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Abstract

Cryptography studies secure communications. In symmetric-key cryptog-
raphy, the communicating parties have a shared secret key which allows both
to encrypt and decrypt messages. The encryption schemes used are very effi-
cient but have no rigorous security proof. In order to design a symmetric-key
primitive, one has to ensure that the primitive is secure at least against known
attacks. During 4 years of my doctoral studies at the University of Luxem-
bourg under the supervision of Prof. Alex Biryukov, I studied symmetric-key
cryptography and contributed to several of its topics.

Part I is about the structural and decomposition cryptanalysis. This type of
cryptanalysis aims to exploit properties of the algorithmic structure of a cryp-
tographic function. The first goal is to distinguish a function with a particular
structure from random, structure-less functions. The second goal is to recover
components of the structure in order to obtain a decomposition of the function.
Decomposition attacks are also used to uncover secret structures of S-Boxes,
cryptographic functions over small domains. In this part, I describe structural
and decomposition cryptanalysis of the Feistel Network structure, decomposi-
tions of the S-Box used in the recent Russian cryptographic standard, and a
decomposition of the only known APN permutation in even dimension.

Part II is about the invariant-based cryptanalysis. This method became
recently an active research topic. It happened mainly due to recent “extreme”
cryptographic designs, which turned out to be vulnerable to this cryptanalysis
method. In this part, I describe an invariant-based analysis of NORX, an
authenticated cipher. Further, I show a theoretical study of linear layers that
preserve low-degree invariants of a particular form used in the recent attacks
on block ciphers.

Part III is about the white-box cryptography. In the white-box model, an
adversary has full access to the cryptographic implementation, which in partic-
ular may contain a secret key. The possibility of creating implementations of
symmetric-key primitives secure in this model is a long-standing open question.
Such implementations have many applications in industry; in particular, in mo-
bile payment systems. In this part, I study the possibility of applyingmasking, a
side-channel countermeasure, to protect white-box implementations. I describe
several attacks on direct application of masking and provide a provably-secure
countermeasure against a strong class of the attacks.

Part IV is about the design of symmetric-key primitives. I contributed
to design of the block cipher family SPARX and to the design of a suite of
cryptographic algorithms, which includes the cryptographic permutation fam-
ily SPARKLE, the cryptographic hash function family ESCH, and the authen-
ticated encryption family SCHWAEMM. In this part, I describe the security
analysis that I made for these designs.
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hann Großschädl, Léo Perrin, Luan Cardoso dos Santos, Qingju Wang, Vesselin
Velichkov, Yann Le Corre.

I am thankful for all colleagues that I have met at the university for inter-
esting discussions by the cup of coffee: Benôıt Cogliati, Brian Shaft, Dag Arne
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1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 1
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1.2.3 Part III. White-box Cryptography . . . . . . . . . . 12
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In this chapter I give a brief introduction to cryptology and, especially, to
symmetric cryptography and cryptanalysis. I provide a high-level overview of
this dissertation and I list all publications that I contributed to during my
doctoral studies.

1.1 Introduction
Cryptography is the science of secure communication and storage. What does
“secure” mean in this definition? First, it means that, apart from the two
communicating parties, there may be a third party trying to learn confidential
information, to disrupt the communication, or to mislead the communicating
parties. Second, “secure” means that a predefined set of goals cannot be achieved
by any adversary with set capabilities, such as an ability to read or modify the
communications, or limitations, such as having limited computational power.

Cryptography is often divided into design and cryptanalysis. Cryptographic
design is the design of secure communication systems, called cryptosystems.
Cryptanalysis is breaking the security of cryptosystems. In order to understand
the security of a cryptosystem better, simplified versions of the cryptosystem
are often analyzed. Of course, cryptography and cryptanalysis are not inde-
pendent. Design of a cryptosystem usually follows alternating steps: design -
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cryptanalysis - design - cryptanalysis - ..., until the designers can not cryptana-
lyze the cryptosystem. After that, the cryptosystem is published and for others
to analyze.

Modern cryptography is broadly split into private-key and public-key cryp-
tography, also called symmetric-key and asymmetric-key cryptography.

Symmetric-key cryptography assumes that the communicating parties have
a shared private key. For example, they could meet physically and agree on
the common secret key. In this case, the same shared key can be used both for
encrypting and decrypting communications.

Symmetric-key cryptosystems are usually constructed from low-level, bitwise
operations and functions with small domains. They are very efficient. However,
their security is not mathematically proven and is not based on any simple
mathematical problem.

Asymmetric-key cryptography does not necessarily require pre-shared keys.
The defining property, however, is that the key may consist of two parts - a
public key and a private key. For example, the public key may be used for
encrypting messages and may be openly published. The private key is then
used for decrypting the messages and must be kept secret. Asymmetric-key
cryptography can also be used to establish a shared secret securely while using
an insecure channel.

Asymmetric-key cryptosystems are usually constructed around mathemat-
ical structures from number theory or algebraic geometry. Most often these
cryptosystems are relatively inefficient. However, their security is based on the
hardness of solving a mathematical problem, such as factoring large integers.
It means that, if the cryptosystem is cryptanalyzed and broken, then it would
mean that the underlying mathematical problem is not hard and can be solved
efficiently.

The Public-key cryptography is a very rich area which gives rise to many
beautiful cryptosystems and protocols. It is a very active field and many chal-
lenging problems are continuously solved and new ones are identified. In this
dissertation, however, I dive into symmetric-key cryptography and do not study
public-key cryptosystems. As an exception, in Part III, I study white-box cryp-
tography, which, in particular, aims to construct a public-key cryptosystem
from a symmetric-key primitive.

In practice, a hybrid method is used. The public-key cryptography is used
to establish a shared secret key between the communicating parties, and all the
consequent communications are encrypted using fast symmetric-key cryptogra-
phy.

1.1.1 Authenticated Encryption

The main goal of symmetric cryptography is to provide authenticated encryp-
tion. Authenticated encryption is a cryptosystem providing confidentiality, in-
tegrity, and authenticity.

• Confidentiality guarantees that any adversary with predefined capabili-
ties cannot recover any information about the original messages (called
plaintexts) from the encrypted messages (called ciphertexts).
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• Integrity guarantees that any adversary with predefined capabilities can-
not modify a transmitted ciphertext without the change being noticed by
the receiver.

• Authenticity guarantees that the receiving party can be assured that the
message was generated by the sender.

There are several ways to construct an authenticated encryption scheme.

Authenticated Encryption from Block Ciphers

Block ciphers are the classical and the most widely used symmetric-key primi-
tives. Formally, a block cipher is a family of permutations, where the secret key
selects one of the permutations. The domain of the permutation is the message
space.

The most widely spread block cipher is the AES block cipher [DR98], also
called Rijndael, designed by Vincent Rijmen and Joan Daemen. It was stan-
dardized in 2001 by the US standardization agency NIST.

I and my colleagues designed a block cipher called SPARX [DPU+16]. The
design process and analysis are described in Chapter 10.

A plain block cipher can only encrypt fixed-width messages. For example,
AES has a 128-bit block size. The bigger problem is that direct encryption
of message blocks under the same key (i.e., by the same permutation) leaks
information about the equality of message blocks: if the two plaintext blocks
are equal, then the two ciphertext blocks are equal too, which contradicts the
confidentiality requirement. Another big problem is that authenticity is not
guaranteed. The blocks can be removed arbitrarily without being noticed.

An authenticated block cipher mode is a construction that uses a block ci-
pher to create an authenticated encryption scheme. Such a construction of-
ten consists of two parts: an encryption scheme for confidentiality and a mes-
sage authentication code (MAC) for integrity. For example, the Encrypt-then-
MAC [BN08] is a very generic mode that can combine an arbitrary (secure) en-
cryption scheme and an arbitrary (secure) message authentication code in order
to create the authenticated encryption. More specific authenticated encryption
modes (e.g. GCM [MV04], OCB [RBBK01]) partially reuse the computations
of the two components and achieve better performance. Another class of modes
(e.g. SCT [PS16], COPA [ABL+13], POET [AFF+14]) requires a tweakable
block cipher [LRW02]. Tweakable block ciphers take as input an extra public
parameter called a tweak, and different tweaks should produce indistinguishable
block ciphers.

Authenticated Encryption from Stream Ciphers

The one-time pad is one of the first modern encryption schemes. It is a very
simple cipher, but it is famous for achieving perfect secrecy. It means that no in-
formation is revealed from a ciphertext, even for a computationally-unbounded
adversary. This property is also called information-theoretic security. The one-
time pad accepts an n-bit plaintext and an n-bit key. It combines the key and
the plaintext using the exclusive-or operation. The plaintext and the key bits
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at the same position are added modulo 2. The requirement, however, is that
the key should be sampled uniformly at random and used to encrypt only one
message. These restrictions are not very practical and are the price for perfect
secrecy. Indeed, Shannon [Sha49] proved that these restrictions are necessary
if perfect secrecy must be kept.

Stream ciphers, similarly to block ciphers, discard the perfect secrecy re-
quirement and aim at more practical cryptosystems. Unlike block ciphers,
stream ciphers attempt to simulate the one-time pad by generating the re-
quired large key (a keystream) from a small key on the fly. The keystream
is then called pseudorandom. The security is based on the requirement that
any (computationally-bounded) adversary cannot distinguish the pseudoran-
dom keystream from a purely random sequence.

As in block ciphers, stream ciphers can be combined with a message authen-
tication code (MAC) to create an authenticated encryption (e.g. ChaCha20-
Poly1305 [NL18]). Authenticated modes for stream ciphers were studied in [Sar14].
Another approach is to design an authenticated stream cipher from scratch (e.g.
ACORN [Wu16]).

Authenticated Encryption from Permutations via Sponge construc-
tion

A (cryptographic) hash function is a cryptographic primitive that maps a bit-
string of arbitrary length into a fixed-length bit-string. For a secure hash func-
tion, it should not be computationally easy to invert it (preimage resistance) or
find two messages that have the same hash value (collision resistance). Further-
more, given a fixed message it should be computationally difficult to find another
distinct message that has the same hash value (second preimage resistance). In
general, hash functions are often modeled as random oracles. These oracles
always return a truly random element of the hash function’s codomain, except
that for repeated queries with the same message they always return the same
hash value. Hash functions are used in a huge number of protocols and public-
key constructions. Since hash functions are keyless, it is not clear whether they
belong to symmetric-key or asymmetric-key cryptography. In practice, hash
functions used are made in the symmetric-key style: created from low-level bi-
nary operations, very efficient but with heuristic security. However, there exist
hash functions from more algebraic constructions, but they are typically only
used in theoretic studies due to their inefficiency.

The sponge construction was first formally presented in [BDPVA07], though
similar ideas had already been used before (e.g. [Bir06,BDPA06]). It was used
to design the winner Keccak [BDPVA11] of the SHA-3 [NIS12] hash function
competition organized by NIST. The sponge construction uses a primitive called
cryptographic permutation. The state is divided into the rate part and the
capacity part. The rate part is usually controlled by an adversary, while the
capacity part is uncontrolled. The sponge absorbs message blocks in-between
calls to the permutation. Afterward, it squeezes pseudorandom outputs (e.g.,
hash values) in-between calls to the permutation. The construction is illustrated
in Figure 1.1. The sponge is a provably secure construction: if the chosen
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Figure 1.1: The Sponge construction for hash functions.

cryptographic permutation is ideal (e.g., a purely random permutation), then
the construction is guaranteed to be secure up to some level.

The designers of Keccak further showed [BDPA11,BDPVA12b] that sponges
can be used to construct authenticated encryption. The latter variant of the
mode is called MonkeyDuplex. This mode and its variants were used in sev-
eral encryption schemes (e.g. [AJN16, BDP+16, DEMS16]). Since a sponge
only requires a cryptographic permutation, it inspired cryptography designs
called permutation-based cryptography. A recent improvement is the Beetle
mode [CDNY18], which achieves better security bounds.

I and my colleagues designed a hash function family Esch and an authen-
ticated encryption family Schwaemm. They are based on the recent sponge-
based mode called Beetle and a cryptographic permutation family derived from
our SPARX block cipher. These designs are submitted to the NIST Call for
Lightweight Cryptography [NIS19]. I describe the design process and analysis
of these primitives in Chapter 11.

The CAESAR Competition

Recently, the CAESAR competition was organized [Com19]. Its name stands
for “Competition for Authenticated Encryption: Security, Applicability, and
Robustness”. The competition started in 2014 when 53 authenticated encryp-
tion schemes were submitted. After 5 years of selection process consisting of
3 rounds, the committee selected 8 portfolio members, from which 4 are the
preferred choice. The portfolio is split into 3 use cases:

1. Lightweight applications (resource constrained environments). The pre-
ferred choice is ASCON [DEMS16] which is based on MonkeyDuplex
sponge mode. The second choice is ACORN [Wu16], a dedicated au-
thenticated stream cipher.

2. High-performance applications. The following two choices are chosen with-
out a preference. The first one is AEGIS-128 [WP16], a dedicated de-
sign using a reduced-round AES as a component. The second one is
OCB [KR16], a block cipher mode.
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3. Defense in depth. The preferred choice is Deoxys-II [Jé16], an authenti-
cated encryption scheme based on a tweakable block cipher. The alterna-
tive choices are COLM [ABD+], AES-COPA [ABL+13], and ELmD [DN16],
block cipher modes.

1.1.2 Black, Gray and White-box Models

Security of cryptosystems is most often analyzed in a game-based setting. The
game usually happens between a challenger and an adversary. The challenger
possesses secret information, for example, a secret key. The adversary is allowed
to ask specified queries to the challenger. The goal of the adversary is to recover
the secret information or, at least, a part of it.

Consider an encryption scheme. The challenger flips a coin and decides
whether he will use the encryption scheme or its ideal equivalent. In the first
case, the challenger chooses the secret key uniformly at random. In the second
case, the encryption is performed in the best possible way while maintaining
the interface and semantics of the encryption scheme. For example, for each
plaintext, the ciphertext may be assigned uniformly at random. Note that the
challenger is not necessarily an algorithm and usually is not computationally-
bounded, unlike the adversary. The game continues. The adversary can ask the
challenger to encrypt several plaintexts chosen by the adversary. The challenger
performs the encryption (either using the encryption scheme or its idealized
version) and gives ciphertexts to the adversary. It is said the adversary is
given access to the encryption oracle. The adversary finally has to guess, what
the outcome of the challenger’s coin flip was. That is, the adversary has to
decide, whether the encryption was done using the encryption scheme or using
its idealized version. If the adversary succeeds with non-negligible probability,
then it is said that the encryption scheme has an adaptive chosen-plaintext
distinguisher. If the adversary accesses the encryption oracle only once, it is
said that the scheme has a (non-adaptive) chosen-plaintext distinguisher.

