. Let (e, n) be a public RSA key where n is n′ bits long. Set k =
⌊ n′
e2

⌋
. Let m ∈ Z∗n

be a message of length at most n′−k bits. Define m1 = 2km+ r1 and m2 = 2km+ r2, where r1
and r2 are distinct integers with 0 ≤ r1, r2 < 2k . If an attacker knows (n, e) and the encryptions
c1, c2 of m1, m2 (but is not given r1 or r2), he/she can efficiently recover m.

Proof. Let’s assume that the padding is placed in the least significant bits, so that ci = (2km+

ri)
e (mod n) for some small k and random r < 2k . Eve now knows

c1 = (2km + r1)
e (mod n) and c2 = (2km + r2)

e (mod n)

for some unknown m, r1, and r2. Considering the functions f (x, y) and g(x, y) defining by
f (x, y) = xe − c1 and g(x, y) = (x + y)e − c2, when x = 2km + r1, both of these polynomials
have y = r2 − r1 as a root modulo n. The resultant h(y) := Resx(f , g) will be of degree at

most e2 and y = r2 − r1 is also a root of h(y) modulo n. If |ri | <
(1

2

)
n
1

e2 for i = 1, 2 then

|r2 − r1| < n
1

e2 . By Coppersmith’s Theorem (Theorem 14) all of the roots of h(y) may be
computed, which will include r2 − r1. Once r2 − r1 is discovered, m can be extracted by using
the result of Franklin and Reiter [Coppersmith et al., 1996] (described in 3.1.2).

This attack exploits a weakness of RSA with a public exponent e = 3. However, when e = 3

the attack can be mounted as long as the pad length is less than
(

1

9

)th
the message length.

But for the recommended values of e the attack is useless against standard moduli sizes.

3.1.4 Partial Key Exposure Attack

The main goal of this section is to study the following question: how many bits of d does
an attacker require in order to reconstruct all of d? Surprisingly, for a short public exponent
an adversary only needs a quarter of significant bits of d to efficiently recover all of d . Thus,
the RSA cryptosystem, particularly with a small public exponent, is vulnerable to partial key
exposure.

Lets consider a computer system which has an RSA private key stored on it. To obtain
the private key an adversary may attempt to attack the system in a variety of ways. Some of

3.2. Low private exponent 19

these attacks are able to reveal some bits of the key, though they may fail when the entire key
is wanted to be revealed. However, considering this results, any attack done in order to reveal
the private key only needs to be carried out until a quarter of the least significant bits of d are
exposed. Once these bits are revealed the attacker can effortlessly compute the entire private
key.

Another scenario where partial key exposure comes up is in the presence of covert channels.
Such channels are often slow or have a bounded capacity. Some results show that as long as
a fraction of the private exponent bits can be leaked, the remaining bits can be reconstructed.
These results can be found in [Durfee, 2002] and [Boneh, 1999].

3.2 Low private exponent

The decryption time or signature-generation time can be reduced by using a small value of d
rather than a random d . The use of a small value of d can improve the performance by at least
a factor of 10 for a 1024 bit modulus since modular exponentiation takes linear-time in log2(d).
However, [Wiener, 1990] shows that the choice of a small d will result in an insecure system in
which an attacker can recover all secret information.

3.2.1 Wiener’s Attack

Theorem 7. [Wiener’s theorem]

Let n = pq with q < p < 2q. Let d <
1

3
n
1
4 . Given (n, e) with ed ≡ 1 (mod Φ(n)), the

attacker can efficiently recover d .

Proof. The proof is based on approximations using continued fractions (see). Since ed ≡
1 (modΦ(n)), there exists a k such that ed − kΦ(n) = 1. Therefore

∣∣∣∣ e

Φ(n)
−
k

d

∣∣∣∣ =
1

dΦ(n)
.

Hence,
k

d
is an approximation of

e

Φ(n)
. Although the attacker does not know Φ(n), he

may use n to approximate it. Since
√
n

2
< q < p < 2

√
n, then p + q − 1 < 3

√
n and thus

n −Φ(n) < 3
√
n. If

e

n
is used as an approximation,

20 Chapter 3. The RSA security and cryptanalysis

∣∣∣∣en − kd
∣∣∣∣ =

∣∣∣∣ed − knnd

∣∣∣∣
=

∣∣∣∣ed − kΦ(n)− kn + kΦ(n)

nd

∣∣∣∣
=

∣∣∣∣1− kn −Φ(n))

nd

∣∣∣∣
≤

∣∣∣∣3k√nnd

∣∣∣∣
=

3k
√
n√

n
√
nd

=
3k

d
√
n

Now, kΦ(n) = ed − 1 < ed , so kΦ(n) < ed . Since e < Φ(n) , kΦ(n) < ed < Φ(n)d .
Then, kΦ(n) < Φ(n)d =⇒ k < d .

Since k < d and by hypothesis d <
1

3
n
1
4 . Thus,∣∣∣∣en − kd

∣∣∣∣ ≤ 1

dn
1
4

Since d <
1

3
n
1
4 and 2d < 3d , then 2d < 3d < n

1
4 and 2d < n

1
4 =⇒

1

2d
>

1

n
1
4

.

Concluding, ∣∣∣∣en − kd
∣∣∣∣ ≤ 3k

d
√
n
<

1

d · 2d =
1

2d2

This is a classic approximation relation. The number of fractions
k

d
with d < N approximat-

ing
e

n
so closely is bounded by log2(n) ([Boneh, 1999]). In fact, such fractions are obtained as

convergents of the continued fraction expansion (Appendix B) of
e

n
and all that is needed to do

is compute the log(n) convergents of the continued fraction for
e

n
. One of the computations

will be equal to
k

d
and since ed − kΦ(n) = 1, which means that gcd(k, d) = 1,

k

d
is a reduced

fraction. This is a linear-time algorithm for recovering the secret key d .

So, Wiener has proved that the attacker may efficiently find d when d <
1

3
n
1
4 [Boneh, 1999].

Algorithm 5. Wiener’s Attack Algorithm

1. Given the public key (e, n) compute the continued fraction expansion of
e

n
, finding the

possible values for the convergences
k

d
.

2. Verify the convergent calculated before produce a factorization of n:

3.3. Bleichenbacher’s Attack on PKCS#1 21

• Compute Φ(n) =
e.d − 1

k
.

• Solve the equation x2− ((n −Φ(n)) + 1) x + n = 0. Then the roots of this equation
are the factors p and q of n.

Notice that, depending on n, Wiener’s Theorem will work only if d <
n
1
4

3
.

Although Wiener found a way to attack the RSA algorithm he also presented some coun-
termeasures against his attack that allow a fast decryption without the need of a small private
exponent. Two techniques are described:

• Choosing a large public key: Instead of reducing e modulo Φ(n) replace e by e ′ , where
e ′ = e + tΦ(n) for some large value of t. When e ′ is large enough, i.e., when e ′ > n

3
2 ,

Wiener’s attack cannot be applied regardless of how small d is since the value of k in the
proof above is no longer small.

• Using the Chinese Remainder Theorem: Suppose one chooses d such that both dp ≡
d (mod (p − 1)) and dq ≡ d (mod (q − 1)) are small values but d , itself, is not. Then, a
fast decryption of the encrypted message can be done as follows:

1. Compute mp ≡ cdp (mod p) and mq ≡ cdq (mod q).

2. Use the Chinese Remainder Theorem to compute the unique value of m ∈ Zn that
satisfies m ≡ mp (mod p) and m ≡ mq (mod q). The result of m satisfies m ≡
cd (mod n). Although the values of dp and dq are small, the value of d (mod Φ(n))

can be a large one and Wiener’s attack does cannot be applied to those situations.

These purposed methods are not proved to be secure, but it is proved that Wiener’s attack
is ineffective against them.

3.3 Bleichenbacher’s Attack on PKCS#1

This attack focuses the achievement of its goal by attacking the implementation of RSA
rather than attacking the underlying structure of the RSA cryptosystem.

Let n be a n′ bit RSA modulus and m be a m′ bit message with m′ < n′. Before applying the
RSA encryption, a common practice is to pad the message m to n′ bits by appending random bits
to it. The old version of PKCS#1 (Public Key Cryptography Standard #1) uses this padding
approach.

After padding the message m, the message will look as follows:

00 02 padding string 00 m

22 Chapter 3. The RSA security and cryptanalysis

The resulting message is n′ bits long and it is directly encrypted using the RSA cryptosystem.
The random pad is recognised due to the presence of ”02” on the initial block of the message
that will be encrypted. This initial block is 16 bits long.

Suppose that Bob’s machine receives a PKCS#1 message. An application will decrypt the
message and then it will check the initial block for stripping of the random pad. However, some
applications send "invalid ciphertext" as an error message when the message do not contain the
”02” initial block. Bleichenbacher [Bleichenbacher, 1998] showed that this error message can
lead to catastrophic repercussions: an attacker can decrypt any ciphertext by using the error
message.

Suppose there is a message c intended for Bob that is intercepted by Eve, who wants to
decrypt it. To mount the attack, Eve chooses a random r ∈ Z∗n, computes c ′ = r ·c (mod n) and
sends c ′ to Bob’s machine. The application that intends to decrypt all the messages received
attempts to decrypt c ′. If c ′ is properly formatted the machine will give no response, but if
c ′ is not properly formatted it will respond with an error message. Hence, Eve gets to know
whether the 16 most significant bits of the decryption of c ′ are equal to 02. In effect, Eve has
an oracle that tests for her the 16 most significant bits of the decryption of r · c (mod n), for
any r of her choice. Bleichenbacher showed that such an oracle is sufficient for decrypting c
([Bleichenbacher, 1998]).

Chapter 4

Factorization

It’s all very simple. But maybe because it’s so simple, it’s
also hard.

Natsuki Takaya

The integers factoring problem comes down to compute a non-trivial factor of a given
integer. In current days various rigorous and fast methods are known to solve the integers
factoring problem. However, these methods prove to be inefficient as the size of the number to
be factor increases.

Many encryption methods used to convey confidential information securely via an open chan-
nel based their security on the hard problem of factoring large integers, including the RSA crypto-
graphic method, as seen previously in Section 2.2.2. In fact, the RSA cryptosystem has become
widely used for the transmission of confidential information due to its security relies in the integer
factorization problem, since there are no fast and efficient methods for the factorization of n,
the product of two large primes.

Thus, if it is possible to find an efficient method for factoring large integers, the RSA
security is compromised. Moreover, the study of factorization methods proves to be extremely
important since the more one knows about the existing factorization methods, the more securely
the required parameters can be chosen in order to hinder the factorization of n and thus improving
the safety of the method.

4.1 Trial Factorization

Let n be the number to be factored.
√
n is calculated and all primes p smaller

√
n are tested

until the condition gcd(p, n) 6= 1 is satisfied. Then, p is one factor of n. In the worst scenario,
the number of tests ran is equal to the number of primes, p, smaller than

√
n.

π(x) is a function that counts the number of primes smaller than x . It’s known that for large

values of x , π(x) ∼
x

ln x
([Menezes et al., 1996]). Thus, in the worst scenario, the algorithm is

executed in O
(

2|n|/2

|n|

)
steps.

23

24 Chapter 4. Factorization

4.2 Fermat Factorization

Almost all of the classic factorization algorithms are based on the Fermat factorization.
The Fermat factorization assumes the possibility of, given a number n to be factored, n can

be written as the difference between two squares.
In the Fermat factorization algorithm, the main goal is to find u and v , integer, such that u 6=

±v (mod n) and u2 = v2 (mod n). Once u and v are known, one has (u−v)(u+v) = 0 (mod n).
Since (u± v) 6= 0 (mod n), at least one of the values of gcd(u− v , n) and gcd(u+ v , n) is not
equal to 1 and this is going to be a factor of n.

Algorithm 6. [Fermat’s Factorization Algorithm]

Given a composite integer n,

1. Set w =
√
n and x = w

2. Set y =

⌈√
x2 − n

⌉
3. If n = x2 − y2, output x − y and x + y

4. If x < n, replace x by x + 1 and go to step 2.

Checking the last step, one can conclude that this algorithm will try all integers from
√
n

to n, which makes this algorithm very slow, and in the worst case scenario, it will take O(
√
n)

steps to finish, meaning it is even worst than trial division.

4.3 Continued Fraction Method

In 1931 one of the first modern approaches to the problem of factoring large integers ap-
peared. That approach gave rise to the continued fractions method, also known as the CFRAC
method.

Due to its computational difficulty, this method, described by D. Lehmer e R. Powers
([Lehmer and Powers, 1931]), only gained popularity and applicability with the advent of the
first computers, being developed as a computer algorithm by Michael A. Morrison and John
Brillhart in 1975 ([Morrison and Brillhart, 1975]), who managed to factorize the Fermat number
F7 = 22

7

+ 1.
Suppose one wants to factor an odd and compound integer n.
The result presented on Theorem 15 implies that

p2k = (−1)k+1Qk+1 (mod n)

4.4. Pollard’s p − 1 Factorization Algorithm 25

The above equation has the conditions to apply the Fermat Theorem if one squares both
sides of the equation.

The idea of continued fractions is to generate pairs (pk , Qk+1) and take suitable combinations
to produce a square on the right and to possibly factor n. An integer is a perfect square if and
only if the exponents in the prime factorization are all even. Hence, in order to find the products
of Qk that yield perfect square, their prime factorization needs to be calculated and combine
their factors so that the exponents become even. In that way, the factorization of Qk is obtained
by trial division.

A set of primes over which Qk factors is selected and then a factor base (Definition 12) is
found.

Algorithm 7. [The CFRAC Method]

1. Expand
√
n (or

√
cn) into a simple continued fraction expansion to some point m. Thus,

it follows that
√
n = [a0, a1, a2, · · · , am], m ∈ N (defined in Appendix B).

2. Generate pk −Qk pairs.

3. Among the set of pk −Qk pairs previously generated find certain subsets (the S-sets) that
have as property the product

∏
i

(−1)iQi of its Qi ’s to be a square. If no such set is found

go to Step 1

4. For each S-set found calculate the congruence X2 ≡
∏
i

pi ≡
∏
i

(−1)iQi = Y 2 (mod n),

where 1 ≤ X < n

5. Compute Y and the gcd(X − Y, n) = d for each one of the S-sets. If 1 < d < n for some
S-set, the method succeeds and d is a non-trivial factor of n. Otherwise, return to the
first step

Although the CFRAC method has been a great accomplishment in the 30’s, nowadays, due
to its limitations, this method has fallen into disuse. Yet their study is of great importance in
the context of the integer factorization problem, since many of the CFRAC method ideas are
the inspiration for the subsequent algorithms, often used nowadays.

4.4 Pollard’s p − 1 Factorization Algorithm

The Pollard’s p − 1 factorization method is not efficient for all numbers. However it is very
efficient for certain kinds of numbers.

Let n = pq be the number to be factored. The factorization result will be the factors p and
q. Suppose that an integer L was found with the properties

26 Chapter 4. Factorization

p − 1 divides L and q − 1 does not divide L

which implies that L = i(p − 1) and L = j(q − 1) + k , with i , j, k 6= 0 integers.
Applying Fermat’s Little Theorem to a randomly chosen a to compute aL,

aL = ai(p−1) = (ap−1)i ≡ 1 (modp)

aL = aj(q−1)+k = ak(aq−1)j ≡ ak (modq)

If a given number w is congruent to 1 modulo a factor of n, then the gcd(w − 1, n) will be
divisible by that factor.

Without loss of generality, let’s consider only the case of the exponent p − 1. The idea of
the Pollard’s p − 1 factorization algorithm is to turn de exponent of a into a large multiple of
p − 1. Thus, this will be a number with many prime factors. Generally, in order to achieve the
increase of the product of all prime powers less than some limit, r is taken. Hence, it starts with
a random a and it is repeatedly replaced by ax (mod n) as x runs through those prime powers.
At each stage gcd(a − 1, n) is checked to be or not to be equal to 1.

Algorithm 8. [Pollard’s p − 1 Factorization Algorithm]

1. Set a with some convenient value. Let’s say a = 2

2. For some r ∈ N, for j = 1, 2, 3, · · · , r

• Set a = aj (modn)

• Compute d = gcd(a − 1, n)

• If 1 < d < n the algorithm was succeed. Return d

increment j

The running time of this algorithm is O(r log r log2 n). Thus, although the algorithm is more
likely to produce a factor of n with larger values of r , the algorithm will run slower with those
values.

Pollard’s p−1 factorization algorithm may not be the most efficient algorithm to factor large
numbers. However, this approach is important in relation to the construction of cryptographic
algorithms that base their security in the hard problem that is to factor large integers, like RSA
does.

To avoid the dangers of Pollard’s p − 1 method when creating RSA keys one just need to
check if the chosen secret primes p and q have the property that neither p− 1 nor q− 1 factors
entirely into small primes.

4.5. Elliptic Curve Method 27

4.5 Elliptic Curve Method

In 1985, Hendrik Lenstra had the thought of using Elliptic Curves to factor integers. There
are assumptions that the method developed by Lenstra is based on Pollard’s p − 1 method
(Chapter 4.4), which is a variant of Pollard’s p method. This method is a fast, sub-exponential
running time algorithm for integer factorization that operates with elliptic curves.

The Lenstra’s Elliptic Curve Algorithm is describe below:

Algorithm 9. [Lentra’s Elliptic Curve Algorithm]

1. Choose integers a, x1, y1 such that 1 < a, x1, y1 < n

2. Let E be the elliptic curve E : y2 = x3 + ax + b where b = y21 − x31 − ax1 (mod n) and
set P = (x1, y1) ∈ E

3. For some r ∈ N compute, for j = 1, 2, 3, · · · , r

jP (mod n) =

r∑
j=1

P (mod n) = r !P

and set P = Q

At each stage of the previous addiction, there are three things that may happen:

• The calculation of the sum can be successfully computed. Go to step 1 and choose
another curve and another point

• Along the computation of the sum there may be necessary to find the reciprocal of
a number, d , that is a multiple of n, which would not be helpful (this case is very
unlikely to occur). Go to step 1 and choose another curve and another point

• Along the computation of the sum there may be necessary to find the reciprocal
of a number, d , that satisfies the condition 1 < gcd(d, n) < n. In this case the
computation of r !P fails but the value of gcd(d, n) is a non-trivial factor of n and
the algorithm was succeed. A non-trivial factor of n is calculated. Return the non-
trivial factor

The time complexity revolve around the size of the prime, p, rather than revolving around
n itself. The running time is O(e

√
2(log p)1/2(log log p)1/2) ([Hoffstein et al., 2008]), where n is the

integer to be factored and p is smallest prime factor. This dependence makes the Elliptic Curve
Method ideal for finding moderately large factors of large integers. In real cases, this method
has been used to find 43-digits factors, but nothing larger.

28 Chapter 4. Factorization

4.6 Quadratic Sieve

The Quadratic Sieve (QS), was invented by Carl Pomerance in 1981 and was the fastest
known factoring algorithm until the Number Field Sieve was discovered in 1993 ([Pomerance,
1982]). Still, the QS is faster than the Number Field Sieve for numbers up to 110 digits long.

Let n be the number to be factor. The goal of the QS method is to find two numbers x and y
such that x 6≡ ±y (mod n) and x2 ≡ y2 (mod n), which implies that (x−y)(x+y) ≡ 0 (mod n).
The Euclidean algorithm is then used to check if gcd(x − y , n) is a non-trivial factor of n. To
do this, one has to define

Q(x) = (x + b
√
nc)2 − n = x̃2 − n

and then compute Q(x1), Q(x2), · · · , Q(xk) and, from all of these, one of them is chosen such
that Q(xi1)Q(xi2) · · ·Q(xir) is a square, y2.

To check if the product above is a square, the exponents of the prime factors of the product
need to be all even. Thus, Q(xi) needs to be a factor and, in order to make this task easier
Q(xi) needs to be small as well as the prime numbers which factor it need to be small. Those
prime numbers compose a factor base (Definition 12), B. To make Q(x) small, the selection of
x needs to be close to zero. Thus, a bound, M, needs to be set and only consider the values of
x over the sieving interval [−M,M]. If x ∈ [−M,M] and if some prime p divides Q(x),

(x + b
√
nc)2 ≡ n (mod p)

and thus n is a quadratic residue (mod p) and the primes in B must be primes such that the
Legendre symbol, (

n

p

)
= 1

Some values of x ∈ [−M,M] are chosen, Q(x) is calculated and the result is checked to see
if it totally factors over B. If the result is positive, it is said to have smoothness, but if the result
is not positive, the element is excluded and the next element of the sieving interval is chosen.

The most efficient way to do those computations is to work in parallel with the entire sieving
interval, since checking out all the primes of a large factor base is an inefficient task to do
separately.

Since Q(x) ≡ x̃2 (mod n) for all x ,

Q(xi1)Q(xi2) · · ·Q(xir) ≡ (xi1xi2 · · · xir)
2 (mod n)

If all the conditions hold, the factors of n are found.

4.7 General Number Field Sieve

The General Number Field Sieve (GNFS) algorithm can be seen as an improvement to the
Quadratic Sieve (Chapter 4.6) algorithm.

4.8. RSA Modulus Factorization 29

The GNFS is an incredibly complex algorithm which uses results from several fields of math-
ematics. Only a brief explanation is going to be described in this chapter and for an extensive
explanation the reading of [Pomerance, 1996] is recommended.

To factor a number n, two polynomials with integer coefficients f (x) and g(x) of degrees d
and e, respectively (d and e should be small integers), are chosen. The chosen polynomials should
be irreducible over the rationals and the equations f (x) = 0 (mod n) and g(x) = 0 (mod n)

must have one common solution, m.
Let r1 and r2 be the roots of f and g and Z[r1] and Z[r2] the field rings over r1 and r2. The

functions f and g have degree d and e, respectively, and all its coefficients are integers. Thus,
for a, b integers, r = bd f (a/b) and s = beg(a/b) are also integers. The aim of the GNFS
algorithm is to find the values of a and b that simultaneously make r and s smooth (Definition
13) relative to the chosen factor basis (Definition 12).

Finding enough pairs of a and b in the above conditions, by the application of the Gaussian
elimination, the products of r and of the corresponding s can be obtained so that they are
squares at the same time.

m is a root of f and g (mod n), hence there are homomorphisms from the rings Z[r1] and
Z[r2] to the ring Z/Zn, which map r1 and r2 to m. These homomorphisms will map each square
root previously found into its representative integer. The product of the factors a−mb (mod n)

can be obtained as a square for each homomorphism. Thus, two numbers can be found, x and
y , with x2 − y2 divisible by n. The factor of n can be found by calculate the greatest common
divisor of n and x − y .

The GNFS is the fastest known general purpose method for factoring large integer numbers.
The GNFS complexity is O(e1.93(log n

1/3·(log log n)2/3)) ([Boneh, 1999]).

4.8 RSA Modulus Factorization

The security of the RSA cryptosystem relies on the difficulty of factoring large integers.
A 512-bit RSA moduli would be feasible to factor. In fact, in 1999 [Cavallar, 2000] factored
a 512-bit RSA modulus using the Number Field Sieve. A 1024-bit modulus is suggested for
corporate usage. If the aim is a permanent use, a 2048-bit is suggested. These suggestions
have already considered the possible advances in factoring techniques and the speed processor
increasing. [Riesel, 1994] showed that an algorithm that factor integers and runs practically in
polynomial time is possible to create.

A revolutionary proposal came from [Shor, 1997] who discover an algorithm capable to factor
integers in polynomial time if a quantum computer is ever built with a sufficient number of qubits.
If ever this accomplishment is achieved, RSA is expected to fall into disuse in benefit of other
encryption schemes, as the moduli required to RSA to be secure would be much larger than
what would be convenient.

Chapter 5

Recent Attacks on RSA Keys

He attacked everything in life with a mix of extraordinary
genius and naive incompetence, and it was often difficult
to tell which was which.

Douglas Adams

An efficient attack to RSA keys was successful performed on certified smart cards of Taiwan,
in 2013. This attack was inspired by the results of [Heninger et al., 2012] and [Lenstra et al.,
2012].

In 2003, Taiwan introduced an e-government initiative to provide a national public-key in-
frastructure for all citizens. This national certificate service allows citizens to use a "smart" ID
card to digitally authenticate themselves to government services. The RSA keys are generated
by the cards, digitally signed by a government authority, and placed into an online repository of
"Citizen Digital Certificates". On some of the smart cards the random number generators used
for key generation are fatally damaged, and have generated real certificates containing keys that
provide no security whatsoever.

The attack consisted on finding the factorization of RSA generated modules and it was
performed in distinct 1024-bit RSA keys downloaded from Taiwan’s national "Citizen Digital
Certificate" database. Those keys were generated by government-issued smart cards that have
built-in hardware a random number generators that are advertised as having passed FIPS 140-2
Level 2 certification ([FIP, 2002]). The attack that led to the [Bernstein et al., 2013] paper
efficiently factored 184 distinct RSA keys out of more than two million 1024-bit RSA keys in
the conditions described before. Among the 184 keys factored, 103 of them share prime factors
and are efficiently factored by a batch-GCD (see Chapter 5.1.1) computation, which is the same
type of computation that was used in 2012 by the two independent teams [Heninger et al., 2012]
and [Lenstra et al., 2012] to factor tens of thousands of cryptographic keys on the Internet. If
103 RSA keys shared prime factors then, the left 81 keys of the 184 factored keys do not share
primes and, in order to factor them, a deeper advantage of randomness-generation failures is
required: first the shared prime numbers are used as a springboard to characterize the failures
and then the Coppersmith-type partial-key-recovery attacks are used. This attack had a great
impact due to be the first successful public application of Coppersmith-type attacks to RSA keys

31

32 Chapter 5. Recent Attacks on RSA Keys

found in the wild.

The efficiency of this attack has inspired the attempt to apply the same attack on the RSA
keys provided by a Luna SA hardware security module (HSM) that has also certifications of FIPS
140-2, Level 2 among with Level 3, approved DRBG (SP 800-90 CTR mode), Common Criteria
EAL4+ and BAC & EAC ePassport Support, which is mainly used for cryptographic purposes.
Thus, a similar approach was carried out in the HSM Luna SA generated RSA keys.

In the first part of this chapter the whole process of the attack performed in [Bernstein et al.,
2013] attack will be explained. Then the results on the application of this attack on RSA keys
generated by HSM Luna SA will be discussed.

5.1 How the attack works

The bottom line of [Bernstein et al., 2013] work was the use of the basic attack used in
[Heninger et al., 2012] and in [Lenstra et al., 2012]. In those works, the two teams, working
individually, exploited bad randomness to break tens of thousands of keys of SSL certificates on
the Internet, a similar number of SSH host keys and a few PGP keys. So, [Bernstein et al.,
2013] started by scanning the pairs of distinct keys that share a common divisor using the batch-
GCD attack (see Chapter 5.1.1). The calculated shared primes provide enough data to build
a model of the prime generation procedure, since there are visible patterns of non-randomness
in the primes generated by the smart cards. The next step was to do an extrapolation from
those primes: [Bernstein et al., 2013] hypothesised a particular model of randomness-generation
consistent with some of the common divisors. In this approach they were able to generate 164
different primes, and to test all of those batch trial division. With the obtained results they
successfully factored further keys.

There are also several prime factors that are similar to the 164 patterns but that contain
sporadic errors: some bits are flipped here and there, or there exists short sequences of altered
bits. Thus, [Bernstein et al., 2013] mounted several Coppersmith-style lattice-based partial-key-
recovery attacks to efficiently find prime divisors close to the patterns (Chapter 5.1.2). Those
attacks produced various additional factorizations, raising the total factored keys to 184. At
the end, nearly half of the factored keys did not share any common divisors with the other keys.
Most of them were factored by the Coppersmith-style attacks.

From this attack, the idea of centrally testing RSA moduli for common divisors as a mecha-
nism to detect some types of randomness-generation failure was endorsed. Since finding repeated
prime numbers is more than an indication that those RSA keys are vulnerable. In fact, that shows
that the underlying randomness-generation system is malfunctioning. However, an absence of
common divisors is not an indication of security. There are many potential vulnerabilities re-
sulting from bad randomness. It is important to thoroughly test every component of a random
number generator, not merely to look for certain types of extreme failures.

5.1. How the attack works 33

5.1.1 Batch-GCD

The approach used in [Bernstein et al., 2013] was the same approach used in [Heninger
et al., 2012] and [Lenstra et al., 2012] for detecting common factors in a collection of the
Citizen Digital Certificates RSA keys.

Let N1 = pq1 and N2 = pq2 be two distinct RSA moduli that share exactly one prime factor
p. The greatest common divisor (GCD) of N1 and N2 will be p.

Computing the GCD is fast, and dividing it out of N1 and N2 produces the other factors
q1 and q2. This type of vulnerability should never arise in properly generated RSA keys, but
[Heninger et al., 2012] and [Lenstra et al., 2012] observed weak random number generators
producing keys with repeated factors in the wild, as well as [Bernstein et al., 2013] observed
repeated factors among the Citizen Digital Certificates.

Instead of the naive quadratic-time method of doing the GCD computation (checking each
N1 against each N2), [Bernstein et al., 2013] used a faster batch-GCD algorithm that use
product and remainder trees described in [Heninger et al., 2012] and [Bernstein, 2004].

Briefly, the batch-GCD can be described as follows ([bat, 2012]).
Given a n length sequence X of positive integers, the batch-GCD algorithm computes the

follow sequence:

gcd{X[0], X[1]X[2]X[3] . . . X[n − 1]}
gcd{X[1], X[0]X[2]X[3] . . . X[n − 1]}
gcd{X[2], X[0]X[1]X[3] . . . X[n − 1]}
...
gcd{X[n − 1], X[0]X[1]X[2] . . . X[n − 2]}

The computation of these greatest common divisors allows checking which integers share
primes with other integers in the sequence X. If gcd{X[0], X[1]X[2]X[3] . . . } = 1, then X[0]

has no primes shared with any of X[1], X[2], . . . , X[n − 1]. If gcd{X[0], X[1]X[2]X[3] . . . }
is larger than 1, then X[0] must have at least one shared prime. This gcd will often simply
equal the shared primes. If X[0] shares one prime with X[1] and another prime with X[2] then
more calculations are required to separate those primes and this can become a speed problem if
such sharing is very common. However, this problem can be handled at tolerable speed by more
complicated algorithms for "factoring into coprimes".

The batch-gcd algorithm is much faster than separately computing each gcd, or the gcd of
each pairs.

Algorithm 10. [Batch-GCD Algorithm]

The batch-gcd algorithm has three steps:

1. A product tree is used to efficiently compute the product

34 Chapter 5. Recent Attacks on RSA Keys

Z = X[0]X[1]X[2]X[3] . . . X[n − 1]

2. A remainder tree is used to efficiently compute

Z
(

mod X[0]2
)
, Z
(

mod X[1]2
)
, . . . , Z

(
mod X[n − 1]2

)
3. The i th remainder is divided by X[i], and the gcd of the result is computed with X[i].

Experimental Results

In this work the implementation of the batch-GCD algorithm was done in Java 8 using the
Eclipse STS interface. The implemented algorithm ran in a TOSHIBA computer with Windows
8.1 Pro 64 bits operating system, 8192Mb RAM and a Intel(R) Core(TM) i5-2520M CPU
2.50GHz (4 CPUs). The implementation ran over ten batches of 5000 distinct 1024-bit RSA
moduli and no common factors were found. The same approach was taken for 512-bit RSA
moduli and 2048-bit RSA moduli and no common factors were found neither. The computation
for each batch of 5000 512-bit RSA moduli it took about 1 hour to finish; for the 5000 1024-bit
RSA moduli took about 5 hours and for the 5000 2048-bit RSA moduli took about 12 hours to
finish.

5.1.2 Coppersmith-style attacks

Coppersmith’s method ([Coppersmith, 1996] and [Coppersmith, 1997]) is a method based
in the use of lattice basis reduction ([Menezes et al., 1996]) that factors RSA moduli if at least
half of the top bits of the primes are known. Coppersmith’s method runs in polynomial-time.

[Bernstein et al., 2013] uses the Univariate Coppersmith attack and the Bivariate Copper-
smith attack. Although none of these attacks has been used in the modulus produced by the
HSM Luna SA, a brief description of each one of these attacks, based on the description present
in [Bernstein et al., 2013] is done. The attacks had not being used in the modulus produced
by the Luna SA, since no common factor were previously found, contrary to what happened in
[Bernstein et al., 2013].

Univariate Coppersmith

Let p = a + r be the prime factor of n, where a is a known 512-bit integer and r is a small
integer error to account for a sequence of bit errors among the least significant bits of p.

In the Coppersmith method, and following the [Howgrave-Graham, 2001] approach, the
polynomial f (x) = a+x can be written. It will be calculated a root, r of f modulo a large divisor
of n. Let X be the bound on the size of the root. This divisor is going to be approximately
n1/2 ≈ p. A new polynomial, g(x), where g(x) = 0, is going to be constructed over the integers
using the lattice basis reduction. Thus, by factoring g, one can discover r .

Let L be the lattice generated by the rows of the basis matrix

5.1. How the attack works 35

X2 Xa 0

0 X a

0 0 n

corresponding to the coefficients of the polynomials Xxf (Xx), f (Xx), n. Any vector in L can
be written as an integer combination of basis vectors. If one divides those basis vectors by the
appropriate power of X, one will have the coefficients of a polynomial, g(x). Thus, g(x) is an
integer combination of f and n and thus it is divisible by p by construction. A prime p is found
by this method only if the function g found satisfies the condition g(ri) ≡ 0 (mod p) not only
modulo p but all over the integers. The latter is ensured if the coefficients of g are sufficiently
small. Finding the sufficiently small coefficients of g to ensure the previous condition is the same
as finding a short vector in L.

The application of the LLL basis reduction algorithm, that can be found in [Lenstra et al.,
1982], enables to find the short vector.

In the last step of the algorithm, the shortest vector in the reduced basis is regarded as the
coefficients of a polynomial g(Xx) and the roots ri of g(x) are computed and the condition
a + ri divides n is checked. If so, n has been factored.

The length of the shortest vector, v is

|v | ≤ 2(dim(L)−1)/4(det(L))1/dim(L)

which will be smaller than p for the attack to succeed.

Bivariate Coppersmith

This attack is an extension of the previous attack. It intends to factor keys with unpredictable
bits amongst the middle or from the most significant bits of one of the factors, without addressing
to brute-force of the bottom bits.

Let p = a+ 2ts + r be a prime that factors n, where a is a 512-bit integer with a predictable
bit pattern, t is a bit offset where a sequence of bit errors s deviating from the predictable
pattern in a occurred during the key generation, and r is an error at the least significant bits.

Let’s consider the equation f (x, y) = a + 2tx + y . The lattice basis reduction is going to
be used to find new polynomials Qi(x, y). If f (s, r) vanishes modulo a large unknown divisor
p of n and s and r are substantially small, then Qi(s, r) = 0 over the integers. Qi(x, y) must
hold this property. In order to do that, the appropriate zeros of Qi should be found. The most
common method to achieve that is to take multiple distinct polynomials Qi and expect that
their common solution set is not too large.

Almost all the applications of multivariate Coppersmith methods demand a heuristic assump-
tion that the attacker can obtain two or various algebraically independent polynomial equations
determined by the short vectors in a LLL-reduced lattice. This requirement gives authorization
for the attacker to compute a finite set of common solutions.

Many cryptanalytic applications use these kinds of bivariate Coppersmith attack. One of
those applications is the Boneh and Durfee’s attack against RSA private key d < n0.29 in

36 Chapter 5. Recent Attacks on RSA Keys

[Boneh and Durfee, 1999]. The approach used in [Bernstein et al., 2013] is identical to the
approach described by Herrmann and May for factoring RSA modulus with some known bits, in
[Herrmann and May, 2008].

Chapter 6

Randomness

It may be taken for granted that any attempt at defining
disorder in a formal way will lead to a contradiction. This
does not mean that the notion of disorder is contradictory.
It is so, however, as soon as I try to formalize it.

Hans Freudenthal

Randomness is often defined as the outcome of an experiment, where, no matter how many
times the experiment is done, the next outcome is unpredictable. Nonetheless this definition,
the real question is: how can something be defined as random?

For example, in the area of artificial intelligence (AI), there is a proposed test to decide if
a computer program possesses artificial intelligence or not. This test consists on the following
set up, there are two rooms, one has a single person in front of a computer terminal that
allows he/her to ask questions to another room. On this other room there are 2 responders, a
computer running AI-software and a human being. The task is for the person on the first room
to decide, by asking questions and making conversation, which one of the two is responding to
the conversation. If judgements are correct as often as incorrect, the AI-software is said to pass
the test.

Is there some similar test that decides if a source is random or not? One way to do it is to
measure the randomness in the studying source and compare the results with true randomness.
This measurement and comparison can be done by computer testing programs. If the results are
indistinguishable, the source is said to pass the test and it is considered to be a random source.
Otherwise, the source is not considered to be random. The only problem is that it seems very
hard to do such testing, using “all” possible testing software. However, it has been shown that
the testing process can be restrict to a single test (or class of tests) that covers all aspects.

Generating random numbers is critical to the security of cryptographic systems. Nevertheless,
it is also very difficult to accomplish. Non-deterministic behaviour is considered to be a fault
in almost every component of a computer but it is a vital component of a random numbers
generator. Several national and international standards for random numbers generation specify
the correct behaviour one wants to achieve for this kind of systems.

37

38 Chapter 6. Randomness

6.1 Random and Pseudorandom Numbers

The random and pseudorandom numbers are fundamental to many cryptographic applica-
tions. In fact, in almost all cryptosystems the keys used must be generated in a specific random
way and, for example, many cryptographic protocols like authentication and digital signatures
protocols require random or pseudorandom inputs at various points.

A random bit sequence is the result of a random choice between the numbers 0 or 1 for
each bit. The probability of choosing the value 0 or the value 1 must be exactly 1/2. Also, the
choices of the value must be independent: the choice of a certain bit must not affect the choice
of the following one. This unbiased choice of bits is considered to be the perfect random stream
generator, since the possible values for each bit are randomly distributed, following a uniform
distribution.

Pseudorandomness refers to a distribution on strings. When a string of length l is said to
follow a pseudorandom distribution D this means that D is indistinguishable from the uniform
distribution over strings of length l , which means that it is infeasible for any polynomial-time
algorithm to tell whether it is a string sampled according to D or an l-bit string chosen uniformly
at random. Pseudorandomness is a computational relaxation of true randomness.

The distributions D are defined by choosing a random seed s ← {0, 1}n uniformly at random
and then outputting G(s) ∈ {0, 1}l . The distribution D define the string y ∈ {0, 1}l as output
with the exact probability

|{s ∈ {0, 1}n} | G(s) = y}|
2n

which will, in general, not be the uniform distribution ([Katz and Lindell, 2007]).
There are two different strategies for generating random bits: the bits can be produced

non-deterministically or they can be computed deterministically by using a certain algorithm.
The generators that use the first strategy are known as random bits generators (RBGs) which
originate the Random Numbers Generators (RNGs), and the generators that use the second
strategy are known as deterministic random bits generators (DRBGs) which, in their turn, origi-
nate the Pseudorandom Numbers Generators (PRNGs). The DRNG produce a sequence of bits
by instantiate the used algorithm with an initial value that is determined by the seed set from
the input entropy. Those bits are said to be pseudorandom bits instead of random bits because
of the deterministic nature of their generation process. The seed used to instantiate the DRBG
must contain sufficient entropy to provide a randomness assurance and it must be kept secret.
If these properties are ensured and if the algorithm is well designed, the bits outputted by the
DRBG will be unpredictable.

Both RNGs and PRNGs produce a stream of zeros and ones that may be divided into
substreams or blocks of random numbers.

Another important feature of a bitstream generation is its unpredictability. This means all
elements of the sequence must be generated independently, i.e., for all position i it should not
be possible to predict the value of the position i + 1, regardless of how many of the elements
have already been produced.

6.2. Random Number Generators (RNGs) 39

The unpredictability of the random numbers can be divided into two notions of unpredictabil-
ity: the forward unpredictability and the backward unpredictability.

The forward unpredictability is the property that, if the seed is unknown, guarantees the
unpredictability of he next output number, once known all the previous outputted numbers.

The backward unpredictability is the property that guarantees the incapacity of knowing the
seed used to produce a certain random number from the knowledge of the already generated
values.

The generation of a truly random sequence is impracticable for cryptographic purposes.
However, the truly random number generator outputs serve as a benchmark for the evaluation
of random and pseudorandom number generators.

6.2 Random Number Generators (RNGs)

In order to produce randomness, a RNG uses an entropy source as a non-deterministic source,
along with a processing function, also known as a distillation process that is needed to overcome
any weakness in the entropy source that may result in non-random numbers.

The outputs of a RNG can be used in two different ways: they can be used directly as
random numbers or they can be introduced in a PRNG for latter processing. For the random
numbers generated by a RNG to be used directly as random numbers, they need to satisfy strict
randomness criteria measured by statistical tests in order to determine whether the physical
sources of the RNG inputs appear to be random. For cryptographic purposes, the output of a
RNG needs to be unpredictable but some physical sources are quite predictable, which can be
a problem. One possible solution to this problem is to use distinct entropy sources combined
to generate the inputs of a RNG. However, this is not the the ideal solution since the resulting
outputs from the RNG may still be deficient when evaluated by statistical tests.

A disadvantage of using a RNG is the time consuming. Thus, the production of large
quantities of high-quality random numbers is preferable to be done with a PRNG.

6.3 Pseudorandom Number Generators (PRNGs)

A PRNG is a deterministic algorithm that uses one or more truly random inputs, called seeds
(which have short length), and generates multiple pseudoramdom numbers by stretching the
seed into a long string. Concluding, a pseudorandom generator uses a small amount of true
randomness in order to generate a large amount of pseudorandomness.

Definition 4. [Katz and Lindell, 2007] Let l(•) be a polynomial and let G be a deterministic
polynomial-time algorithm such that upon any input s ∈ {0, 1}n, G outputs a string of length
l(n). G is a pseudorandom generator if the following two conditions hold:

1. Expansion: For every n, l(n) > n.

2. Pseudorandomness: For all probabilistic polynomial-time distinguishers, D, there exists a
negligible function, negl , such that

40 Chapter 6. Randomness

P r [D(r) = 1]− P r [D(G(s)) = 1] ≤ negl(n)

where r is chosen uniformly at random from {0, 1}l(n), the seed s is chosen uniformly at
random from {0, 1}n, and the probabilities are taken over the random coins used by D and
the choice of r and s.

The function l(•) is called the expansion factor of G.

If G is a PRNG it is guaranteed that there do not exist any polynomial-time procedures that
succeed in distinguishing random and pseudorandom strings, which means that pseudorandom
strings are just as good as truly random ones, as long as the seed is kept secret and only
polynomial-time observers are considered.

There must not be any correlation between the seed, s, and the generated numbers. In
most of the cases, the pseudorandom generating algorithms are publicly available. Thus, the
choice of the seed must be carefully handled and it must be kept secret because once the seed is
known, all the values produced by the PRNG are known. Thereby it is not possible to ensure the
forward unpredictability property. The PRNG must ensure either the forward as the backward
unpredictability and, in addition, the seed itself must be unpredictable. In addition, s must be
long enough in order to be impossible to efficiently do a brute-force attack.

By default, a PRNG should obtain its seeds from the outputs of an RNG for the seeds to be
random and unpredictable. Thus, a PRNG requires a RNG.

In fact, all the randomness relies on the seed generation, since the outputs of a PRNG are
deterministic functions with the seed as an input. The term pseudorandom come out due to the
deterministic nature of the PRNG. Each element of a pseudorandom sequence is reproducible
from its seed. So in the requirement of reproduction or validation of the pseudorandom sequence
the seed needs to be known, which leads to the conclusion that the seed has to be saved in
those cases.

As said before, a pseudorandom string is a string that looks like a uniformly distributed string,
as long as the algorithm that is testing it runs in polynomial time. In a properly constructed
pseudorandom sequence each value in the sequence is produced from the previous value via
transformations that appear to introduce additional randomness. These transformations provide
better statistical properties for the outputs of a PRNG and in addition, the outputs of a PRNG
can be produced faster than the outputs of a RNG.

When a seed has sufficient entropy and when it is possibly de-skewed and mixed (see Sections
6.6.2 and 6.6.3), it is possible to algorithmically extend that seed to produce a large number
of cryptographically-strong random quantities. Such algorithms are platform independent and
can operate in the same way in any computer. For the algorithms to be secure, their input and
internal work must be protected from the observation of an attacker.

Usually it is better to use a pseudorandom string rather than a truly random string since a
long pseudorandom string can be generated from a relatively short random seed (or key) while
the generation of a random string is too time consuming.

So, is there any entity that satisfies Definition 4? There is no way to unequivocally prove
the existence of pseudorandom generators. However the belief that pseudorandom generators

6.3. Pseudorandom Number Generators (PRNGs) 41

exist is based on the fact that they can be constructed under the assumption that one-way
functions exist ([Katz and Lindell, 2007]). In fact there are long-studied problems that do not
have any known efficient algorithm to solve them and that are widely assumed to be unsolvable
in polynomial-time, like the discrete logarithm problem (Definition 3) and the problem of integer
factorization (Chapter 4). So, one-way functions, and hence pseudorandom generators, can be
constructed under the assumption that these problems are truly "hard" to solve.

6.3.1 Failed Algorithms

Pseudorandom number generation algorithms must be designed so that they are not suscep-
tible to failures to occur. There have been many ideas that might seem reasonable to ensure
the security of pseudorandom numbers generation but led precisely to the opposite situation.

The Fallacy of Complex Manipulation
One approach that may give a misleading appearance of unpredictability is to take a very

complex algorithm to calculate a cryptographic key using as input a seed provided by some
limited data such as the value of the computer system clock.. Adversaries who roughly knew
when the generator has started would have a relatively small number of seed values to test, as
they would know likely values of the system clock.

A very strong or complex manipulation of data may not be a solution if the adversary can
learn the manipulation that is been done and if there is not enough entropy in the starting seed
value. The attackers can usually use the limited number of results generated from a limited
number of seed values to defeat security.

A very complex pseudorandom number generation algorithm does not necessarily produce
strong random numbers and it can be a serious strategic error when there is no theory behind
or algorithm analysis.

If there exists only a limited range of seeds, a complex manipulation do not help and, in fact,
a blindly-chosen complex manipulation can destroy the entropy in a good seed.

The Fallacy of Selection from a Large Database
Another approach that can give a misleading appearance of unpredictability is to randomly

select a bits sequence from a database and to assume that its strength is related to the total
number of bits in the database.

For example, this argument is valid when sequences are selected from the data on a publicly
available CD/DVD recording or from any other large public database. If the adversary has
access to the same database he/she is able to break the system. However, if the adversary has
no access to the database, this type of selection may be of help.

The Fallacy of Traditional Pseudorandom Sequences
Traditional sources of "pseudorandom" numbers typically start with a seed quantity and use

simple numeric or logical operations to produce a sequence of values.
A typical pseudorandom number generation technique is the linear congruence pseudorandom

number generator that uses modular arithmetic, where the value numbered as N + 1, VN+1, is
calculated from the value numbered as N, VN , by

42 Chapter 6. Randomness

VN+1 = (VN × a + b) (mod c)

with a, b, c integers.
This technique has a strong relationship to linear shift register pseudorandom number gen-

erators, which are well understood cryptographically. In such generators, bits are introduced at
one end of a shift register as the Exclusive Or of bits from selected fixed taps into the register.

The quality of traditional pseudorandom number generator algorithms is measured by sta-
tistical tests on such sequences. Carefully-chosen a, b, c values and initial V or carefully-chosen
placement of the shift register tap can produce excellent statistics.

Such sequences are not recommended to use in security applications since they are fully
predictable if the initial state is known. In fact, given VN it is possible to determine VN+1. It
has been shown that with these techniques, even if only one bit of the pseudo-random values
are released, the seed can be determined from short sequences.

6.3.2 Cryptographically Strong Sequences

In cases where a series of random quantities must be generated, an adversary may learn some
values in the sequence but he should not be able to predict other values from the ones that he
knows.

The correct technique is to start with a strong random seed, take cryptographically strong
steps from that seed ([Ferguson and Schneier, 2003], [Schneier, 1996]), and not reveal the
complete state of the generator in the sequence elements.

Output Feedback and Counter Mode Encryption Sequences
One way to produce a strong sequence is to take a seed value and hash the produced quan-

tities produced by concatenating the seed, for example, with successive integers and then mask
the obtained values in order to limit the amount of generator state available to the adversary.

In counter (CTR) mode encryption it is used an encryption algorithm with a random key
and seed value to encrypt successive integers. Alternatively, one can feedback all of the output
value from encryption into the value to be encrypted for the next iteration. This is a particular
example of output feedback mode (OFB) ([mod, 1980b], [mod, 1980a]).

To predict values of a sequence from other values when the sequence was generated by these
techniques is equivalent to break the cryptosystem or to invert the "non-invertible" hashing with
only partial information available. The less information revealed in each iteration, the harder it
will be for an adversary to predict the sequence. Thus, it is best to use only one bit from each
value. It has been shown that in some cases this makes a system impossible to break even when
the cryptographic system is invertible and it could be broken if all of each generated value were
revealed.

The Blum Blum Shub Sequence Generator
The Blum Blum Shub generator (BBS) (discussed with more detail in Section 6.7) is a simple

generator based on quadratic residues and it is considered to be a good generator ([Katz and
Lindell, 2007]).

6.4. Theoretical Constructions of Pseudorandom Objects 43

It has only one disadvantage: it is computationally intensive compared to the traditional
techniques seen before. However it is not a major drawback once it can be used for moderately,
infrequent purposes, such as generating key sessions.

Entropy Pool Techniques
Many modern pseudorandom number sources use as technique maintaining a "pool" of bits

and providing operations for strongly mixing the input with some randomness into the pool and
extracting pseudorandom bits from that pool.

The bits destined to be fed into the pool can come from any of the various hardware,
environmental, or user input sources discussed above. It is also common to save the state of
the pool on the system shutdown and to restore it on the re-starting, when stable storage is
available.

Care must be taken: enough entropy may be added to the pool to support particular output
uses desired.

6.4 Theoretical Constructions of Pseudorandom Objects

Although the constructions of pseudoramdom generators are not likely to be used in practice
([Katz and Lindell, 2007]),the existence of a strong theoretical component allows a more precise
analysis of the schemes that are actually used in real situations. In fact, the theoretical study
of this matter allows for a better understanding of how one could get security and what are the
minimal assumptions necessary to do so.

Some assumptions are necessary because an unconditional proof of the existence of pseudo-
random generators or pseudorandom functions would involve breakthroughs in complexity theory
([Katz and Lindell, 2007]). Thus, with the current understanding of complexity, a pseudorandom
function cannot be constructed from scratch and being prove mathematically that it is indeed
pseudorandom: the goal is to try to base the pseudorandom constructions on the "minimal
assumption" possible. Formally, a minimal assumption is one that is both necessary and suffi-
cient for achieving constructions of pseudorandom generators and pseudorandom functions. The
minimal assumption required is the existence of one-way functions. As a matter of fact, one-
way functions are a minimal assumption for cryptography in general, and not just for obtaining
pseudorandom generators and functions.

Definition 5. [One-way Function][Katz and Lindell, 2007]
A function f : {0, 1}∗ → {0, 1}∗ is called one-way if it holds the two conditions:

• Easy to compute: there exists a polynomial-time algorithm Mf such that for any input
x ∈ {0, 1}∗ outputs f (x).

• Hard to invert: for every probabilistic polynomial-time inverting algorithm A, there exists
a negligible function negl such that

P r [A(f (x)) ∈ f −1(f (x))] ≤ negl(n)

44 Chapter 6. Randomness

where the probability is taken over the uniform choice of x ∈ {0, 1}n and the random
choice of A.

It is only guaranteed that a one-way function is hard to invert when the input is uniformly
distributed and further, if x holds a long enough value.

Thus, f hides information about x , since the value of x is unknown to any polynomial-
time inverting algorithm, even when y = f (x) is given. However, any one-way function can be
inverted if enough time is given. Specifically, given a value y , it is always possible to simply try
all values of x by increasing its length until one of those values satisfy the condition f (x) = y .
This approach always succeeds but it runs in exponential time, which makes the existence of
one-way functions inherently an assumption about computational complexity and computational
hardness. Thus, a one-way function is a problem that can be solved but not in a feasible amount
of time.

It is important to clarify that a function that is not a one-way function is not necessarily
easy to invert. The converse of Definition 5 is that there exists a probabilistic polynomial-
time algorithm A and a non-negligible function ε such that A inverts f (x) for x ∈ {0, 1}n with
probability at least ε(n).

Definition 6. [One-way Permutation][Katz and Lindell, 2007]
Let f be a function with domain {0, 1}∗ and fn a function that restricts f to the domain

{0, 1}n, i.e., for every x ∈ {0, 1}n, fn(x) = f (x). Then, a one-way function f is called a one-way
permutation if for every n, the function fn is a bijection onto {0, 1}n.

Due to the fact that a one-way permutation is a bijection, for any value y there exists only
one preimage x and even though y fully determines x , it is still hard to find x in polynomial-time.

Definition 7. A tuple
∏

= (Gen, Samp, f) of probabilistic, polynomial time algorithms is a
family of functions if:

• The generation algorithm Gen, on input 1n, outputs parameters I with |I| ≥ n. Each
value of I defines the sets DI and RI that constitute the domain and range, respectively,
of the function f .

• The sampling algorithm Samp, on input I, outputs a uniformly distributed element of DI
(except possibly with probability negligible in |I| ≥ n).

• The deterministic evaluation algorithm f , on input I and x ∈ DI , outputs an element
y ∈ RI . We write this as y := fI(x).∏

is a family of permutations if for each value of I outputed by Gen(1n), it holds that DI = RI
and the function fI : DI → DI is a bijection.

A family of functions can be created, but in order to achieve the properties of an one-way
function or permutation, one has to define one-wayness for the family created. A way of doing
this is to run an inversion test, InvertA,∏(n), consisting of the following:

6.4. Theoretical Constructions of Pseudorandom Objects 45

• Gen(1n) is run to obtain I, and then Samp(I) is run to obtain a random x ← DI . Finally,
y = fI(x) is computed.

• I and y are given as an input for A, and outputs x ′.

• The output of the experiment is defined to be 1 if fI(x ′) = y , and 0 otherwise.

A function is one-way if success occurs in the above experiment with at most negligible
probability. This idea can be formalized:

Definition 8. A family of functions/permutations prod = (Gen, Samp, f) is called one-way if
for all probabilistic polynomial-time algorithms A there exists a negligible function negl such that

P r [InvertA,
∏(n) = 1] ≤ negl(n).

As said before, there is no way, at least nowadays, to prove one-way functions exist. So,
their existence is a conjecture based on some very natural computational problems that have
received many attention, and do not have yet an inversion algorithm that solves the problem in
polynomial-time. There are many candidates to be a problem with a one-way function. Perhaps
the most famous of these problems is the integer factorization (with the restriction on the length
of the number that one tries to factor: the numbers that will be multiplied must be large enough)
(Chapter 4) but there exists another ones like the discrete logarithm problem, the subset-sum
problem (one can read more about them in [Menezes et al., 1996], Chapter 3).

Hereupon, one may have the impression that x is completely unknown, even given f (x).
However, this is not the case. Indeed, a one-way function f may yield a lot of information about
its input, and yet still be hard to invert. The information truly hidden by f is called a hard-core
predicate.

Definition 9. [Hard-Core Predicate]
A polynomial-time computable predicate hc : {0, 1}∗ → {0, 1} is called a hard-core (hc)

of a function f if for every probabilistic polynomial-time algorithm A, there exists a negligible
function negl such that

P r
x←{0,1}n

[A(f (x)) = hc(x)] ≤
1

2
+ negl(n)

where the probability is taken over the uniform choice of x ∈ {0, 1}n and the random choice of
A.

So, a hard-core predicate hc of a function f is a function that outputs a single bit with the
following property: if f is one-way, then upon input f (x) it is infeasible to correctly guess hc(x)

with any non-negligible advantage above 1/2 (it is always possible to compute correctly hc(x)

with probability 1/2 by just randomly guessing it).
A hard-core predicate candidate has to be chosen carefully, because hc can be part of the

function output. Thus, the predicate hc(x) is not always a hard-core predicate and it can
be shown ([Katz and Lindell, 2007]) that for every given predicate hc , there exists a one-way
function for which hc is not a hard-core predicate of the function f .

46 Chapter 6. Randomness

Intuitively, a 1 − 1 function f has a hard-core predicate only if it is one-way because, given
the value f (x), a bijective function fully determines x . And if the function f is bijective and
is not one-way, it can be inverted, revealing the unique preimage x and thus, hc(x) can be
computed from f (x) with some non-negligible advantage. Hence, if a 1− 1 function is not one-
way it cannot have a hard-core predicate. The difficulty of guessing the hard-core of a bijective
function is due to its computational difficulty in calculating it. The hard-core predicates are used
in order to construct pseudorandom generators.

Following there will be described the steps needed in the construction of pseudorandom
generators and pseudorandom functions from one-way functions.

The function g(x, r) = (f (x), r) is going to be considered for each one-way function f . The
first step is to show that for every one-way function f , there exists a hard-core predicate for the
function g(x, r), where |x | = |r |. To do that, there exists the following theorem:

Theorem 8. Let f be a one-way function and define g(x, r) = (f (x), r). Then, the function
gl(x, r) = ⊕ni=1xi × ri , where x = x1, . . . , xn and r = r1, . . . , rn, is a hard-core predicate of g.

This theorem was proved by Goldreich and Levin and for more details of the demonstration
one can see [Goldreich and Levin, 1989]. If f is a bijection or a permutation, g is also a bijection
or a permutation, respectively, and if f is one-way, then g is also one-way. Due to the fact that r
is uniformly distributed and it can be seen as the factor that selects a subset for x , the function
gl(x, r) outputs a bit that consists of the exclusive-or of a random subset of the bits x1, . . . , xn
and it states whether f (x) hides the exclusive-or of a random subset of the bits of x or not.

For notation simplification, everytime f (x) is written, it is considered to be a one-way function
of the form g(x, r) = (f (x), r).

The next step in the construction is to show how hard-core predicates can be used to obtain
pseudorandom generators.

Theorem 9. Let f be a one-way permutation and let hc be a hardcore predicate of f . Then,
G(s) = (f (s), hc(s)) constitutes a pseudorandom generator with expansion factor l(n) = n+ 1.

If f is a permutation, for a uniformly distributed x it holds that f (x) is also uniformly
distributed and if hc is a hard-core of f , then the bit hc(x) looks random, even given f (x)

([Katz and Lindell, 2007]), because a polynomial-time algorithm can guess the value hc(x)

given f (x) with probability only negligibly greater than 1/2 and this is equivalent to say that it
looks random, or more formally, that it is pseudorandom.

It is very difficult to construct a pseudorandom generator that stretches the seed even by just
a single bit and the goal is to obtain many pseudorandom bits and therefore have a pseudorandom
generator with large expansion factors. Pseudorandom generators that stretch the seed by one
bit can be used to construct pseudorandom generators with any polynomial expansion factor
([Katz and Lindell, 2007]).

Theorem 10. Assume that there exist pseudorandom generators with expansion factor l(n) =

n + 1. Then, for every polynomial p(•), there exists a pseudorandom generator with expansion
factor l(n) = p(n).

6.4. Theoretical Constructions of Pseudorandom Objects 47

Thus, pseudorandom generators can be constructed from any one-way permutation.
The last step is to construct pseudorandom functions from pseudorandom generators:

Theorem 11. Assume that there exist pseudorandom generators with expansion factor l(n) =

2n. Then, there exist pseudorandom functions and pseudorandom permutations.

The following corollary results from the combination of the theorems 8 to 11.

Corollary 1. Assuming the existence of one-way permutations, there exist pseudorandom gen-
erators with any polynomial expansion factor, pseudorandom functions and pseudorandom per-
mutations.