There are three major models in which cryptosystems are analyzed.

The Black-box Model

The black-box model restricts the analysis to the “functional” side of cryptosys-
tems. An adversary in this model is usually given access to encryption and/or
decryption oracles. That is, the adversary is allowed to ask the challenger to
encrypt and/or decrypt arbitrary messages. Any intermediate computations or
events are not visible to the adversary, thus the name “black-box”. This model
is fundamental - any weakness in this model is inherited to the gray-box and
white-box models.

The Gray-box Model

The gray-box model studies the “physical” side of cryptosystems, more precisely,
of their implementations and the devices on which the implementation is de-
ployed. Indeed, this side provides much more information to the adversary.
The adversary may be allowed to measure the time of execution of a query, the
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power consumption of the device, the electromagnetic radiation. This informa-
tion is usually referred to as side-channel information. The adversary may be
active - for example, introduce faults in the computations, by heating the device
or tweaking the voltage. It is an interesting phenomenon that physical access
to the device often enables much more efficient attacks on the cryptosystem.
Cryptanalysis in this model is called side-channel cryptanalysis.

Countermeasures against side-channel attacks may be introduced both in
the implementation code and on the physical side. Protections that can be
added to the implementation are more generic and, therefore, more prefer-
able. In practice, both methods are used to ensure maximum security. Im-
portantly, implementations typically may use (pseudo)randomness in order to
protect computations. Together with the noise and uncertainty of the physi-
cal observations, these properties allow the creation of sound countermeasures
against side-channel attacks.

The White-box Model

The white-box model considers the extreme case when the adversary has full
access to the implementation, in the form of compiled code or Boolean circuits.
Typically, the implementation contains a secret key and the adversary’s main
goal is to recover it. The hardness of the key recovery is often called the weak
white-box requirement. Other goals may be considered, such as compressing
the implementation, inverting the computed function, or removing hidden “wa-
termarks” allowing the user possessing the implementation to be traced. The
respective security properties are called unbreakability, incompressibility, one-
wayness, (traitor) traceability (see [SWP09,DLPR13]). Unbreakability together
with one-wayness result in a public-key scheme, if the embedded secret key al-
lows efficient decryption. Such implementation is also called a strong white-box.
Indeed, the implementation secure in the white-box model can be seen as a pub-
lic key, and the embedded secret key can be seen as a private key. A white-box
implementation of a common symmetric encryption scheme would then have a
very efficient decryption code. However, it turns out to be a challenging, if not
impossible problem.

The white-box model was first introduced by Chow et al. [CEJvO02b,CE-
JvO02a] in 2002. The authors proposed rather efficient white-box implemen-
tations of the AES and DES block ciphers. Unfortunately, they were broken
with practical attacks. All consequent attempts to fix the scheme failed as well.
A secure white-box implementation of a block cipher remains an open problem
today.

White-box implementations are closely related to the notion of cryptographic
obfuscation. Indeed, a basic implementation has to be obfuscated in order to
hide the secret key. There is an active research direction related to indistin-
guishability obfuscation (iO), which is widely believed to be “the best possible”
obfuscation. iO has many applications in theory: it is known that many prov-
ably secure cryptographic primitives can be created from secure iO. Unfortu-
nately, many recent iO candidates were broken. Furthermore, all constructions
are very inefficient. For example, a recent framework 5Gen-c [CMR17] can be
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used to obfuscate only a single round of the AES block cipher. I remark though,
that there is no established provable link between white-box and iO.

The WhibOx Competition

In 2017, the WhibOx competition [ECR17] was organized. Any person or team
in the world could submit a white-box AES-128 implementation in C code of
size up to 50 megabytes, then the implementation was publicly available for
analysis. The goal was to recover the secret key from the implementation.

Among 94 submissions, most implementations were broken in less than a
day. Only 13 implementations required at least one day to be broken, and only
8 of them required at least two days. The winning implementation survived 28
days, and the following implementation only 12 days. The winning design was
created by myself and Alex Biryukov. The implementation did not involve any
new provable security techniques, but relied on many interesting obfuscation
tricks, effectively slowing down the reverse-engineering effort. We were also
first to successfully cryptanalyze the best 3 implementations besides ours. Our
participation in the competition initiated the research that resulted in Part III
of this thesis.

1.1.3 Cryptanalysis of Symmetric-key Primitives

The framework for cryptanalysis is most developed for block ciphers. Indeed,
block ciphers were used from the 1970s with the designs of the LUCIFER and
DES block ciphers. Together with a proper mode, a block cipher can be used
to construct an authenticated encryption scheme. Furthermore, block ciphers
tend to have a reasonably simple structure. This simplicity attracts cryptana-
lysts, who try to break the cipher using both established and novel methods of
cryptanalysis. Since the same low-level operations are used in most symmetric-
key primitives, cryptanalysis methods for block ciphers are usually very generic
and can be applied to other primitives, such as stream ciphers, hash functions,
message authentication codes, and authenticated encryption.

What does it mean to break a cipher? In the scientific community, suc-
cessful cryptanalysis means an algorithm that disproves a security claim of the
designers. A typical security claim is that the secret key can not be recovered
faster than exhaustive search over the whole key space. A block cipher with a
fixed secret key should not be distinguishable from a truly random permutation.
Even if the attack is impossible in practice, it only matters that it is faster than
the generic attack. The reason is that such an attack shows a weakness of the
block cipher. Since block ciphers are not provably secure, any weakness should
be avoided.

The complexity of a cryptanalytic attack is measured by the time, memory
and data complexities of the algorithm. The data complexity corresponds to
the number of queries that it makes.

In the simplest form, cryptanalytic attacks lead to a distinguisher from a
random permutation. In most cases, such an attack can be extended into the
secret key recovery. This is done by guessing a part of the secret key and
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decrypting a part of the ciphertext. Then the correctness of the key guess is
verified by using the established distinguisher.

Cryptanalysis Methods

In differential cryptanalysis, an adversary encrypts two plaintexts with a fixed
XOR difference. By an analysis of the cipher’s structure, the adversary predicts
a difference between ciphertexts with high enough probability. More precisely,
the cryptanalyst studies the evolution of the plaintexts difference through all
computations, until the ciphertext difference. A transition through nonlinear
components is usually probabilistic, and all transitions’ probabilities accumu-
late in an approximation of the probability of observing a particular ciphertext
difference.

In linear cryptanalysis, an adversary receives many plaintext-ciphertext
pairs generated by the analyzed block cipher. The cipher is approximated by
linear equations, i.e. equations involving only the XOR operation. As in differ-
ential cryptanalysis, approximations of nonlinear components induce a cost in
the form of probability. As a result, the resulting equations linking the key, the
plaintext and the ciphertext hold only with particular probability. If the adver-
sary observes enough data, then correct equations may be established with high
probability. In practice, only the ratio of plaintext-ciphertext pairs for which
the equation is correct is computed. For a random permutation, this ratio will
be close to 1/2. For a weak block cipher, this ratio may be distinguishable from
1/2 with high probability.

In integral cryptanalysis, the algebraic degree of a block cipher is studied.
It corresponds to the degree of the multivariate polynomial representation of
the cipher. If the algebraic degree is not high enough, the cryptanalyst can
deduce a set of plaintexts, for which the corresponding ciphertexts XOR to
zero, independently of the secret key. Evaluation of the algebraic degree of a
cryptographic primitive is a challenging problem and usually, only upper bounds
on the degree can be proved. In Chapter 3 I describe a method to obtain such
upper bounds for the particular block cipher structure, called a Feistel Network.
It is based on the joint work [PU16] with my colleague Léo Perrin.

Integral cryptanalysis is one of the main tools for structural cryptanalysis.
This branch of cryptanalysis studies ways to distinguish structures of crypto-
graphic functions and further decompose the function into components of the
structure. It means that only the structure of the function is known to the
adversary, and its components are kept secret. The most common structures
are the substitution-permutation-network (SPN) and the Feistel network (FN).
My colleagues Léo Perrin and Alex Biryukov found an intriguing application of
structural and decomposition cryptanalysis. They applied it to small functions
called S-Boxes, which are used to build cryptographic primitives. S-Boxes are
usually represented by tables in specifications and the process of their generation
may be kept undisclosed. Structural cryptanalysis allows distinguishing partic-
ular structures in an S-Box. Together with analysis of resistance against linear
and differential attacks, these methods can often reveal secret criteria behind
an S-Box of unexplained origin. This direction is called the reverse-engineering
of S-Boxes. I contributed to the work of my colleagues in reverse-engineering
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of the S-Box used in the latest Russian cryptographic standards, and reverse-
engineering of an S-Box of a mathematical origin. These results are described
in Chapter 4 and Chapter 5 respectively.

A recent direction of cryptanalysis is the search for invariants of the cryp-
tographic primitives. Linear invariants correspond to a critical flaw in the
primitive and are usually easy to avoid. Nonlinear invariants are much harder
to find. Indeed, the ideas of invariant-based cryptanalysis appeared a long time
ago, but the actual applications of the method appeared only recently. A special
case of a nonlinear invariant is an invariant subspace. Invariant subspace crypt-
analysis was introduced in [LAAZ11] and was used to break the PRINTcipher,
designed in 2010. Another class of nonlinear invariants is formed by quadratic
invariants. This class was used in [TLS16] to show a practical distinguisher of
recently designed block ciphers Midori, SCREAM, and iSCREAM. In Part II
I describe invariant subspaces in NORX, a CAESAR third round candidate; I
also show a theoretical study of generalization of quadratic invariants to higher
degrees. This part is based on joint work [BUV17] with Alex Biryukov and
Vesselin Velichkov, and on joint work [BBU18] with Christof Beierle and Alex
Biryukov.

1.2 Thesis Overview
In this section, I provide a brief overview of this dissertation. The introduction,
the thesis overview, and the list of publications are given in Chapter 1 (this
chapter). Chapter 2 introduces definitions and notations, together with well-
established facts about mathematical structures that are used throughout the
thesis. The rest of the work is split into four parts. Each part corresponds to a
separate research area that I contributed to during my doctoral studies.

1.2.1 Part I. Structural and Decomposition Cryptanalysis

In this part, I present my contribution to structural and decomposition crypt-
analysis and S-Box reverse-engineering. It consists of three chapters.

Chapter 3 shows an application of structural cryptanalysis to the Feistel
Network structure. Our research emerged from observing interesting patterns
in the linear approximation table of 4- and 5-round Feistel networks with tiny
block size. The linear approximation table is used to measure the resistance of
the structure to linear cryptanalysis (see Section 2.4 of Chapter 2). By study-
ing the artifacts, we deduced and proved their relation to integral cryptanalysis.
Further, we generalized and proved these integral properties of Feistel networks.
As a result, we obtained a simple closed formula on the number of rounds of
Feistel networks, when the integral distinguisher is possible. We represented the
integral distinguishers in the form of the high-degree indicator matrix (HDIM).
Further, we showed the usefulness of HDIM as a tool by cryptanalyzing Feis-
tel networks composed with random affine layers. In addition, we proposed a
decomposition attack on Feistel networks based on the integral distinguishers.

Chapter 4 describes decompositions of the S-Box used in the recent Rus-
sian cryptographic standard. With my coauthors, we discovered interesting and
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unique structures of the S-Box based on the finite field arithmetic. In the chap-
ter, I describe the step-by-step decomposition process. The methods developed
in this work will prove their usefulness in Chapter 5.

Chapter 5 shows the decomposition of the only known APN permutation
in even dimension. APN stands for almost perfect nonlinear and corresponds
to optimal resistance against differential cryptanalysis. The existence of APN
permutations in even dimensions was a long-standing problem until the 6-bit
APN permutation was published by Dillon et al. in 2009. Since then, no new
significant progress on the problem was achieved. Furthermore, the method that
was used to find the S-Box does not provide any insight on how to generalize
the APN permutation. With Alex Biryukov and Léo Perrin, we applied the
methods of S-Box reverse-engineering to this S-Box of mathematical origin and
surprisingly discovered an interesting structure, which we called a butterfly. We
studied its properties and generalized it to higher dimensions. Even though
we did not find any new APN permutation in even dimension, the generalized
butterfly is only slightly weaker than APN permutations.

1.2.2 Part II. Nonlinear Invariants

In this part, I describe my contribution to the method of cryptanalysis based
on nonlinear invariants. It consists of two chapters.

Chapter 6 describes an analysis of the core permutation of the NORX au-
thenticated encryption scheme, a third round CAESAR candidate. First, I de-
scribe invariant subspaces of the permutation obtained from rotational symme-
try of the structure. Second, I show probabilistic invariant subspaces obtained
from rotational word symmetry. To illustrate the dangers of such properties, I
describe two attacks on slightly modified variants of NORX. Further, I provide
the cycle decomposition of a 32-bit mapping G used in the NORX8 instance.
I propose an algorithm for the search of low-degree non-linear invariants from
a cycle decomposition and apply it to G. The results show that there are no
low-degree invariants of G holding with probability one. This chapter is based
on the joint work [BUV17] with Alex Biryukov and Vesselin Velichkov, which
is currently available as an online report.

Chapter 7 shows a theoretical study of linear layers that preserve a par-
ticular class of low-degree invariants. It is a generalization of the theorem
from [TLS16], where it was shown that orthogonal linear layers preserve a par-
ticular class of quadratic invariants. Our study shows that no bijective linear
layers preserve a similar class of cubic invariants. However, there are such ex-
panding linear layers. The linear layers that are studied, correspond to subsets
of Fn2 on which every Boolean function of algebraic degree at most d, sums to
zero. Furthermore, these sets of vectors must have full rank. We call them
degree-d zero-sum sets of full rank. The rest of the chapter is devoted to study-
ing the minimum possible size of such sets. This size is related to the minimum
expansion rate of the corresponding linear layers. I describe several nontriv-
ial bounds for the minimum possible size of full-rank degree-d zero-sum sets.
This chapter is based on the joint work [BBU18] with Christof Beierle and Alex
Biryukov, which is in the process of submission to a Boolean function journal.
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1.2.3 Part III. White-box Cryptography

In this part, I describe my contribution to symmetric cryptography in the white-
box model. This part is based on the joint work [BU18a] with Alex Biryukov.
It consists of two chapters.