This results are possible to obtain from any one-way function.
So, given f (s) for a random s, it is hard to guess the value of hc(s) with probability non-

negligibly higher than 1/2, which causes hc(s) to be a pseudorandom bit. Moreover, since f
is a permutation, f (s) is uniformly distributed. This facts make the string (f (s), hc(s)) to be
pseudorandom and one can conclude that the algorithm G(s) = (f (s), hc(s)) constitutes a
pseudorandom generator.

Theorem 12. Let f be a one-way permutation, and let hc be a hardcore predicate of f . Then,
the algorithm G(s) = (f (s), hc(s)) is a pseudorandom generator with l(n) = n + 1.

Proof. The theorem is proved by reduction: it is shown that if there exists a distinguisher D
that can distinguish G(s) from a truly random string, this distinguisher can be used to construct
an adversary A that guesses hc(s) from f (s) with probability that is nonnegligibly greater than
1/2.

By contradiction, let’s assume that there exists a probabilistic polynomial-time distinguisher
D and a non-negligible function ε(n) such that∣∣∣∣ P r

s∈{0,1}n
[D(f (s), hc(s)) = 1]− P r

r∈{0,1}n+1
[D(r) = 1]

∣∣∣∣ ≥ ε(n)

ε is called distinguishing gap. D is said to distinguish (f (s), hc(s)) from a random r with
probability ε(n). As a first step to construct an algorithm A that guesses hc(s) from f (s), the
fact that D can distinguish (f (s), hc(s)) from (f (s), hc(s)), where hc(s) = 1− hc(s) must be
demonstrated. In order to do this, one have to first note that

P r
s∈{0,1}n,β∈{0,1}

[D(f (s), β) = 1] =
1

2
· P r [D(f (s), hc(s)) = 1] +

1

2
· P r [D(f (s), hc(s)) = 1]

because with probability 1/2 the random bit β equals hc(s), and with probability 1/2 it equals
hc(s). Thus,

|P r [D(f (s), hc(s)) = 1]− P r [D(f (s), β) = 1]| =

= |P r [D(f (s), hc(s)) = 1]−
1

2
· P r [D(f (s), hc(s)) = 1]−

1

2
· P r [D(f (s), hc(s)) = 1]|

=
1

2
· |P r [D(f (s), hc(s)) = 1]− P r [D(f (s), hc(s)) = 1]|

48 Chapter 6. Randomness

where, in all of the probabilities above, s ← {0, 1}n and β ← {0, 1} are chosen uniformly
at random. By the contradicting assumption, and noticing that (f (s), β) is just a uniformly
distributed string of length n + 1,∣∣∣∣ P r

s∈{0,1}n
[D(f (s), hc(s)) = 1]− P r

s∈{0,1}n
[D(f (s), hc(s)) = 1]

∣∣∣∣ =

= 2 ·
∣∣∣∣ P r
s∈{0,1}n

[D(f (s), hc(s)) = 1]− P r
r∈{0,1}n+1

[D(r) = 1]

∣∣∣∣
≥ 2ε(n)

Without loss of generality let’s assume that P r [D(f (s), hc(s)) = 1] > Pr [D(f (s), hc(s)) =

1]. Let’s use D to construct an algorithm A that, given f (s), guesses hc(s). Upon the input
y = f (s), for a random s, the algorithm A works as follows:

1. σ ← {0, 1} is uniformly chosen.

2. D is invoked upon (y , σ).

3. If D returns 1, then A outputs σ. Otherwise, A outputs σ.

A should succeed because D outputs 1 when σ = hc(s) with a 2ε(n) probability more than
it outputs 1 when σ = hc(s). Thus, if σ = hc(s), A invokes D on the input (f (s), hc(s)) and
outputs hc(s) if and only if D outputs 1 upon the input (f (s), hc(s)). Likewise, if σ 6= hc(s),
A invokes D on the input (f (s), hc(s)) and outputs hc(s) if and only if D outputs 0 upon the
input (f (s), hc(s)). Continuing the analysis,

P r [A(f (s)) = hc(s)] =

=
1

2
· P r [D(f (s), hc(s)) = 1] +

1

2
· (1− P r [D(f (s), hc(s)) = 1])

=
1

2
+

1

2
· P r [D(f (s), hc(s)) = 1]−

1

2
· P r [D(f (s), hc(s)) = 1]

=
1

2
+

1

2
· (P r [D(f (s), hc(s)) = 1]− P r [D(f (s), hc(s)) = 1])

≥
1

2
+

1

2
· 2ε(n)

=
1

2
+ ε(n)

and thus A guesses hc(s) with probability 1/2 + ε(n). Since ε(n) is a nonnegligible function,
this contradicts the assumption that hc is a hard-core predicate of f .

A crucial point in creating a pseudorandom generator is in the property that states that its
construction allows expansion factor to be increase. It is shown that, in fact, any pseudorandom
generator can have an arbitrary polynomial expansion factor.

Theorem 13. If there exists a pseudorandom generator G1 with expansion factor l1(n) = n+ 1,
then for any polynomial p(n) > n, there exists a pseudorandom generator G with expansion
factor l(n) = p(n).

6.4. Theoretical Constructions of Pseudorandom Objects 49

Proof. Given an initial seed s of length n, the generator G1 can be used to obtain n + 1

pseudorandom bits. One of the n + 1 bits may be outputted, and the remaining n bits can be
used once again as a seed for G1. The reason for those n bits to be used as a seed is their
pseudorandomness, and therefore they are essentially as good as a truly random seed. This
procedure can be iteratively applied to output as many bits as desired.

The construction will be done as follows:

1. Let s ∈ {0, 1}n be the seed, and denote s0 = s.

2. For every i = 1, . . . , p(n), (si , σi) = G1(si−1) is computed, where σi ∈ {0, 1} and si ∈
{0, 1}n.

3. σ1, . . . , σp(n) is outputted.

Let’s proceed proving that G(s) is a pseudorandom string of length p(n). The proof is done
for the special and simple case of p(n) = 2. That is, the output of G(s) = (σ1, σ2). This is
not a pseudorandom generator, because the output length is shorter than the input length but,
nevertheless, it is helpful for understanding the basis of the proof. For a full proof one can check
[Katz and Lindell, 2007], Chapter 6.

The output (σ1, σ2) of G(s) is obtained in two stages: firstly by computing (s1, σ1) = G1(s)

and then by computing (s2, σ2) = G1(s1). Let’s consider an experiment with an algorithm G′

that receives n+ 1 random bits as input, denoted by s̃ ∈ {0, 1}n+1. Let s̃ [n] be the first n bits of
s̃ and let s̃n+1 be the last bit of s̃. Then, G′ works by computing (s2, σ2) = G1(s̃

[n]) and setting
σ1 = s̃n+1 (thus σ1 is uniformly distributed). As with G, the algorithm G′ outputs (σ1, σ2). For
every probabilistic polynomial-time distinguisher D there exists a negligible function negl such
that

∣∣∣∣ P r
s∈{0,1}n

[D(G(s)) = 1]− P r
s̃∈{0,1}n+1

[D(G′(s̃)) = 1]

∣∣∣∣ ≤ negl(n) (6.1)

This must be the case because otherwise D can be used by an algorithm D′ to distinguish
G1(s) from random in the following way: given a string w of length n+ 1, the algorithm D′ can
compute (s2, σ2) = G1(w

[n]) and define σ1 = wn+1 (exactly like G′). Then, D′ invokes D on
(σ1, σ2) and outputs whatever D outputs. There are some important observations:

1. If w = r is truly random, then the pair (σ1, σ2) prepared by D′ is identically distributed to
G′(s̃). Thus,

P r
r∈{0,1}n+1

[D′(r) = 1] = P r
s̃∈{0,1}n+1

[D(G′(s̃)) = 1] (6.2)

50 Chapter 6. Randomness

2. If w is the output of G1(s) for a random s ← {0, 1}n, then the pair (σ1, σ2) prepared by
D′ is identically distributed to G(s). In order to see this, note that in this case, σ1 is the
(n + 1)th bit of G1(s) and σ2 is the (n + 1)th bit of G1(s1), where s1 = G1(s)[n], exactly
as in the construction of G. Therefore,

P r
s∈{0,1}n

[D′(G1(s)) = 1] = P r
s∈{0,1}n

[D(G(s)) = 1] (6.3)

From equations (6.2) and (6.3),∣∣∣∣ P r
s∈{0,1}n

[D′(G1(s)) = 1]− P r
r∈{0,1}n+1

[D′(r) = 1]

∣∣∣∣ =∣∣∣∣ P r
s∈{0,1}n

[D(G(s)) = 1]− P r
s̃∈{0,1}n+1

[D(G′(s̃)) = 1]

∣∣∣∣
If equation (6.1) does not hold, this implies that D′ distinguishes the generator G1(s) from

random with non-negligible probability. This contradicts the assumption of G1 pseudorandom-
ness.

It is intended that for every probabilistic polynomial-time, D, there exists a negligible function
negl such that

∣∣∣∣ P r
s̃∈{0,1}n+1

[D(G′(s̃)) = 1]− P r
r∈{0,1}2

[D(r) = 1]

∣∣∣∣ ≤ negl(n) (6.4)

This proof is analogous to the proof done before. Specifically, if the equation (6.4) does
not hold, D can be used by an algorithm D′ to distinguish G1(s) from random as follows: given
a string w of length n + 1, the distinguisher D′ sets σ1 to be truly random and σ2 to be the
(n + 1)th bit of w . As above, there are some important observations:

1. If w = r is truly random, then the pair (σ1, σ2) prepared by D′ is truly random. Thus,

P r
w∈{0,1}n+1

[D′(w) = 1] = P r
r∈{0,1}2

[D(r) = 1] (6.5)

2. If w is the output of G1(s) for a random s ← {0, 1}n, then the pair (σ1, σ2) prepared by
D′ is identically distributed to G′(s̃). This follows because G′ sets σ2 to be the (n + 1)th

bit of the output of G1(s̃) and σ1 to be truly random. Therefore,

P r
s∈{0,1}n

[D′(G1(s)) = 1] = P r
s̃∈{0,1}n

[D(G′(s̃)) = 1] (6.6)

6.5. Testing Randomness 51

∣∣∣∣ P r
s∈{0,1}n

[D′(G1(s)) = 1]− P r
w∈{0,1}n+1

[D′(w) = 1]

∣∣∣∣ =∣∣∣∣ P r
s̃∈{0,1}n+1

[D(G′(s̃)) = 1]− P r
r∈{0,1}2

[D(r)) = 1]

∣∣∣∣
From equations (6.5) and (6.6),
If equation (6.4) does not hold, this implies that D′ distinguishes the generator G1(s) from

random with non-negligible probability. This contradicts the assumption of the pseudorandom-
ness of G1.

Lastly, combining equations (6.1) and (6.4), one can conclude that for every probabilistic
polynomial-time distinguisher there exists a negligible function negl such that∣∣∣∣ P r

s∈{0,1}n
[D(G(s)) = 1]− P r

r∈{0,1}2
[D(r) = 1]

∣∣∣∣ ≤ negl(n)

and so it is proven that G is pseudorandom. However, as mentioned, it is not a truly generator
because it only outputs 2 bits.

By combining the Theorem 12 construction, that states that G(s) = (f (s), hc(s)) is a
pseudorandom generator, together with the proof of Theorem 13 (maybe with some efficiency
improvement), it is obtained that for every polynomial p,

Gl(s) = (f p(n)(s), hc(s), hc(f (s)), . . . , hc(f p(n)−n(s)))

is a pseudorandom generator with expansion factor p(n), assuming that f is a one-way permu-
tation and hc is its hard-core predicate.

6.5 Testing Randomness

How can we access the level of randomness in the generated numbers?
Randomness is a probabilistic property. Thus, various statistical tests can be applied to a

sequence to attempt to compare and evaluate that sequence to a truly random sequence since
the likely outcome of statistical tests, when applied to a truly random sequence, is à priori known
and can be described in probabilistic terms. All statistical tests check for the presence or absence
of a pattern in the bits sequences evaluated. If a pattern is detected that would indicate that
the sequence is nonrandom. There are an infinite number of statistical tests but no finite set of
tests is deemed complete and the results of those tests must be interpreted with some care and
caution to avoid incorrect conclusions about a specific generator.

In this project, the statistical tests that will be reviewed are the statistical tests recommended
by the National Institute of Standards and Technology (NIST) to check if a given number passes
or fails the hypothesis of being random. The tests that will be used have as reference the package
of 15 tests provided by NIST named "A Statistical Test Suit for Random and Pseudorandom
Number Generators for Cryptography Applications" ([Rukhin et al., 2010]). Since NIST is

52 Chapter 6. Randomness

responsible for specifying safety standards, and since there is a package of tests created by
NIST that aim to test the patterns of randomness (standards set by NIST itself) of a given
sequence of bits, the choice of using this statistical test suit seemed the most obvious choice.
All tests in the test suit attempt to test the existence of any type of non-randomness in the
tested sequences. Most of the existing tests in the NIST test suit follow a standard normal
distribution and a chi-square distribution (χ2). The standard normal distribution is used to
compare the value obtained by the statistical test applied to the data with the expected value
in case of the existence of really randomness. The standardization of a normally distributed
random variable is done in order to always have a standard normal distribution, which enables
an easily determination of the associated probability with a range of values for that variable by
using a standardized distribution table. From now on, z represents the standardized random
variable and, thus, a normally distributed random variable can be standardized using the formula

z =
x − µ
σ

, where µ and σ2 are the mean and the variance values, respectively, of the statistic

test and x is the the value that is being standardized. The χ2 distribution is used to compare the
quality of the frequencies observed by the data adjustment with the frequencies corresponding

to the hypothesized distribution. The test statistic is of the form χ2 =
∑ (oi − ei)2

ei
, where oi

and ei are the observed and expected frequencies of occurrence of the measure, respectively.
For many of the NIST statistical tests presented in NIST statistical test suit, the assumption

that the size of the sequence length, n, is large (of the order 103 to 107) has been made.

6.5.1 How a Statistical Test Works

A statistical test is formulated to test a specific null hypothesis (H0) that is always associated
with an alternative hypothesis (Ha). In order to test randomness, the null hypothesis is that
the sequence being tested is random and the alternative hypothesis is that the sequence is not
random. The result of the applied statistical test is the acceptance or rejection of the null
hypothesis. If the conclusion of the applied test is to accept the null hypothesis it means that
the generator is producing random values, based on the tested data. Otherwise, if the conclusion
is to reject the null hypothesis, this means that the generator is not producing random values.

For each test, a relevant randomness statistic must be chosen and used to determine the
acceptance or rejection of the null hypothesis. Under an assumption of randomness, the statis-
tic chosen has a distribution of possible values and from this distribution, a critical value is
determined (typically 99%). During a test, a test statistic value is computed on the data and
then, this value is compared to the critical value. If it is greater than the critical value, the
null hypothesis for randomness is rejected. Otherwise, the null hypothesis is not rejected, i.e.,
the null hypothesis is accepted. If the randomness assumption is, in fact, true for the data
evaluated by the statistical test, the value of the calculated result will have a very low probability
of exceeding the critical value, i.e. the null hypothesis has a low probability of being rejected.
From a statistical hypothesis testing point of view, the low probability event should not naturally
occur and, therefore, if the calculated statistic test value exceeds the critical value, i.e., if the
low probability event occurs, the conclusion is that the original assumption of randomness is
suspect or faulty.

6.5. Testing Randomness 53

Concluding, statistical hypothesis testing may give two possible outcomes: accept H0 (con-
cluding the data is random) or reject H0 (concluding the data is non-random).

However, a statistical test can give an outcome that does not conclude the real information
about the data.

H0 is true H0 is false
Accept H0 Right conclusion Type II error
Reject H0 Type I error Right conclusion

Table 6.1: True status of the data available for analysis and the conclusion arrived by the usage of the testing
procedure. An important observation is that the status of the data available for analysis is unknown in almost all
the cases, in fact, that is why the statistical tests are made.

Table 6.1 illustrates the possible errors to occur. There are basically two types of possible
errors: when H0 is true but the statistical test outcomes its rejection (Type I error) and when
Ha is true but the statistical test outcomes the acceptance of H0 instead of its rejection (Type
II error).

In this study case, where the null hypothesis is the data to be random, the correct conclusions
are: accept H0 when the tested data is really random, and reject H0 when the tested data is
non-random.

The probability of a Type I error to occur is called the test significance level, denoted by α,
and it can be set prior to a test. Thus, α indicates the probability for the test to indicate that
the sequence is not random when it really is random. In cryptography, the common value of α
is chosen in [0.001, 0.01] range.

The probability of a Type II error to occur is denoted as β. Therefore, β denotes the
probability that the test will indicate that the sequence is random when it is not. This can
occur, for example, when a "bad" generator produces a sequence that appears to have random
properties. Unlike α, β is not a fixed value. In fact, β can take many different values because
there are an infinite number of ways that a data stream can be non-random, and each one of
those ways yields a different probability for the sequence to appear to have random properties.
The calculation of β is more difficult than the calculation of α because of the many possible
types of non-randomness. However, the probabilities α and β are related to each other and to
the size, n, of the tested sequence in such a way that if two of them are specified, the third
value is automatically determined (usually the selected parameters to be specified are n and α,
and then a critical point for a given statistic is selected and the smallest β will be produced).

One of the primary goals of the statistical tests is to minimize the probability of a Type II
error to occur.

Each test is based on a calculation of a test statistic value. If the test statistic value is S
and the critical value is t, then:

• Type I error probability:

P (S > t || H0 is true) = P (reject H0 | H0 is true)

54 Chapter 6. Randomness

• Type II error probability:

P (S ≤ t || H0 is false) = P (accept H0 | H0 is false)

The test statistic is used to calculate a P-value. A P-value is the probability of a perfect
random number generator to produce a sequence less random than the sequence that was tested.
Thus, the P-value summarizes the strength of the evidence against the null hypothesis. If a P-
value for a test is determined to be equal to 1, the sequence appears to have perfect randomness
and, thus, if a P-value is equal to 0, the sequence appears to be completely non-random. If
P-value ≥ α, the null hypothesis is accepted. If P-value < α, the null hypothesis is rejected.

An α = 0.01 indicates that one would expect one sequence in 100 sequences to be rejected.
For a P-value ≥ 0.01, a sequence would be considered to be random with a confidence level
of 99.9%. For a P-value < 0.01, a sequence would be considered to be non-random with a
confidence level of 99.9%.

6.5.2 Frequency Test

This test analyzes the proportion of zeros and ones existing in the data to be tested. In a
truly random sequence, the number of zeros and ones should be approximately the same and
thus the fraction of zeros and ones in the sequence should be approximately 1/2. The tests
that will be described below depend on if the sequence passes this test or not. The reference
distribution for the Frequency Test is the half-normal distribution (a one-sided variant of the
normal distribution).

Let ε = ε1, ε2, . . . , εn be a sequence of bits, of size n, that is going to be tested. The bit
sequence is produced by a RNG or by a PRNG, where each εi takes the value of the bit in
position i .

Let Sn = X1 + X2 + · · · + Xn, where Xi = 2εi − 1, i.e., all zeros and ones of ε will be
converted in −1 and 1 and then they will be added together. In case of a real random sequence,
the number of 1s will be approximately equal to the number of −1s and thus the result of Sn
will be near zero. If the number of ones and zeros presented in the sequence varies significantly,
the result of Sn will be very far from zero. A positive large value of Sn is an indicative that
the sequence has a lot of ones, while a large negative value of Sn indicates that the sequence
contains many occurrences of zeros.

After compute sobs =
|Sn|√
n
, the P-value = er f c

(
sobs√

2

)
is computed, where er f c is the

complementary error function, defined as

er f c(z) =
2√
π

∫ ∞
z

e−u
2

du (6.7)

If P-value < 0.01 (at 1% significance level), it can be concluded that the sequence is non-
random. Otherwise it can be concluded that the sequence is random.

In fact, a small P-value means that |Sn| or |Sobs | have large values and, as seen before, this
means that too many ones or too many zeros in ε.

6.5. Testing Randomness 55

In the NIST Statistic Test Suit ([Rukhin et al., 2010]) the recommendation is for each
sequence to be tested to have a minimum of 100 bits.

6.5.3 Frequency Test Within a Block

This test analyzes the proportion of zeros and ones in a block of size M of the tested data.
In a truly random M-bits block, the number of existing ones in the sequence is approximately
M/2. It should be notice that if M = 1, this test is the Frequency Test (Section 6.5.2). The
Frequency Test Within a Block has as reference the χ2 distribution.

Let’s split the input sequence in N =
⌊ n
M

⌋
non-overlapping blocks. If some bits are leftover,

they will be discarded, not having influence in the statistical test.

The proportion of each M-bit block, i is determined by πi =

∑M
j=1 ε(i−1)M+j

M
.

The χ2 = 4M

N∑
i=1

(πi − 1/2)2 statistic is computed, along with

P-value = igame

(
N

2
,
χ2(obs)

2

)
where igame is the incomplete gamma function defined as

Γ(z) =

∫ ∞
0

tz−1e−tdt (6.8)

If P-value < 0.01 (at 1% significance level), it can be concluded that the sequence is non-
random. Small values of the P-value indicate a large imbalance between the number of zeros
and ones in at least one of the M-blocks.

It is recommended by NIST Statistic Test Suit ([Rukhin et al., 2010]) to use sequences with
a minimum of 100 bits and it should be notice that n ≥ MN.

6.5.4 Runs Test

Let’s define a run as an uninterrupted sequence of zeros or ones. Thus, a run of length k
has k equal bits bounded at the beginning and at the end by a bit of the opposite value.

This test determines whether the total number of runs of various lengths existing in the
sequence to be evaluated resembles the expected number of runs existing in a truly random
sequence or not. Particularly, this test evaluates if the oscillation between runs is too fast or too
slow. By oscillation one means changing from zero to one or one to zero. The Runs Test has
as reference the χ2 distribution and carries out a Frequency Test as a prerequisite.

The first step is compute the proportion of ones in the sequence ε as π =

∑
j εj

n
.

The prerequisite needs to be calculated, i.e., the Frequency Test must be compute. If

|π − 1/2| ≥ τ , where τ =
2√
n
, the Runs Test does not need to be performed and the P-value

is set to 0.0000.

56 Chapter 6. Randomness

If the Runs Test is applicable, the test statistic vn(obs) =

n−1∑
k=1

r(k) + 1 is computed, where

r(k) = 0 if εk = εk+1 and r(k) = 1 otherwise. The P-value is calculated as P-value =

er f c

(
|vn(obs)− 2nπ(1− π)|

2
√

2nπ(1− π)

)
, where er f c is defined as the equation 6.7.

If P-value < 0.01 (at 1% significance level), it can be concluded that the sequence is non-
random. Otherwise it can be concluded that the sequence is random. A large value of vn(obs)

indicates a fast oscillation in the sequence, which means that there are lots of changes between
the values in the sequence. On the other hand, a small value of vn(obs) indicates a slow
oscillation, which means that the sequence has fewer runs than what would be expected.

In the NIST Statistic Test Suit ([Rukhin et al., 2010]) the recommendation is for each
sequence to be tested to have a minimum of 100 bits.

6.5.5 Test for the Longest Run of Ones in a Block

This test analyzes the longest run of ones within M-bit blocks, i.e., it evaluates if the size of
the longest runs of ones in the tested sequence is consistent with the expected size in a trully
random sequence. It should be noted that an irregularity in the expected length of the longest
run of ones implies that there is also an irregularity in the expected length of the longest run of
zeros. Therefore, one only needs to test the longest run of ones.

The Test for the Longest Run of Ones in a Block has as reference the χ2 distribution.
The first step is to divide the sequence into M-bit blocks an then tabulate the frequencies,

vi , of the longest runs of ones in each block into categories, where each cell contains the number
of runs of ones of a given length.

The next step is to compute χ2(obs) =

k∑
i=0

(vi − Nπi)2

Nπi
, where, in the NIST Statistic

Test Suit ([Rukhin et al., 2010]), the values of the theoretical probabilities πi are provided by
([Revesz, 1990]). In the NIST Statistic Test Suit ([Rukhin et al., 2010]) the values of K and N
are determined by the value ofM (the values presented in theM column are the values supported
by their test code) in accordance with Table 6.2:

M K N

8 3 16

128 5 49

104 6 75

Table 6.2: Values of N and K according to the values of M.

The P-value = igame

(
K

2
,
χ2(obs)

2

)
, where igame is given by the equation 6.8, is com-

puted and, if P-value < 0.01 (at 1% significance level), it can be concluded that the sequence
is non-random. Otherwise it can be concluded that the sequence is random. Large values of
χ2(obs) indicate that the tested sequence has clusters of ones.

6.5. Testing Randomness 57

In the NIST Statistic Test Suit ([Rukhin et al., 2010]) the recommendation is for each
sequence to be tested to have a minimum number of bits, in accordance with the values of the
sequence length, n, as specified in Table 6.3:

Minimum n M

128 8

6272 128

750000 104

Table 6.3: Acceptable values for M according to the sequence to be tested minimun length, n.

It should be notice that the number of bits, i.e., the values of M are the NIST test code
values acceptable for M.

6.5.6 Binary Matrix Rank Test

The purpose of this test is to check for a linear dependence among fixed length substrings of
the original sequence. In other words, this test evaluates the rank of disjoint sub-matrices of the
entire sequence. This statistical test also appears in the DIEHARD battery of tests ([Marsaglia,
1995]). The Binary Matrix Rank Test has as reference the χ2 distribution.

Let M be the number of rows and Q be the number of columns in each matrix. For the
NIST Statistic Test Suite, M and Q have been set to 32. If other values of M and/or Q are
used, new approximations need to be computed.

The first step is to sequentially divide the sequence into M · Q-bit disjoint blocks wherein
the discarded bits will be reported as not being used in the computation within each block and
then, the M ·Q-bit segments will be collected into a M by Q matrices. In the end there will be
N =

⌊ n

MQ

⌋
disjoint blocks.

Then, the binary rank, Rl , where l = 1, . . . , N, of each matrix will be determined. For more
information about the method used by NIST to determined the rank, one can check [Rukhin
et al., 2010], Appendix A.

Let FM be the number of matrices with Rl = M (full rank), FM−1 be the number of
matrices with Rl = M − 1 (full rank - 1) and N − FM − FM−1 be the number of the re-

maining matrices. The computation of χ2(obs) =
(FM − 0.2888N)2

0.2888N
+

(FM−1 − 0.5776N)2

0.5776N
+

(N − FM − FM−1 − 0.1336N)2

0.1336N
is done and then, the P-value = e−χ

2(obs)/2 is calculated.

If P-value < 0.01 (at 1% significance level), it can be concluded that the sequence is non-
random. Otherwise it can be concluded that the sequence is random. Small values of the P-value
indicate a deviation of the rank distribution from what it is expected in a true random sequence.

In the NIST Statistic Test Suit ([Rukhin et al., 2010]) the probabilities for M = Q = 32 have
been calculated and inserted into the test code. Other choices of M and Q may be selected,
but the probabilities would need to be recalculated. The minimum number of bits to be tested,
n, must be such that n ≥ 38MQ, i.e., at least 38 matrices must be created. For M = Q = 32,

58 Chapter 6. Randomness

each sequence to be tested should have a minimum of 38, 912 bits.

6.5.7 Discrete Fourier Transform (Spectral) Test

The focus of this test is the peak heights in the Discrete Fourier Transform of the sequence.
The purpose of this test is to detect periodic features, i.e., repetitive patterns that are near to
each other in the tested sequence. The patterns would indicate a deviation from the assumption
of randomness. To detect this periodic features, one have to test the peak heights in the Discrete
Fourier Transform of the sequence and check whether the number of peaks exceeding the 95%

threshold is significantly different than 5%.
The Discrete Fourier Transform (Spectral) Test has as reference the standard normal distri-

bution.
The first step is to create the sequence X = x1, x2, . . . , xn, where xi = 2εi−1. This sequence

will be the transformation of the zeros and ones of the input sequence, ε, into −1 and 1. Then,
the Discrete Fourier Transform (DFT) will be applied on X, producing S = DFT (X), that will
be a sequence of complex variables. This sequence represents the periodic components of ε at
different frequencies. Then M = modulus(S′) ≡ |S| is computed. S′ is the first of the first
n/2 elements substring in S, and the modulus function produces a sequence of peak heights.

Then, T =

√(
log

1

0.05

)
n is calculated and represents 95% of the peak threshold value,

which, under the assumption of randomness, 95% of the values obtained from the test should
not exceed T .

Let N0 =
0.95n

2
be the expected theoretical number of peaks that are less than T (95%

under the assumption of randomness) and let N1 be the actual observed number of peaks in M
less than T .

d is the normalized difference between the observed and the expected number of frequency

components that are above the 95% threshold and it is computed as d =
N1 − N0√
n×0.95×0.05

4

.

The last step is to calculate the P-value = er f c

(
|d |√

2

)
, where er f c is given by the equation

6.7.
If P-value < 0.01 (at 1% significance level), it can be concluded that the sequence is non-

random. Otherwise it can be concluded that the sequence is random. A small value of d means
that exits a few number of peaks (less then 95%) below T , and a large number of peaks (more
than 5%) above T .

In the NIST Statistic Test Suit ([Rukhin et al., 2010]) the recommendation is for each
sequence to be tested to have a minimum length of 1000 bits.

6.5.8 Non-overlapping Template Matching Test

This test is designed to detect generators that produce too many occurrences of a given
non-periodic pattern, previously specified by counting the number of times the pattern occurs
in the tested sequence. For this test an m-bit window is used to search for a specific m-bit

6.5. Testing Randomness 59

pattern. If the pattern is not found, the window slides one bit position. If the pattern is found,
the window is reset to the bit after the found pattern, and the search continues.

The Non-overlapping Template Matching Test has as reference the χ2 distribution.
The sequence must be split into N independent blocks of length M.
Let Wj , j = 1, . . . , N, be the number of times that the pre-defined pattern B occurs within

the block j. As said before, the method to continue the search is done by creating an m-bit
window on the sequence and matching the bits within that window against the template. If
there is no match, the window slides over one bit but if there is a match, the window slides over
m bits.

µ =
M −m + 1

2m
and σ2 = M

(
1

2m
−

2m − 1

22m

)
are computed under the assumption of

randomness and, then, χ2(obs) =

N∑
j=1

(Wj − µ)2

σ2
is computed.

The P-value will be calculated for each template of the test. Thus, there will be multiple

values of the P-value, calculated as P-value = igame

(
N

2
,
χ2(obs)

2

)
, where igame is given by

equation 6.8.
If P-value < 0.01 (at 1% significance level), it can be concluded that the sequence is non-

random. Otherwise it can be concluded that the sequence is random. Small values of the P-value
indicate the existence of a number of occurrences of a pattern in the sequence that does not
correspond to the estimated number of occurrences of that pattern in a true random sequence.

In the NIST Statistic Test Suit ([Rukhin et al., 2010]), the test code for the Non-overlapping
Template Matching Statistic Test has been written to provide templates for m = 2, 3, . . . , 10.
Thus, it is recommended for m to be equal to 9 or 10 in order to collect meaningful results.
Although N has been set to 8, the assigned value can be modified in the source code. However,
it is recommended for N to be less or equal to 100, in order to ensure to be assured that the
calculated P-values are valid. Additionally, one may ensure that M > 0.01 · n and N = bn/Mc.

6.5.9 Overlapping Template Matching Test

The Overlapping Template Matching Test is design to detect the number of occurrences of
a given pattern in the tested sequence, defined à posteriori. This test also uses a m-bit window
to search for a specific m-bit pattern. If the pattern is not found, the window slides one bit
position. The difference between this test and the test described in Section 6.5.8 lies in the
cases where the pattern is found. In this test, if the pattern is found, the window slides only one
bit before resuming the search.

The Overlapping Template Matching Test has as reference the χ2 distribution.
Analogously to the Non-Overlapping Template Machine Test, the sequence to be tested

must be split into N independent blocks of length M.
The number of occurrences of the template B, in each one of the N blocks is calculated in

a similar way to the Non-Overlapping Template Machine Test: the search for correspondences
proceeds by creating an m-bit window on the sequence, comparing the bits within that window
against the template and incrementing a counter when a correspondence is found. The difference

60 Chapter 6. Randomness

between this calculation and the calculation seen in Section 6.5.8 is that in this test, the window
slides over one bit after each examination. In the NIST Statistic Test Suit ([Rukhin et al.,
2010]), the number of occurrences of B in each block is recorded by incrementing the values, vi
(where i = 0, . . . , 5), that are stored in an array, such that v0 is incremented when there are no
matches of B in a substring of the tested sequence, v1, v2, v3, v4 are incremented for one, two,
three or four occurrences of B in the tested sequence, respectively, and v5 is incremented for
five or more occurrences of B.

λ =
M −m + 1

2m
and η =

λ

2
are calculated and are going to be used in the computation of

the theoretical probabilities, πi .

Then, χ2(obs) =

5∑
i=0

(vi − Nπi)2

Nπi
is computed, where π0 = 0.364091, π1 = 0.185659,

π2 = 0.139381, π3 = 0.100571, π4 = 0.070432 and π5 = 0.139865 ([Hamano and Kaneko,
2007]).

The last step consists in calculate the P-value: P-value = igame

(
5

2
,
χ2(obs)

2

)
, where

igame is given by the equation 6.8.
If P-value < 0.01 (at 1% significance level), it can be concluded that the sequence is non-

random. Otherwise it can be concluded that the sequence is random.
In the NIST Statistic Test Suit ([Rukhin et al., 2010]), the values of K, M and N have been

chosen such that each sequence to be tested has a minimum of 106 bits. Various values of m
may be selected, but NIST recommends m to be equal to 9 or 10. If other values are desired,
one has to be careful to chose the values according to the following specifications:

• n ≥ MN

• N should be chosen so that N · (min(πi)) > 5

• λ =
M −m + 1

2m
≈ 2

• m ≈ log2M

• K ≈ 2λ (for K 6= 5, the πi values need to be recalculated)

6.5.10 Maurer’s "Universal Statistical" Test

This test aims to determine whether a sequence can be compressed without loss of informa-
tion or not. Thus, the focus of this test is the number of bits between the matching patterns,
and this is a measure related to the compression length of a sequence. If a sequence is able to
be compressed without loss of information, this sequence is considered non-random.

The reference distribution for the Maurer’s "Universal Statistical" Test is the half-normal
distribution (a one-sided variant of the normal distribution).

The sequence to be tested, ε, composed of n-bits is partitioned into two segments: an
initialization segment consisting of Q L-bit non-overlapping blocks, and a test segment consisting
of K L-bit non-overlapping blocks. The remaining bits at the end of the sequence that do not

6.5. Testing Randomness 61

form a complete L-bit block are discarded. The first Q blocks are used to initialize the test and
the remaining K blocks are the test blocks. K, n, L, and Q follow the relation: K = bn/Lc −Q.

Using the initialization segment, a table, Tj is created for each possible L-bit value. The block
number of the last occurrence of each L-bit block is noted in the table, i.e., for i = 1, . . . , Q−1,
Tj = i , where j is the decimal representation of the contents of the i th L-bit block.

sum = sum + log2 i − Tj is calculated, i.e., for each K block in the sequence the number
of blocks since the last occurrence of the same L-bit block is determined. The obtained value
is replaced in the table with the current block. Then, the calculated distance between re-
occurrences of the same L-bit block and the accumulating log2 sum of all the differences detected
in the K blocks are added.

The test statistic fn =
1

K

Q+K∑
i=Q+1

log2 (i − Tj), where Tj is the entry table corresponding to

the decimal representation of the contents of the i th L-bit block, is computed. Then, the P-

Value is computed as P-value = er f c

(∣∣∣∣ fn − expectedV alue(L)√
2σ

∣∣∣∣), where er f c is given by the

equation 6.7 and the theoretical standard deviation is given by σ = c

√
var iance(L)

K
, where

c = 0.7−
0.8

L
+

(
4 +

32

L

)
K−3/L

15
.

If P-value < 0.01 (at 1% significance level), it can be concluded that the sequence is non-
random. Otherwise it can be concluded that the sequence is random.

If fn differs significantly from expectedV alue(L), then the sequence is significantly com-
pressible.

This test requires a long sequence of bits. In fact, n must be greater or equal to (Q+K)L

since the sequence to be tested will be divided into two segments of L-bit blocks. In their
Statistic Test Suit ([Rukhin et al., 2010]), NIST recommends to choose L, Q and K so that
6 ≤ L ≤ 16, Q = 10 · 2L and K = dn/Le − Q ≈ 1000 · 2L. NIST Statistic Test Suit ([Rukhin
et al., 2010]) offers a table (Table 6.4) that represents how the values of L, Q and n should be
chosen. The only input is n, wherein L and Q are assigned depending on the value of n.

6.5.11 Linear Complexity Test

This test determines whether a sequence is complex enough to be considered random. The
random sequences are characterized by having a long linear feedback shift register (LFSR). If
a bit sequence has a very short LFSRs, it can be conclude that the sequence is non-random.
Thus, this test measures the length of the LFSR.

The Linear Complexity Test has as reference the χ2 distribution.
The sequence to be tested, ε, composed of n-bits is partitioned into N independent blocks

of M bits, where n = MN.
The linear complexity, Li of each one of the N (i = 1, . . . , N) blocks of the sequence is

calculated using the Berlekamp-Massey algorithm, described in Chapter 6 of [Menezes et al.,
1996]. The linear complexity, Li , is the shortest linear feedback shift register sequence length
that generates all bits in the correspondent block i . Within any Li -bit sequence, some combi-

62 Chapter 6. Randomness

n L Q = 10 · 2L

≥ 387840 6 640
≥ 904960 7 1280
≥ 2068480 8 2460
≥ 4654080 9 5120
≥ 10342400 10 10240
≥ 22753280 11 20480
≥ 49643520 12 40960
≥ 107560960 13 81920
≥ 231669760 14 163840
≥ 496435200 15 327680
≥ 1059061760 16 655360

Table 6.4: Representative table of how the values of L, Q and n should be chosen.

nation of the bits, when added together modulo 2, produces the next bit in the sequence, the
bit Li + 1.

The theoretical mean, µ is calculated as µ =
M

2
+

9 + (−1)M+1

36
−
M/3 + 2/9

2M
, under the

assumption of randomness and for each substring, the value of Ti e also calculated, where

Ti = (−1)M · (Li − µ) +
2

9
. The values of Ti are recorded in v0, v1, . . . , v6 described in Table

6.5.

If: Ti ≤ −2.5 , increment v0 by one
−2.5 < Ti ≤ −1.5 , increment v1 by one
−1.5 < Ti ≤ −0.5 , increment v2 by one
−0.5 < Ti ≤ 0.5 , increment v3 by one
0.5 < Ti ≤ 1.5 , increment v4 by one
1.5 < Ti ≤ 2.5 , increment v5 by one
Ti > 2.5 , increment v6 by one

Table 6.5: Method of recording the values of Ti in v0, v1, . . . , v6.

χ2(obs) =

K∑
i=0

(vi − Nπi)2

Nπi
is computed, where π0 = 0.010417, π1 = 0.03125, π2 = 0.125,

π3 = 0.5, π4 = 0.25, π5 = 0.0625, π6 = 0.020833 are the probabilities computed by the
equations presented in Chapter 3 of [Rukhin et al., 2010].

The final step is the computation of the P-value as P-value = igame

(
K

2
,
χ2(obs)

2

)
, where

igame is given by the equation 6.8.

If P-value < 0.01 (at 1% significance level), the observed frequency counts of Ti stored in
the vI bins varied from the expected values. Thus, if P-value < 0.01, it can be concluded that

6.5. Testing Randomness 63

the sequence is non-random. Otherwise it can be concluded that the sequence is random.
In the NIST Statistic Test Suit ([Rukhin et al., 2010]) the recommendation is for each

sequence to be tested to have a minimum of 106 bits. The value of M must be in the range
500 ≤ M ≤ 5000, and N ≥ 200 for the χ2 result to be valid.

6.5.12 Serial Test

This test determines whether the number of occurrences of the 2m m-bit overlapping patterns
is approximately the same as would be expected for a truly random sequence or not. On random
sequences, every m-bit pattern has the same possibility of show up in the sequence as every other
m-bit pattern. This is due to the existence of uniformity in random sequences. Thus, this test
measures the frequency of all possible overlapping m-bit patterns across the whole sequence.
For m = 1, the Serial test is equivalent to the Frequency test described in Section 6.5.2.

The Serial Test has as reference the χ2 distribution.
The sequence ε is going to be extended by appending the first m − 1 bits sequence to the

end of the sequence for distinct values of n that are given as input. Thus, a new and augmented
sequence, ε′, is created out of the sequence ε.

The frequency of all possible overlapping m-bit, (m − 1)-bit and (m − 2)-bit blocks are
calculated. vi1,...,im denote the frequency of the m-bit pattern i1, . . . , im, vi1,...,im−1 denote the
frequency of the (m − 1)-bit pattern i1, . . . , im−1 and vi1,...,im−2 denote the frequency of the
(m − 2)-bit pattern i1, . . . , im−2.

The computation of ψ2m, ψ
2
m−1 and ψ

2
m−2 is done as:

ψ2m =
2m

n

∑
i1,...,im

v2i1,...,im − n

ψ2m−1 =
2m−1

n

∑
i1,...,im−1

v2i1,...,im−1 − n

ψ2m−2 =
2m−2

n

∑
i1,...,im−2

v2i1,...,im−2 − n

Then, 5ψ2m = ψ2m − ψ2m−1 and 52ψ2m = ψ2m − 2ψ2m−1 + ψ2m−2 are calculated.
In the last step, two P-values are calculated: P-value1 = igame(2m−2,5ψ2m) and P-value2 =

igame(2m−3,52ψ2m), where igame is given by equation 6.8.
If P-value1 < 0.01 and P-value2 < 0.01 (at 1% significance level), it can be concluded that

the sequence is non-random. Otherwise it can be concluded that the sequence is random. For
very large values of 52ψ2m e 5ψ2m the m-bit blocks are not uniform.

In the NIST Statistic Test Suit ([Rukhin et al., 2010]) the recommendation is to choose m
and n such that m < blog2 nc − 2.

6.5.13 Approximate Entropy Test

This test measures the frequency of all possible overlapping m-bit patterns across the whole
sequence, analogously to the test described in Section 6.5.12. The scope of the Approximate

64 Chapter 6. Randomness

Entropy Test, is to compare the frequency of overlapping blocks of two consecutive/adjacent
lengths against the proposed result for a random sequence.

The Approximate Entropy Test has as reference the χ2 distribution.

The n-bit sequence ε is going to be augmented by appending m−1 bits from the beginning of
the sequence to the end of the sequence. Thus, a new n overlapping m-bit sequence is created.

A frequency count is made of the n overlapping blocks. Let the count of the possible m-bit
((m + 1)-bit) values be represented as Cmi , where i is the m-bit value.

Cmi =
#i

n
is calculated for each values of i and, then ϕ(m) =

2m−1∑
i=0

πi logπi is computed,

where πi = C3j and j = log2 i .

All this procedure is repeated, replacing m by m + 1.

Then, the statistic χ2 = 2n(log 2 − ApEn(m)), where ApEn(m) = ϕ(m) − ϕ(m+1) is com-

puted and P-value = igame

(
2m−1,

χ2

2

)
is calculated, where igame is given by the equation

6.8.

If P-value < 0.01 (at 1% significance level), the conclusion is that the sequence is non-
random. Otherwise it can be concluded that the sequence is random. Small values of ApEn(m)

imply a strong regularity in the tested sequence, while large values of ApEn(m) imply a sub-
stantial fluctuation or irregularity.

In the NIST Statistic Test Suit ([Rukhin et al., 2010]) the recommendation is to choose m
and n such that m < blog2 nc − 5.

6.5.14 Cumulative Sums Test

This test determines if the cumulative sum of the partial sequences occurring in the tested
sequence is too large or if it is too small when comparing it to the expected behaviour in a
truly random sequence. One can look at the cumulative sum as a random walk. This test
determines the maximal excursion (from zero) of the random walk defined by the cumulative
sum of adjusted (-1, +1) digits in the sequence. On a random sequence, the excursions of the
random walk should be near zero, while in a non-random sequence, the excursions of the random
walk should be greater than zero.

The Cumulative Sums Test has as reference the standard normal distribution.

The zeros and ones of the inputted sequence are converted to −1 and +1 values, using
Xi = 2εi − 1, creating the sequence Xi that will be a normalized sequence.

The partial sums Si of successively larger subsequences are calculated. There are two modes
for compute Si : mode = 0, where the sum starts with X1 and mode = 1, where the sum starts
with Xn.

The test statistic, z , is going to be max1≤k≤n(|Sk |), the largest of the partial sums, Sk ,
absolute values.

The last step is the calculation of the P-value as:

6.5. Testing Randomness 65

Mode = 0 (forward) Mode = 1 (backward)
S1 = X1 S1 = Xn

S2 = X1 +X2 S2 = Xn +Xn−1
...

...
Sk = X1 +X2 + · · ·+Xk Sk = Xn +Xn−1 + · · ·+Xn−k+1
...

...
Sn = X1 +X2 + · · ·+Xk + · · ·+Xn Sn = Xn +Xn−1 + · · ·+Xn−k−1 + · · ·+X1

P-value = 1−

n/z−1
4∑

k=
−n/z+1
4

[
φ

(
(4k + 1)z√

n

)
− φ

(
(4k − 1)z√

n

)]

+

n/z−1
4∑

k=
−n/z−3
4

[
φ

(
(4k + 3)z√

n

)
− φ

(
(4k + 1)z√

n

)]

If P-value < 0.01 (at 1% significance level), one can conclude that the sequence is non-
random. Otherwise it can be concluded that the sequence is random.

When mode = 0, if the statistic result is a large value, two scenarios are possible to occur:
either exists "too many ones" or "too many zeros" at early stages of the sequence. When mode
= 1, if the statistic result is a large value, the two possible scenarios are: either exists "too many
ones" or "too many zeros" at late stages of the sequence. Either in mode = 0 or in mode = 1,
if the statistic result is a small value, the indication is that ones and zeros are intermixed too
evenly in the sequence.

In the NIST Statistic Test Suit ([Rukhin et al., 2010]) the recommendation is for each
sequence to be tested to have a minimum of 100 bits.

6.5.15 Random Excursions Test

This test is also based on cumulative sums, analogously to the test described in Section
6.5.14. As said before, a cumulative sum can be seen as a random walk. The cumulative
sum random walk is derived from partial sums after the (0, 1) sequence is transferred to the
appropriate (−1,+1) sequence. This test determines the number of cycles that have exactly K
visits in a cumulative sum random walk. A cycle of a random walk consists of a sequence with
unit length steps taken at random that begin at the origin return to the origin. Thus, this test
determines if the number of visits to a particular state within a cycle deviates from the number
of visits expected in a random sequence.

The Random Excursions Test has as reference the χ2 distribution.

The zeros and ones of the input sequence are converted into −1 and +1, respectively, using
Xi = 2εi − 1, creating X, which will be a normalized sequence.

66 Chapter 6. Randomness

The partial sums, Si , i = 1, · · · , n, of successively larger subsequences, each one starting
with X1 are computed, forming the set S = {Si}, with Si defined as:

S1 = X1

S2 = X1 +X2
...
Sk = X1 +X2 + · · ·+Xk
...
Sn = X1 +X2 + · · ·+Xk + · · ·+Xn

Then, a new sequence S′ is formed by attaching zeros before and after the S set. Thus,
S′ = 0, S1, S2, . . . , Sn, 0, and this can be seen as a random sequence.

Let J be the total number of zero crossings in S′, where a zero crossing is a value of zero
in S′ that occurs after the starting zero. J can also be seen as the number of cycles in S′.
A cycle of S′ must understand as the subsequences of S′ consisting of an occurrence of zero,
followed by non-zero values, and ending with another zero. In the end if J < 500, the test must
be discontinued ([Rukhin et al., 2010], Chapter 3).

For each cycle and for each non-zero state value x having values satisfying the conditions
−4 ≤ x ≤ −1 and 1 ≤ x ≤ 4, the frequency of each x within each cycle is computed. And,
for each one of the 8 states of x , vk(x) (k = 0, 1, · · · , 5) is calculated, where vk(x) is the total
number of cycles in which state x occurs exactly k times among all cycles, where all frequencies
greater or equal than five are stored in v5(x).

The statistic χ2(obs) =

5∑
k=0

(vk(x)− Jπk(x))2

Jπk(x)
is calculated for each one of the 8 states

of x . The values for πk(x) and their method of calculation can be checked in chapter 3 from
[Rukhin et al., 2010], Chapter 3.

The last step is the calculation of the 8 (there are eight values of χ2) values of P-value as:

P-value = igame

(
5

2
,
χ2(obs)

2

)
, where igame is given by the equation 6.8.

If P-value < 0.01 (at 1% significance level), it can be concluded that the sequence is non-
random. Otherwise it can be concluded that the sequence is random.

If χ2(obs) is a too large value, it means that the sequence displays a deviation from the
theoretical distribution for a given state across all cycles.

In the NIST Statistic Test Suit ([Rukhin et al., 2010]) the recommendation is for each
sequence to be tested to have a minimum of 1000000 bits.

6.5.16 Random Excursions Variant Test

This test detects possible existante deviations from the expected number of visits to various
states in the random walk. In order to detect that, this test counts the total number of times
that a particular state occurs in a cumulative sum random walk.

6.6. Recommendations for Random Numbers Generation. Randomness Requirements for
Security. 67

The reference distribution for the Random Excursions Variant Test for large values of n is
the half-normal distribution (a one-sided variant of the normal distribution).

The zeros and ones of the input sequence are converted into −1 and +1, respectively, using
Xi = 2εi − 1 and forming the sequence Xi that will be a normalized sequence.

The partial sums, Si (i = 1, · · · , n) of successively larger subsequences, each one starting
with X1 are computed, forming the set S = {Si}, with Si defined as:

S1 = X1

S2 = X1 +X2
...
Sk = X1 +X2 + · · ·+Xk
...
Sn = X1 +X2 + · · ·+Xk + · · ·+Xn

Then, a new sequence S′ is formed by attaching zeros before and after the S set. Thus,
S′ = 0, S1, S2, . . . , Sn, 0, and this can be seen as a random sequence.

For each one of the non-zero states of x (in the NIST tests the number of states is 18), the
total number of times that state x occurred across all J cycles, ξ(x), is computed.

For each value of ξ(x), P-value = er f c

(
|ξ − J|√

2J(4|x | − 2)

)
, described before in Section

6.5.15, is computed, where er f c is given by the equation 6.7.

If P-value < 0.01 (at 1% significance level), it can be concluded that the sequence is non-
random. Otherwise it can be concluded that the sequence is random.

In the NIST Statistic Test Suit ([Rukhin et al., 2010]) the recommendation is for each
sequence to be tested to have a minimum of 1000000 bits.

6.6 Recommendations for Random Numbers Generation. Random-
ness Requirements for Security.

The described recommendations are mainly based on [Eastlake 3rd et al., 2005], [FIP, 2002]
and [Rukhin et al., 2010]. These recomendations are the ones proposed by the National Institute
of Standards and Technology (NIST), the responsible entity for safety standards specification.

Security systems are built on strong cryptographic algorithms that defend themselves from
pattern analysis attempts and the central focus of all cryptographic systems is the generation
of secret, unguessable, random numbers. These systems provide substantial protection against
snooping and spoofing. The use of pseudorandom processes to generate secret quantities can
result in pseudo-security, if no care is taken into consideration when implementing them. A
sophisticated attacker may find easier to reproduce the environment of the secret quantities
production and to search the resulting small set of possibilities than to search all the possibilities
for the generated number ([Eastlake 3rd et al., 2005]).

68 Chapter 6. Randomness

The cryptographic systems are designed to provide a massive protection against snooping
and spoofing. However, these kind of protection mostly relies on the generation of secret and
unguessable random numbers. The random numbers generation may represent a potential flaw
by the way they are generated. In fact, the generally lack of available facilities for generating
such random numbers presents a glitch in the cryptographic software design.

Cryptographic techniques can be used to provide a variety of services such as confidentiality
and authentication. This type of services require an unknown and unguessable, namely random
quantities, called "keys".

There are two different types of random quantities that may be wanted. In the case of
human-usable passwords, the only main requirement is that they have to be unguessable. The
other case, the case of fixed length keys, the requirements are more demanding: the values
should be random, i. e., the bits of these values must pass statistical randomness tests.

The frequency and requirement for random quantities vary from cryptographic system to
cryptographic system. For example, in pure RSA, random quantities are required only when a
new key pair is generated. Thereafter, any number of messages can be signed without a further
need for randomness. The public key Digital Signature Algorithm proposed by NIST requires
good random numbers for each signature ([dss, 2000]).

An attacker can always try the "brute-force" method to try to find the secret key and this
kind of attack is possible as long as the key is smaller enough. The probability of an adversary
to be succeed must be significantly low. The success of the attack depends on the amount of
key information available and on the number of the secret possible values. The probability of
each value is given by:

bits of inf ormation =
∑
−pi log2(pi) (6.9)

where i begins with value 1 until reaching the number of possible secret values, and pi is the
probability of the value numbered i .

The probability of the attacker to be succeed also depends on the amount of key information
available because, for example, considering a cryptosystem that uses 128 bit keys, if the attacker
knows that the pseudorandom generator is fixed and seeded by an 8 bits seed, then he/she only
needs to search trough the keys to find the right one by running the pseudorandom generator
with every possible seed. In this example there are only 8 bits of information in the 128 bit
keys. For any number, n, of bits of information, there are 2n different values of equal probability.
In this case, an attacker would have to try, on the average, half of the values, or 2n−1 before
guessing the secret key. However, if the probability of different values is unequal, the attacker
will require a fewer guesses to find the secret key. In fact, the attacker can initially ignore the
low probability values and search trough the more provable ones first.

6.6.1 Entropy Sources

A way to accomplish the generation of true and strong randomness is the availability of
a non-deterministic physical source of unpredictable numbers, an entropy source, to use as a
generator input.

6.6. Recommendations for Random Numbers Generation. Randomness Requirements for
Security. 69

The best input entropy sources are the hardware-based random sources that could be easily
included as a standard part of a computer system’s architecture like the majority of audio/video
input devices are ([Denker, 2003]), such as ring oscillators, disk drive timing, thermal noise,
or radioactive decay, but there also exists other non-hardware possibilities like system clocks,
system or input/output buffers, user/system/hardware/network serial numbers or addresses and
timing, user input and user processes like key strokes or mouse movements ([Gifford, 1988]).

The DRBG mechanism uses a seed that is determined from the entropy input and both the
entropy input as the seed shall be kept secret. The basis of the RBG security rely in the secrecy
of this information.

The entropy input shall provide at least the minimum amount of entropy requested by the
DRBG mechanism. Ideally, the entropy input will have full entropy, which means that each bit
of a generated bitstring in this conditions is unpredictable, follows a uniform distribution and is
independent from every other bit in the bitstring.

The input entropy length does not necessarily need to have a fixed value. Thus, the DRBG
mechanisms have been specified to allow for some bias in the entropy input by allowing the
entropy input length to be longer than the required entropy amount. When an entropy input
is requested it is expected for the returned bitstring to contain at least the requested entropy
amount, although a bit more of entropy is desirable, it is not required.

A DRBG mechanism may need other information as input that may or may not be kept secret
but that should be checked for validity when possible. Sometimes during DRBG instantiation,
a nonce may be required, and when it is used, it is combined with the entropy input to create
the initial DRBG seed. NIST strongly advises the insertion of other information as input as, for
example, the use of a personalization string during DRBG instantiation. When this approach is
used, the personalization string is combined with the entropy input bits and possibly a nonce to
create the initial DRBG seed. The personalization string should be unique for all instantiations
of the same DRBG mechanism type.

Additional input may also be provided during reseeding and when pseudorandom bits are
requested.

Using Existing Sound/Video Input
Many computers are built with inputs that digitize some real-world analog source, such as

sound from a microphone or video input from a camera. The input from a sound digitizer with
no source plugged in or from a camera with the lens cap on is essentially thermal noise, which
is essentially random noise. If the system has enough gain to detect anything, such input can
provide reasonably high quality of random bits. This method is extremely dependent on the
hardware implementation and, in case of hardware failure, it will have to be de-skewed (Section
6.6.2).

Using Existing Disk Drives
Disk drives have small random fluctuations in their rotational speed due to chaotic air turbu-

lence ([Davis and Fenstermacher, 1984] [Jakobsson and Juels, 1998]). The addition of low-level
disk seek-time instrumentation produces a series of measurements that contain randomness.

70 Chapter 6. Randomness

However, such data is usually highly correlated and, in order to accomplish some reliable ran-
domness, it is needed to do some significant processing to the obtained data. Every increase in
the processor speed increases the rate of random bit generation.

This technique is used in random number generators including many operating system li-
braries.

Ring Oscillator Sources
A free-running ring oscillator can be produced by connecting series of odd number of gates at

the time when an integrated circuit is being designed or field-programmed, by sampling a point
in the ring at a fixed frequency (for example, one determined by a stable crystal time source
oscillator). Thus, some amount of entropy can be extracted due to variations in the free-running
oscillator timing.

By XOR’ing sampled values from a few ring oscillators with relatively prime lengths it is
possible to increase the rate of the extracted entropy.

For some situations it is recommended to use an odd number of rings. In the possibility of
the rings to become synchronously locked to each other, an odd number of rings guarantees
that there will still be sampled bit transitions. Another possible source to do the sampling is the
output of a noisy diode. All of the sampled bits extracted from such sources will have to be
heavily de-skewed (Section 6.6.2).

Clocks and Serial Numbers
Computer clocks and similar operating system or hardware values, provide significantly fewer

real unpredictable bits than what might appear from their specifications.
Clocks behaviour on numerous systems can vary widely and in unexpected ways depending on

the configuration of the operating system. So, designing portable application code to generate
unpredictable numbers based on such system clocks is particularly challenging since the system
designer does not always know the properties of the system clock. Sometimes, successive reads
of the clock may produce identical values even if enough time has passed and the value should
have change, based on the nominal clock resolution. There are also some situations where
regular readings of a clock can produce artificial sequential values, because of extra code that
checks for the clock being unchanged between two reads and increases it by one.

The use of a hardware serial number may provide quantities that are usually heavily structured,
and subfields that may have only a limited range of possible values, or values that may be easily
guessable based on the approximate manufacture date or based on another data.

Such problems make the production of the code to generate unpredictable quantities difficult
to implement if the code is expected to be ported across a variety of computer platforms and
systems.

Timing and Value of External Events
The timing and content of mouse movement, key strokes, and similar user events are pos-

sible features to be measured and thus becoming a reasonable source of unguessable data with
some qualifications. However, even though the user’s interkeystroke timing may have sufficient
variation and unpredictability, there might not be an easy way to access that variation and this,

6.6. Recommendations for Random Numbers Generation. Randomness Requirements for
Security. 71

along with the fact that there are no standard methods for sampling timing details, comes up
as a problem.

The amount of mouse movement and the actual key strokes are usually easier to access
than timings. However they may yield less unpredictability because the user may provide highly
repetitive input.

Network packet arrival times and lengths can be used as an external event of an entropy
source. Nonetheless these sources must be used with great care since the possibility of such
network traffic measurements manipulation by an adversary and the lack of history at system
start-up must be carefully considered.

So, almost any external sensor, such as raw radio reception or temperature sensing in ap-
propriately equipped computers can be used if careful consideration is given to how much this
data is vulnerable to adversarial manipulation and to how much entropy it can actually provide.

Surely, a source with a considered vulnerable input must not be trusted as a source of entropy.
If the attackers have no access to the quantities being measured, the above techniques have

a great potential as entropy sources.

Non-hardware Sources of Randomness
Even though the best sources of input entropy are the hardware-based sources of randomness,

there are also non-hardware sources of randomness like mentioned above. Among the non-
hardware sources of randomness there are the system clocks, the system or the input/output
buffers, the user/system/hardware/network serial numbers or the addresses and timing, and the
user input. Unfortunately, all of these sources share the same problem which is producing, under
some circumstances, very limited or predictable values.