Chapter 8 describes several attacks on white-box implementations using
masking schemes. Recently, Bos et al. [BHMT16] showed that most public
white-box implementations can be broken in an automated way by a classic
side-channel attack. It is therefore natural to apply side-channel protection -
masking - to protect white-box implementations. However, this chapter shows
many caveats that appear in the white-box setting. The described attacks result
in constraints that a secure white-box implementation based on masking has
to satisfy. In particular, the classic Boolean masking of any order is not secure
since it is a linear scheme.

Chapter 9 describes a general methodology for securing a white-box imple-
mentation. The attacks are split into two groups, and each group corresponds
to a separate component of protection. The two components are called struc-
ture hiding and value hiding. Structure hiding protection must hide structural
patterns and prevent locating of critical computation points in the circuit by
graph-based analysis. It also should include protection against fault attacks,
though this may be considered as a separate component. Value hiding protec-
tion must prevent attacks based on analysis of values computed in the white-box
circuit, such as side-channel power analysis attacks. In our research, we focused
on the value hiding protection, in particular on the novel attack against Boolean
masking. We develop a security model and a game-based security definition.
Further, we develop a framework of provable security against the attack. Fi-
nally, we propose a novel quadratic masking scheme instantiating the developed
framework of provable security. We implement AES-128 encryption protected
by the novel masking scheme together with the classic Boolean masking scheme
to estimate the overhead.

1.2.4 Part IV. Symmetric Algorithm Design

In this part, I describe my contribution to the design of symmetric-key algo-
rithms. It consists of two chapters.

Chapter 10 describes SPARX, a lightweight block cipher designed by my
colleagues and me. The cipher follows a novel design strategy called a long-trail
strategy. This strategy provides provable security against single-trail linear and
differential cryptanalysis for ARX-based structures, where the classic wide-trail
strategy is not efficient. I developed two algorithms for long-trail evaluation of a
given structure. We evaluated a large class of linear layer structures for the block
cipher. During the evaluation, my algorithms were used in order to measure
the resistance of the linear layer against linear and differential attacks. I also
evaluated the linear layer candidates for resistance against integral attacks using
the division property, a state-of-the-art technique. The final choice was done
by finding an optimal ratio between the two parameters, and also considering
implementation properties. It turned out that a linear Feistel round leads to
the best compromise between the parameters. This chapter is based on the
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joint work [DPU+16] with Daniel Dinu, Léo Perrin, Vesselin Velichkov, Johann
Großschädl, and Alex Biryukov.

Chapter 11 describes a suite of symmetric-key algorithms. SPARKLE is
a family of three cryptographic permutations motivated by the SPARX design.
ESCH is a family of two hash functions built using the sponge construction
and the SPARKLE permutations. SCHWAEMM is a family of authenticated
encryption algorithms, built using the recent Bettle sponge-based mode and
the SPARKLE permutations. I performed various analyses of the SPARKLE
permutation and its components, including nonlinear invariant analysis, a lin-
earization study of the ARX-based S-Box, evaluation of resistance against inte-
gral attacks. Furthermore, I propose a generic algorithm for building the matrix
of transitions of truncated differential trails through the linear layer. The algo-
rithm takes as input the binary matrix of the linear layer and computes precise
probabilities. The advantage of this method is that it automatically takes into
account all dependencies between computations in the linear layer, helping to
avoid possible mistakes. Finally, I propose several attacks on reduced-round
versions of SCHWAEMM. The suite of primitives is submitted to the NIST
Call for Lightweight Cryptographic Algorithms [NIS19]. It is a joint work with
Christof Beierle, Alex Biryukov, Luan Cardoso dos Santos, Johann Großschädl,
Léo Perrin, Vesselin Velichkov and Qingju Wang.

1.3 Publications
Most of my research results were peer-reviewed and published in conference
proceedings.

Journal Publications

[PU17] Léo Perrin and Aleksei Udovenko. Exponential S-Boxes: a Link Between
the S-Boxes of BelT and Kuznyechik/Streebog. IACR Trans. Symmetric
Cryptol., 2016(2):99–124, 2017.

Conference Proceedings

[BDCU17] Alex Biryukov, Daniel Dinu, Yann Le Corre, and Aleksei Udovenko.
Optimal First-Order Boolean Masking for Embedded IoT Devices. In
Smart Card Research and Advanced Applications - 16th International
Conference, CARDIS 2017, Lugano, Switzerland, November 13-15,
2017, Revised Selected Papers, pages 22–41, 2017.

[BPU16] Alex Biryukov, Léo Perrin, and Aleksei Udovenko. Reverse-
Engineering the S-Box of Streebog, Kuznyechik and STRIBOBr1.
In Advances in Cryptology - EUROCRYPT 2016 - 35th Annual In-
ternational Conference on the Theory and Applications of Crypto-
graphic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings,
Part I, pages 372–402, 2016.



14 UNREFEREED PUBLICATIONS

[BU18] Alex Biryukov and Aleksei Udovenko. Attacks and Countermeasures
for White-box Designs. In Advances in Cryptology - ASIACRYPT
2018 - 24th International Conference on the Theory and Application
of Cryptology and Information Security, Brisbane, QLD, Australia,
December 2-6, 2018, Proceedings, Part II, pages 373–402, 2018.

[DPU+16] Daniel Dinu, Léo Perrin, Aleksei Udovenko, Vesselin Velichkov, Jo-
hann Großschädl, and Alex Biryukov. Design Strategies for ARX
with Provable Bounds: Sparx and LAX. In Advances in Cryptology
- ASIACRYPT 2016 - 22nd International Conference on the The-
ory and Application of Cryptology and Information Security, Hanoi,
Vietnam, December 4-8, 2016, Proceedings, Part I, pages 484–513,
2016.

[PU16] Léo Perrin and Aleksei Udovenko. Algebraic Insights into the Secret
Feistel Network. In Fast Software Encryption - 23rd International
Conference, FSE 2016, Bochum, Germany, March 20-23, 2016, Re-
vised Selected Papers, pages 378–398, 2016.

[PUB16] Léo Perrin, Aleksei Udovenko, and Alex Biryukov. Cryptanalysis
of a Theorem: Decomposing the Only Known Solution to the Big
APN Problem. In Advances in Cryptology - CRYPTO 2016 - 36th
Annual International Cryptology Conference, Santa Barbara, CA,
USA, August 14-18, 2016, Proceedings, Part II, pages 93–122, 2016.

Unrefereed Publications

[BBU18] Christof Beierle, Alex Biryukov, and Aleksei Udovenko. On Degree-
d Zero-Sum Sets of Full Rank. Cryptology ePrint Archive, Report
2018/1194, 2018. https://eprint.iacr.org/2018/1194.

[BUV17] Alex Biryukov, Aleksei Udovenko, and Vesselin Velichkov. Analysis
of the NORX Core Permutation. Cryptology ePrint Archive, Report
2017/034, 2017. https://eprint.iacr.org/2017/034.

Presentations

I gave talks at the following conferences and workshops.

1. Fast Software Encryption 2016, Bochum, Germany. Presentation of [PU16].

2. CRYPTO 2016, Santa-Barbara, USA. Presentation of [PUB16].

3. Early Symmetric Crypto 2017, Canach, Luxembourg. Presentation of [PU17].

4. Grande Region Security and Reliability Day 2017, Luxembourg, Luxem-
bourg. Presentation of [DPU+16].

5. CARDIS 2017, Lugano, Switzerland. Presentation of [BDCU17].

6. ASIACRYPT 2018, Brisbane, Australia. Presentation of [BU18].

https://eprint.iacr.org/2018/1194
https://eprint.iacr.org/2017/034
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Source Code

The code for white-box implementations and analysis that I wrote for [BU18]
is publicly available online [BU18b]:

https://github.com/cryptolu/whitebox

https://github.com/cryptolu/whitebox
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In this chapter, I describe the necessary background required to understand
the thesis, as well as notations and definitions used. The framework of Boolean
functions is extensively used. The contents of this chapter are rather dense and
cover only the notions used in this thesis. For a more detailed source about
Boolean functions, I refer to [Car10a,Car10b].

Common mathematical notations are used. The notation := means “by
definition”. Z denotes the set of integers, Z+ denotes the set of positive integers,
Z≥0 := {0} ∪ Z+ denotes the set of non-negative integers. For n ∈ Z+, Zn
denotes the set {0, 1, 2, . . . , n− 1}. For a, b ∈ Z, a ≤ b, [a . . . b] denotes the
tuple of integers (a, a+ 1, . . . , b− 1, b).

(
n
≤k

)
denotes the sum

∑k
i=0

(
n
i

)
.

2.1 Boolean Functions

2.1.1 Binary Fields and Functions

Let F2 denote the finite field with two elements. For a positive integer n let Fn2
denote the vector space over F2 of dimension n. An n-bit Boolean function is
a function mapping Fn2 to F2. The set of all n-bit Boolean functions is denoted
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by BFn. The value vector Vf of a Boolean function f is the vector of length 2n

consisting of the values of f on all possible inputs in the lexicographic order.
0,1 denote the two constant functions.

For n ∈ Z+ let F2n denote the field with 2n elements. Such field is defined as
the set of polynomials with coefficients from F2 and degree at most n− 1. The
field addition is the usual addition of polynomials, and the field multiplication
is the multiplication of polynomials modulo a fixed irreducible polynomial of
degree n. It can be summarized by the isomorphism

F2n ' F2[X]/P (x),

where P (x) is an irreducible polynomial, i.e. P (x) cannot be factored into
polynomials of strictly lower degree.

2.1.2 Vectors and Weights

Elements in vectors are indexed starting from 1. For a vector v from Fn2 it is
written v = (v1, . . . , vn). |X| denotes the size of the vector/set X. The weight of
a vector v is the number of nonzero entries in it and is denoted wt(v). Weight of
a Boolean function is the weight of its value vector. An n-bit Boolean function
is said to be balanced, if its weight is equal to 2n−1.

The correlation of a vector v ∈ Ft2 is defined as

cor(v) := 2 ·wt(v)/t− 1, −1 ≤ cor(v) ≤ 1.

The correlation of a Boolean function f : Fn2 → F2 is defined as the correlation
of its value vector Vf :

cor(f) := cor(Vf ) = wt(f)/2n−1 − 1.

For any n ∈ Z+, In ∈ Fn2 denotes the all-one vector (1, 1, . . . , 1). For j ∈
Z+, 1 ≤ j ≤ n, the j-th unit vector ej is the vector having 1 at position j and
0 otherwise. e1, . . . , en form a linear basis of Fn2 .

2.1.3 Bit-wise Arithmetic

Let ∧,∨,⊕,¬ denote the Boolean operations AND, OR, XOR and NOT respec-
tively. The corresponding operations on Fn2 are defined component-wise, e.g.

(x1, . . . , xn) ∧ (y1, . . . , yn) := (x1 ∧ y1, . . . , xn ∧ yn).

The operation of addition modulo 2w is denoted �, and w should be clear
from the context; the bits in a vector are ordered in the decreasing order of
significance (see Section 2.1.4). The rotations a vector x to the left and to the
right are denoted by≪ and≫ respectively.

For x, y ∈ Fn2 the inner product of x and y is defined as

〈x, y〉 :=
n⊕
i=1

xiyi ∈ F2.
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This notion is generalized to more arguments. Let x1, . . . , xd ∈ Fn2 . Then define

〈x1, . . . , xd〉 :=
n⊕
i=1

d∏
j=1

xj,i ∈ F2.

For x, y ∈ Fn2 , xy is defined as (note 00 = 1)

xy := xy11 x
y2
2 . . . xynn := x ∨ ¬y = In ⊕ y ∧ (x⊕ In) ∈ F2.

Let � be the partial relation on (Fn2 )2 defined by x � y if and only if, for all
i ∈ {1, . . . , n}, xi ≤ yi. I remark that

x � y ⇔ yx = 1 ⇔ (¬x)¬y = 1.

2.1.4 Implicit Isomorphisms

For any n,m ∈ Z+, the vector spaces Fn+m2 and Fn2 × Fm2 are considered to be
the same with an implicit isomorphism splitting an (n+m)-bit vector v ∈ Fn+m2

into two components: n leftmost bits l ∈ Fn2 and m rightmost bits r ∈ Fm2 .
For any n ∈ Z+, the vectors from Fn2 can be implicitly represented as integers,

such that the leftmost bits correspond to the most significant bits. Let v ∈ Fn2 .
Then, by abuse of notation, it can be written:

v = (v1, . . . , vn) ∈ Fn2 , ⇔ v =
n∑
i=1

vi2
n−i ∈ Zn.

A hexadecimal vector notation may be used and indicated by a monospace font,
for example

163 ∈ Z256 = A3 ∈ F8
2 = (1, 0, 1, 0, 0, 0, 1, 1) ∈ F8

2.

Another implicit isomorphism is allowed between the vector space Fn2 and
the polynomial ring F2[X]:

v = (v1, . . . , vn) ∈ Fn2 ⇔
n∑
i=1

viX
n−i ∈ F2[X].

For example,
A3 ∈ F8

2 = (X7 +X5 +X + 1) ∈ F2[X]

Assuming that an irreducible polynomial P (x) defining

F2n ' F2[X]/(P (x))

is clear from the context, the multiplication operation in the finite field is de-
noted �. The division in the finite field is denoted by �.
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2.1.5 Algebraic Normal Form

Any Boolean function f : Fn2 → F2 has a unique representation of the form

f(x) =
⊕
u∈Fn2

aux
u, f(x) ∈ F2[x1, . . . , xn]/(x21 + x1, . . . , x

2
n + xn)

called the algebraic normal form (ANF). Here xu is a shorthand for xu11 . . . xunn
and such products are called monomials. Let ρu [f ] ∈ F2 denote the coefficient
of the monomial xu in the ANF of f . It can be computed by the Möbius
transform:

ρu [f ] := au =
⊕

z∈Fn2 ,z�u

f(z).

The algebraic degree of a Boolean function f is the maximum Hamming
weight of all u such that au = 1. Equivalently, it is the maximum degree of a
monomial in the ANF of f . It is denoted deg f . The zero-function is said to
have the algebraic degree −∞. The set of all Boolean functions with n input
bits and degree at most d is denoted by BFn,d. A Boolean function of algebraic
degree at most 1 is called an affine function. An affine Boolean function f is
said to be linear if f(0) = 0. Any affine Boolean function f : Fn2 → F2 can be
expressed as f(x) = 〈a, x〉+ c for unique a ∈ Fn2 and c ∈ F2, where c = 0 if and
only if f is linear.