Some of the sources listed above would be quite strong on multi-user systems but weak on
a small single-user or embedded system. In a multi-user systems each user can be seen as a
different entropy source, but in a small single-user or embedded system, an adversary may find
a pattern on the inputs that he/she can reply.

The use of multiple random inputs with a strong mixing function is recommended and can
overcome weakness in any particular input. This strategy may make practical portable code for
producing good random numbers for security, even if some of the inputs are very weak on some
of the target systems. However, it may still fail against a high-grade attack on small, single-user,
or embedded systems, especially if the adversary has ever been able to observe the generation
process in the past. A hardware-based random source is still preferable.

6.6.2 De-skewing

The distribution of the entropy quantities gathered to produce the random numbers does
not need to be uniform. But it is needed to estimate how non-uniform it is in order to bound
performance. To accomplish the recommended distribution it is sometimes necessary to use
simple techniques to de-skew a bit stream.

Using Stream Parity to De-Skew

72 Chapter 6. Randomness

Consider taking a sufficiently long bitstring and mapping the string to 0 or 1. The mapping
will not yield a perfectly uniform distribution, but it can be as close to it as desired. Suppose
the string is mapped according to its parity. This kind of system has its advantages: it is robust
across all skew degrees up to the estimated maximum degree and that it is trivial to implement
in hardware.

Suppose that the ratio of 1s to 0s is 0.5 + ε to 0.5 − ε, where ε is a value between 0 and
0.5 and it is an "eccentricity" of the distribution measure. Consider the parity function of N bit
samples distribution. The respective probabilities that the parity will be 1 or 0 will be the sum of
the odd or even terms in the binomial expansion of (p+ q)N , where p = 0.5 + ε, the probability
of a 1, and q = 0.5− ε, is the probability of a 0.

These sums can be easily computed as:

1

2

(
(p + q)N + (p − q)N

)
and

1

2

(
(p + q)N − (p − q)N

)
Since p + q = 1 and p − q = 2ε, these expressions can be reduced to:

1

2

(
1 + (2ε)N

)
and

1

2

(
1− (2ε)N

)
None of these expressions will ever be exactly 0.5 unless ε is zero. However one can bring

them arbitrarily close to 0.5 by defining some δ as small as one wishes. Then,

0.5 + 0.5× (2ε)N < 0.5 + δ

Using Transition Mappings to De-Skew
The skew correction algorithm used in the technique presented here is a simple algorithm,

originally due to Von Neumann ([Von Neumann, 1963]) and is based on the transition mapping.
So, a bitstream is examined as a sequence of non-overlapping pairs. Bits are read two at a time,
and if there is a transition between values (if bits are 01 or 10) one of them - say the first - is
passed on as random. If there is no transition (if bits are 00 or 11), the bits are discarded and
the next two are read.

Thus, any 00 or 11 pairs found are discarded, the pairs 01 are interpreted as 0 and the pairs
10 are interpreted as 1. Assume that the probability of a 1 is 0.5 + ε and that the probability of
a 0 is 0.5 − ε, where ε is the source eccentricity. Then the probability of each pair is shown in
Table 6.6.

pair probability
00 (0.5− ε)2

01 (0.5− ε)× (0.5 + ε)

10 (0.5− ε)× (0.5 + ε)

11 (0.5 + ε)2

Table 6.6: Bit pairs probability.

6.6. Recommendations for Random Numbers Generation. Randomness Requirements for
Security. 73

This simple algorithm completely eliminates any data bias towards 0 or 1 but it requires
an indeterminate number of input bits for any particular desired number of output bits. The
probability of any particular pair being discarded is 0.5 + 2ε2, so the expected number of input
bits to produce x output bits is

x

0.25− ε2 .
This technique assumes that the bits are from a stream where each bit has the same prob-

ability of being 0 or 1 and that the bits are uncorrelated, since if they are the above analysis
breaks down.

If overlapping successive bits pairs were used instead of non-overlapping pairs, the statistical
analysis would be the same but the algorithm, instead of providing an unbiased, uncorrelated
series of random 1s and 0s, it will produce a totally predictable sequence of exactly alternating
1s and 0s.

Using Fast Fourier Transform to De-Skew
When real-world data consists of strongly correlated bits, it may still contain useful amounts

of entropy that can be extracted through various transforms like the Fast Fourier Transform
(FFT). It can be shown that this technique will discard strong correlations. If adequate data is
processed and if remaining correlations decay, spectral lines that approach statistical indepen-
dence and normally distributed randomness can be produced ([Brillinger, 1981]).

Using Compression to De-Skew
Reversible compression techniques also provide a crude method of de-skewing a skewed bit

stream.
The compression is reversible so, the amount of information present in the shorter output

must be the same as the amount of information present in the longer input. By the Shannon
information equation (6.9), this is only possible if, on average, the probabilities of the different
shorter sequences are more uniformly distributed than the probabilities of the longer sequences.
Therefore, the shorter sequences must be de-skewed relative to the input.

However, many compression techniques add a somewhat predictable preface to their output
stream and this may insert a similar sequence periodically r subtle patterns in their output. The
beginning of the compressed sequence should be skipped and only later bits should be used for
applications requiring roughly-random bits.

6.6.3 Mixing

A strong and reliable entropy source can be used as a RNG seed to produce the required
amount of cryptographically strong pseudorandomness. However, in the absence of an entropy
source there are some strategies that can be used to produce unguessable random numbers.
The best strategy is to obtain input from a number of uncorrelated sources and mix them using
a strong mixing function that must preserve the given entropy by any of the sources. A strong
mixing function is a function that combines inputs and produces an output in which each bit is
a different complex non-linear function of all the input bits. A function like this ensures that no
particular output bit is guaranteed to change when any particular input bit is changed.

74 Chapter 6. Randomness

If the used sources are considered to be good (accordingly to the features seen in Section
6.6.1) the use of a strong mixing function creates a strong seed that can be used to produce
large quantities of cryptographically strong material.

The use of a strong mixing function is an advisable procedure even with a good hardware
source (since hardware is likely to fail). However, it is also a good practice to weigh the use of
such a function coupled to a good hardware, since there exists the possibility of an increase in
the chance of overall failure due to added software complexity.

An example of a trivial mixing function is the use of the exclusive Or (XOR) (Section 6.6.2)
function that is equivalent to addition without carry.

In cases like this, if the inputs are uncorrelated, the outputs will be an even better (less
skewed) random bits then the inputs are.

There are a few examples of stronger mixing functions than the ones described above such
as the US Government Advanced Encryption Standard ([aes, 2001]) for multiple bit quantities
and Data Encryption Standard ([des, 1999], [des, 1999], [des, 1985]).

Another good family of mixing functions is the message digest or hashing functions such
as the US Government Secure Hash Standards (SHA*) and the MD4, MD5 ([Rivest, 1992a],
[Rivest, 1992b]) series.All of these functions take a practically unlimited amount of input and
produce a relatively short fixed-length output mixing all the input bits. The MD* series produces
128 bits of output, SHA-1 produces 160 bits, and other SHA functions produce up to 512 bits.

Although the message digest functions are designed for variable amounts of input, AES and
other encryption functions can also be used to combine any number of inputs. However, if more
than 128 bits of output are needed, a more complex mixing function should be used.

Using S-Boxes for Mixing
Many modern block encryption functions, including the Data Encryption Standard (DES)

and the Advanced Encryption Standard AES, incorporate modules known as S-Boxes, meaning
substitution boxes. These produce a smaller number of outputs from a larger number of inputs
through a complex non-linear mixing function that has the effect of concentrating limited entropy
from the inputs into the output.

S-Boxes sometimes incorporate bent boolean functions. These are functions of an even
number of bits producing one output bit with maximum non-linearity. Looking at the output for
all input pairs differing in any particular bit position, exactly half of the outputs are different. An
S-Box in which each output bit is produced by a bent function such that any linear combination
of these functions is also a bent function is called a perfect S-Box.

S-boxes and various repeated applications or cascades of such boxes can be used for mixing
([Mister and Adams, 1996], [Nyberg, 1991]).

Using Diffie-Hellman as a Mixing Function
Diffie-Hellman (Section 1.3) shared secret is a mixture of initial quantities generated by

each of the parties involved in the communication. If these initial quantities are random and
uncorrelated, then the shared secret combines their entropy but, of course, it cannot produce
more randomness than the size of the shared secret generated.

6.7. The Blum Blum Shub Generator Example 75

However, using Diffie-Hellman as a mixing function is not recommended. Diffie-Hellman is a
computationally intensive algorithm and moreover if the Diffie-Hellman computation is performed
privately, an adversary who can observe either of the public keys and knows the modulus being
used only needs to search through the space of the other secret key in order to be able to
calculate the shared secret. So, if one wants to use this algorithm it would be best to consider
public Diffie-Hellman to produce a quantity whose guessability corresponds to the worse of the
two inputs.

Using a Mixing Function to Stretch Random Bits
A mixing function does not have as requirement the production of the same or fewer bits than

its inputs. However, mixing bits cannot stretch the amount of the unpredictability present in the
inputs, although the output can be expanded to hundreds or thousands of bits. Furthermore,
mixing to fewer bits than the inputted ones will tend to strengthen the randomness of the output.

Other Factors in Choosing a Mixing Function
For local use, AES has as advantages being widely tested for flaws, being reasonably efficient

in software, and being widely documented and implemented with hardware and software imple-
mentations available all over the world including open source code. The SHA* family have a
little less study and tend to require more CPU cycles than AES but there is no reason to believe
they are flawed. Both SHA* and MD5 were derived from the earlier MD4 ([Rivest, 1992a],
[Rivest, 1992b]) algorithm and they all have source code available. Some signs of weakness
have been found in MD4 and MD5. In particular, MD4 has only three rounds and there are
several independent breaks of the first two or last two rounds. And some collisions have been
found in MD5 output.

Where input lengths are unpredictable, hash algorithms are more convenient to use than
block encryption algorithms since they are generally designed to accept variable inputs length.
Block encryption algorithms generally require an additional padding algorithm to accommodate
inputs that are not an even multiple of the block size.

6.7 The Blum Blum Shub Generator Example

The generator described in this section has been dubbed Blum Blum Shub generator (BBS),
after its inventors: Lenore Blum, Manuel Blum and Michael Shub in 1986 ([Lenore Blum and
Shub, 1986]) but it is also known as the quadratic residue generator since the theory on which
this generator is based relies in the theory of the quadratic residues modulo n.

BBS Mechanism

Firstly, p and q are two primes that are found in a way that both are congruent to 3 modulo
4. n = p ∗ q is called a Blum integer. Then, another random integer, x , is chosen in a way that
it has to be relatively prime to n. x0 = x2 (mod n) is computed and it is going to be the seed
for the Blum Blum Shub generator.

76 Chapter 6. Randomness

The next step is to compute the bits. The i th pseudorandom bit is the least significant bit
of xi = x2i−1 (mod n).

This generator has a very particular property, which is the no need for iteration through
all the i − 1 bits in order to get the i th bit, which means that this cryptographically strong
pseudorandom bit generator can be used as a stream cryptosystem for a random access file. If
p and q are known, the i th bit is computed directly:

bi is the least significant bit of xi , where xi = x
2i (mod (p−1)(q−1))
0

BBS Security

The security of the BBS generator relies on the difficulty of factoring n (Chapter 4). Thus, n
can be a public parameter and everyone can generate random numbers using the BBS generator,
since no one can predict the output, unless n is factored.

More strongly, given a bit sequence generated by the BBS generator, an attacker cannot
predict neither the previous bit nor the next bit: the BBS generator is unpredictable to the left
and unpredictable to the right.

The BBS generator algorithm is slow, but some speedups can be added. Not only the least
significant bit of xi can be used but more than this bit can be used as a pseudorandom bit. If
the length of n is equal to the length of xi , the least significant log2 n bits of xi can be used
([Vazirani and Vazirani, 1984], [Vazirani and Vazirani, 1985], [W. Alexi and Schnorr, 1984],
[W. Alexi and Schnorr, 1988]).

Although BBS generator is a slow generator and although it is not useful for stream ciphers,
for high-security applications, like key generation, the Blum Blum Shub generator is considered
to be "the best of the lot" ([Schneier, 1996]).

Chapter 7

Quality analysis of generated numbers

Nature almost surely operates by combining chance with
necessity, randomness with determinism...

Eric Chaisson

The NIST package "A Statistical Test Suit for Random and Pseudorandom Number Gener-
ators for Cryptography Applications" ([Rukhin et al., 2010]) was used to test the randomness of
a given generated number. The tested numbers are generated by the Luna SA hardware security
module (HSM), a HSM with certifications of FIPS 140-2, Level 2 and Level 3 approved DRBG
(SP 800-90 CTR mode), Common Criteria EAL4+ and BAC & EAC ePassport Support, which
is mainly used for cryptographic purposes. Since NIST is responsible for specifying safety stan-
dards, and since there is a package of tests created by NIST, that aim at testing the patterns of
randomness (standards set by NIST itself) of a given sequence of bits, it was decided to evaluate
the randomness of the Luna SA generated numbers using this statistical tests package.

The tests were run in a virtual machine with Linux operating system, in a TOSHIBA computer
with Windows 8.1 Pro 64 bits operating system, 8192Mb RAM and a Intel(R) Core(TM) i5-
2520M CPU 2.50GHz (4 CPUs).

A detailed explanation about the statistical tests used in this chapter can be found in Chapter
6.

7.1 Quality analysis of a Hardware Security Module (HSM) gener-
ated number of 106 bits

Firstly, a request was made to the Luna SA HSM to generate 1000 n = 1000000 bits number.
Below is presented an analysis of one of the 1000 numbers, since all of the obtained statistics
were similar. In the NIST examples, that can be found in [Rukhin et al., 2010], Appendix B, the
number of bits of the sequence to be tested, ε, is equal to 1000000. Thus, it was chosen to
adopt the conditions used in [Rukhin et al., 2010] examples. It took about 7 seconds to run all
the tests for each one of the generated numbers.

77

78 Chapter 7. Quality analysis of generated numbers

7.1.1 Frequency Test

The recommended length of the sequence to be tested consists of a minimum of 100 bits.
Since ε comprises 1000000 bits, the input size recommendation is fulfilled.

The calculated statistics are represented in Table 7.1.

Computational Information Result
The nth partial sum (Sn) 74
Sn/n 0.000074
P-value 0.941010 Success

Table 7.1: Statistics table of the Frequency Test for a 1000000 bits number generated by a Luna SA HSM.
Success means the acceptance of the null hypothesis (the hypothesis that states the sequence is random).

P-value = 0.941010 > 0.01 and thus, it can be concluded that the tested sequence is
considered to be random.

This test aims to evaluate the ratio of the zeros and ones in ε. Since the result is the
acceptance of the hypothesis that dictates the sequence is random, it can be concluded that
the fractions of zeros and ones are thereabout 1/2.

7.1.2 Frequency Test Within a Block

This statistical test evaluates the proportion of the existent zeros and ones in a block of M
bits taken from the sequence to be tested. For the block length it was chosen M = 128.

The recommended length of the sequence to be tested consists of a minimum of 100 bits.
Since ε comprises 1000000 bits, the input size recommendation is fulfilled. The condition
n ≥ MN is satisfied, with N =

⌊ n
M

⌋
= 7812 and M × N = 999936. Since n is not a multiple

of 128, there will be 64 bits that will be discarded in the realization of this test.
The calculated statistics are represented Table 7.2.

Computational Information Result
χ2 7672.843750
Number of substrings 7812
Block length (M) 128
Bits discarded 64
P-value 0.867494 Success

Table 7.2: Statistics table of the Frequency Test Within a Block for a 1000000 bits number generated by a
Luna SA HSM. Success means the acceptance of the null hypothesis (the hypothesis that states the sequence is
random).

P-value = 0.867494 > 0.01 and thus, it can be concluded that the tested sequence is
considered to be random.

This result reveals that each one of the M-bits blocks of ε have approximately M/2 ones
and M/2 zeros.

7.1. Quality analysis of a Hardware Security Module (HSM) generated number of 106 bits 79

7.1.3 Runs Test

The recommended length of the sequence to be tested consists of a minimum of 100 bits.
Since ε comprises 1000000 bits, the input size recommendation is fulfilled.

The calculated statistics are represented in Table 7.3.

Computational Information Result
π 0.500037
vn(obs) (Total number of runs) 499479
|vn(obs)− 2nπ(1− π)|

2
√

2nπ(1− π)
0.736801

P-value 0.297414 Success

Table 7.3: Statistics table of the Runs Test for a 1000000 bits number generated by a Luna SA HSM. Success
means the acceptance of the null hypothesis (the hypothesis that states the sequence is random).

P-value = 0.297414 > 0.01 and thus, it can be concluded that the tested sequence is
considered to be random.

The value of vn(obs) is a large value, which indicates a fast oscillation in ε, i.e., there exists
a lot of changes between zero and one in the sequence.

7.1.4 Test for the Longest Run of Ones in a Block

The recommended length of the sequence to be tested consists of a minimum of 128 bits.
Since ε comprises 1000000 bits, the input size recommendation is fulfilled. Depending on the
chosen value for n, the value of M will be assigned according to Table 6.3.

The calculated statistics are represented in Table 7.4.

Computational Information Result
N (number of substrings) 100
M (Substring Length) 10000
χ2 0.424537
P-value 0.998639 Success

Table 7.4: Statistics table of the Test for the Longest Run of Ones in a Block for a 1000000 bits number generated
by a Luna SA HSM. Success means the acceptance of the null hypothesis (the hypothesis that states the sequence
is random).

P-value = 0.998639 > 0.01 and thus, it can be concluded that the tested sequence is
considered to be random.

7.1.5 Binary Matrix Rank Test

The recommended length of the sequence to be tested consists of a minimum of 38912 bits.
Since ε comprises 1000000 bits, the input size recommendation is fulfilled.

80 Chapter 7. Quality analysis of generated numbers

Computational Information Result
P32 0.288788
P31 0.577576Probability
P30 0.133636
F32 276
F31 570Frequency
F30 130

Number of matrices 976
χ2 0.193211
Bits discarded 576
P-value 0.907914 Success

Table 7.5: Statistics table of the Binary Matrix Rank Test for a 1000000 bits number generated by a Luna SA
HSM. Success means the acceptance of the null hypothesis (the hypothesis that states the sequence is random).

The calculated statistics are represented in Table 7.5.

P-value = 0.907914 > 0.01 and thus, it can be concluded that the tested sequence is
considered to be random.

7.1.6 Discrete Fourier Transform (Spectral) Test

The recommended length of the sequence to be tested consists of a minimum of 38912 bits.
Since ε comprises 1000000 bits, the input size recommendation is fulfilled.

The calculated statistics are represented in Table 7.6.

Computational Information Result
Percentile 94.976400
Nl 474882
No 475000
d -1.082842
P-value 0.278878 Success

Table 7.6: Statistics table of the Discrete Fourier Transform (Spectral) Test for a 1000000 bits number generated
by a Luna SA HSM. Success means the acceptance of the null hypothesis (the hypothesis that states the sequence
is random).

P-value = 0.278878 > 0.01 and thus, it can be concluded that the tested sequence is
considered to be random. The fact that d has a small value reveals the existence of few peaks
below T and many peaks above. With the results of this test we conclude there is no detection
of periodic features in the sequence.

7.1. Quality analysis of a Hardware Security Module (HSM) generated number of 106 bits 81

7.1.7 Non-overlapping Template Matching Test

The Non-overlapping Template Matching Statistic Test source code has been written to
provide templates for m = 2, 3, . . . , 10. In order to collect meaningful results it is recommended
for m to be equal to 9 or 10. In this evaluation we chose m = 9, as recommended. Also, the
conditions M > 0.01 · n = 10000 and N = bn/Mc = 8 (with M = 125000) are met. All the
recommendations are fulfilled.

The calculated statistics are represented in Table 7.7. In this test a m-bit window is used
to search for a specific m-bit pattern. Thus, as in this test m = 9, there will be 29 different
patterns to be tested (except the all ones and all zeros patterns). For each test, the P-value
is computed and, thus, there will be 29 − 2 P-values. The sequence is split into N independent
blocks. Wj represents each one of this blocks, with j = 1, . . . , N, and the frequency of the
pattern occurrences in each block is logged in Table 7.7.

All, except one, of the calculated P-value, represented in table 7.7 have values less than
0.01. For the pattern 000101101, P-value = 0.008724, indicating that, for the tested sequence,
the pattern 000101101 occurs a different number of times than what will be expected in a truly
random sequence.

By convention, if the sequence fails the test in at least one pattern, then the sequence fails
the test. Thus, this sequence fails this test.

Computational Information
M = 125000 N = 8 m = 9

Frequency
Template W1 W2 W3 W4 W5 W6 W7 W8 χ2 P-value Result
000000011 265 219 244 233 241 216 244 242 8.456924 0.390155 Success
000000101 223 223 235 266 226 254 259 251 9.104076 0.333593 Success
000000111 262 244 280 251 259 234 247 230 9.258714 0.320944 Success
000001001 256 270 251 238 239 257 264 243 6.285631 0.615271 Success
000001011 230 229 229 255 223 265 254 233 7.959116 0.437474 Success
000001101 269 240 236 229 227 217 236 242 8.600971 0.377067 Success
000001111 249 257 291 250 244 246 263 235 12.135414 0.145264 Success

...
000101011 245 265 259 244 246 264 229 272 8.736545 0.365006 Success
000101101 285 237 230 266 271 215 217 233 20.461531 0.008724 FAILURE
000101111 210 259 237 239 256 239 235 257 7.961234 0.437266 Success

...
111111100 224 258 258 263 277 253 244 217 12.886364 0.115820 Success
111111110 242 264 251 245 266 252 249 249 4.387602 0.820570 Success

Table 7.7: Statistics table of the Non-Overlapping Template Matching Test for a 1000000 bits number generated
by a Luna SA HSM. Success means the acceptance of the null hypothesis (the hypothesis that states the sequence
is random). The complete table is in C, table C.1

In all of the 1000 generated numbers, there were some patterns failing the test. In fact,

82 Chapter 7. Quality analysis of generated numbers

for some of the generated numbers, more than one pattern failed the test. The same test
was evaluated, in the same conditions, for a 106-bits number generated by the Blum Blum
Shub generator and by a random number generator with SHA-1, which are considered a secure
pseudorandom generators. Those generated numbers also failed the Non-Overlapping Template
Matching Test for some patterns.

7.1.8 Overlapping Template Matching Test

The recommended length of the sequence to be tested consists of at least 106 bits and
ε comprises 1000000 bits, fulfilling this recommendation. As the Non-Overlapping Template
Matching Test, in this test a m-bit window is used to search for a specific m-bit pattern. The
recommendation for m is to be equal to 9 or to 10, and, in this evaluation, m = 9. In this test
will be sought occurences of only one pattern, previously determined. The calculated statistics
are represented in Table 7.8. The number of times that the pattern occurs in each block will be
recorded (the frequency of occurences) and they will be shown in Table 7.8.

Computational Information Result
m (block length of ones) 9
M (length of substring) 1032
N (number of substrings) 968
λ[(M −m + 1)/2m] 2
η 1
χ2 6.574684
P-value 0.254241 Success

Frequency
0 1 2 3 4 ≥ 5
339 184 140 94 85 126

Table 7.8: Statistics table of the Overlapping Template Matching Test for a 1000000 bits number generated by
a Luna SA HSM. Success means the acceptance of the null hypothesis (the hypothesis that states the sequence
is random).

P-value = 0.254241 > 0.01 and thus, it can be concluded that the tested sequence is
considered to be random.

7.1.9 Maurer’s "Universal Statistical" Test

The length of the sequence to be tested should be greater than (Q + K) · L = (1280 +

141577) · 7 = 999999. Since ε comprises 1000000 bits, the input size recommendation is
fulfilled. Q and L are chosen according to Table 6.4 values. The sequence ε was partitioned into
two segments: an initialization segment consisting of Q L-bit non-overlapping blocks, and a test
segment consisting of K L-bit non-overlapping blocks. After this partition, one bit remained in
the end of the sequence, not belonging to any block. This bit was discarded, since bits remaining
at the end of the sequence that do not form a complete L-bit block are discarded. The first Q

7.1. Quality analysis of a Hardware Security Module (HSM) generated number of 106 bits 83

blocks are used to initialize the test and the remaining K blocks are the test blocks. K, n, L,
and Q follow the relation: K = bn/Lc −Q.

The calculated statistics are represented in Table 7.9.

Computational Information Result
L 7
Q 1280
K 141577
sum 878177.249285
σ 0.002768
var iance 3.125000
expectedV alue 6.196251
Bits discarded 1
P-value 0.017574 Success

Table 7.9: Statistics table of the Maurer’s "Universal Statistical" Test for a 1000000 bits number. Success means
the acceptance of the null hypothesis (the hypothesis that states the sequence is random).

P-value = 0.017574 > 0.01 and thus, it can be concluded that the tested sequence is
considered to be random.

7.1.10 Linear Complexity Test

The recommended length of the sequence to be tested consists of a minimum of 106 bits.
Since ε comprises 1000000 bits, the input size recommendation is fulfilled. M and N should
be chosen by preserving the conditions: 500 ≤ M ≤ 5000 and N ≥ 200. In this evaluation,
M was chosen to be equal to 500 and N was processed by the test code. The values Ti =

(−1)M · (Li − µ) +
2

9
are recorded in v0, v1, . . . , v6, as described in Table 6.5.

The calculated statistics are represented in Table 7.10.

Computational Information Result
M (substring length) 500
N (number of substrings) 2000
χ2 3.289781
Bits Discarded 0
P-value 0.771695 Success

Frequency
v0 v1 v2 v3 v4 v5 v6

20 56 230 1027 500 128 39

Table 7.10: Statistics table of the Linear Complexity Test for a 1000000 bits number generated by a Luna SA
HSM. Success means the acceptance of the null hypothesis (the hypothesis that states the sequence is random).

P-value = 0.771695 > 0.01 and thus, it can be concluded that the tested sequence is
considered to be random.

84 Chapter 7. Quality analysis of generated numbers

7.1.11 Serial Test

For this test it is recommended to choose m and n such that m < blog2 nc − 2. Since ε
comprises 1000000 bits and m was chosen to be equal to 16 (and 16 < blog2 nc − 2 = 17), the
input size recommendation is fulfilled.

The calculated statistics are represented in Table 7.11.

Computational Information Result
Block length (m) 16
ψm 66451.861504
ψm−1 33252.438016
ψm−2 16755.257344
P-value1 0.046429 Success
P-value2 0.040018 Success

Table 7.11: Statistics table of the Serial Test for a 1000000 bits number generated by a Luna SA HSM. Success
means the acceptance of the null hypothesis (the hypothesis that states the sequence is random).

P-value1 = 0.046429 > 0.01 and P-value2 = 0.040018 > 0.01. Thus, it can be concluded
that the tested sequence is considered to be random.

7.1.12 Approximate Entropy Test

For this test the recommendation is to choose m and n such that m < blog2 nc− 5. Since ε
comprises 1000000 bits and m was chosen to be equal to 10 (and 10 < blog2 nc − 5 = 14), the
input size recommendation is fulfilled.

The calculated statistics are represented in Table 7.12.

Computational Information Result
Block length (m) 10
χ2 1069.040430
φm -6.930922
φm+1 -7.623534
ApEn(m) = ϕ(m) − ϕ(m+1) 0.692613
P-value 0.159695 Success

Table 7.12: Statistics table of the Approximate Entropy Test for a 1000000 bits number generated by a Luna SA
HSM. Success means the acceptance of the null hypothesis (the hypothesis that states the sequence is random).

P-value = 0.159695 > 0.01. Thus, it can be concluded that the tested sequence is consid-
ered to be random. ApEn(m) has a small value and this implies a strong regularity in ε.

7.1. Quality analysis of a Hardware Security Module (HSM) generated number of 106 bits 85

7.1.13 Cumulative Sums Test

The recommended length of the sequence to be tested consists of a minimum of 100 bits.
Since ε comprises 1000000 bits, the input size recommendation is fulfilled.

The calculated statistics for the Cumulative Sums Test Mode = 0 are represented in Table
7.13 and the calculated statistics for the Cumulative Sums Test Mode = 1 are represented in
Table 7.14.

Computational Information Result
Maximum partial sum 729
P-value 0.875052 Success

Table 7.13: Statistics table of the Cumulative Sums (forward) Test for a 1000000 bits number generated by a
Luna SA HSM. Success means the acceptance of the null hypothesis (the hypothesis that states the sequence is
random).

From Table 7.13, P-value = 0.875052 > 0.01. Thus, it can be concluded the tested
sequence is considered to be random.

Computational Information Result
Maximum partial sum 655
P-value 0.928211 Success

Table 7.14: Statistics table of the Cumulative Sums (reverse) Test for a 1000000 bits number generated by a
Luna SA HSM. Success means the acceptance of the null hypothesis (the hypothesis that states the sequence is
random).

From Table 7.14, P-value = 0.928211 > 0.01. Thus, it can be concluded the tested
sequence is considered to be random.

7.1.14 Random Excursions Test

The recommended length of the sequence to be tested consists of a minimum of 1000000
bits. Since ε comprises 1000000 bits, the input size recommendation is fulfilled.

The calculated statistics are represented in Table 7.15.
The P-values shown in Table 7.15 are greater than 0.01. Thus, the tested sequence is

considered to be random.

7.1.15 Random Excursions Variant Test

The recommended length of the sequence to be tested consists of a minimum of 1000000
bits. Since ε comprises 1000000 bits, the input size recommendation is fulfilled.

The calculated statistics are presented in Table 7.16.

86 Chapter 7. Quality analysis of generated numbers

Computational Information P-value Result
x = −4 χ2 5.522087 0.355530 Success
x = −3 χ2 4.563041 0.471493 Success
x = −2 χ2 4.046021 0.542809 Success
x = −1 χ2 2.469042 0.781150 Success
x = 1 χ2 12.774385 0.025587 Success
x = 2 χ2 14.159468 0.014628 Success
x = 3 χ2 6.182046 0.288906 Success
x = 4 χ2 3.477637 0.626774 Success

Table 7.15: Statistics table of the Random Excursions Test for a 1000000 bits number generated by a Luna SA
HSM. Success means the acceptance of the null hypothesis (the hypothesis that states the sequence is random).

The P-values shown in Table 7.16 are greater than 0.01. Thus, the tested sequence is
considered to be random.

7.2 Quality analysis of a Hardware Security Module (HSM) gener-
ated number of 109 bits

The next step before testing a 106 bits number (Section 7.1) was running the statistical
tests with a bigger number. Thus, it was requested to the Luna SA HSM a generation of
a n = 109 bits number. The focus of this analysis was to test whether the statistical data
previously obtained are consistent. It was not possible to run the Discrete Fourier Transform
(Spectral) Test, the Random Excursions Test and the Random Excursions Variant Test with
such a large number, because of an insufficient memory error. It took about 12 hours to run all
the tests.

7.2.1 Frequency Test

Since ε comprises 109 bits, the input size recommendation is fulfilled.
The calculated statistics are presented in Table 7.17.

7.2. Quality analysis of a Hardware Security Module (HSM) generated number of 109 bits 87

Computational Information P-value Result
x = −9 Total visits 1134 0.822167 Success
x = −8 Total visits 1078 0.591242 Success
x = −7 Total visits 986 0.270316 Success
x = −6 Total visits 1015 0.308536 Success
x = −5 Total visits 1042 0.346996 Success
x = −4 Total visits 1004 0.173158 Success
x = −3 Total visits 1019 0.140604 Success
x = −2 Total visits 1041 0.100846 Success
x = −1 Total visits 1112 0.167661 Success
x = 1 Total visits 1103 0.117560 Success
x = 2 Total visits 985 0.021078 Success
x = 3 Total visits 996 0.091918 Success
x = 4 Total visits 1014 0.199041 Success
x = 5 Total visits 944 0.106712 Success
x = 6 Total visits 937 0.132939 Success
x = 7 Total visits 960 0.210994 Success
x = 8 Total visits 954 0.231553 Success
x = 9 Total visits 933 0.219192 Success

Table 7.16: Statistics table of the Random Excursions Variant Test for a 1000000 bits number generated by a
Luna SA HSM. Success means the acceptance of the null hypothesis (the hypothesis that states the sequence is
random).

Computational Information Result
The nth partial sum (Sn) 8364
Sn/n 0.000008
P-value 0.791400 Success

Table 7.17: Statistics table of the Frequency Test for a 109 bits number generated by a Luna SA HSM. Success
means the acceptance of the null hypothesis (the hypothesis that states the sequence is random).

P-value = 0.791400 > 0.01 and thus, the tested sequence is considered to be random.

7.2.2 Frequency Test Within a Block

The block length of this test is M = 128.
ε comprises 109 bits and thus the input size recommendation is fulfilled. The condition

n ≥ MN is satisfied, with N =
⌊ n
M

⌋
= 7812500 and M × N = 109. Since n is a multiple of

128, there wouldn’t be any discarded bits in the realization of this test.
The calculated statistics are presented in Table 7.18.
P-value = 0.320670 > 0.01 and thus, the tested sequence is considered to be random. This

result reveals that each one of the M-bits block of ε have approximately M/2 ones and M/2

88 Chapter 7. Quality analysis of generated numbers

Computational Information Result
χ2 7814340.812500
Number of substrings 7812500
Block length (M) 128
Bits discarded 0
P-value 0.320670 Success

Table 7.18: Statistics table of the Frequency Test Within a Block for a 109 bits number generated by a Luna SA
HSM. Success means the acceptance of the null hypothesis (the hypothesis that states the sequence is random).

zeros.

7.2.3 Runs Test

ε comprises 109 bits and thus the input size recommendation is fulfilled.
The calculated statistics are presented in Table 7.19.

Computational Information Result
π 0.500004
vn(obs) (Total number of runs) 499962850
|vn(obs)− 2nπ(1− π)|

2
√

2nπ(1− π)
1.661397

P-value 0.018795 Success

Table 7.19: Statistics table of the Runs Test for a 109 bits number generated by a Luna SA HSM. Success means
the acceptance of the null hypothesis (the hypothesis that states the sequence is random).

P-value = 0.018795 > 0.01 and thus, the tested sequence is considered to be random.

7.2.4 Test for the Longest Run of Ones in a Block

Since ε comprises 109 bits, the input size recommendation is fulfilled and, depending on the
chosen value of n, the value of M will be assigned according to Table 6.3.

The calculated statistics are presented in Table 7.20.
P-value = 0.480659 > 0.01 and thus, the tested sequence is considered to be random.

7.2.5 Binary Matrix Rank Test

Since ε comprises 109 bits, the input size recommendation is fulfilled.
The calculated statistics are presented in Table 7.21.

7.2. Quality analysis of a Hardware Security Module (HSM) generated number of 109 bits 89

Computational Information Result
N (number of substrings) 100000
M (Substring Length) 10000
χ2 5.506601
P-value 0.480659 Success

Table 7.20: Statistics table of the Test for the Longest Run of Ones in a Block for a 109 bits number generated by
a Luna SA HSM. Success means the acceptance of the null hypothesis (the hypothesis that states the sequence
is random).

Computational Information Result
P32 0.288788
P31 0.577576Probability
P30 0.133636
F32 281676
F31 564029Frequency
F30 130857

Number of matrices 976562
χ2 1.375720
Bits discarded 512
P-value 0.502651 Success

Table 7.21: Statistics table of the Binary Matrix Rank Test for a 109 bits number generated by a Luna SA HSM.
Success means the acceptance of the null hypothesis (the hypothesis that states the sequence is random).

P-value = 0.907914 > 0.01 and thus, the tested sequence is considered to be random.

7.2.6 Non-overlapping Template Matching Test

In this evaluation m = 9, as recommended. Also, the conditions M > 0.01 · n = 109 and
N = bn/Mc = 8 (with M = 125000) are met. All the recommendations are fulfilled.

The calculated statistics are presented in Table 7.22. In this test m = 9 and thus there will
be 29 different patterns (except the all ones and all zeros patterns) to be tested. This means
that there will be 29 − 2 P-values. The sequence is split into N independent blocks and the
frequency of the pattern occurrences in each block is logged in Table 7.22.

There are more than one calculated P-value, presented in Table 7.22, that have values less
than 0.01. For the patterns 000001001, 011101111 and 101000100 the P-values are 0.007990,
0.008124 and 0.001514, respectively. This indicates that, for the tested sequence, the patterns
mentioned before occur a different number of times from what will be expected in a truly random
sequence.

By convention, if the sequence fails the test in at least one pattern, then the sequence fails
the test. Thus, this sequence fails this test and it is not considered to be random.

90 Chapter 7. Quality analysis of generated numbers

Computational Information
M = 125000000 N = 8 m = 9

Frequency
Template W1 W2 W3 W4 W5 W6 W7 W8 χ2 P-value Result
000000001 244453 243866 244528 243860 243632 244292 244701 244669 5.408738 0.713129 Success
000000011 244246 244208 244181 244114 243820 243561 244738 243642 4.500244 0.809409 Success
000000101 243851 244593 244777 243523 244060 244104 243564 244391 6.261703 0.617943 Success
000000111 243702 243982 244577 243827 244504 244555 244255 244321 3.625408 0.889242 Success
000001001 244032 243022 244004 244622 244548 243187 245637 244381 20.699494 0.007990 FAILURE

...
011010111 244024 244098 243871 243788 244538 244715 244831 243603 6.210717 0.623641 Success
011011111 244361 243475 244224 244784 244656 244316 243641 244265 6.244790 0.619833 Success
011101111 244355 244085 244510 243922 243593 244657 246004 243364 20.654521 0.008124 FAILURE
011111111 243889 243960 244026 244166 244974 244945 245145 244106 10.427673 0.236282 Success

...
101000000 243727 243152 244648 243802 244232 243868 244753 243636 9.459824 0.305001 Success
101000100 244833 243380 243710 244680 245369 243892 245194 242836 25.067049 0.001514 FAILURE
101001000 243399 244164 244159 244215 243963 244509 243992 244634 4.190828 0.839509 Success

...
111111100 243873 244625 244474 244260 244530 244650 243662 244193 4.552591 0.804149 Success
111111110 243889 243960 244026 244166 244974 244945 245145 244106 10.427673 0.236282 Success

Table 7.22: Statistics table of the Non-Overlapping Template Matching Test for a 109 bits number generated by
a Luna SA HSM. Success means the acceptance of the null hypothesis (the hypothesis that states the sequence
is random). The complete table is in C, table C.2

7.2.7 Overlapping Template Matching Test

ε comprises 109 bits and thus the input size recommendation is fulfilled. In this evaluation,
m = 9.

The calculated statistics are presented in Table 7.23.
P-value = 0.00000 < 0.01 and thus, the tested sequence is not considered to be random.

7.2.8 Maurer’s "Universal Statistical" Test

Since ε comprises 109 bits, the input size recommendation is fulfilled. Q and L are chosen
according to Table 6.4. The sequence ε was partitioned into two segments: an initialization
segment consisting of Q L-bit non-overlapping blocks, and a test segment consisting of K L-bit
non-overlapping blocks. After this partition, 10 bits remained in the end of the sequence, not
belonging to any block. Those 10 bits were discard.

The calculated statistics are presented in Table 7.24.

7.2. Quality analysis of a Hardware Security Module (HSM) generated number of 109 bits 91

Computational Information Result
m (block length of ones) 9
M (length of substring) 1032
N (number of substrings) 968992
λ[(M −m + 1)/2m] 2
η 1
χ2 116.476980
{P-value} 0.000000 FAILURE

Frequency
0 1 2 3 4 ≥ 5

351982 180536 135143 97572 68021 135738

Table 7.23: Statistics table of the Overlapping Template Matching Test for a 109 bits number generated by a
Luna SA HSM. Success means the acceptance of the null hypothesis (the hypothesis that states the sequence is
random).

Computational Information Result
L 15
Q 327680
K 66338986
sum 939865144.454580
σ 0.000149
var iance 3.419000
expectedV alue 14.167488
Bits discarded 10
P-value 0.398955 Success

Table 7.24: Statistics table of the Maurer’s "Universal Statistical" Test for a 109 bits number. Success means
the acceptance of the null hypothesis (the hypothesis that states the sequence is random).

P-value = 0.398955 > 0.01 and thus, the tested sequence is considered to be random.

7.2.9 Linear Complexity Test

ε comprises 109 bits and thus, the input size recommendation is fulfilled. In this evaluation,
M was chosen to be equal to 500 and N was processed by the test source code. The values

Ti = (−1)M · (Li − µ) +
2

9
are recorded in v0, v1, . . . , v6, as presented in Table 6.5.

The calculated statistics are presented in Table 7.25.
P-value = 0.520163 > 0.01 and thus, the tested sequence is considered to be random.

7.2.10 Serial Test

ε comprises 109 bits and m was chosen to be equal to 16 (and 16 < blog2 nc − 2 = 27) and
thus the input size recommendation is fulfilled.

92 Chapter 7. Quality analysis of generated numbers

Computational Information Result
M (substring length) 500
N (number of substrings) 2000000
χ2 5.186203
Bits Discarded 0
P-value 0.520163 Success

Frequency
v0 v1 v2 v3 v4 v5 v6

20888 62344 249283 1001018 499452 125349 41666

Table 7.25: Statistics table of the Linear Complexity Test for a 109 bits number generated by a Luna SA HSM.
Success means the acceptance of the null hypothesis (the hypothesis that states the sequence is random).

The calculated statistics are presented in Table 7.26.

7.2. Quality analysis of a Hardware Security Module (HSM) generated number of 109 bits 93

Computational Information Result
Block length (m) 16
ψm 66755.999433
ψm−1 33531.165344
ψm−2 16705.072693
P-value1 0.037629 Success
P-value2 0.466093 Success

Table 7.26: Statistics table of the Serial Test for a 109 bits number generated by a Luna SA HSM. Success means
the acceptance of the null hypothesis (the hypothesis that states the sequence is random).

P-value1 = 0.037629 > 0.01 and P-value2 = 0.466093 > 0.01. Thus, the tested sequence
is considered to be random.

7.2.11 Approximate Entropy Test

For this test ε comprises 109 bits andm was chosen to be equal to 10 (and 10 < blog2 nc−5 =

24). So, the input size recommendation is fulfilled.
The calculated statistics are presented in Table 7.27.

Computational Information Result
Block length (m) 10
χ2 1002.410764
φm -6.931471
φm+1 -7.624618
ApEn(m) = ϕ(m) − ϕ(m+1) 0.693147
P-value 0.679283 Success

Table 7.27: Statistics table of the Approximate Entropy Test for a 109 bits number generated by a Luna SA HSM.
Success means the acceptance of the null hypothesis (the hypothesis that states the sequence is random).

P-value = 0.679283 > 0.01. Thus, it can be concluded that the tested sequence is consid-
ered to be random. ApEn(m) has a small value, and this implies a strong regularity in ε.

7.2.12 Cumulative Sums Test

ε comprises 109 bits and thus, the input size recommendation is fulfilled.
The calculated statistics for the Cumulative Sums Test Mode = 0 are presented in Table

7.28 and the calculated statistics for the Cumulative Sums Test Mode = 1 are presented in Table
7.29.

From table 7.28, P-value = 0.842729 > 0.01. Thus, the tested sequence is considered to
be random.

94 Chapter 7. Quality analysis of generated numbers

Computational Information Result
Maximum partial sum 24288
P-value 0.842729 Success

Table 7.28: Statistics table of the Cumulative Sums (forward) Test for a 109 bits number generated by a Luna SA
HSM. Success means the acceptance of the null hypothesis (the hypothesis that states the sequence is random).

Computational Information Result
Maximum partial sum 24606
P-value 0.834051 Success

Table 7.29: Statistics table of the Cumulative Sums (reverse) Test for a 109 bits number generated by a Luna SA
HSM. Success means the acceptance of the null hypothesis (the hypothesis that states the sequence is random).

From table 7.29, P-value = 0.834051 > 0.01. Thus, the tested sequence is considered to
be random.

7.3 Quality analysis of a Hardware Security Module (HSM) set of
generated numbers

On the individual tests, the acceptance level about the hypothesis "the generated sequence
is random" is quite high, since the tested sequences pass most of the tests. However, this does
not imply a high pass rate of the test suit. NIST suggests to run the tests multiple times.
The number of times the tests should be run is at least the inverse of the significance level,
which, in this case, is 0.01. Thus, to check the pass rate, the tests were performed 100 times.
Although the sequences failed some of the tests, the failure sample is not significant to deemed
this generator to a bad random generator. The tests results can be seen in Table 7.30.

7.4 Conclusions

The HSM Luna SA generated numbers are considered to be random, since they passed
almost all of the tests.

The tests results induce to the conclusion that if the number is getting bigger, the proba-
bilities of being "less random" are also bigger. In the Non-overlapping Template Matching Test
one can check that some patterns occur a number of times than what would be expected in
a truly random sequence. Intuitively, if the tested number gets bigger, the pattern has more
probability to occur. Further, in the Overlapping Template Matching Test for a 106 bits number,
the conclusion is that the number passed the test. However, in the same test for a 109 bits
number, the conclusion is that the number did not pass the test. The patterns searched in the
tested numbers occur a larger number of times than the number of times supposed to occur in
a truly random number.

7.4. Conclusions 95

One must notice that, despite the generated numbers from HSM Luna SA had fail in two
tests, they had success in the others 13 tests.

96 Chapter 7. Quality analysis of generated numbers

Statistical Test Proportion
Frequency Test 98/100
Frequency Test Within a Block 100/100
Runs Test 100/100
Test for the Longest Runs of Ones in a Block 100/100
Binary Matrix Rank Test 98/100
Discrete Fourier Transform (Spectral) Test 98/100
Non-overlapping Template Matching Test 96/100
Overlapping Template Matching Test 97/100
Maurer’s "Universal Statistical" Test 100/100
Linear Complexity Test 97/100
Serial Test (1) 99/100
Serial Test (2) 99/100
Approximate Entropy Test 98/100
Cumulative Sums Test (mode = 0) 99/100
Cumulative Sums Test (mode = 1) 98/100
Random Excursions Test (1) 98/100
Random Excursions Test (2) 99/100
Random Excursions Test (3) 100/100
Random Excursions Test (4) 100/100
Random Excursions Test (5) 99/100
Random Excursions Test (6) 99/100
Random Excursions Test (7) 97/100
Random Excursions Test (8) 99/100
Random Excursions Variant Test (1) 99/100
Random Excursions Variant Test (2) 99/100
Random Excursions Variant Test (3) 99/100
Random Excursions Variant Test (4) 99/100
Random Excursions Variant Test (5) 100/100
Random Excursions Variant Test (6) 100/100
Random Excursions Variant Test (7) 99/100
Random Excursions Variant Test (8) 100/100
Random Excursions Variant Test (9) 99/100
Random Excursions Variant Test (10) 99/100
Random Excursions Variant Test (11) 99/100
Random Excursions Variant Test (12) 99/100
Random Excursions Variant Test (13) 99/100
Random Excursions Variant Test (14) 99/100
Random Excursions Variant Test (15) 100/100
Random Excursions Variant Test (16) 100/100
Random Excursions Variant Test (17) 100/100
Random Excursions Variant Test (18) 100/100

Table 7.30: Pass rates test for each one of the NIST Statistical Test Suit [Rukhin et al., 2010] based on 100
tests for 100 106 bits number generated by a Luna SA HSM.

Chapter 8

MQualityTester Application

One of the proposed objectives, in the context of the developed work in MULTICERT, was
to develop a Java application whose functionality would be testing the quality of a RSA keys set
and the randomness quality of one or several binary sequences generated by an Hardware Security
Module (HSM). The Java application, named MQualityTester, should be able to analyze the
quality of a RSA keys set obtained through a direct request for keys to a HSM, it should be able
to analyse a RSA keys set obtained by reading a text file given as input, as well as it should be
able to analyze the randomness quality of binary sequences obtained through a direct request to
a HSM or binary sequences obtained by reading a text file given as input.

Testing the quality of a RSA keys set, in this application, consists only on a single test that
checks for common factors in the various modules of RSA public keys to be tested. This single
test was chosen in accordance with the last successfully performed attack on RSA cryptosystem
(Section 5). If the tested RSA keys set passes the test, nothing can be concluded about those
keys quality. However, if the RSA keys set does not pass this test, it may be said that the tested
keys do not have the necessary requirements to be considered as secure keys.

Testing randomness quality of one binary sequence or a set of binary sequences, in the
MQualityTester application, consists in running a set of 15 statistical tests provided by National
Institute of Standards and Technology (NIST) ([Rukhin et al., 2010]). The detailed description
of these tests can be found in Chapter 6.

Several images are presented below illustrating the appearance of the MQualityTester appli-
cation interface, followed by a short description about the application’s features. The application
was developed in Portuguese, our mother language, and this is the reason why the menus and
all the descriptions in the images below are written in Portuguese.

The interface has a simple appearance, as illustrated in Figure 8.1, allowing the user to
experience its features in an intuitive way. The application has a console area, in which the state
of the program will be updated in real-time as the program runs, as well as three tabs:

• "Teste de qualidade de chaves": The user should choose this tab if he/she wants to test
the quality of a RSA keys set (Figure 8.2 and Figure 8.3). After selecting this tab, the
user can choose to generate the keys directly in the HSM, as illustrated in Figure 8.2, or
he/she can input a file with the previously generated RSA keys set, as illustrated in Figure

97

98 Chapter 8. MQualityTester Application

8.3. Since the HSM used along the MULTICERT internship, Luna SA – Network-Attached
HSM, only generates 2048-bit RSA keys, this is the default size in the MQualityTester.
If the user chooses to generate the RSA keys directly on the HSM, he/she must enter
the number of keys to be generated and he/she may or may not choose to save the
extracted modules of the tested keys for further analysis. The MQualityTester is confined
to generate keys in the Luna SA – Network-Attached HSM, since the connection to it was
developed using the Key Gen Server module already existing in MULTICERT repository. If
the user chooses to input a file with the previously generated RSA keys set, he/she should
enter the path to it, and he/she may or may not choose to save the extracted modules of
the tested keys. The test results are automatically saved in the folder results that comes
with the MQualityTester application. In the end of the test execution, the MQualityTester
launches a notification about the test result, as illustrated in Figure 8.7.

• "Teste de aleatoriedade": The user should choose this tab if he/she wants to test the
randomness quality of one or more binary sequences (Figure 8.4 and Figure 8.5). After
selecting this tab, the user can choose to generate the binary sequences directly in an HSM,
as illustrated in Figure 8.4, or he/she can input a file with the binary sequences previously
generated, as illustrated in Figure 8.5. If the user chooses to generate the binary sequences
directly on the HSM, he/she must enter the number of sequences to be generated and
the number of bits each one should have. The connection is made directly to the HSM,
and the HSM in use can be configured in the tab "Configurações" (Figure 8.6). The user
may or may not choose to save the generated sequences for further analysis. If the user
chooses to input a file with the data to be tested, he/she should enter the path to the
desired file, the number of sequences to be tested and their number of bits.

The NIST Statistical Test Suit that is intended to be used is also configurable on tab
"Configurações" (Figure 8.6) and the results are stored in the NIST application default
path intended to save the tests results.

At the end of the tests, the MQualityTester launches a notification about the summarized
outcome of the tests, as illustrated in Figure 8.8.

• "Configurações": In this tab, illustrated in Figure 8.6, the user can configure the HSM to
which the application will connect if he/she chooses to test randomness quality of binary
sequences. For this test, the user must also enter the location path of the NIST Statistical
Test Suit and the results of these tests will be automatically stored in the target path set
by NIST’s application.

99

Figure 8.1: GUI general appearance.

Figure 8.2: When choosing the tab "Teste de qualidade de chaves", the user can choose to generate
the RSA keys directly from an HSM.

100 Chapter 8. MQualityTester Application

Figure 8.3: When choosing the tab "Teste de qualidade de chaves", the user can choose to give the
RSA keys to be tested as an input.

Figure 8.4: When choosing the tab "Teste de aleatoriedade", the user can choose to generate the
binary sequences directly from an HSM.

101

Figure 8.5: When choosing the tab "Teste de aleatoriedade", the user can choose to give the binary
sequences to be tested as an input.

Figure 8.6: Functional model of an RBG that uses a DRBG mechanism, includes a source of entropy
input and, depending on the implementation of the DRBG mechanism, it can include a nonce source.

102 Chapter 8. MQualityTester Application

Figure 8.7: Example of the window shown at the end of the keys quality test with the test results
resume. In this example, the user requested Luna SA – Network-Attached HSM 100 2048-bit RSA
keys and they passed the test.

Figure 8.8: Example of the window shown at the end of the randomness quality test with the test
results resume. In this example, the user inputed one file containing the binary sequences to be tested
and they passed 6 tests in a total of 15 tests.

Chapter 9

Conclusions and Future Work

9.1 Conclusions

As said before, cryptography is the basis of security mechanisms of all computer systems
and is the basis of the security provided to each user when accessing secure websites, by pre-
venting the information from being intercepted by third parties. In fact, modern cryptography
is becoming a more and more central topic in computer science.

The RSA cryptosystem is the most widely used cryptosystem, and, in fact many processes
rely their information security on the RSA efficiency. Although RSA has suffered many attacks
(either innocuous attacks, which are intended to only test the system safety or malicious attacks
intended to access secret information), its vulnerabilities have been well studied and the algorithm
was improved, so that this cryptosystem is considered to be an efficient and secure algorithm.
The technological progress allows an improvement of the algorithm, such as, for example, large
keys sizes being more accessible to use. There are also many security protocols and principles
approved by the information security specialized agencies, in order to avoid bad practices of this
cryptographic system.

In this work, the lastest successful approach made on some RSA keys vulnerabilities, in order
to find some RSA modulus factors, was explored in some detail (Chapter 5). This approach
was implemented in Java 8 and it was incorporated into the developed application, named
MQualityTester (Chapter 8), as a quality test for a set of RSA keys. Several sets of 2048-bits
RSA keys generated in Luna SA - network-attached HSM were tested and none of those sets
has revealed to have common factors in their public key modules, and thus, all the RSA keys
sets passed the test.

Since the RSA cryptosystem is based on the generation of pseudorandom numbers, it was
decided to study their generation, and to meet the necessary criteria for a binary sequence
considered to be random, or more specifically, pseudorandom. The tests used for the randomness
quality analysis were the tests provided by NIST, which include several of the properties that
must be met for a binary sequence to be considered pseudorandom. These tests were also
incorporated into the MQualityTester application. Those statistical tests were performed on
various binary sequences generated by the Luna SA - network-attached HSM. A large proportion
of the tested sequences did not pass the Non-Overlapping Template Matching Test (Section

103

104 Chapter 9. Conclusions and Future Work

7.1.7). However, in the NIST documentation it becomes clear that a sequence does not need
to pass all statistical tests to be considered pseudorandom sequences. Indeed, several sets of
binary sequences generated by the Blum Blum Shub Generator (well known from the literature
to be a good generator) were also tested, and the vast majority of the sequences did not pass
this same test.

All tests conducted on elements generated by Luna SA - network-attached HSM showed
positive results, not revealing anomalies in the generation of RSA keys or pseudorandom se-
quences.

The MQualityTester application was developed with success, showing reliability in the re-
sults, as well as versatility to be adaptable to new projects. Its graphical user interface was
developed considering its user-friendly capacity, so that any user would be able to make use of
their characteristics in an intuitively way.

9.2 Future Work

There are numerous approaches for the RSA cryptanalysis. In this thesis many of its vulner-
abilities were studied but only one of them was implemented. It would be beneficial to explore
new attacks and incorporate them into the MqualityTester so it can provide more and better
information about the quality of the RSA keys generated by an HSM.

Although the user can configure the NIST Statistical Test Suit intended to be used, which is
an asset in case of NIST updating the tests, it would be interesting if the statistical tests were
built-in the application. To this purpose further study of the statistical tests mechanism would
be necessary.

The analysis of the randomness and RSA keys quality generated by a HSM should be done
over a time line to see if there are some changes in the numbers generation. And in case there
are, the temporal analysis can help uncover the problem source or the decision to reevaluate the
system.

Appendix A

Coppersmith’s Theorem

The most powerful attacks on low public exponent RSA are based on a theorem due to
Coppersmith [Coppersmith, 1997] which has many applications.

Theorem 14. [Coppersmith’s Theorem]
Let n be an integer and f ∈ Z[x] be a monic polynomial of degree w over the integers. Set

x = n
1
w
−ε for

1

w
> ε ≥ 0. Then, given (n, f) an attacker can efficiently find all integers |x0| < x

satisfying f (x0) = 0 (mod n). The running time is dominated by the time it takes to run the

LLL algorithm on a lattice of dimension O(ω) with ω = min

(
1

ε
, log2(n)

)
.

The theorem stated above provides an algorithm for efficiently finding all roots of a function
f modulo n that are less than x = n

1
w . As x gets smaller, the algorithm’s running time decreases.

The theorem’s strength is its ability to find small roots of polynomials modulo a composite n.
When working modulo a prime, there is no reason to use Coppersmith’s theorem since other,
far better, root-finding algorithms exist.

For the proof of Coppersmith’s theorem it will be used LLL lattice basis reduction algorithm
as well as a simplified approach due to Howgrave-Graham [Howgrave-Graham, 1998]. Let us
define ||h||2 =

∑
i

|ai |2 from a given a polynomial h(x) =
∑

aix
i ∈ Z[x].

Lemma 2. Let h(x) ∈ Z[x] be a polynomial of degree w and let x be a positive integer.

Suppose ||h(kx)|| <
n√
w
. If ||x0|| < x satisfies h(x0) = 0 (mod n), then h(x0) = 0 holds over

the integers.

Proof. From the Schwarz inequality,

|h(x0)| =
∣∣∣∑ aix

i
0

∣∣∣ =
∣∣∣∑ aix

i
(x0
x

)i ∣∣∣
≤

∑∣∣∣aix i(x0
x

)i ∣∣∣
≤

∑
|aix i |

≤
√
w ||h(kx)||

< n

105

106 Appendix A. Coppersmith’s Theorem

Thus, h(x0) = 0, since h(x0) = 0 (mod n).

This lemma states that if h is a polynomial with a low norm, then all small roots of h (mod n)

are also roots of h over the integers, suggesting that to find a small root x0 of f (x) (mod n) one
should look for another polynomial h ∈ Z[x] with small norm having the same roots as f modulo
n. Then x0 will be a root of h over the integers and can be easily found. To do so, one may
search for a polynomial g ∈ Z[x] such that h = gf has low norm (and for low norm it means
having a norm less than n). This amounts to searching for an integer linear combination of the
polynomials f , xf , x2f , ..., x r f with low norm. Unfortunately, most often there is no nontrivial
linear combination with sufficiently small norm.

Coppersmith found a way to solve this problem: if f (x0) = 0 (mod n), then f (x0)
k =

0
(

mod nk
)
, for any k. More generally, define the following polynomials:

gu,v (x) = nm−vxuf (x)v

for some predefined m. Then x0 is a root of gu,v (x) modulo nm for any u ≥ 0 and 0 ≤ v ≤ m. To
use Lemma 2 one must find an integer linear combination h(x) of the polynomials gu,v (x) such
that h(kx) has norm less than nm (recall that x is an upper bound on x0 satisfying x ≤ n

1
w).

Thanks to the relaxed upper bound on the norm (nm rather than n), one can show that for
sufficiently large m, there always exists a linear combination h(x) satisfying the required bound.
Once h(x) is found, Lemma 2 implies that it has x0 as a root over the integers. Consequently
x0 can be easily found.

To prove Coppersmith’s theorem it is used the LLL algorithm. To ensure that the vector
produced by LLL satisfies the bound of Lemma 2 the following discriminat must be assured:

2
j
4 det(L)

1
j <

nm√
j

where j = w(m + 1) is the dimension of L. A routine calculation shows that for large enough

m the bound is satisfied [Boneh, 1999]. Indeed, when x = n
1
w
−ε, it suffices to take m = O(

l

w
)

with l = min
(1

ffl
, log(n)

)
. Consequently, the running time is dominated by running LLL on a

lattice of dimension O(l), as required.
A natural question is whether Coppersmith’s theorem can be applied to bivariate and multi-

variate polynomials. If f (x, y) ∈ Zn[x, y] is given for which there exists a root (x0, y0) with
|x0y0| suitably bounded, can an attacker efficiently find (x0, y0)? Although the same technique
appears to work for some bivariate polynomials, it is currently an open problem to prove it. As
an increasing number of results depend on a bivariate extension of Coppersmith’s theorem, a
rigorous algorithm will be very useful.