2.1.6 Derivatives

For a Boolean function f : Fn2 → F2 and a vector α ∈ Fn2 , I denote the function
δαf : Fn2 → F2 to be the derivative of f with respect to α, given by

δαf(x) := f(x)⊕ f(x⊕ α).

It is well known that deg δαf ≤ max(−1, deg f − 1) for any Boolean function f
and any α, see [Lai94]. The derivation can be iterated multiple times resulting
in a higher-order derivative. For d linearly independent vectors α1, . . . , αd ∈ Fn2
it holds that

δα1 . . . δαdf(x) =
⊕

z∈span(α1,...,αd)

f(x⊕ z).

If the vectors α1, . . . , αd are linearly dependent, then the derivative is equal to
zero.

2.2 Vectorial Boolean Functions
A Vectorial Boolean function S is a function mapping Fn2 to Fm2 for some pos-
itive integers n,m. When n is relatively small, such functions are often called
S-Boxes. Each output bit of a vectorial Boolean function naturally defines a
Boolean function. The corresponding m Boolean functions are called coordi-
nates of S. For any nonzero a ∈ Fm2 the mapping x 7→ 〈a, S(x)〉 is called a
component of S and is denoted by Sa. A component is a linear combination
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of coordinates of S. The function S is said to be balanced, if each y ∈ Fm2 has
exactly 2n−m preimages. In particular, S is a bijection if and only if m = n and
S is balanced.

A vectorial function S : Fn2 → Fm2 can be given by the vector of its values
using the following notation:

LookupTable(S) := (S(0), S(1), . . . , S(2n − 1)), where S(x) ∈ Fm2 .

The algebraic degree of a vectorial Boolean function is defined to be the
maximum algebraic degree of its coordinates.

For any n ∈ Z+ the following maps are defined:

left : Fn2 × Fn2 → Fn2 , (a, b) 7→ a,

right : Fn2 × Fn2 → Fn2 , (a, b) 7→ b,

swap : Fn2 × Fn2 → Fn2 × Fn2 , (a, b) 7→ (b, a).

2.2.1 Linear maps

The vectors from Fn2 are considered as column vectors. The transpose of a vector
or matrix v is denoted v>. The n× n identity matrix is denoted In×n.

A vectorial Boolean function S : Fn2 → Fm2 is called linear (resp. affine) if all
its coordinates are linear (resp. affine). If S is affine, then it can be expressed
as S(x) = A× x⊕ b for a unique m× n matrix A over F2 and b = S(0) ∈ Fm2 ,
where b = 0 if and only if S is linear.

For m,n ∈ Z+, the set of all m× n matrices over F2 is denoted Fm×n2 . Any
such matrix M defines a linear map from Fn2 to Fm2 , given by x 7→M × x. The
set of all bijective linear maps are denoted GLn(F2) ⊆ Fn×n2 . The set of all
bijective affine maps is denoted GAn(F2).

2.2.2 Equivalence Notions

There are several important notions of equivalence between vectorial Boolean
functions. Let S1, S2 : Fn2 → Fm2 be vectorial Boolean functions. Let

Γ1 = {(x, S1(x)) | x ∈ Fn2} ⊆ Fn+m2 ,

Γ2 = {(x, S2(x)) | x ∈ Fn2} ⊆ Fn+m2

be the functional graphs of S1 and S2 respectively.

• S1, S2 are linear (resp. affine) equivalent if there exist linear (resp. affine)
mappings A,B such that S2 = B ◦ S1 ◦ A.

• S1, S2 are extended-affine equivalent (EA-equivalent) if there exist affine
mappings A,B,C such that S2 = B ◦ S1 ◦ A⊕ C.

• S1, S2 are CCZ-equivalent if there exists an affine mapping L such that
Γ2 = L(Γ1) := {L(x) | x ∈ Γ1}, i.e. the functional graphs of S1 and S2 are
affine equivalent.
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2.3 Set Indicators and Subspaces
Let V ⊆ Fn2 . The indicator of the set V is defined as

1V : Fn2 → F2,

1V (x) :=

{
1 if x ∈ V,
0 if x /∈ V.

The degree of the set V is defined as the algebraic degree of its indicator:

deg V := deg 1V .

In the case of multiset over Fn2 , only the elements with an even multiplicity are
considered.

A set V ⊆ Fn2 is said to be a linear subspace if V is closed under the addition
in Fn2 (i.e., under the XOR operation). A set U ⊆ Fn2 is said to be an affine
subspace if there exists a ∈ Fn2 such that V := a ⊕ U := {a⊕ u | u ∈ U} is a
linear subspace. It is then said that U = a⊕V is a coset of the linear subspace
V . Such a may not be unique, but the corresponding linear subspace is unique.

Let U be any affine subspace. The dimension of U is the maximum number
of linearly independent vectors in the linear part of U ; it is denoted dimU .
Furthermore, U has 2dimU elements. U can be viewed a solution to a system of
k := n− dimU linear equations defined by affine functions l1, . . . , lk:

U = {x ∈ Fn2 | l1(x) = 0, . . . , lk(x) = 0}.

It follows that the indicator of U is affine equivalent to a monomial function of
degree n− dimU , i.e. it has the following form:

1U(x) = (l1(x) + 1) · . . . · (lk(x) + 1).

Consider a Boolean function f : Fn2 → F2, f 6= 0 and let d = deg f . The
minimum possible weight of f is equal to 2n−d, i.e.

wt(f) ≥ 2n−deg f .

2.4 Resistance against Linear and Differential Crypt-
analysis

Linear and differential cryptanalysis are powerful methods of attacking sym-
metric cryptographic primitives.

In most block ciphers, S-Boxes are usually the only source of nonlinearity.
The resistance of a cipher depends largely on the cryptographic strength of the
S-Boxes it uses. Due to typically small sizes of S-Boxes, the linear and differ-
ential propagations through them may be analyzed in an exhaustive manner.
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For this purpose, the Linear Approximation Table (LAT) and the Difference
Distribution Table (DDT) are used. Even though these objects are motivated
by the analysis of S-Boxes, they are also useful theoretical tools in the analysis
of larger cryptographic functions.

Definition 2.1 (Walsh Transform). The Walsh transform Wf of a Boolean
function f : Fn2 → F2 is defined as:

Wf : Fn2 → Z,

Wf (a) :=
∑
x∈Fn2

(−1)f(x)⊕〈a,x〉 = −2ncor(f ⊕ ϕa),

where ϕa(x) := 〈a, x〉. It can be seen as a multidimensional Fourier transform
of the function x 7→ (−1)f(x). The multiset of all values of the Walsh transform
of f is called the Walsh spectrum of f .

Definition 2.2 (Linear Approximation Table (LAT)). Let S : Fn2 → Fm2 . The
linear approximation table (LAT) of S is the mapping

LATS : Fn2 × Fn2 → Z,

LATS(a, b) :=WSb(a) = 2 |{x ∈ Fn2 | 〈a, x〉 = 〈b, S(x)〉}| − 2n =
∑
x∈Fn2

(−1)〈a,x〉⊕〈b,S(x)〉.

LATS naturally defines a 2n × 2n matrix over Z (where the inputs a, b are or-
dered in the lexicographic order). The columns of LATS correspond to Walsh
transforms of the components of S.

I remark that in several papers the LAT is defined with a coefficient 1/2 or
−1/2, e.g. in [PU16].

Definition 2.3 (Difference Distribution Table (DDT)). Let S : Fn2 → Fm2 . The
difference distribution table (DDT) of S is the mapping

DDTS : Fn2 × Fn2 → Z≥0,
DDTS(a, b) = |{x ∈ Fn2 | S(x⊕ a)⊕ S(x) = b}| .

DDTS naturally defines a 2n × 2n matrix over Z≥0 (where the inputs a, b are
ordered in the lexicographic order).

The maximum absolute values of the LAT and the DDT of an S-Box are
used to measure the cryptographic strength of the S-Box. For this purpose, the
linearity and the differential uniformity of an function are defined.

Definition 2.4 (Linearity). Let f : Fn2 → F2 be a Boolean function. The lin-
earity of f is denoted by L(f) and is defined to be the maximum absolute value
in the Walsh spectrum of f :

L(f) := max
a∈Fn2
|Wf (a)| = max

a∈Fn2

∣∣∣∣∣∣
∑
x∈Fn2

(−1)f(x)⊕〈a,x〉

∣∣∣∣∣∣.
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Let S : Fn2 → Fm2 be a Vectorial Boolean function. The linearity of S is
denoted by L(S) and is equal to the maximum linearity among the components
of S:

L(S) := max
b∈Fn2 ,b 6=0

L(Sb) = max
a∈Fn2 ,b∈Fn2 ,b 6=0

∣∣∣∣∣∣
∑
x∈Fn2

(−1)〈b,f(x)〉⊕〈a,x〉

∣∣∣∣∣∣.
Definition 2.5 (Differential Uniformity). Let f : Fn2 → Fm2 . The differential
uniformity of f is denoted by δ(f) and is given by:

δ(f) = max
a∈Fn2 ,b∈Fm2 ,a6=0

DDTf (a, b).

The entries of the DDT of any S-Box are always even. It follows that the
differential uniformity can never be smaller than 2. The functions achieving this
lower bound are called Almost Perfect Nonlinear (APN). For example, the cube
function over the finite field is always APN [Nyb93]: x 7→ x3, x ∈ F2n . When n is
odd, the cube function is a permutation of F2n and thus is an APN permutation.
However, it is not bijective when n is even. The question of existence of APN
permutations in even dimensions is a long-standing problem. For n = 4 the
answer is known to be negative, and for n = 6 the positive answer was given
by Dillon et al. [BDMW10] who explicitly provided a 6-bit APN permutation
as a look-up table. In Chapter 5 I describe an interesting decomposition of
this function which we found together with my colleagues using S-Box reverse-
engineering methods [PUB16]. For even n ≥ 8 the question is still a big open
problem.

Effect of Affine Encodings on the LAT

Compositions of a function with affine mappings have a simple effect on the
function’s LAT. The following propositions describe the effect separately for
addition of constants and composition with linear maps. The constant addition
only affects the signs of the LAT coefficients, and the linear encodings shuffle
the LAT coefficients in a linear way.

Proposition 2.6. Let S : Fn2 → Fm2 and let S ′ : Fn2 → Fm2 , S ′(x) = S(x⊕cx)⊕cy
for some cx ∈ Fn2 , cy ∈ Fm2 . Then for any a ∈ Fn2 , b ∈ Fm2

LATS′(a, b) = LATS(a, b)(−1)〈a,cx〉⊕〈b,cy〉.

Proposition 2.7. Let S : Fn2 → Fm2 and let S ′ := B ◦ S ◦ A for some A ∈
GLn(F2), B ∈ GLm(F2). Then for any a ∈ Fn2 , b ∈ Fm2

LATS′(a, b) = LATS((A−1)> × a,B × b).
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Part I

Structural and Decomposition
Cryptanalysis
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In this part, I present the work I have done on structural and decomposition
attacks. These attacks aim at determining or distinguishing a particular struc-
ture of a cryptographic primitive, which is typically provided as an oracle. Once
a structure is established, the cryptanalyst tries to recover its components. For
example, the structure may be a Feistel Network with the Feistel round functions
being the components. Alternatively, a Substitution-Permutation-Network may
be analyzed, where the components are the S-Boxes and the affine mixing layers.
There are several reasons for studying structural and decomposition attacks.

First, one may consider a cryptographic primitive, for example, a block
cipher, with a publicly known structure but with secret components. For in-
stance, one may replace the components of the AES block cipher - the S-Boxes
and the affine layers - by secret ones (see [TKKL15,Gra18]). The description
of the secret components thus becomes a part of the key. If the secret compo-
nents are cryptographically strong, the attacks become harder. In particular,
it is harder to attack such primitives in the side-channel setting (though not
impossible [RR13]). Furthermore, structural attacks help to understand the
security of structures themselves, independently of the specifics of the cho-
sen components. In Chapter 3 I describe distinguishing and decomposition
attacks against Feistel Networks. These results are based on the work done
together with Léo Perrin [PU16] and partly on the work done together with
Léo Perrin and Alex Biryukov [BPU16]. My colleagues also studied the case of
Substitution-Permutation-Networks [BKP16].

The second reason comes from the white-box model. The seminal white-box
implementations of AES and DES by Chow et al. [CEJvO02b,CEJvO02a] are
based on the composition of several small components into a single look-up ta-
ble. Thus, the decomposition attacks pose a direct threat for the security of such
implementations. Indeed, multiple decomposition attacks were given [BGEC05,
DMWP10,LR13]. Another white-box construction called ASASA was proposed
by Biryukov et al. [BBK14b]. It is a 2.5-round SPN with secret components.
Most ASASA instances were broken in [DDKL15,MDFK15] resulting in a de-
composition attack.

The third reason comes from the analysis of S-Boxes. S-Boxes are typically
given as lookup tables. Usually, the designers describe the way they generated
the S-Box. However, this is not always the case. My colleagues Léo Perrin and
Alex Biryukov wrote a seminal work on revealing the secret criteria behind S-
Box designs. They called this research direction “S-Box Reverse-Engineering”.
In their work, they uncovered possible design criteria of the Skipjack S-Box.
They continued developing the S-Box reverse-engineering techniques and found
an interesting decomposition of the S-Box used in Russian standard crypto-
graphic primitives. I also contributed to the latter work [BPU16]. Later, we
also found another interesting algebraic structure in that S-Box [PU17]. I de-
scribe these decompositions in Chapter 4. Furthermore, we found a surprising
application of the developed S-Box decomposition techniques. We applied them
to find a structure in an S-Box of mathematical origin, the 6-bit APN permuta-
tion discovered by Dillon et al. [BDMW10]. I talk about this result in Chapter 5,
which is based on our publication [PUB16].
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In this chapter, I describe distinguishing and decomposition attacks against
Feistel networks. It is based on a part of the joint work with Alex Biryukov and
Léo Perrin [BPU16] and on the joint work with Léo Perrin [PU16]. The first
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paper describes a structure inside the S-Box used in the Russian cryptographic
standards and the method is generalized into a decomposition attack against
3- and 4- round Feistel Networks composed with random affine mappings. The
second paper analyzes the method more deeply. It gives many insights into
algebraic degeneracies in Feistel Networks and describes how to exploit such
artifacts to mount distinguishing and decomposition attacks. This analysis and
the generalization is described in this chapter, and the GOST S-Box decompo-
sition is described in Chapter 4.

3.1 Introduction
A Feistel Network (FN) together with Substitution-Permutation Network (SPN)
are the two main structures used to design a block cipher. Both are iterated
structures in which a simple round function is iterated multiple times. The
Feistel Network was invented by Horst Feistel who designed the Lucifer [Sor84]
block cipher at IBM. Lucifer was a direct predecessor of the Data Encryption
Standard (DES) [Cop94] block cipher which has a 16-round Feistel Network as
its structure.

A classical Feistel Network operates on two n-bit branches of the same size.
The round function works in the following way. A so-called Feistel function
is applied to the right branch and the result is added to the left branch using
the XOR or the modular addition. Afterward, the branches are swapped. The
swap in the last round is usually omitted. A 3-round Feistel Network is shown
in Figure 3.1. The Feistel function is not required to be bijective. In fact, a
Feistel Network can be seen as a way to construct a pseudorandom permuta-
tion from several pseudorandom functions. In 1988, Luby and Rackoff [LR88]
proved adaptive chosen-plaintext security of a 3-round Feistel Network under
the assumption of (pseudo)random Feistel functions. The proof states that any
adversary making q queries to the primitive cannot distinguish it from a random
permutation with a probability higher than q2/2n. It follows that the security
is guaranteed only as long as q is much smaller than the birthday bound 2n/2.

f1⊕
f2⊕
f3⊕

Figure 3.1: A 3-round Feistel Network.

A block cipher must have a relatively large block size, 2n ≥ 64. In this
case, it is impractical to generate fully random n-bit Feistel functions and store
them during encryption. Usually, the Feistel function is chosen to have a simple
and efficient structure and is public. However, a secret round key is injected
before application of the Feistel function. This construction is called a Key-
Alternating Feistel (KAF) cipher. It is much weaker than the ideal one and
requires much more rounds in order to achieve strong security. For example,
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DES has 16 rounds and the recent block cipher Simon [BSS+13] by the NSA
has at least 32 rounds in its variants. An analysis of KAF ciphers was done
by Lampe et al. [LS14], Dinur et al. [DDKS15] and more recently by Guo et
al. [GW18].

From the viewpoint of structural cryptanalysis, it is still important to ana-
lyze Feistel Networks with secret round functions. This may have applications
in white-box cryptography or S-Box reverse-engineering. Patarin [Pat01,Pat04]
first described attacks on generic 5-round Feistel Network. In the seminal S-Box
reverse-engineering paper [BP15], Biryukov and Perrin proposed a SAT-solver
based heuristic algorithm which seems to be practical for branch sizes of up 7
bits and up to 7 rounds. Biryukov et al. [BLP15] described several cryptanalysis
methods against generic Feistel Networks with up to 7 rounds, including integral
and Yoyo cryptanalysis. More recently, Durak et al. [DV18] described decom-
position attacks against Feistel Networks with small branch domains based on
optimized exhaustive search and the Meet-in-the-Middle technique.

Often the Feistel function has a low algebraic degree for the efficiency rea-
sons. For example, many FN-based ciphers (DES, Camellia) use one SPN round
as a Feistel function. The degree of the Feistel function is then upper-bounded
by the S-Box size minus one. The same degree bound applies for the inverses
of such Feistel Functions. Todo [Tod15] proposed a novel method for finding
integral characteristics in general structures, called division property. He eval-
uated FNs and SPNs based on a degree bound of components. Léo Perrin and
I analyzed the algebraic degree of Feistel Networks in [PU16]. In addition, we
showed how to cryptanalyze a Feistel Network composed with random affine
encodings. Affine encodings are motivated by S-Box reverse-engineering and
white-box applications, where such encodings can provide extra security at a
low cost for the designer. These results form the plot of this chapter.

3.1.1 Notation

In this chapter, I will use the following definition of a Feistel Network. It
includes a bound on the algebraic degree of the Feistel functions as a parameter
since proposed attacks exploit low degree or algebraic degeneracy.

Definition 3.1 (Feistel Network). Prd (resp. Frd) denotes the set of all per-
mutations that can be expressed as an r-round Feistel Network with bijective
(resp. unrestricted) Feistel functions f1, . . . , fr : Fn2 → Fn2 of an algebraic degree
at most d:

Prd := {swap ◦Rfn ◦ . . . ◦Rf1 | fi : Fn2 → Fn2 bijective} ,
Frd := {swap ◦Rfn ◦ . . . ◦Rf1 | fi : Fn2 → Fn2} ,
where
Rf : (Fn2 )2 → (Fn2 )2, (a, b) 7→ (b, a⊕ f(b)).

In a few cases, the algebraic degree of the inverse of the Feistel function is
considered. The upper bound is denoted by d−1.
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3.1.2 Contribution

Our work [PU16] has several contributions and I believe that it enriches the
toolkit of structural cryptanalysis. I distinguish the following parts:

1. We show an interesting link between the integral cryptanalysis and the
LAT modulo 8. This fact does not seem to have direct applications but
is interesting from a theoretical viewpoint. It might be useful for locating
visual patterns in the LAT for the purpose of S-Box reverse-engineering.

2. We define the High-Degree Indicator Matrix of a vectorial Boolean func-
tion. While it simply captures classic integral distinguishers, it has many
useful properties and provides more insights into integral cryptanalysis.

3. We study algebraic degree growth in Feistel Networks. As a result, we
provide simple closed formulas that give rather good degree upper bounds.
Though the algorithmic approach using the division property by Todo [Tod15]
provides similar or slightly better results.

4. We propose decomposition attacks on Feistel Networks masked with affine
layers. Previously, a similar attack was only described for unmasked 5-
round Feistel Networks in [BLP15]. We generalize it for more rounds
based on the algebraic degeneracies proved in this work.

The summary of structural attacks against Feistel Networks is given in Ta-
ble 3.1, including attacks against Feistel Networks whitened with affine encod-
ings.

3.1.3 Outline

This chapter starts with the description of visual patterns in the LAT of random
instances of 3- and 4-round Feistel Networks in Section 3.2. These patterns
then are explained and linked to the algebraic degeneracies in these structures.
The relevant algebraic structure is encoded in a new object called High-Degree
Indicator Matrix. In Section 3.3 the algebraic degeneracies are proved and
generalized to a larger number of rounds depending on the algebraic degree
of Feistel functions. This immediately yields integral distinguishers. In the
following Section 3.4 these attacks are extended to Feistel Networks composed
with secret affine encodings. Further, I show lower degree algebraic degeneracies
in Feistel Networks in Section 3.5. In Section 3.6 I describe how to exploit such
weaknesses to mount a round function recovery attack. I discuss the results and
conclude in Section 3.7.

3.1.4 Differences with [PU16]

This chapter is a rather significantly reworked version of the paper [PU16] that
we wrote together with Léo Perrin. Here I briefly describe the most significant
modifications and additions that I have done in this chapter.
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Struc. Method Power Restrictions Time Data Ref.

F5
d

differential distin. fi non-bij. 2n 2n [Pat01]
SAT-based recov. n ≤ 7 practical 22n [BP15]

yoyo recov. – 22n 22n [BLP15]
guess & det. recov. – 2n2

3n/4
22n [BLP15]

P5
d

imp. diff. distin. – 22n 2n [Knu98]
div. prop. distin. – 22n−1 22n−1 [Tod15]
HDIM distin. – 22n−1 22n−1 Sec. 3.3
integral recov. – 22.8n 22n [BLP15]

imp. monom. recov. – 23n 22n Sec. 3.5

Frd

HDIM distin. ΛF(r, d) < 2n 22n−1 22n−1 Sec. 3.3
div. prop. distin. algorithmic 22n−1 22n−1 [Tod15]

imp. monom. recov. Conj. 3.33 23n 22n Sec. 3.5

Prd

HDIM distin. ΛF(r−1, d) < 2n,
d−1 ≤ d

22n−1 22n−1 Sec. 3.3

div. prop. distin. algorithmic 22n−1 22n−1 [Tod15]
imp. monom. recov. Conj. 3.33 23n 22n Sec. 3.5

AP4
dA′ LAT-based recov. – 26n 22n [BPU16]

AFrdA′ HDIM recov. ΛF(r+ 1, d) < 2n n22n 22n Sec. 3.4
A−1FrdA HDIM recov. ΛF(r, d) < 2n n22n∗ 22n Sec. 3.4

AFrd HDIM recov. ΛF(r, d) < 2n n22n 22n Sec. 3.4

APrdA′ HDIM recov. ΛF(r, d) < 2n,
d−1 ≤ d

n22n 22n Sec. 3.4

A−1PrdA HDIM recov. ΛF(r−1, d) < 2n,
d−1 ≤ d

n22n∗ 22n Sec. 3.4

APrd HDIM recov. ΛF(r−1, d) < 2n,
d−1 ≤ d

n22n 22n Sec. 3.4

Table 3.1: Structural attacks against Feistel Networks with r ≥ 5
rounds. n is the branch size, d is the degree bound of the Feistel functions,
d−1 is the degree bound of their inverses. It is known that ΛP(r, d) ≤
ΛF(r, d) ≤ dbr/2c−1 + ddr/2e−1. A,A′ are secret affine transformations.
HDIM, division property, impossible monomial attack are all integral-
based attacks. Attacks from this chapter were published in [PU16]. ∗
assuming complexity of solving a system of n2 quadratic equations is

negligible.
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1. I redefined and generalized the parametrization of the conditions on the
integral distinguishers. I distinguish the case of bijective Feistel func-
tions in a stricter way. Further, instead of using the parameter θ(r, d) =
dbr/2c−1 + ddr/2e−1 from the original paper which comes from a very basic
degree evaluation method, I use the parameters ΛP(r, d),ΛF(r, d) which
correspond to exact degree bounds and are hard to evaluate but can be
upper bounded using various methods. In this way, improving the upper
bounds on the degrees would directly improve the results. In addition, I
consider the effect of the degree of the inverse of the Feistel functions.

2. I describe a generalization of the LAT-ANF link to congruences with larger
powers of 2. It is a simple corollary from the Poisson Summation formula,
which I think is not very well-known or used often. It provides a clear
relation between the ANF and the LAT of a Boolean function and gives
an insight into the structure of the Walsh transform.

3. I describe a generalization of the HDIM-ANF link, an alternative expres-
sion for an arbitrary ANF coefficient. The HDIM expression yields a new
method of proving the absence of particular monomials of degree n− 1 in
a permutation; the generalization yields analogous method for arbitrary
monomials.

4. I provide a more rigorous and explicit analysis of the attacks on Feistel
Networks masked with affine encodings. I distinguish the cases of linear
and quadratic equation systems and analyze the conditions of success.
Furthermore, I describe the re-randomization trick which allows attacking
arbitrary affine encodings.

5. I describe the impossible monomial attack in a more concise and accurate
way. Furthermore, I provide an algorithm in pseudocode. In addition,
I propose a conjecture about the instances of Feistel Networks that can
be attacked. I perform an experimental evaluation of the attack and the
conjecture.

3.2 High-Degree Indicator Matrix
In [BP15] Perrin and Biryukov suggested looking at the visual representation
of the LAT of an S-Box with the goal of finding non-random patterns. The
suggested representation is a heatmap of the LAT matrix and was named "a
Jackson Pollock representation" of the LAT, after the famous abstract expres-
sionist painter. The success of this method is illustrated in this chapter.

Consider a 4- and 5-round Feistel Network. For a tiny branch size (for
example, 3 bits) it is possible to generate the whole codebook and compute
the LAT and its visualization. Figure 3.2 shows the Pollock representations of
the LAT of Feistel Networks with randomly generated bijective round functions
with 3-bit branches (6-bit block size), taken modulo 8.

The images yield a lot of patterns. The patterns are even more clear when
observed on multiple random instances of the Feistel Network. In particular, the
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(a) r = 4 (b) r = 5 (c) r = 6

Figure 3.2: LAT of r-round Feistel Networks (modulo 8). White and
black correspond to 0 and 4.

4-round structure always yields LAT consisting of 8× 8 single-colored squares.
The 5-round structure still has a visible square structure, but not all squares
are single-colored. The topmost leftmost square is always white, the topmost
(resp. leftmost) squares consist of horizontal (resp. vertical) lines. Furthermore,
linear patterns can be noticed: many columns/rows are inverted versions of
other columns/rows, and many columns/rows can be expressed as sums of other
columns/rows (modulo 8). The 6-round structure still has linear patterns but
no clear squared structure.

After studying these patterns, we observed that the LAT modulo 8 is a
bilinear form directly related to the monomials of degree n − 1 in the ANF
of the analyzed n-bit permutation. This is formally stated and proved in the
following section.

3.2.1 Relation between HDIM, LAT and ANF

Definition 3.2 (HDIM). Let S : Fn2 → Fm2 and degS ≤ n − 1. The HDIM of
S is the m× n matrix HDIMS over F2 given by

HDIMS[i, j] :=
⊕
x∈Fn2

〈ei, S(x)〉 〈ej, x〉 .

Proposition 3.3 (HDIM and ANF). HDIMS[i, j] = 1 if and only if the ANF
of the i-th coordinate of S contains the monomial

∏
k 6=j xk = x1 . . . xn/xj.

Proof. The sum over Fn2 is equal to 1 if and only if the summed expression
contains the monomial x1 . . . xn. Since no coordinate of S has term of degree n,
HDIMS[i, j] = 1 is equivalent to 〈ei, S(x)〉 having the monomial x1 . . . xn/xj.

Proposition 3.3 shows that a known value of a cell of the HDIM corresponds
to a known ANF coefficient, i.e. an integral distinguisher. The following theo-
rem describes the relation between the HDIM and the LAT of a function.

Theorem 3.4 (HDIM and LAT). Let S : Fn2 → Fm2 , n ≥ 3 be a balanced func-
tion. Then

(LATS(a, b) mod 8)/4 = b> × HDIMS × a.
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Proof. By linearity of the inner product,

b> × HDIMS × a =
⊕
x∈Fn2

〈b, S(x)〉 〈a, x〉 .

On the other hand, using (−1)z = 1− 2z for z ∈ F2 we obtain:

LATS(a, b) =
∑
x∈Fn2

(−1)〈a,x〉⊕〈b,S(x)〉 =
∑
x∈Fn2

(1− 2 〈a, x〉)(1− 2 〈b, S(x)〉).

Observe that ∑
x∈Fn2

〈a, x〉 = 2n−1 =
∑
x∈Fn2

〈b, S(x)〉 ,

where the last equality holds because S is balanced. It follows that

LATS(a, b) = 4
∑
x∈Fn2

〈a, x〉 〈b, S(x)〉 − 2n

and, for n ≥ 3, LATS(a, b) ≡ 4
∑

x∈Fn2
〈a, x〉 〈b, S(x)〉 (mod 8).

The HDIM serves as an interesting link between the algebraic normal form
and the linear approximation table of a function. It captures all the informa-
tion in the LAT modulo 8 and explains the (bi)linear patterns. However, the
square patterns in Figure 3.2 are artifacts of the 3- and 4-round Feistel Network
structure. These patterns have a simple expression in terms of the HDIM. They
will be formalized and proved in Section 3.3.

3.2.2 Properties of the HDIM

The HDIM inherits some properties from the LAT. In particular, taking the
inverse of a permutation or composing a function with affine mappings has a
simple effect on the HDIM.

Proposition 3.5. Let S be a permutation of Fn2 . Then

HDIMS−1 = HDIM>S .

Proof. It follows from the fact that LATS−1 = LAT>S .

Proposition 3.6. Let S : Fn2 → Fm2 , and let µ and η be linear permutations of
Fn2 and Fm2 respectively. Let T = η ◦ S ◦ µ. Then

HDIMT = η × HDIMS × (µ>)−1.
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Proof.

HDIMT [i, j] = e>i × HDIMT × ej =

=
⊕
x∈Fn2

〈ei, η(S(µ(x)))〉 〈ej, x〉 =

=
⊕
z∈Fn2

〈ei, η(S(z))〉
〈
ej, µ

−1 × z
〉

=

=
⊕
z∈Fn2

〈
η> × ei, S(z)

〉 〈
(µ>)−1 × ej, z

〉
=

= (e>i × η)× HDIMS × ((µ>)−1 × ej).

The proposition follows.

3.2.3 Generalization of the LAT-ANF link

For the rest of the chapter, the link between the HDIM and the LAT will not be
used. However, I would like to note a generalization of this link for congruences
of the LAT modulo higher powers of 2, for example, modulo 16, 32, etc. The
link connects sums of the Walsh transform over subspaces with ANF coefficients
of lower degree. It is based on the following theorem that relates the sum of a
Boolean function f over a linear subspace V ⊆ Fn2 with the sum of the Walsh
transform of f over the orthogonal complement of V . The first quantity is
directly related to the ANF of f .

Theorem 3.7 (Poisson Summation, [Lec71, p.147]). Let f : Fn2 → F2 and let
V ⊆ Fn2 be a linear subspace. Then∑

a∈V

Wf (a) = 2n − 2dimV+1
∑
x∈V ⊥

f(x).

Proof. Observe that∑
a∈V

Wf (a) =
∑
a∈V

∑
x∈Fn2

(−1)〈a,x〉⊕f(x) =
∑
x∈Fn2

(−1)f(x)
∑
a∈V

(−1)〈a,x〉.

If x ∈ V ⊥, then ∑a∈V (−1)〈a,x〉 = |V |. Otherwise, 〈a, x〉 = 1 exactly for half of
V and therefore,

∑
a∈V (−1)〈a,x〉 = 0. It follows that

∑
a∈V

Wf (a) = |V |
∑
x∈V ⊥

(−1)f(x) = |V |
(
|V ⊥| − 2

∑
x∈V ⊥

f(x)

)
= 2n−2dimV+1

∑
x∈V ⊥

f(x).

Corollary 3.8. Let f : Fn2 → F2 be balanced. For any linear subspace V ⊆ Fn2

2n −
∑
a∈V

Wf (a) ≡ 2dimV+1

 ⊕
x∈FV⊥2

f(x)

 (mod 2dimV+2).



38 Chapter 3. Structural Cryptanalysis of Feistel Networks

In particular, the link between the LAT and the ANF established using HDIM
follows for n ≥ 3:

(Wf (ej) mod 8) /4 =
⊕

x∈Fn2 ,〈ej ,x〉=0

f(x),

where the last expression is the ANF coefficient of the monomial x1 . . . xn/xj.

Example 1. Consider the monomial xu = x3x4 . . . xn of degree n − 2. The
corresponding coefficient au in the ANF of f can be expressed as (for n ≥ 4):

au =
1

8

(
(Wf (e1) +Wf (e2) +Wf (e1 + e2)) mod 16

)
.

3.2.4 Generalization of the HDIM-ANF link

The HDIM-ANF link provides an expression for a coefficient of the monomial
x1 . . . xn/xj in the ANF of a balanced Boolean function f : Fn2 → F2,

au =
⊕
x∈Fn2

f(x) · 〈ej, x〉 ,

where 1 ≤ j ≤ n and u ∈ Fn2 is such that ui = 1 if and only if i 6= j. This idea
can be generalized for monomials of lower degrees:

Proposition 3.9. Let f : Fn2 → F2 and u ∈ Fn2 . Then the coefficient au of the
monomial xu := xu11 . . . xunn can be computed as:

au =
⊕
x∈Fn2

f(x) · (¬x)¬u,

where (¬x)¬u := (x1 ⊕ 1)u1⊕1 . . . (xn ⊕ 1)un⊕1.

Proof. The term (¬x)¬u is equal to one if and only if xi = 0 for all i such that
ui = 0, or, equivalently, x � u. It follows that the equation from the proposition
is equivalent to

au =
⊕
x�u

f(x),

which is exactly the expression of the ANF coefficient au obtained from the
Möbius inversion formula.

Remark 1. The Boolean function f can be replaced by a coordinate 〈ei, S〉 of
vectorial Boolean function S.

Remark 2. The HDIM expression involves 〈x, ei〉 = xei = x¬u. Since f is bal-
anced (i.e. XORs to zero), it is indeed equivalent to (¬x)¬u. For degrees lower
than n− 1, this is not true in general.

The generalization of the HDIM-ANF link can be used to directly prove a
useful general composition bound by Boura and Canteaut [BC13, Corollary 2].
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Proposition 3.10. Let F be a permutation of Fn2 and let g : Fn2 → F2. Then

deg g ◦ F ≤ n−
⌈
n− deg g

degF−1

⌉
.

Proof. By Proposition 3.9, the coefficient au of the monomial xu in the ANF of
g ◦ F can be computed as

au =
⊕
x∈Fn2

g(F (x)) · (¬x)¬u =
⊕
z∈Fn2

g(z) · (¬F−1(z))¬u.

If follows that au = 0 if

deg
(
g(z) · (¬F−1(z))¬u

)
< n,

which is definitely true if

deg g + (n−wt(u)) · degF−1 < n.

Equivalently, au = 0 if

wt(u) > n− n− deg g

degF−1
.

It follows that

deg g ◦ F ≤ n− n− deg g

degF−1
≤ n−

⌈
n− deg g

degF−1

⌉
.

I remark that strict inequality from Corollary 2 from [BC13] is equivalent
to this inequality by switching the rounding up to the rounding down.

3.3 HDIM of Feistel Networks
The Feistel Network is a rather asymmetric and imbalanced structure. After
any round, the left branch is a result of more computations, and the right branch
is “weaker” in this sense. Often it may occur that, after a particular number
of rounds, the left branch has full algebraic degree, while the right branch is
still of incomplete degree. This can be seen as the maximum number of rounds
available for an integral distinguisher, since after the next round the strong left
branch is mixed into the weak right branch, and, in general, we can expect both
branches to have full degree. To exploit the imbalance of Feistel Networks, we
analyze the degree of the “weak” right branch.

Definition 3.11. Let λF(r, d) denote the maximum possible degree of the right
output branch of a Feistel Network with r rounds and Feistel functions of degree
at most d. Let λP(r, d) denote the maximum possible degree in the case when
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the Feistel functions are bijective:

λF(r, d) = max
F∈Frd

deg (right ◦ F ),

λP(r, d) = max
F∈Prd

deg (right ◦ F ).

Remark 3. The maximum degree of the left branch is equal to the maximum
degree of the right branch in the next round, since the branch is transferred
untouched.

Remark 4. The exact values of λF(r, d), λP(r, d) are hard to compute. However,
upper bounds can be computed using different methods. Improving further the
upper bounds should lead to strengthening the results from this chapter.

The definition of HDIM leads to an interesting insight into proving absence
of particular monomials of maximum degree (i.e. n−1 for n-bit permutations),
or, equivalently, zeroes in the HDIM itself. The idea is to split the computed
function into two roughly equal parts. Then the algebraic/integral distinguisher
exists when the sum of the degrees of the two parts is less than the block size
n. In the original case, the parts are composed and the degrees are roughly
multiplied, i.e. the distinguisher is found when the product of the degrees is less
than n− 1.

In this section the utility functions ΛF(r, d) and ΛP(r, d) will be used to
describe the conditions when the integral distinguisher exists.

Definition 3.12. The functions ΛF(r, d),ΛP(r, d) are defined as follows:

ΛF(r, d) = λF(br/2c , d) + λF(dr/2e , d),

ΛP(r, d) = λP(br/2c , d) + λP(dr/2e , d).

The following lemma shows a simple upper bound from the product bound
of a composition.

Lemma 3.13. A Feistel Network with r ≥ 1 rounds and degree-d round func-
tions has degree at most dr on the left output branch and degree at most dr−1
on the right output branch:

λP(r, d) ≤ λF(r, d) ≤ dr−1.

In particular,
ΛP(r, d) ≤ ΛF(r, d) ≤ dbr/2c−1 + ddr/2e−1.

Remark 5. In the case of Feistel Networks, the block size is assumed to be 2n,
whereas in discussions about general permutations, the block size is n.

The HDIM-based distinguishers that we exhibit in this section have the same
structure: if conditions of a distinguisher are satisfied, then the 2n× 2n HDIM

has the form
[
? 0
0 0

]
as a 2×2 block-matrix. Such distinguisher is automatically

extended to one more round leading to an HDIM of the form
[
? ?
? 0

]
. This is

formalized in the following definition and a lemma.



3.3. HDIM of Feistel Networks 41

Definition 3.14 (Type-I, Type-II Distinguishers). Let S : F2n
2 → F2n

2 . Then

• S is said to have the type-I distinguisher if

HDIMS[i, j] = 0 for n < i ≤ 2n or n < j ≤ 2n;

• S is said to have the type-II distinguisher if

HDIMS[i, j] = 0 for n < i ≤ 2n and n < j ≤ 2n.

Lemma 3.15. Let r ≥ 1, Sr ∈ Frd and Sr+1 ∈ Fr+1
d be 2n-bit permutations such

that
Sr+1 = swap ◦Rf ◦ swap ◦ Sr

for some function f : Fn2 → Fn2 .
If Sr has the type-I distinguisher, then Sr+1 has the type-II distinguisher.

Proof. Since, right ◦ Sr+1 = left ◦ Sr the last n rows of HDIMSr+1 are the same
as the first n rows of HDIMSr .

3.3.1 General Case

The following theorem applies the described ideas to general Feistel Networks.

Theorem 3.16. Any S ∈ Frd has the type-I distinguisher if

ΛF(r + 1, d) < 2n.

Similarly, any S ∈ Prd has the type-I distinguisher if

ΛP(r + 1, d) < 2n.

Proof. Let (a, b) ∈ F2n
2 denote the intermediate state of S after br/2c rounds

(see Figure 3.3). Let xl(a, b), xr(a, b) denote the input branches of S as functions
of a, b, and yl(a, b), yr(a, b) the output branches of S as functions of a, b. We
now perform the variable replacement in the definition of HDIM:

HDIMS[i, j] =
⊕
x∈F2n

2

〈ei, S(x)〉 〈ej, x〉 =
⊕

(a,b)∈F2n
2

〈ei, (xl, xr)(a, b)〉 〈ej, (yl, yr)(a, b)〉 .

Our goal is to prove a bound on the algebraic degree of the product of the two
inner products.

Variables xl, xr, yl, yr can be computed using a Feistel Network with a, b as
inputs: (xl, xr) ◦ swap ∈ F

br/2c
d and (yl, yr) ∈ F

dr/2e
d . Therefore, they have the

following degree bounds:

• deg xl ≤ λF(br/2c+ 1, d), deg xr ≤ λF(br/2c , d),

• deg yl ≤ λF(dr/2e+ 1, d), deg yr ≤ λF(dr/2e , d).
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The zeroes in the HDIM required for the type-I distinguisher correspond to
products xr · yr, xr · yl and xl · yr. It is enough to prove the case n < i ≤ 2n,
since the inverse of S is also a Feistel Network and thus the transpose of the
HDIMS will have the same zeroes. The case corresponds to the products xr · yr
and xl · yr. It follows that HDIMS[i, j] = 0 if n < j ≤ 2n and λF(br/2c+ 1, d) +
λF(dr/2e , d) < 2n. The condition is equivalent to ΛF(r + 1, d) < 2n.

fbr/2c⊕

fbr/2c+1⊕

fbr/2c+2⊕

a
c b

Figure 3.3: The variables a, b and c.

Corollary 3.17. Any S ∈ Frd has the type-I distinguisher if

dbr/2c + ddr/2e−1 < 2n,

and the type-II distinguisher if

dbr/2c−1 + ddr/2e−1 < 2n.

Proof. Putting the bound from Lemma 3.13 in Theorem 3.16 makes the proof.
For the type-II distinguisher the result follows from Lemma 3.15.

3.3.2 Bijective Feistel Functions

In the case when the Feistel functions are bijective, an additional trick may be
used. The intermediate state variables can be chosen in an alternative way by
exploiting the fact that the middle Feistel function is invertible. However, in
this case we need to know an upper bound on the degree of the inverse of the
middle Feistel function.

In what follows, the upper bound on the algebraic degree of the inverse of
the Feistel function is denoted by d−1.

Theorem 3.18. Any S ∈ Prd has the type-I distinguisher if

max(d, d−1) · ΛP(r − 2, d) < 2n.

Proof. The proof is analogous to the proof of Theorem 3.16, except that the
choice of intermediate variables differs. Instead of choosing both left and right
branches of the input of the middle round, it is possible to choose the left
branch of the input and the right branch of the output. The variables chosen
are (a, c) instead of (a, b) (see Figure 3.3). In this case b can be expressed as
f−1br/2c+1(a⊕ c), and degree of b as a function of (a, c) is upper bounded by d−1.
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Without loss of generality, assume r ≥ 3. Let (ax, bx) ∈ F2n
2 denote the state

before the br/2c-th round, and )ay, by) ∈ F2n
2 denote the state after the (br/2c+

2)-th round. The following degree bounds hold (every variable is considered as
a function of (a, c)):

• deg ax ≤ max(d, d−1), deg bx = 1,

• deg ay ≤ max(d, d−1), deg by = 1,

The input (xl, xr) of S can be computed as a (br/2c−1)-round Feistel Network
composed with the function (ax, bx). Similarly, the output (yl, yr) of S can be
computed as a (dr/2e − 2)-round Feistel Network composed with the function
(ay, by). It follows that

• deg xl ≤ max(d, d−1) · λP(br/2c , d),

• deg xr ≤ max(d, d−1) · λP(br/2c − 1, d),

• deg yl ≤ max(d, d−1) · λP(dr/2e − 1, d),

• deg yr ≤ max(d, d−1) · λP(dr/2e − 2, d).

It is easy to verify that the degrees of the products xr · yl and xr · yr are upper
bounded by

max(d, d−1) · (λP(br/2c − 1, d) + λP(dr/2e − 1, d)) = max(d, d−1) · ΛP(r − 2, d).

Similarly to Theorem 3.16, by the transpose-inverse property of the HDIM, the
type-I distinguisher follows if

max(d, d−1) · ΛP(r − 2, d) < 2n.

Remark 6. When d−1 ≤ d, Theorem 3.18 provides a type-I distinguisher for 1
more round compared to the general Theorem 3.16.

Corollary 3.19. Any S ∈ Prd has the type-I distinguisher if

max(d, d−1) · (dbr/2c−2 + ddr/2e−2) < 2n,

and the type-II distinguisher if

max(d, d−1) · (dbr/2c−2 + ddr/2e−3) < 2n.

In particular, any 4-round Feistel Network with bijective round functions has
the type-I distinguisher and any 5-round Feistel Network with bijective round
functions has the type-II distinguisher.

Remark 7. Note that the results for Feistel Networks with bijective functions
are not very useful if a degree bound on Feistel functions is known, but a degree
bound on their inverses is not known. In such case only the generic 5-round
type-II distinguisher can be obtained.



44 Chapter 3. Structural Cryptanalysis of Feistel Networks

(d, 2n) Structure rmax Instance

(2, 32)
Pr2 10 —
Fr2 9 SIMON-32 [BSS+13]

(5, 64)
Pr5 7 —
Fr5 6 DES [Cop94]

(31, 64)
Pr31 5 MISTY1/KASUMI [Mat97]
Fr31 4 —

(n− 1, 2n)
Prn−1 5 —
Frn−1 4 —

Table 3.2: Maximum number rmax of rounds in Feistel Networks with
a type-II distinguisher. It is assumed that d−1 ≤ d.

3.3.3 Applications

As an illustration of the theorems, consider the HDIM of random Feistel Net-
works with 3-bit branches. For particular S4, S5 : F6

2 → F6
2, S4 ∈ P4

2 and S4 ∈ P5
2

(the LAT of these functions was shown in Figure 3.2):

HDIMS4 =


1 0 1 0 0 0
0 1 1 0 0 0
1 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , HDIMS5 =


0 0 0 0 1 0
1 0 1 0 1 0
0 0 0 0 1 0
1 1 1 0 0 0
1 0 1 0 0 0
1 0 1 0 0 0

 . (3.1)

It is interesting that from the HDIM we can see that all coordinates of S5

have full degree n−1, but still the structure always has an integral distinguisher
because particular monomials are always missing in the ANF.

Table 3.2 shows application of theorems to several concrete parameters.
In [Tod15], Todo proposed division property, a method to find integral char-

acteristics. I compared our results with those reported by Todo in Appendix B
of [Tod15]. Our HDIM-motivated results (type-II distinguishers) correspond to
maximum number of rounds for which an integral characteristic is proven.

• For non-bijective cases, division property is better in 4 targets and pro-
vides the same results else. Those targets are (n, d)-Feistel networks
(24, 2), (48, 2), (48, 5), (64, 5). Our approach proves a distinguisher for one
round less.

• For bijective cases, division property results in one more round than the re-
spective non-bijective case in a few places. Our approach does not exploit
this distinction in general and thus is weaker for these cases. However,
under the assumption that the degree of the inverses of Feistel functions is
upper-bounded by the same value (i.e. d−1 ≤ d), Corollary 3.19 provides
identical results and even one more round for a three cases: (n, d) Feistel
Networks (32, 5), (32, 7), (64, 7). To the best of my knowledge, no known
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method existed to exploit a bound on the degree of the inverse functions in
the division property framework. I describe such method in Section 3.3.4

As the results show, the division property proposed by Todo allows to get
slightly stronger integral characteristics than the HDIM-motivated approach,
except the cases when the degree of the inverses of Feistel functions is known.
The downside of division property is that it requires an algorithmic evaluation
for each parameter set, whereas our approach provides a simple closed formula.
Furthermore, the degree growth inside the two halves of a primitive is evaluated
by a generic bound in our approach. It may be possible to combine our approach
with division property or another degree evaluation method to obtain better
results. In particular, a recursive approach used in [BKP16] for SPNs may be
useful for Feistel Networks as well.

3.3.4 Improving Division Property Propagation

I briefly note a method to improve the division property propagation rule given
a bound on the algebraic degree of the inverse function of a permutation. I
describe the division property using the equivalent characterization by Boura
and Canteaut [BC16]. Recall that the indicator of a multiset is defined as the
indicator of the set containing elements from the multiset with odd multiplici-
ties.

Definition 3.20. A multiset X ⊆ Fn2 is said to satisfy the division property
Dnk , if

deg 1X ≤ n− k.

The main propagation rule of the division property is as follows (equivalently
given in [Tod15] by Todo)

Proposition 3.21. Let X ⊆ Fn2 be a multiset satisfying Dnk . Let F be a per-
mutation of Fn2 . Then the multiset Y = F (X) satisfies the division property

Dnk′ , for all k′ ≤
⌈

k

degF

⌉
.

Remark 8. I write inequality instead of original equality, to highlight all division
properties that are satisfied, instead of only the strongest one.

I now show that another propagation rule can be obtained, if the degree of
F−1 is known.

Proposition 3.22. The multiset Y = F (X) satisfies the division property

Dnk′ , for all k′ ≤ n− (n− k) degF−1.

Proof. Without loss of generality, assume that X has no elements with a mul-
tiplicity greater than 1. Note that

x ∈ X ⇔ F (x) ∈ Y.
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It can be rewritten as
1X = 1Y ◦ F.

Equivalently,
1X ◦ F−1 = 1Y .

It follows that

deg 1Y ≤ deg 1X · degF−1 ≤ (n− k) · degF−1,

and thus, deg 1Y ≤ n− k′ for all

k′ ≤ n− (n− k) degF−1.

Using this proposition, the results from [Tod15] can be improved for the case
of bijective Feistel functions, assuming that d−1 ≤ d. The improved division
property then provides the same or slightly better results than Corollary 3.19
in all cases from [Tod15].

3.4 Feistel Networks with Affine Encodings
In this section, I describe decomposition attacks on Feistel Networks masked
with affine layers, which I shall call affine encodings. The motivation for study-
ing this structure comes from the fact that such encodings preserve most of the
cryptographic properties (linearity, differential uniformity, algebraic degree) but
make it harder to distinguish or decompose the structure. As an evidence, ob-
serve that attacks on the ASASA construction [DDKL15,MDFK15] are more
involved than the attack on the SASAS construction [BS01]. Thew new at-
tacks also expand the toolkit for the white-box cryptanalysis and S-Box reverse-
engineering. I start with a formal definition of the analyzed structure.

Definition 3.23 (Feistel Network with Affine Encodings). AFrdA denotes the
set of all permutations that can be expressed as an r-round Feistel Network with
Feistel functions f1, . . . , fr : Fn2 → Fn2 of algebraic degree at most d, and com-
posed with bijective affine mappings from both sides. Furthermore, let A−1FrdA
denote the AFrdA structure where the output affine encoding is the inverse of the
input affine encoding; let AFrd denote the AFrdA structure where the input affine
encoding is the identity mapping:

AFrdA := {η ◦Rfn ◦ . . . ◦Rf1 ◦ µ | fi ∈ F rd , µ, η ∈ GAn(F2)} ,
A−1FrdA :=

{
µ−1 ◦Rfn ◦ . . . ◦Rf1 ◦ µ | fi ∈ F rd , µ ∈ GAn(F2)

}
,

AFrd := {µ ◦Rfn ◦ . . . ◦Rf1 | fi ∈ F rd , µ ∈ GAn(F2)} ,

where Rfi is a Feistel round as defined in Definition 3.1, and F rd denotes the
set of all vectorial Boolean functions of degree at most d mapping Fn2 to itself.

All the attacks in this section are based on the type-I and type-II integral
distinguishers from Section 3.3. The constant additions on any of the sides
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do not change the integral property, in particular the HDIM. Therefore, it is
sufficient to consider the case of linear encodings.

The cryptanalyst may compose a given structure S ∈ AFrdA with additional
random affine or linear encodings µ′, η′ and still obtain a structure η′ ◦ S ′ ◦
µ′ ∈ AFrdA. In this way, it is possible to re-randomize the initial encoding for
any of the three structures. Our attack works for affine encodings satisfying
a particular (rather dense) property. The attack therefore applies to arbitrary
encodings via the re-randomization. The following definition captures the class
of linear permutations that our attack will target.

Definition 3.24. Let µ ∈ GL2n(F2). µ is said to have a 2-UL decomposition,
if there exist matrices a, b, c, d ∈ Fn×n2 such that

µ =

[
µ1,1 µ1,2

µ2,1 µ2,2

]
=

[
In×n c

0 In×n

]
◦
[
b 0
0 d

]
◦
[
In×n 0
a In×n

]
.

Lemma 3.25. It is sufficient that µ2,2 is invertible for µ to have a 2-UL de-
composition.

Proof. Note that[
In×n c

0 In×n

]
◦
[
b 0
0 d

]
◦
[
In×n 0
a In×n

]
=

[
c× d× a⊕ b c× d

d× a d

]
.

Set

d = µ2,2,

a = d−1 × µ2,1,

c = µ1,2 × d−1,
b = µ0,0 ⊕ c× d× a.

The attacks presented in this section recover a partial information about the
linear encodings. The underlying structure is not restricted to Feistel Network,
it is only required that it has the type-I or type-II distinguisher. However, the
partial information recovered is most useful in the Feistel Network case, as it
allows to apply the decomposition attack on the unmasked Feistel Network.

3.4.1 Type-I Affine Encodings Recovery

The following theorem describes an attack against a structure with the type-I
distinguisher masked with affine encodings. Type-I distinguisher is strong and
provides enough equations to recover the required partial information from both
sides of the structure.

Theorem 3.26 (Type-I Affine Encodings Recovery). Let S : F2n
2 → F2n

2 be a

permutation that has the type-I distinguisher and let HDIMS =

[
h1,1 0
0 0

]
. Let
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µ, η ∈ GL2n(F2) such that µ and η−1 both have a 2-UL decomposition. Let
T := η ◦ S ◦ µ.

Let (a, b, c, d) and (a′, b′, c′, d′) be the 2-UL decompositions of µ and η−1

respectively. Then, given T , a and a′ can be recovered in time O(n22n) if h1,1 is
invertible.

Proof. Observe that η can be expressed as

η =

[
In×n 0
a′ In×n

]
◦
[
b′−1 0
0 d′−1

]
◦
[
In×n c′

0 In×n

]
.

Let S ′ : F2n
2 → F2n

2 be given by:

S ′ =

[
b′−1 0
0 d′−1

]
◦
[
In×n c′

0 In×n

]
◦ S ◦

[
In×n c

0 In×n

]
◦
[
b 0
0 d

]
.

Then T can be expressed as:

T =

[
In×n 0
a′ In×n

]
◦ S ′ ◦

[
In×n 0
a In×n

]
.

The relation between S, S ′ and T is illustrated in Figure 3.4 where S assumed
to be a Feistel Network).

f1

fr

⊕

⊕

µ1,1µ0,1µ1,0µ0,0

⊕ ⊕

η1,1 η0,1η1,0 η0,0

⊕ ⊕

µ
S

η

(a) T = η ◦ S ◦ µ.

f1

fr

⊕

⊕

a
b

c
d
⊕

⊕

a′
b′−1

c′

d′−1
⊕

⊕

µ
S S
′

η

(b) T (alt. representation).

f ′1

f ′r

⊕

⊕

b d

b′−1 d′−1

S
′

(c) S′ (alt. representation).

Figure 3.4: The target of our attack, its result and its alternative rep-
resentation. f ′i is affine equivalent to fi.

Consider the HDIM of S ′ and S. They are related by Proposition 3.6:

HDIMS′ =

[
b′−1 0
0 d′−1

]
◦
[
In×n c′

0 In×n

]
◦HDIMS◦

[
In×n 0
c> In×n

]
◦
[
(b−1)> 0

0 (d−1)>

]
.

It is easy to verify that

HDIMS′ =

[
b′−1 × h1,1 × (b−1)> 0

0 0

]
.
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Let h′ = b′−1 × h1,1 × (b−1)>. By a similar argument,

HDIMT =

[
In×n 0
a′ In×n

]
◦ HDIMS′ ◦

[
In×n a>

0 In×n

]
=

[
h′ h′ × a>

a′ × h′ a′ × h′ × a>
]
.

Since h1,1 is assumed to be invertible and b, b′ are invertible too, h′ is invertible.
Therefore, a and a′ can be easily recovered from HDIMT in time O(n3). The
attack complexity is then dominated by the cost of computing HDIMT , which
can be done in O(n2n) operations.

Remark 9. If the rank of h1,1 is not full but is high enough, it may still be
possible to recover a and a′ completely by including the quadratic equations
from (HDIMT )2,2.

The theorem shows that the type-I distinguisher provides 2n2 linear equa-
tions and n2 quadratic equations. This is enough to recover 2n2 bits of informa-
tion about the affine encodings. In the case of the type-II distinguisher, only n2

quadratic equations are available for 2n2 unknowns. Still, the method can be
applied to simplified structures. One possible scenario is the A−1FrdA structure
where the output linear layer is the inverse of the input linear layer. In this case
though, the cryptanalyst has to solve a system of quadratic equations. Another
scenario is the one-sided affine masking, i.e. the AFrd structure. In this case
linear equations are obtained and the required partial information is recovered.

3.4.2 Type-II Affine Encodings Recovery

Theorem 3.27 (Type-II Affine Encodings Recovery, A−1FrdA). Let S : F2n
2 →

F2n
2 be a permutation that has the type-II distinguisher and let HDIMS =

[
h1,1 h1,2
h2,1 0

]
.

Let µ ∈ GL2n(F2) such that µ has a 2-UL decomposition. Let T := µ−1 ◦ S ◦ µ.
Let (a, b, c, d) be the 2-UL decomposition of µ. Then, given T , a system of

n2 quadratic equations on a can be obtained.

Proof. Let S ′ : F2n
2 → F2n

2 be given by:

S ′ =

[
b−1 0
0 d−1

]
◦
[
In×n c

0 In×n

]
◦ S ◦

[
In×n c

0 In×n

]
◦
[
b 0
0 d

]
.

Similarly to the proof of Theorem 3.26,

HDIMS′ =

[
b−1 0
0 d−1

]
◦
[
In×n c

0 In×n

]
◦HDIMS◦

[
In×n 0
c> In×n

]
◦
[
(b−1)> 0

0 (d−1)>

]
,

HDIMS′ =

[
b−1 ×

(
h1,1 ⊕ c× h2,1 ⊕ h1,2 × c>

)
× (b−1)> b−1 × h1,2 × (d−1)>

d−1 × h2,1 × (b−1)> 0

]
.

Let
HDIMT =

[
t1,1 t1,2
t2,1 t2,2

]
.
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Then

HDIMS′ =

[
In×n 0
a In×n

]
◦ HDIMT ◦

[
In×n a>

0 In×n

]
=

=

[
t1,1 t1,2 ⊕ t1,1 × a>

t2,1 ⊕ a× t1,1 t2,2 ⊕ a× t1,2 ⊕ t2,1 × a> ⊕ a× t1,1 × a>
]
.

The quadratic equation system follows:

(HDIMS′)2,2 = t2,2 ⊕ a× t1,2 ⊕ t2,1 × a> ⊕ a× t1,1 × a> = 0.

Theorem 3.28 (Type-II Affine Encodings Recovery, AFrd). Let S : F2n
2 → F2n

2 be

a permutation that has the type-II distinguisher and let HDIMS =

[
h1,1 h1,2
h2,1 0

]
.

Let µ ∈ GL2n(F2) such that µ has a 2-UL decomposition. Let T := µ−1 ◦ S.
Let (a, b, c, d) be the 2-UL decomposition of µ. Then, given T , a can be

recovered in time O(n2n) if h1,2 is invertible.

Proof. Let S ′ : F2n
2 → F2n

2 be given by:

S ′ =

[
b−1 0
0 d−1

]
◦
[
In×n c

0 In×n

]
◦ S

Then
HDIMS′ =

[
b−1 0
0 d−1

]
◦
[
In×n c

0 In×n

]
◦ HDIMS,

HDIMS′ =

[
b−1 × (h1,1 ⊕ c× h2,1) b−1 × h1,2

d−1 × h2,1 0

]
.

Let
HDIMT =

[
t1,1 t1,2
t2,1 t2,2

]
.

Then

HDIMS′ =

[
In×n 0
a In×n

]
◦ HDIMT =

[
t1,1 t1,2

t2,1 ⊕ a× t1,1 t2,2 ⊕ a× t1,2

]
.

It follows that
(HDIMS′)2,2 = t2,2 ⊕ a× t1,2 = 0.

Note that t1,2 = b−1 × h1,2 is invertible since h1,2 is assumed to be invertible,
therefore the linear system has full rank.

In the next sections, I will describe how to continue the decomposition pro-
cess of the unmasked Feistel Networks.
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3.5 Lower-degree Artifacts in Feistel Networks
In previous section it was shown that the HDIM is a very convenient tool for
attacking affine encodings. Affine encodings have rather low entropy and thus
provably absent monomials of degree 2n−1 in a Feistel Network provide enough
equations to recover the encodings. However, much more equations are needed
to recover a Feistel function. A straightforward direction is to consider lower-
degree monomials as well, possibly at the cost of attacking fewer rounds. This
has an extra benefit of finding more efficient integral distinguishers, since the
data complexity of an integral distinguisher is exponential in the degree of the
corresponding absent monomial in the ANF. In this section I use the general-
ization of the HDIM-ANF relation described in Section 3.2.4 in order to prove
absence of lower degree monomials in Feistel networks. The method is quite
similar to the method used for proving type-I distinguishers in Section 3.3. The
main idea is to replace the sum variable in the expression to an intermediate
state and thus split the structure in two halves.

The monomials in the ANF of Feistel Networks can be classified by the
degree on the left input branch and on the right input branch. Clearly, all
monomials in the same class have equivalent possibility of appearing in the
ANF, since such monomials can be interchanged by composing Feistel functions
with bit permutations.

Definition 3.29 (((wl, wr)-monomials). Let ul, ur ∈ Fn2 and let u := (ul, ur) ∈
F2n
2 . The monomial xu is said to be a (wl, wr)-monomial if wt(ul) = wl and

wt(ur) = wr. u is then said to be a (wl, wr)-exponent.

Theorem 3.30. Let S ∈ Frd and let f = 〈ei, S〉 , n < i ≤ 2n, be any coordinate
of the right output branch of S. Let u be a (wl, wr)-exponent. Then ρu [f ] = 0
if there exists an integer r′, 0 ≤ r′ < r such that

(n− wl) · λF(r′ + 1, d) + (n− wr) · λF(r′, d) + λF(r − r′, d) < 2n.

Similar result applies for S ∈ Prd by using λP(r, d).

Proof. Let (a, b) ∈ F2n
2 denote the intermediate state of S after r′ rounds. Let

(xl, xr) ∈ F2n
2 be the two input branches of S as functions of (a, b); (yl, yr) ∈ F2n

2

be the two output branches of S as functions of (a, b). By Proposition 3.9,

ρu [f ] =
⊕
z∈F2n

2

(¬xl)¬ul(¬xr)¬ur 〈ei, yr〉 ,

where ul, ur ∈ Fn2 are the two halves of u. (xl, xr) can be computed using an
r′-round Feistel Network and (yl, yr) can be computed using an (r − r′)-round
Feistel Network. Further note that wt(¬ul) = n − wt(ul) and wt(¬ur) =
n−wt(ur). The degree bounds follow:

• deg (¬xl)¬ul ≤ (n− wl)λP(r′ + 1, d),

• deg (¬xr)¬ur ≤ (n− wr)λP(r′, d),

• deg yr ≤ λP(r − r′, d).
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The theorem follows by summing the degree bounds and comparing to the full
degree 2n.

A trick for bijective Feistel functions can be applied similarly to Theo-
rem 3.18.

Theorem 3.31. Let S ∈ Prd and let f = 〈ei, S〉 , n < i ≤ 2n be any coordinate
of the right output branch of S. Let u be a (wl, wr)-exponent. Then ρu [f ] = 0
if there exists an integer r′, 0 ≤ r′ < r − 3 such that

max(d, d−1) ·
(
(n−wl) ·λP(r′, d)+(n−wr) ·λP(r′−1, d)+λP(r−r′−2, d)

)
< 2n.

Proof. The variables chosen are (a, c) instead of (a, b) (see Figure 3.3), where
(a, b) denotes the intermediate state of S after r′ rounds, and c = fr′+1(b)⊕ a.
In this case b can be expressed as f−1r′+1(a⊕ c), and the degree of b as a function
of (a, c) is upper bounded by d−1.

Let xl, xr be the two input branches of S as functions of (a, c); yl, yr be the
two output branches of S as functions of (a, c). Similarly to previous proofs,
the following bounds are derived:

• deg xl ≤ max(d, d−1) · λP(r′, d),

• deg xr ≤ max(d, d−1) · λP(r′ − 1, d),

• deg yl ≤ max(d, d−1) · λP(r − r′ − 1, d),

• deg yr ≤ max(d, d−1) · λP(r − r′ − 2, d).

For Proposition 3.9, the following bounds are needed:

• deg (¬xl)¬ul ≤ (n− wl)λP(r′, d),

• deg (¬xr)¬ur ≤ (n− wr)λP(r′ − 1, d),

• deg yr ≤ λP(r − r′ − 2, d).

The theorem follows by summing the degree bounds.

Corollary 3.32. Let S ∈ P4
n−1 and let f = 〈ei, S〉 , n < i ≤ 2n be any coordinate

of the right output branch of S. Then the following monomials classes are absent
in the ANF of f (in total 2n + n2 + n monomials):

(i) (n− 1, n− 1),

(ii) (n− 1, n),

(iii) (n, k) for any 0 ≤ k ≤ n.

Proof. Set r′ = 0 in Theorem 3.31. Note that in this extreme case the term
d−1 · (n− wr) · λP(r′, d) for r′ = 0 can be replaced by (n− wr), since the right
input branch clearly has degree 1 on the chosen variables. For case (i) the
condition becomes

1 + (n− 1) (1 · λP(1, n− 1) + λP(1, n− 1)) ≤ 2n− 1 < 2n.
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For case (ii) the condition becomes

0 + (n− 1) (1 · λP(1, n− 1) + λP(1, n− 1)) ≤ 2n− 2 < 2n.

For case (iii) the condition becomes

(n− k) + (n− 1) (0 + λP(1, n− 1)) ≤ 2n− 1− k < 2n.

3.6 Decomposition Attack using Impossible Mono-
mials

In this section I describe how large enough classes of impossible monomials can
be used to mount a recovery attack on the last round’s Feistel function.

The high level idea is the following. Consider a 5-round 2n-bit Feistel Net-
work with bijective Feistel functions, i.e. let S5 ∈ P5

n−1. Let S4 ∈ P4
n−1 be the

Feistel Network consisting of the first 4 rounds of S5 and let f : Fn2 → Fn2 be
the Feistel function used in the last round. From Theorem 3.31, for any k, any
(n, k)-monomial is not present in the ANFs of the right output branch of S4.
However, in the following 5-th round the output of the last Feistel function is
xored into this branch and becomes the left output branch of S5. This result
now may or may not contain the (n, k)-monomials. By observing the presence
of such monomials in the ANFs of the left branch of S5, we can deduce some
information about the last Feistel function in the form of linear equations. If the
number of impossible monomials is large enough, an equivalent of the Feistel
function f can be recovered. For an illustration see Figure 3.5, where the 5-th
round of a Feistel Network with 3-bit branches is shown. au denotes the ANF
coefficient of a monomial that is impossible in the right branch of a 4-round
Feistel Network.

au = 0

au = 1/0 au = 1/0

S1 S4S5S6

f3

f2

f1

Figure 3.5: Impossible monomials in the last round of a 5-round FN S
with 3-bit branches. The wire with 4-round impossible monomials is in
dashed blue, the path of the observed monomials is highlighted with bold
red. au is the ANF coefficient of some 4-round impossible monomial.

More formally, observe that by the Feistel structure

(left ◦ S5)⊕ (f ◦ right ◦ S5) = right ◦ S4.
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Consider an arbitrary coordinate position i, 1 ≤ i ≤ n. For any monomial xu
that is impossible in right ◦ S4 (e.g. any (n, k)-monomial),

ρu
[〈
ei, left ◦ S5

〉]
⊕ ρu

[〈
ei, f ◦ right ◦ S5

〉]
= 0.

By decomposing f through its ANF,

ρu
[〈
ei, left ◦ S5

〉]
=
⊕
v∈Fn2

ρu
[
ρv [〈ei, f〉] (right ◦ S5)v

]
.

Since S5 is known, this can be considered as a linear equation on the unknown
ANF coefficients of 〈ei, f〉. In total, there are 2n − 1 equations (from 2n im-
possible (n, k)-monomials, except the (n, n)-monomial) and 2n − 1 unknowns
(the constant is excluded). More equations can be obtained by considering the
other classes of impossible monomials from Theorem 3.31. Therefore, it can
be expected that the system will have (close to) full rank with high probabil-
ity and the solution will be unique. The algorithm of the attack is given in
Algorithm 3.1.

Algorithm 3.1 Feistel Function Recovery Attack
Input: the full codebook of a function S ∈ Frd, S : F2n

2 → F2n
2 ; a set U ⊆ F2n

2 }.
Output: a function f : Fn2 → Fn2 , deg f ≤ d if exists, such that

for all u ∈ U and for all i, 1 ≤ i ≤ n, ρu [〈ei, right ◦Rf ◦ S〉] = 0.
1: V ← {v ∈ Fn2 | 1 ≤ wt(v) ≤ d}
2: M ← a |U | × |V | matrix indexed by U and V
3: for all i ∈ [1 . . . n] do
4: bi ← a |U |-bit vector indexed by U
5: for all u ∈ U do
6: for all v ∈ V do
7: Mu,v ←

⊕
x�u(right ◦ S(x))v

8: for all i ∈ [1 . . . n] do
9: biu ←

⊕
x�u 〈ei, left ◦ S(x)〉

10: for all i ∈ {1, . . . , n} do
11: a← a solution of M × a = bi

12: fi ← (x 7→ ⊕v∈V avxv)
13: return f = (f1, . . . , fn)

3.6.1 On the Assumptions

In the decomposition attack it is assumed that the equation system will have
full or close to full rank. Then the correct Feistel function f will be among one
of the few system’s solutions.

One reason for a possible rank deficiency is that the low-degree monomials in
the ANF of the Feistel function f may not generate the high-degree 4-round im-
possible monomials. In such case the equations generated from the high-degree
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4-round impossible monomials provide no information about the low-degree
monomials of f . In particular, Theorem 3.18 proves that linear monomials of
f can not generate (n, n− 1) monomials when composed with the right output
branch of a 5-round Feistel Network.

To the best of my knowledge, there are no known ways to prove even a pos-
sibility of presence of any highest-degree monomials in, for example, a 5-round
Feistel Network. Indeed, in general, proving lower bounds on the algebraic
degree is a very difficult problem.

3.6.2 Instantiations

The attack is not restricted to the case of a 5-round Feistel Network with bi-
jective functions. The requirement is to have enough impossible monomials,
which can be obtained from Theorems 3.30,3.31 or by another analysis meth-
ods. In practice, a cryptanalyst can generate random instances of the analyzed
structure and empirically determine all impossible monomial classes with high
probability. This analysis will not dominate the complexity.

The described 5-round attack corresponds to the case of the type-II dis-
tinguisher. It exploits a large amount of impossible monomials in a 4-round
network, i.e. the one that has the type-I distinguisher. I propose a conjecture
on the generalization of this rule.

Conjecture 3.33. Let r be the maximum number of rounds such that all S ∈ Frd
have the type-II distinguisher. Then the impossible monomial attack succeeds
with high probability on all S ∈