Appendix B

Continued Fraction Method
Fundamental Concepts

B.1 Continued Fractions

Definition 10. Continued Fraction
An expression of the form

x = a0 +
b1

a1 +
b2

a2 · · ·+
bn−1

an−1 +
bn

an

(B.1)

is called a continued fraction. It is called a simple continued fraction if all the bi ’s are equal to 1

and all the ai ’s are integers such that a1, a2, · · · ≥ 1. a0, a1, a2, · · · , an are called the continued
fraction partial quotients. As a matter of simplicity, the designation of simple continued fractions
is going to be referred only as continued fractions.

The notation [a0; a1, a2, · · · , an] can be used to shorten the above expression.

A continued fraction can still be finite or infinite depending on whether it has a finite or an
infinite number of terms, respectively.

Every rational number can be represented as a finite continued fraction with the conditions
that the first coefficient is an integer and other coefficients are positive integers and this repre-
sentation is not unique. There are two possible representations, which agree in all their terms
except in their last one: in the longer representation of the continued fraction the last term in
is set to 1 while in the shorter representation the final term 1 drops and the new final term is
increased by 1. Thus, the final element in the short representation is therefore always greater
than 1. It can be concluded that

[a0; a1, a2, · · · , an] = [a0; a1, a2, · · · , (an − 1), 1]

107

108 Appendix B. Continued Fraction Method Fundamental Concepts

In its turn, an irrational number is represented by an infinite continued fraction [a0; a1, a2, · · ·]
and an infinite continued fraction representation for an irrational number is useful because its
initial segments provide rational approximations of that number.

As the main purpose of this revision is to introduce the theme for its application in the CFRAC
algorithm (discussed in the section 4.3) and since the CFRAC method only uses continued
fractions of irrational numbers, lets confine from now on the following results over infinite
continued fractions only.

Definition 11. Convergent
Given a continued fraction [a0; a1, a2, · · · , · · ·] and an integer k ≥ 0, Ck = [a0; a1, a2, · · · , ak]

is called the kth convergent of the continued fraction [a0; a1, a2, · · · , · · ·].

Since the convergents of an irrational number can provide a rational approximation to the
number, the infinite continued fraction [a1, a2, · · · , ak , · · ·] can be defined as a limit of the
convergents Ck = [a1, a2, · · · , ak].

The convergent Ck = [a1, a2, · · · , ak] is a finite continued fraction and thus it can be written
as a simple fraction Ak/Bk , where Ak and Bk are termed, respectively, as the kth partial
numerator and denominator.

Proposition 1. Given a continued fraction, the convergents Ak−2/Bk−2, Ak−1/Bk−1 and Ak/Bk
verify the following equations:

AkBk−1 − Ak−1Bk = (−1)k−1 , k ≥ 0 (B.2)

AkBk−2 − Ak−2Bk = (−1)kak , k ≥ 1 (B.3)

Corollary 2. The kth convergent Ak/Bk of any continued fraction verifies the following prop-
erties:

• The kth convergents with an even k form a strictly increasing sequence, whereas the kth
convergents with an odd k form a strictly decreasing sequence;

• Any kth convergent with k odd is bigger than any kth convergent with k even;

• gcd(pk , qk) = 1.

Theorem 15. Let m ∈ N, P0 = 0, Q0 = 1, Pk = ak−1Qk−1−Pk−1 and Qk = (m−P 2k)/Qk−1 for
each k ≥ 1. In this conditions, all the continued fraction complete quotients [a0; a1, a2, · · · ;αk]

of some
√
m irrational number can be represented as

αk = (
√
m + Pk)/Qk

Theorem 16. Let m ∈ N, P0 = 0, Q0 = 1, Pk = ak−1Qk−1 − Pk−1 and Qk = (m − P 2k)/Qk−1
for each k ≥ 1.

The continued fraction kth convergent of an irrational number
√
m verifies, for each k ≥ 0,

the condition:

A2k −mB2k = (−1)k+1Qk+1

B.2. Factor Basis and Smooth Numbers 109

B.2 Factor Basis and Smooth Numbers

Definition 12. (Factor Base) A set of prime numbers that may include or not the integer −1

is called factor base, denoted by B.

Definition 13. (Smooth Number) A smooth number is an integer which factors completely
into small prime numbers. A smooth number is related to a factor basis B = {p0, p1, · · · , pj−1}
if it can be written as

n =

j−1∏
i=0

peii with ei ∈ N0

The smooth are extremely important in the context of the current existing factorization
methods. Consequently, smooth numbers are very important in cryptographic applications which
support their security on the hard problem of large integers factorization.

Let p0 < p1 < · · · < pj−1 in the definition of smooth numbers (Definition 13) without loss
of generality. The complete factorization of a number n using the primes existent in the factor
basis B generates the exponent vector and the parity vector of n in the basis B, respectively,

vB(n) = (e0, e1, · · · , ej−1) and v ′B(n) = (e0, e1, · · · , ej−1) (mod 2)

Lemma 3. Any set of j + 1 smooth numbers related to a factor basis with j elements has a
subset of elements in which the product of all the elements is a square.

Appendix C

Tables

Computational Information
M = 125000 N = 8 m = 9

Frequency
Template W1 W2 W3 W4 W5 W6 W7 W8 χ2 P-value Result
000000001 255 227 251 247 228 243 241 265 4.973322 0.760424 Success
000000011 265 219 244 233 241 216 244 242 8.456924 0.390155 Success
000000101 223 223 235 266 226 254 259 251 9.104076 0.333593 Success
000000111 262 244 280 251 259 234 247 230 9.258714 0.320944 Success
000001001 256 270 251 238 239 257 264 243 6.285631 0.615271 Success
000001011 230 229 229 255 223 265 254 233 7.959116 0.437474 Success
000001101 269 240 236 229 227 217 236 242 8.600971 0.377067 Success
000001111 249 257 291 250 244 246 263 235 12.135414 0.145264 Success
000010001 255 261 265 227 250 232 260 266 8.660285 0.371759 Success
000010011 256 249 261 236 251 261 239 257 4.404549 0.818905 Success
000010101 255 245 291 260 253 252 224 267 15.410360 0.051641 Success
000010111 198 233 231 257 233 253 235 261 13.387350 0.099199 Success
000011001 235 214 229 250 260 253 237 263 8.438918 0.391810 Success
000011011 248 270 239 242 246 252 229 251 4.477631 0.811667 Success
000011101 251 221 250 244 249 247 254 239 3.272299 0.916126 Success
000011111 243 237 267 231 238 235 245 221 5.947756 0.653084 Success
000100011 242 262 250 240 251 237 246 252 2.284095 0.971040 Success
000100101 232 260 277 243 274 240 248 224 11.907693 0.155370 Success
000100111 228 211 287 265 228 249 271 251 19.847214 0.010930 Success

111

112 Appendix C. Tables

000101001 225 242 221 223 237 242 243 236 6.244323 0.619885 Success
000101011 245 265 259 244 246 264 229 272 8.736545 0.365006 Success
000101101 285 237 230 266 271 215 217 233 20.461531 0.008724 FAILURE
000101111 210 259 237 239 256 239 235 257 7.961234 0.437266 Success
000110011 232 237 233 250 245 241 259 272 5.782526 0.671577 Success
000110101 253 257 226 240 250 250 238 234 3.385629 0.907882 Success
000110111 260 264 238 227 254 262 239 258 6.836398 0.554383 Success
000111001 239 219 234 258 224 235 263 249 7.714448 0.461849 Success
000111011 247 233 251 249 238 256 261 241 2.864519 0.942570 Success
000111101 265 262 247 242 216 260 261 249 8.980153 0.343973 Success
000111111 243 237 255 229 264 235 239 246 3.843190 0.870987 Success
001000011 237 249 226 244 251 244 235 240 2.332817 0.969072 Success
001000101 258 260 225 203 253 227 248 257 12.940381 0.113917 Success
001000111 240 247 249 219 247 246 253 223 5.156558 0.740719 Success
001001011 249 262 262 235 274 241 235 227 8.578729 0.379069 Success
001001101 244 230 226 250 263 239 214 228 8.950496 0.346489 Success
001001111 247 243 272 243 248 254 248 243 3.883438 0.867484 Success
001010011 221 251 220 256 212 239 238 248 10.235267 0.248900 Success
001010101 241 250 256 248 212 256 227 244 7.060941 0.530072 Success
001010111 221 228 214 243 236 251 241 258 8.554368 0.381270 Success
001011011 280 241 250 242 288 244 233 251 14.539724 0.068738 Success
001011101 223 246 230 239 245 262 224 249 6.035667 0.643237 Success
001011111 258 245 270 242 274 252 235 251 8.271570 0.407402 Success
001100101 243 225 224 239 232 236 231 260 6.082270 0.638017 Success
001100111 241 239 242 260 213 217 251 259 9.598707 0.294328 Success
001101011 257 250 217 243 261 252 257 244 6.142643 0.631257 Success
001101101 225 243 262 278 241 261 243 243 9.028875 0.339866 Success
001101111 248 260 250 241 254 255 233 239 2.868756 0.942322 Success
001110101 233 205 252 229 242 224 247 225 11.561345 0.171875 Success
001110111 230 221 254 260 236 246 252 234 5.583402 0.693783 Success
001111011 264 273 257 250 212 249 249 236 10.907838 0.206976 Success
001111101 247 194 270 251 240 264 239 237 15.788483 0.045510 Success
001111111 224 259 257 253 262 233 251 216 9.118904 0.332365 Success
010000011 254 241 225 232 247 250 269 266 7.457070 0.488214 Success
010000111 230 231 253 255 238 247 227 248 3.909917 0.865158 Success

113

010001011 258 247 234 227 260 215 233 240 7.785412 0.454708 Success
010001111 252 240 262 229 256 250 237 231 4.346295 0.824607 Success
010010011 262 255 254 255 237 238 232 241 3.807178 0.874088 Success
010010111 259 265 265 267 262 246 212 229 13.556817 0.094074 Success
010011011 240 247 223 254 245 250 221 242 4.845163 0.773990 Success
010011111 227 240 298 257 236 253 251 241 15.168870 0.055944 Success
010100011 240 259 242 241 239 258 260 250 3.210867 0.920436 Success
010100111 209 236 227 248 243 235 246 250 7.332088 0.501263 Success
010101011 245 233 247 249 216 260 226 225 8.023725 0.431156 Success
010101111 260 233 251 248 242 249 238 242 2.153817 0.975929 Success
010110011 265 225 233 220 231 231 247 223 9.771351 0.281442 Success
010110111 282 225 244 251 263 238 242 251 9.715216 0.285586 Success
010111011 237 243 240 228 244 250 249 249 1.741801 0.987930 Success
010111111 246 245 268 251 273 268 243 241 8.627450 0.374691 Success
011000111 237 239 219 227 240 243 243 261 5.532562 0.699430 Success
011001111 238 239 219 254 215 246 246 234 7.415762 0.492509 Success
011010111 250 241 241 246 265 261 250 239 3.554037 0.894956 Success
011011111 247 274 238 232 250 236 207 275 14.901960 0.061080 Success
011101111 257 254 230 254 249 238 250 226 4.171532 0.841325 Success
011111111 242 264 251 245 266 252 249 249 4.387602 0.820570 Success
100000000 255 227 251 247 228 243 241 265 4.973322 0.760424 Success
100010000 253 252 243 236 241 241 265 232 3.433292 0.904305 Success
100100000 246 263 234 279 246 248 267 254 9.820073 0.277882 Success
100101000 212 267 248 232 243 227 258 245 9.342388 0.314241 Success
100110000 242 262 239 233 253 265 262 255 6.043081 0.642406 Success
100111000 215 230 255 264 239 240 237 234 7.446478 0.489314 Success
101000000 243 236 266 244 225 263 252 268 8.049145 0.428684 Success
101000100 225 233 262 251 274 226 261 232 10.630336 0.223537 Success
101001000 243 244 231 228 277 234 282 228 14.029205 0.081007 Success
101001100 244 261 237 232 206 252 249 216 11.917225 0.154935 Success
101010000 242 244 248 258 218 264 220 248 7.993009 0.434153 Success
101010100 238 266 223 239 229 267 235 260 8.794799 0.359901 Success
101011000 242 245 268 232 211 241 220 268 12.631104 0.125188 Success
101011100 213 265 224 256 239 243 242 232 9.022520 0.340400 Success
101100000 275 248 276 241 239 236 269 243 11.466020 0.176666 Success

114 Appendix C. Tables

101100100 255 202 248 248 262 238 258 227 11.717042 0.164282 Success
101101000 233 243 276 270 270 236 239 226 12.290052 0.138724 Success
101101100 263 252 270 250 258 265 257 248 8.182600 0.415840 Success
101110000 232 232 205 242 230 248 234 259 10.030847 0.262867 Success
101110100 239 249 266 240 222 262 274 268 11.935231 0.154117 Success
101111000 245 217 237 236 235 247 237 229 5.187274 0.737385 Success
101111100 247 268 232 253 232 251 215 244 7.823542 0.450894 Success
110000000 243 241 234 242 218 232 248 241 4.119633 0.846172 Success
110000010 255 267 254 251 229 274 247 247 8.151884 0.418776 Success
110000100 237 224 247 234 255 229 265 254 6.129933 0.632680 Success
110001000 265 268 228 224 225 245 239 232 9.365690 0.312392 Success
110001010 206 238 243 230 251 270 223 254 12.508241 0.129927 Success
110010000 250 250 230 259 243 264 229 239 4.834571 0.775102 Success
110010010 249 241 239 234 256 240 223 269 5.869378 0.661861 Success
110010100 225 270 253 249 209 227 242 252 11.571936 0.171349 Success
110011000 242 246 249 214 270 272 274 246 13.904224 0.084296 Success
110011010 237 259 233 276 265 238 244 222 10.060504 0.260805 Success
110100000 239 252 273 214 254 259 242 255 9.622009 0.292564 Success
110100010 245 241 269 241 254 232 231 230 5.318610 0.723043 Success
110100100 253 235 224 247 265 231 268 227 8.670876 0.370816 Success
110101000 248 252 257 258 239 234 257 248 3.155790 0.924204 Success
110101010 242 249 214 240 233 271 234 241 8.096807 0.424071 Success
110101100 255 231 267 233 230 226 226 247 7.636069 0.469802 Success
110110000 282 239 257 242 263 252 270 254 11.932053 0.154261 Success
110110010 258 234 220 259 257 258 253 237 6.719889 0.567134 Success
110110100 224 254 258 266 263 223 253 237 8.920840 0.349018 Success
110111000 241 205 227 241 255 250 245 287 16.249221 0.038949 Success
110111010 244 269 258 230 236 234 273 242 8.548013 0.381846 Success
110111100 236 236 246 244 231 263 212 224 8.901775 0.350650 Success
111000000 241 211 210 261 241 237 221 245 13.355575 0.100187 Success
111000010 241 236 244 242 249 251 241 271 3.742569 0.879571 Success
111000100 218 245 247 259 244 254 238 233 4.963789 0.761439 Success
111000110 253 229 255 262 242 257 214 211 12.372667 0.135335 Success
111001000 262 263 235 240 249 253 232 244 4.345235 0.824710 Success
111001010 235 244 237 237 190 227 261 234 16.077636 0.041282 Success

115

111001100 252 257 251 224 250 235 253 228 4.815506 0.777101 Success
111010000 240 235 260 231 231 265 239 282 10.987276 0.202421 Success
111010010 269 233 237 243 227 245 226 237 6.218903 0.622726 Success
111010100 250 220 256 238 264 261 264 247 7.956997 0.437682 Success
111010110 227 232 264 248 239 242 224 244 5.448888 0.708696 Success
111011000 273 254 260 229 275 275 265 256 16.503421 0.035716 Success
111011010 238 250 243 240 233 229 247 242 1.930333 0.983074 Success
111011100 246 221 226 257 238 245 239 280 10.100753 0.258026 Success
111100000 262 229 226 267 250 239 258 224 8.720657 0.366406 Success
111100010 203 248 241 225 234 260 225 235 12.224384 0.141470 Success
111100100 260 248 251 233 264 257 219 238 7.065178 0.529617 Success
111100110 257 277 230 255 283 257 230 219 17.252253 0.027587 Success
111101000 254 253 238 240 249 228 222 273 7.786471 0.454602 Success
111101010 235 234 252 232 260 262 268 258 7.324674 0.502042 Success
111101100 266 254 250 233 260 244 251 239 4.490341 0.810399 Success
111101110 246 251 252 254 244 226 257 272 6.277157 0.616217 Success
111110000 260 240 231 260 249 272 246 248 6.408494 0.601574 Success
111110010 232 264 266 230 229 244 239 214 10.094398 0.258463 Success
111110100 246 223 263 235 249 239 223 247 5.905389 0.657829 Success
111110110 254 236 254 238 261 257 233 278 8.559664 0.380791 Success
111111000 235 234 236 269 243 262 232 233 6.194542 0.625450 Success
111111010 241 254 279 243 245 259 251 251 6.953965 0.541608 Success
111111100 224 258 258 263 277 253 244 217 12.886364 0.115820 Success
111111110 242 264 251 245 266 252 249 249 4.387602 0.820570 Success

Table C.1: Statistics table of the Non-Overlapping Template Matching Test for a 1000000 bits number generated
by a Luna SA HSM. Success means the acceptance of the null hipothesis (the hipothesis that states the sequence
is random).

116 Appendix C. Tables

Computational Information
M = 125000 N = 8 m = 9

Frequency
Template W1 W2 W3 W4 W5 W6 W7 W8 χ2 P-value Result
000000001 244453 243866 244528 243860 243632 244292 244701 244669 5.408738 0.713129 Success
000000011 244246 244208 244181 244114 243820 243561 244738 243642 4.500244 0.809409 Success
000000101 243851 244593 244777 243523 244060 244104 243564 244391 6.261703 0.617943 Success
000000111 243702 243982 244577 243827 244504 244555 244255 244321 3.625408 0.889242 Success
000001001 244032 243022 244004 244622 244548 243187 245637 244381 20.699494 0.007990 FAILURE
000001011 244698 244584 244556 243427 243887 244210 243951 244075 5.501132 0.702915 Success
000001101 243523 243639 243440 244435 244652 244142 243645 243750 7.923842 0.440945 Success
000001111 244375 244340 243939 243751 244190 243561 244095 244479 3.144085 0.924992 Success
000010001 244485 243898 244730 244184 243837 243727 244233 243804 3.863088 0.869260 Success
000010011 243847 243443 243319 244324 244477 243604 245258 243883 12.699726 0.122607 Success
000010101 244574 244926 244111 243076 244348 244041 244282 244363 8.733123 0.365307 Success
000010111 245060 245221 244994 243917 244369 244509 243387 244139 15.025791 0.058646 Success
000011001 244167 244724 244012 244041 243473 244537 244223 243929 4.329445 0.826244 Success
000011011 243867 243160 243067 244461 244264 243917 243699 244105 10.817311 0.212267 Success
000011101 243067 244551 244076 244231 244241 243863 244414 243712 7.113353 0.524454 Success
000011111 244736 244058 243581 243546 243781 243152 244921 244271 11.696244 0.165280 Success
000100011 244089 244824 244855 244840 244021 244340 243742 243789 7.650449 0.468338 Success
000100101 245048 244017 243820 244750 244499 243501 243690 244420 9.030194 0.339755 Success
000100111 244493 244282 244155 243846 244550 244336 245374 243080 13.062059 0.109732 Success
000101001 243306 243956 244078 244647 243942 244609 243393 244277 7.741933 0.459076 Success
000101011 244633 244637 243955 243962 244392 244611 243852 244226 3.941188 0.862390 Success
000101101 244275 243734 244006 243070 244164 245232 243937 243826 11.353568 0.182459 Success
000101111 244736 245517 244592 243708 243581 244069 243695 244245 13.420083 0.098190 Success
000110011 244057 244905 244416 243916 243558 244491 243194 244137 8.794746 0.359906 Success
000110101 243959 243438 244535 244210 244714 244022 244226 244222 4.422076 0.817178 Success
000110111 243541 243995 243918 244526 244295 244081 243603 244298 3.897736 0.866230 Success
000111001 243983 244313 244399 244477 244372 244599 243870 244616 3.378206 0.908434 Success
000111011 244099 244817 244215 243818 244350 244616 244491 243862 4.402256 0.819131 Success
000111101 244164 243369 244679 243896 243700 244119 244307 243538 6.486571 0.592898 Success
000111111 244355 243762 243397 244143 244240 243177 244624 244326 8.256113 0.408861 Success
001000011 244216 243392 243504 244490 243803 243685 244236 244220 6.060165 0.640493 Success
001000101 243498 243655 244679 243482 244958 244403 243623 244166 10.074525 0.259834 Success
001000111 244586 244954 243751 244636 243751 244086 244045 244486 6.526159 0.588508 Success
001001011 244053 244508 243970 244214 243808 244174 244369 244951 4.227283 0.836057 Success
001001101 243881 243698 243998 244810 244016 243550 245114 244781 10.395340 0.238367 Success
001001111 243841 244387 244253 244205 244393 244313 244779 243597 4.082986 0.849560 Success
001010011 244100 243950 244125 244376 243622 243824 244256 243542 3.535412 0.896424 Success
001010101 244059 244813 243444 243110 244349 243892 243942 244408 9.415434 0.308471 Success
001010111 244204 244033 243643 244147 243953 243847 243902 244675 3.080761 0.929187 Success
001011011 244912 242857 244303 243725 244627 244971 244277 243784 14.886371 0.061393 Success
001011101 244583 244291 244616 244118 244123 244385 244403 244063 2.456181 0.963743 Success
001011111 244810 244883 243820 243696 243847 244068 243715 244280 6.743709 0.564520 Success
001100101 244518 243992 243461 243306 242700 244488 243710 243741 16.370910 0.037369 Success
001100111 244814 244422 244302 244024 243782 244235 244126 243912 3.229471 0.919142 Success
001101011 244364 244153 244315 244377 244295 244422 245016 244298 4.365666 0.822718 Success

117

001101101 244091 243883 243981 244823 244006 243481 244000 243524 5.987001 0.648688 Success
001101111 244539 243535 243224 245250 243954 244251 244119 243859 11.537209 0.173077 Success
001110101 243411 244230 243955 244667 243251 244032 244234 243788 7.575652 0.475979 Success
001110111 243675 244527 243887 243948 244409 244505 245105 243861 7.119940 0.523749 Success
001111011 243875 243971 244648 244507 244657 244571 244579 243844 5.181710 0.737990 Success
001111101 243657 244331 244545 243995 244623 243452 243396 244321 7.408785 0.493237 Success
001111111 244132 244622 244057 244098 244377 244148 243970 244278 1.459686 0.993357 Success
010000011 243846 244124 243553 244273 243994 243565 244183 244072 3.428345 0.904679 Success
010000111 244608 243104 244241 244239 243871 243560 244709 244038 8.711294 0.367233 Success
010001011 243830 244623 244724 243246 244310 244504 243766 243957 7.645665 0.468825 Success
010001111 243876 244964 244334 244056 244133 244036 243463 244139 5.349674 0.719632 Success
010010011 243607 244188 244624 244481 243775 243362 245140 244674 11.268303 0.186955 Success
010010111 243667 244127 243480 244213 244257 243838 244779 244647 6.080595 0.638204 Success
010011011 244071 243178 244246 244391 244382 243744 244870 243408 9.700114 0.286708 Success
010011111 243900 244060 244085 244398 243843 244164 244505 243687 2.378440 0.967159 Success
010100011 243123 243916 244056 243879 243635 244311 243005 244773 13.285254 0.102405 Success
010100111 244363 244042 244347 244203 243245 244090 243627 244297 5.078078 0.749199 Success
010101011 244612 244267 243763 244267 244005 243488 244370 244640 4.842714 0.774247 Success
010101111 243741 243976 244210 244089 244096 244348 243909 244864 3.457972 0.902427 Success
010110011 243294 243852 244538 244005 244641 244830 244240 244828 9.254527 0.321282 Success
010110111 244193 243872 243903 243633 244239 245064 243781 244259 5.908832 0.657443 Success
010111011 245200 244384 243990 244676 243687 244344 244669 244398 8.826890 0.357109 Success
010111111 243811 244305 243578 244377 244366 244225 244205 244414 2.732177 0.950025 Success
011000111 243840 244062 243487 244488 244764 243949 244036 244594 5.449490 0.708629 Success
011001111 244263 243734 245653 244826 244537 244189 243244 244644 17.599867 0.024435 Success
011010111 244024 244098 243871 243788 244538 244715 244831 243603 6.210717 0.623641 Success
011011111 244361 243475 244224 244784 244656 244316 243641 244265 6.244790 0.619833 Success
011101111 244355 244085 244510 243922 243593 244657 246004 243364 20.654521 0.008124 FAILURE
011111111 243889 243960 244026 244166 244974 244945 245145 244106 10.427673 0.236282 Success
100000000 244453 243866 244528 243860 243632 244292 244701 244669 5.408738 0.713129 Success
100010000 244504 243946 243128 244593 244297 243751 244670 243449 9.891745 0.272706 Success
100100000 242931 244424 244351 243878 243739 243305 244342 244301 10.941242 0.205051 Success
100101000 244963 243850 243797 244962 243910 244587 243206 242816 18.785652 0.016049 Success
100110000 244457 243795 244283 243882 244180 244628 244555 244902 5.495976 0.703486 Success
100111000 244838 244359 244633 243831 244942 244547 244621 243503 9.816602 0.278135 Success
101000000 243727 243152 244648 243802 244232 243868 244753 243636 9.459824 0.305001 Success
101000100 244833 243380 243710 244680 245369 243892 245194 242836 25.067049 0.001514 FAILURE
101001000 243399 244164 244159 244215 243963 244509 243992 244634 4.190828 0.839509 Success
101001100 243606 244559 244571 243736 244194 243884 244779 244062 5.474726 0.705838 Success
101010000 244109 243517 244333 244074 243564 243854 244071 243753 4.241113 0.834740 Success
101010100 243516 244113 243788 243617 243267 243972 244330 243235 10.324847 0.242962 Success
101011000 244780 243559 243547 244034 242941 243870 243505 243949 12.980452 0.112524 Success
101011100 244112 244483 243449 243962 244725 244101 244792 244109 5.917209 0.656505 Success
101100000 245249 244812 244338 243630 243761 244425 243594 245059 14.176682 0.077275 Success
101100100 243430 243505 243835 244242 243963 243562 243370 243874 8.659312 0.371846 Success

118 Appendix C. Tables

101101000 244861 244145 244625 244156 244291 244628 244641 243481 7.200202 0.515195 Success
101101100 243827 244731 244381 244311 243368 243847 243747 244494 6.340930 0.609100 Success
101110000 243638 244074 243644 243585 244681 243499 243566 245242 12.961236 0.113190 Success
101110100 244086 245218 244754 243426 244859 244043 244584 243576 13.098341 0.108510 Success
101111000 244959 244889 243788 244578 244151 244259 244344 243666 7.737185 0.459555 Success
101111100 243861 244147 243938 244155 243790 244212 244232 244432 1.443706 0.993604 Success
110000000 244273 244355 244395 244018 243745 243556 244294 244285 2.905892 0.940124 Success
110000010 245509 244262 244886 244603 244429 244003 245196 244307 16.524209 0.035463 Success
110000100 244430 243883 243904 244780 243846 244284 243708 244726 5.304746 0.724563 Success
110001000 244337 245000 243760 244587 244425 243226 243810 243778 9.657178 0.289916 Success
110001010 243859 244678 244217 244572 243818 244527 243108 243775 8.529913 0.383488 Success
110010000 243837 243674 243947 243837 244473 243393 244101 244667 5.878912 0.660793 Success
110010010 244400 244260 243888 244699 243647 244006 244955 243871 6.163680 0.628903 Success
110010100 244004 244187 244358 244728 242697 244660 244225 243468 13.669196 0.090806 Success
110011000 244314 244004 243887 244104 244020 244084 243893 245108 4.784433 0.780348 Success
110011010 243794 244047 243526 244907 244040 243086 243670 243535 11.881993 0.156547 Success
110100000 243420 243461 244283 243483 244247 243801 245085 243660 11.368616 0.181675 Success
110100010 244406 244646 243566 243972 244505 244049 245041 243717 7.692853 0.464033 Success
110100100 243100 244684 244718 243836 244167 243265 244043 244403 11.227485 0.189140 Success
110101000 243562 243250 243904 244060 243668 244429 244175 243380 8.798268 0.359599 Success
110101010 244069 243567 244107 244774 242923 243568 244758 243467 14.327758 0.073612 Success
110101100 244156 243381 244307 244130 243808 244183 243417 244248 5.306900 0.724327 Success
110110000 244240 244365 243772 243893 243492 243369 243561 244926 9.431988 0.307174 Success
110110010 243501 243512 244159 244003 243958 243435 243721 243598 7.732992 0.459977 Success
110110100 244668 243649 243788 244193 244769 244572 244688 243164 10.512340 0.230890 Success
110111000 244325 244217 243692 243687 245221 243251 243323 244948 15.785245 0.045559 Success
110111010 243385 244671 244444 243137 244214 243969 244075 244620 9.407499 0.309094 Success
110111100 244623 244524 243544 244854 243046 244542 244657 243320 15.014342 0.058867 Success
111000000 243739 243744 244187 244116 244393 243466 244115 244461 3.997094 0.857386 Success
111000010 244792 244404 244568 243736 244569 244005 243783 245042 8.398580 0.395535 Success
111000100 244935 245481 244180 244169 244687 243514 244302 243608 14.535860 0.068824 Success
111000110 244038 244912 245150 244812 244201 244160 244087 244036 8.867551 0.353592 Success
111001000 244068 243746 243834 243612 244375 244819 243958 244961 7.439448 0.490044 Success
111001010 243620 244343 245146 244710 243586 244591 244390 245043 12.853889 0.116977 Success
111001100 244607 244868 243603 244634 244020 243968 244437 244751 7.557544 0.477838 Success
111010000 243779 243556 244104 243391 244876 244057 245161 243996 11.208886 0.190142 Success
111010010 244168 244352 243949 243723 244233 243480 244102 244397 3.256795 0.917224 Success
111010100 243469 243827 243783 244024 243130 244098 243859 244533 8.250125 0.409427 Success
111010110 243844 244132 244603 243794 243850 244093 243975 245041 5.706137 0.680110 Success
111011000 244684 244082 243554 243558 244641 243302 243180 244598 12.997621 0.111931 Success
111011010 244576 243163 244087 245086 244434 245361 244181 243325 18.150761 0.020124 Success
111011100 244613 244631 243648 244850 244726 244028 244124 244199 6.645571 0.575310 Success
111100000 244272 244339 244022 244493 244123 243545 245015 244000 5.652821 0.686056 Success
111100010 244988 245266 244495 243983 244781 244197 243549 243834 12.677387 0.123442 Success
111100100 244361 244045 243423 244382 244015 244371 244480 244755 5.052082 0.751995 Success

119

111100110 244130 244172 243089 244990 244054 243626 242880 244151 15.633368 0.047939 Success
111101000 243434 243257 244278 243676 244382 244310 244307 242995 12.463733 0.131681 Success
111101010 244246 244070 243924 244062 242600 243785 244163 244047 10.923795 0.206055 Success
111101100 243998 243752 244327 243917 244775 243735 243890 244466 4.201726 0.838480 Success
111101110 244722 244436 244948 244910 244363 243479 244160 244201 9.152564 0.329590 Success
111110000 243711 244028 243880 243667 244462 244398 244669 244302 4.085225 0.849353 Success
111110010 244315 243397 244571 244525 244084 244204 243867 244935 6.903658 0.547062 Success
111110100 243122 243004 244331 243943 244617 244493 244256 243554 13.190013 0.105477 Success
111110110 244377 244157 243750 243583 244630 243230 244071 243600 7.988114 0.434632 Success
111111000 243786 244414 244694 243394 244406 244439 244536 243808 6.315134 0.611978 Success
111111010 244019 243158 243659 244651 244108 244380 244675 243756 8.323470 0.402527 Success
111111100 243873 244625 244474 244260 244530 244650 243662 244193 4.552591 0.804149 Success
111111110 243889 243960 244026 244166 244974 244945 245145 244106 10.427673 0.236282 Success

Table C.2: Statistics table of the Non-Overlapping Template Matching Test for a 109 bits number generated by
a Luna SA HSM. Success means the acceptance of the null hipothesis (the hipothesis that states the sequence is
random).

Statistical Test Proportion
Frequency Test 98/100
Frequency Test Within a Block 100/100
Runs Test 100/100
Test for the Longest Runs of Ones in a Block 100/100
Binary Matrix Rank Test 98/100
Discrete Fourier Transform (Spectral) Test 98/100
Non-overlapping Template Matching Test (1) 100/100
Non-overlapping Template Matching Test (2) 99/100
Non-overlapping Template Matching Test (3) 100/100
Non-overlapping Template Matching Test (4) 100/100
Non-overlapping Template Matching Test (5) 99/100
Non-overlapping Template Matching Test (6) 97/100
Non-overlapping Template Matching Test (7) 99/100
Non-overlapping Template Matching Test (8) 99/100
Non-overlapping Template Matching Test (9) 100/100
Non-overlapping Template Matching Test (10) 100/100
Non-overlapping Template Matching Test (11) 100/100
Non-overlapping Template Matching Test (12) 99/100
Non-overlapping Template Matching Test (13) 97/100
Non-overlapping Template Matching Test (14) 97/100
Non-overlapping Template Matching Test (15) 100/100
Non-overlapping Template Matching Test (16) 97/100

120 Appendix C. Tables

Non-overlapping Template Matching Test (17) 99/100
Non-overlapping Template Matching Test (18) 99/100
Non-overlapping Template Matching Test (19) 100/100
Non-overlapping Template Matching Test (20) 99/100
Non-overlapping Template Matching Test (21) 98/100
Non-overlapping Template Matching Test (22) 100/100
Non-overlapping Template Matching Test (23) 97/100
Non-overlapping Template Matching Test (24) 99/100
Non-overlapping Template Matching Test (25) 99/100
Non-overlapping Template Matching Test (26) 98/100
Non-overlapping Template Matching Test (27) 100/100
Non-overlapping Template Matching Test (28) 98/100
Non-overlapping Template Matching Test (29) 99/100
Non-overlapping Template Matching Test (30) 99/100
Non-overlapping Template Matching Test (31) 99/100
Non-overlapping Template Matching Test (32) 100/100
Non-overlapping Template Matching Test (33) 99/100
Non-overlapping Template Matching Test (34) 98/100
Non-overlapping Template Matching Test (35) 99/100
Non-overlapping Template Matching Test (36) 99/100
Non-overlapping Template Matching Test (37) 100/100
Non-overlapping Template Matching Test (38) 99/100
Non-overlapping Template Matching Test (39) 99/100
Non-overlapping Template Matching Test (40) 99/100
Non-overlapping Template Matching Test (41) 99/100
Non-overlapping Template Matching Test (42) 100/100
Non-overlapping Template Matching Test (43) 99/100
Non-overlapping Template Matching Test (44) 100/100
Non-overlapping Template Matching Test (45) 98/100
Non-overlapping Template Matching Test (46) 99/100
Non-overlapping Template Matching Test (47) 100/100
Non-overlapping Template Matching Test (48) 99/100
Non-overlapping Template Matching Test (49) 99/100
Non-overlapping Template Matching Test (50) 98/100
Non-overlapping Template Matching Test (51) 100/100
Non-overlapping Template Matching Test (52) 99/100
Non-overlapping Template Matching Test (53) 97/100
Non-overlapping Template Matching Test (54) 99/100
Non-overlapping Template Matching Test (55) 99/100

121

Non-overlapping Template Matching Test (56) 100/100
Non-overlapping Template Matching Test (57) 99/100
Non-overlapping Template Matching Test (58) 100/100
Non-overlapping Template Matching Test (59) 98/100
Non-overlapping Template Matching Test (60) 100/100
Non-overlapping Template Matching Test (61) 100/100
Non-overlapping Template Matching Test (62) 100/100
Non-overlapping Template Matching Test (63) 100/100
Non-overlapping Template Matching Test (64) 97/100
Non-overlapping Template Matching Test (65) 99/100
Non-overlapping Template Matching Test (66) 98/100
Non-overlapping Template Matching Test (67) 98/100
Non-overlapping Template Matching Test (68) 100/100
Non-overlapping Template Matching Test (69) 97/100
Non-overlapping Template Matching Test (70) 99/100
Non-overlapping Template Matching Test (71) 100/100
Non-overlapping Template Matching Test (72) 100/100
Non-overlapping Template Matching Test (73) 97/100
Non-overlapping Template Matching Test (74) 100/100
Non-overlapping Template Matching Test (75) 100/100
Non-overlapping Template Matching Test (76) 100/100
Non-overlapping Template Matching Test (77) 96/100
Non-overlapping Template Matching Test (78) 100/100
Non-overlapping Template Matching Test (79) 99/100
Non-overlapping Template Matching Test (80) 99/100
Non-overlapping Template Matching Test (81) 100/100
Non-overlapping Template Matching Test (82) 100/100
Non-overlapping Template Matching Test (83) 99/100
Non-overlapping Template Matching Test (84) 98/100
Non-overlapping Template Matching Test (85) 98/100
Non-overlapping Template Matching Test (86) 99/100
Non-overlapping Template Matching Test (87) 100/100
Non-overlapping Template Matching Test (88) 100/100
Non-overlapping Template Matching Test (89) 100/100
Non-overlapping Template Matching Test (90) 100/100
Non-overlapping Template Matching Test (91) 100/100
Non-overlapping Template Matching Test (92) 99/100
Non-overlapping Template Matching Test (93) 98/100
Non-overlapping Template Matching Test (94) 100/100

122 Appendix C. Tables

Non-overlapping Template Matching Test (95) 98/100
Non-overlapping Template Matching Test (96) 98/100
Non-overlapping Template Matching Test (97) 98/100
Non-overlapping Template Matching Test (98) 98/100
Non-overlapping Template Matching Test (99) 99/100
Non-overlapping Template Matching Test (100) 99/100
Non-overlapping Template Matching Test (101) 98/100
Non-overlapping Template Matching Test (102) 100/100
Non-overlapping Template Matching Test (103) 98/100
Non-overlapping Template Matching Test (104) 98/100
Non-overlapping Template Matching Test (105) 98/100
Non-overlapping Template Matching Test (106) 98/100
Non-overlapping Template Matching Test (107) 99/100
Non-overlapping Template Matching Test (108) 100/100
Non-overlapping Template Matching Test (109) 99/100
Non-overlapping Template Matching Test (110) 100/100
Non-overlapping Template Matching Test (111) 100/100
Non-overlapping Template Matching Test (112) 99/100
Non-overlapping Template Matching Test (113) 97/100
Non-overlapping Template Matching Test (114) 98/100
Non-overlapping Template Matching Test (115) 98/100
Non-overlapping Template Matching Test (116) 100/100
Non-overlapping Template Matching Test (117) 100/100
Non-overlapping Template Matching Test (118) 99/100
Non-overlapping Template Matching Test (119) 100/100
Non-overlapping Template Matching Test (120) 98/100
Non-overlapping Template Matching Test (121) 96/100
Non-overlapping Template Matching Test (122) 100/100
Non-overlapping Template Matching Test (123) 97/100
Non-overlapping Template Matching Test (124) 99/100
Non-overlapping Template Matching Test (125) 100/100
Non-overlapping Template Matching Test (126) 99/100
Non-overlapping Template Matching Test (127) 99/100
Non-overlapping Template Matching Test (128) 99/100
Non-overlapping Template Matching Test (129) 100/100
Non-overlapping Template Matching Test (130) 97/100
Non-overlapping Template Matching Test (131) 99/100
Non-overlapping Template Matching Test (132) 99/100
Non-overlapping Template Matching Test (133) 100/100

123

Non-overlapping Template Matching Test (134) 100/100
Non-overlapping Template Matching Test (135) 98/100
Non-overlapping Template Matching Test (136) 100/100
Non-overlapping Template Matching Test (137) 98/100
Non-overlapping Template Matching Test (138) 100/100
Non-overlapping Template Matching Test (139) 100/100
Non-overlapping Template Matching Test (140) 100/100
Non-overlapping Template Matching Test (141) 98/100
Non-overlapping Template Matching Test (142) 100/100
Non-overlapping Template Matching Test (143) 99/100
Non-overlapping Template Matching Test (144) 98/100
Non-overlapping Template Matching Test (145) 100/100
Non-overlapping Template Matching Test (146) 99/100
Non-overlapping Template Matching Test (147) 100/100
Non-overlapping Template Matching Test (148) 100/100
Overlapping Template Matching Test 97/100
Maurer’s "Universal Statistical" Test 100/100
Linear Complexity Test 97/100
Serial Test (1) 99/100
Serial Test (2) 99/100
Approximate Entropy Test 98/100
Cumulative Sums Test (mode = 0) 99/100
Cumulative Sums Test (mode = 1) 98/100
Random Excursions Test (1) 98/100
Random Excursions Test (2) 99/100
Random Excursions Test (3) 100/100
Random Excursions Test (4) 100/100
Random Excursions Test (5) 99/100
Random Excursions Test (6) 99/100
Random Excursions Test (7) 97/100
Random Excursions Test (8) 99/100
Random Excursions Variant Test (1) 99/100
Random Excursions Variant Test (2) 99/100
Random Excursions Variant Test (3) 99/100
Random Excursions Variant Test (4) 99/100
Random Excursions Variant Test (5) 100/100
Random Excursions Variant Test (6) 100/100

124 Appendix C. Tables

Random Excursions Variant Test (7) 99/100
Random Excursions Variant Test (8) 100/100
Random Excursions Variant Test (9) 99/100
Random Excursions Variant Test (10) 99/100
Random Excursions Variant Test (11) 99/100
Random Excursions Variant Test (12) 99/100
Random Excursions Variant Test (13) 99/100
Random Excursions Variant Test (14) 99/100
Random Excursions Variant Test (15) 100/100
Random Excursions Variant Test (16) 100/100
Random Excursions Variant Test (17) 100/100
Random Excursions Variant Test (18) 100/100

Table C.3: Pass rates test for each one of the NIST Statistical Test Suit [Rukhin et al., 2010] based on 100 tests
for 100 106 bits number generated by a Luna SA HSM.

Bibliography

[mod, 1980a] (1980a). Data Encryption Algorithm - Modes of Operation, ANSI X3.106-1983.
American National Standards Institute.

[mod, 1980b] (1980b). FIPS 81: DES Modes of Operation. US National Institute of Standards
and Technology.

[des, 1985] (1985). FIPS 112, Announcing the Standard for Password Usage.

[des, 1999] (1999). FIPS 46-3, Data Encryption Standard. US National Institute of Standards
and Technology.

[dss, 2000] (2000). FIPS PUB 186-2, Digital Signature Standard (DSS). U.S.Department of
Commerce/National Institute of Standards and Technology.

[aes, 2001] (2001). FIPS 197, Specification of the Advanced Encryption Standard (AES).
United States of America, US National Institute of Standards and Technology.

[FIP, 2002] (2002). Security Requirements for Cryptographic Modules. Federal Information Pro-
cessing Standards Publication (FIPS PUB) 140-2. U.S.Department of Commerce/National
Institute of Standards and Technology (NIST).

[bat, 2012] (version of 2012). Batch-gcd. http://facthacks.cr.yp.to/batchgcd.html.
accessed in December, 2014.

[Bernstein, 2004] Bernstein, D. J. (2004). How to find the smooth parts of integers. http:
//cr.yp.to/papers.html#smoothparts (accessed in December 2014).

[Bernstein et al., 2013] Bernstein, D. J., Chang, Y.-A., Cheng, C.-M., Chou, L.-P., Heninger,
N., Lange, T., and van Someren, N. (2013). Factoring RSA keys from certified smart cards:
Coppersmith in the wild. Cryptology ePrint Archive, Report 2013/599. http://eprint.
iacr.org/.

[Bleichenbacher, 1998] Bleichenbacher, D. (1998). Chosen Ciphertext Attacks Against Proto-
cols Based on the RSA Encryption Standard PKCS1. pages 1–12. Springer-Verlag.

[Boneh, 1999] Boneh, D. (1999). Twenty Years of Attacks on the RSA Cryptosystem. NO-
TICES OF THE AMS, 46:203–213.

125

http://facthacks.cr.yp.to/batchgcd.html
http://cr.yp.to/papers.html#smoothparts
http://cr.yp.to/papers.html#smoothparts
http://eprint.iacr.org/
http://eprint.iacr.org/

126 Bibliography

[Boneh and Durfee, 1999] Boneh, D. and Durfee, G. (1999). Cryptanalysis of RSA with private
key d less than n0.292. Lecture Notes in Computer Science, 1592:1–11.

[Brillinger, 1981] Brillinger, D. (1981). Time Series: Data Analysis and Theory. Holden-Day.

[Cavallar, 2000] Cavallar, S., L.-W. t. R. H. D. B. L. A. M. P. M. B. e. a. (2000). Factorization
of a 512-bit RSA Modulus. Eurocrypt.

[Coppersmith, 1996] Coppersmith, D. (1996). Finding a Small Root of a Bivariate Integer
Equation; Factoring with High Bits Known. Lecture Notes in Computer Science, 1070:178–
189.

[Coppersmith, 1997] Coppersmith, D. (1997). Small Solutions to Polynomial Equations, and
Low Exponent RSA Vulnerabilities. J. Cryptology, 10:233–260.

[Coppersmith et al., 1996] Coppersmith, D., Franklin, M., Patarin, J., and Reiter, M. (1996).
Low-Exponent RSA with Related Messages. In In Proceedings of the Advances in Cryptology
– Eurocrypt ’96 Conference, volume 1070. Lecture Notes in Computer Science.

[da Costa Boucinha, 2011] da Costa Boucinha, F. (2011). A Survey of Cryptanalytic Attacks
on RSA. Master’s thesis, Instituto Superior Técnico - Universidade de Lisboa.

[D’Agapeyeff, 2008] D’Agapeyeff, A. (2008). Codes and Ciphers - A History Of Cryptography.
Hesperides Press.

[Davis and Fenstermacher, 1984] Davis, D., I. R. and Fenstermacher, P. (1984). Cryptographic
Randomness from Air Turbulence in Disk Drives. In Advances in Cryptology - Crypto ’94,
volume 839. Springer-Verlag Lecture Notes in Computer Science.

[Delaurentis, 1984] Delaurentis, J. M. (1984). A further weakness in the Common Modulus
Protocol for the RSA cryptoalgorithm. j-CRYPTOLOGIA, 8(3):253–259.

[Denker, 2003] Denker, J. (2003). High Entropy Symbol Generator. <http://www.av8n.com/
turbid/paper/turbid.htm>.

[Diffie and Hellman, 1976] Diffie, W. and Hellman, M. E. (1976). New directions in cryptogra-
phy. IEEE Transactions on Information Theory, 22(6):644–654.

[Durfee, 2002] Durfee, G. (2002). Cryptanalysis of RSA Using Algebraic and Lattice Methods.
PhD Thesis.

[Eastlake 3rd et al., 2005] Eastlake 3rd, D., Schiller, J., and Crocker, S. (2005). Randomness
Requirements for Security. <http://www.rfc-editor.org/info/bcp106>. BCP 106, RFC
4086.

[Ferguson and Schneier, 2003] Ferguson, N. and Schneier, B. (2003). Practical Cryptography.
Wiley Publishing Inc.

<http://www.av8n.com/turbid/paper/turbid.htm>
<http://www.av8n.com/turbid/paper/turbid.htm>
<http://www.rfc-editor.org/info/bcp106>

Bibliography 127

[Franklin et al., 1996] Franklin, M., Patarin, J., and Reitert, M. (1996). Low-exponent RSA
with related messages. pages 1–9. Springer-Verlag.

[Gifford, 1988] Gifford, D. (1988). Natural Random Number. MIT/LCS/TM-371.

[Goldreich and Levin, 1989] Goldreich, O. and Levin, L. A. (1989). A Hard-core Predicate for
All One-way Functions. In Proceedings of the Twenty-first Annual ACM Symposium on Theory
of Computing, STOC ’89, pages 25–32, New York, NY, USA. ACM.

[Hamano and Kaneko, 2007] Hamano, K. and Kaneko, T. (2007). The Correction of the Over-
lapping Template Matching Test Included in NIST Randomness Test Suit. Communications
and Computer Sciences, (E90-A(9)):1788–1792.

[Hastad, 1985] Hastad, J. (1985). On Using RSA with Low Exponent in a Public Key Network.
In CRYPTO, volume 218 of Lecture Notes in Computer Science, pages 403–408. Springer.

[Heninger et al., 2012] Heninger, N., Durumeric, Z., Wustrow, E., and Halderman, J. A. (2012).
Mining Your Ps and Qs: Detection of Widespread Weak Keys in Network Devices. In Pro-
ceedings of the 21st USENIX Security Symposium.

[Herrmann and May, 2008] Herrmann, M. and May, A. (2008). Solving Linear Equations Modulo
Divisors: On Factoring Given Any Bits. Lecture Notes in Computer Science, 5350:406–424.

[Hoffstein et al., 2008] Hoffstein, J., Pipher, J., and Silverman, J. (2008). An Introduction to
Mathematical Cryptography. Springer Publishing Company, Incorporated, 1st edition.

[Howgrave-Graham, 1998] Howgrave-Graham, N. (1998). Computational mathematics inspired
by RSA. PhD thesis, University of Bath (United Kingdom).

[Howgrave-Graham, 2001] Howgrave-Graham, N. (2001). Approximate Integer Common Divi-
sors. Lecture Notes in Computer Science, 2146:51–66.

[Jakobsson and Juels, 1998] Jakobsson, M., S. E. H. B. and Juels, A. (1998). A practical
secure random bit generator. In Proceedings of the Fifth ACM Conference on Computer and
Communications Security.

[Katz and Lindell, 2007] Katz, J. and Lindell, Y. (2007). Introduction to Modern Cryptography:
Principles and Protocols. Chapman & Hall/CRC Cryptography and Network Security Series.
Taylor & Francis.

[Kiayias, 2009] Kiayias, A. (2009). Cryptography Primitives and Protocols. Notes by S. Pehli-
vanoglu, J. Todd, and H. S. Zhou.

[Lehmer and Powers, 1931] Lehmer, D. H. and Powers, R. E. (1931). On Factoring Large
Numbers. Bulletin of the American Mathematical Society, 37(10):770–776.

[Lenore Blum and Shub, 1986] Lenore Blum, M. B. and Shub, M. (1986). A Simple Unpre-
dictable Pseudo-Random Number Generator. SIAM Journal on Computing, 15:364–383.

128 Bibliography

[Lenstra et al., 2012] Lenstra, A. K., Hughes, J. P., Augier, M., Bos, J. W., Kleinjung, T., and
Wachter, C. (2012). Public Keys. In Springer, editor, Lecture Notes in Computer Science.
In Reihaneh Safavi-Naini and Ran Canetti.

[Lenstra et al., 1982] Lenstra, A. K., jun., H. W. L., and Lovász, L. (1982). Factoring Polyno-
mials With Rational Coefficients. Math. Ann., 261:515–534.

[Marsaglia, 1995] Marsaglia, G. (1995). DIEHARD Statistical Tests. <http://www.stat.fsu.
edu/pub/diehard/>. (accessed in March 2015).

[May and Ritzenhofen, 2008] May, A. and Ritzenhofen, M. (2008). Solving Systems of Modular
Equations in One Variable: How Many RSA-Encrypted Messages Does Eve Need to Know?
In Public Key Cryptography, pages 37–46.

[Menezes et al., 1996] Menezes, A. J., Vanstone, S. A., and Oorschot, P. C. V. (1996). Hand-
book of Applied Cryptography. CRC Press, Inc., Boca Raton, FL, USA.

[Mister and Adams, 1996] Mister, S. and Adams, C. (1996). Practical S-box Design. Selected
Areas in Cryptography.

[Morrison and Brillhart, 1975] Morrison, M. A. and Brillhart, J. (1975). A Method of Factoring
and the Factorization of F7. Mathematics of Computation, (29):183–208.

[Nyberg, 1991] Nyberg, K. (1991). Perfect Non-linear S-boxes. Springer-Verland. Advances in
Cryptography, Eurocrypt ’91 Proceedings.

[Pomerance, 1982] Pomerance, C. (1982). Analysis and CFomparison of Some Integer Fac-
toring Algorithms. Computational Methods in Number Theory, Part I. Math. Centre Tracts.
Amsterdam: Math. Centrum, 154:89–139.

[Pomerance, 1996] Pomerance, C. (1996). A Tale of Two Sieves. Notices of the AMS.

[Revesz, 1990] Revesz, P. (1990). Random Walk in Random and Non-Random Environments.
Singapore: World Scientific.

[Riesel, 1994] Riesel, H. (1994). Prime Numbers and Computer Methods for Factorization. 2nd
Ed. Birkhäuser, Boston.

[Rivest, 1992a] Rivest, R. (1992a). The MD4 Message-Digest Algorithm. RFC 1320.

[Rivest, 1992b] Rivest, R. (1992b). The MD5 Message-Digest Algorithm. RFC 1321.

[Rivest, 1990] Rivest, R. L. (1990). Cryptography - Handbook of Theoretical Computer Science,
volume 1, chapter 13, pages 717–755. Elsevier. Posted pdf has ’cryptology’ rather than
’cryptography’ as the title, but is otherwise the same as what was published in book.

[Rivest et al., 1978] Rivest, R. L., Shamir, A., and Adleman, L. (1978). A Method for Obtaining
Digital Signatures and Public-key Cryptosystems. Commun. ACM, 21(2):120–126.

<http://www.stat.fsu.edu/pub/diehard/>
<http://www.stat.fsu.edu/pub/diehard/>

Bibliography 129

[Rukhin et al., 2010] Rukhin, A., Soto, J., Nechvatal, J., Barker, E., Leigh, S., Levenson, M.,
Banks, D., Heckert, A., Dray, J., Vo, S., Smid, M., Vangel, M., and III, L. E. B. (2010). A
Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic
Applications. NIST - National Institute of Standards and Technology, Technology Adminis-
tration, U.S. Department of Commerce. Special Publication 800-22.

[Schneier, 1996] Schneier, B. (1996). Applied Cryptography: Protocols, Algorithms, and Source
Code in C. John Wiley & Sons. 2nd Edition.

[Shor, 1997] Shor, P. W. (1997). Polynomial-Time Algorithms for Prime Factorization and
Discrete Logarithms on a Quantum Computer. SIAM J. Comput., 26(5):1484–1509.

[Simmons, 1983] Simmons, G. J. (1983). A “Weak” Privacy Protocol Using the RSA Crypto
Algorithm. j-CRYPTOLOGIA, 7(2):180–182.

[Stinson, 2002] Stinson, D. (2002). Cryptography: Theory and Practice. CRC/C&H, 2nd
edition.

[Vazirani and Vazirani, 1984] Vazirani, U. V. and Vazirani, V. V. (1984). Efficient and Secure
Pseudo-Random Number Generation. Proceedings of the 25th IEEE Symposium on the
Foundations of Computer Science, pages 458–463.

[Vazirani and Vazirani, 1985] Vazirani, U. V. and Vazirani, V. V. (1985). Efficient and Secure
Pseudo-Random Number Generation. Advances in Cryptology: Proceedings of CRYPTO ’84,
Springer-Verlag, pages 193–202.

[Von Neumann, 1963] Von Neumann, J. (1963). Various techniques used in connection with
random digits. In Von Neumann’s Collected Works, volume 5.

[W. Alexi and Schnorr, 1984] W. Alexi, B.-Z. Chor, O. G. and Schnorr, C. P. (1984). RSA and
Rabin Functions: Certain Parts are as Hard as the Whole. Proceedings of the 25th IEEE
Symposium on the Foundations of Computer Science, pages 449–457.

[W. Alexi and Schnorr, 1988] W. Alexi, B.-Z. Chor, O. G. and Schnorr, C. P. (1988). RSA and
Rabin Functions: Certain Parts are as Hard as the Whole. SIAM Journal on Computing,
17:194–209.

[Wiener, 1990] Wiener, M. J. (1990). Cryptanalysis of Short RSA Secret Exponents. IEEE
Transactions on Information Theory, 36:553–558.

	Página 1
	Página 2
	Página 3
	Public_Keys_Quality__Copy1_.pdf
	Acknowledgements
	Abstract
	Resumo
	Introduction
	Cryptography
	Public Key Cryptography
	Diffie-Hellman Algorithm

	The RSA Public-Key Cryptosystem
	RSA Key Generation, Message Encryption and Decryption
	RSA vulnerabilities
	The RSA problem
	Large integer numbers factorization
	Common modulus
	Blinding

	The RSA security and cryptanalysis
	Small public exponent
	Hastad's broadcast attack
	Franklin-Reiter Related Message Attack
	Coppersmith's Short Pad Attack
	Partial Key Exposure Attack

	Low private exponent
	Wiener's Attack

	Bleichenbacher's Attack on PKCS#1

	Factorization
	Trial Factorization
	Fermat Factorization
	Continued Fraction Method
	Pollard's p - 1 Factorization Algorithm
	Elliptic Curve Method
	Quadratic Sieve
	General Number Field Sieve
	RSA Modulus Factorization

	Recent Attacks on RSA Keys
	How the attack works
	Batch-GCD
	Coppersmith-style attacks

	Randomness
	Random and Pseudorandom Numbers
	Random Number Generators (RNGs)
	Pseudorandom Number Generators (PRNGs)
	Failed Algorithms
	Cryptographically Strong Sequences

	Theoretical Constructions of Pseudorandom Objects
	Testing Randomness
	How a Statistical Test Works
	Frequency Test
	Frequency Test Within a Block
	Runs Test
	Test for the Longest Run of Ones in a Block
	Binary Matrix Rank Test
	Discrete Fourier Transform (Spectral) Test
	Non-overlapping Template Matching Test
	Overlapping Template Matching Test
	Maurer’s "Universal Statistical" Test
	Linear Complexity Test
	Serial Test
	Approximate Entropy Test
	Cumulative Sums Test
	Random Excursions Test
	Random Excursions Variant Test

	Recommendations for Random Numbers Generation. Randomness Requirements for Security.
	Entropy Sources
	De-skewing
	Mixing

	The Blum Blum Shub Generator Example

	Quality analysis of generated numbers
	Quality analysis of a Hardware Security Module (HSM) generated number of 106 bits
	Frequency Test
	Frequency Test Within a Block
	Runs Test
	Test for the Longest Run of Ones in a Block
	Binary Matrix Rank Test
	Discrete Fourier Transform (Spectral) Test
	Non-overlapping Template Matching Test
	Overlapping Template Matching Test
	Maurer’s "Universal Statistical" Test
	Linear Complexity Test
	Serial Test
	Approximate Entropy Test
	Cumulative Sums Test
	Random Excursions Test
	Random Excursions Variant Test

	Quality analysis of a Hardware Security Module (HSM) generated number of 109 bits
	Frequency Test
	Frequency Test Within a Block
	Runs Test
	Test for the Longest Run of Ones in a Block
	Binary Matrix Rank Test
	Non-overlapping Template Matching Test
	Overlapping Template Matching Test
	Maurer’s "Universal Statistical" Test
	Linear Complexity Test
	Serial Test
	Approximate Entropy Test
	Cumulative Sums Test

	Quality analysis of a Hardware Security Module (HSM) set of generated numbers
	Conclusions

	MQualityTester Application
	Conclusions and Future Work
	Conclusions
	Future Work

	Coppersmith's Theorem
	Continued Fraction Method Fundamental Concepts
	Continued Fractions
	Factor Basis and Smooth Numbers

	Tables

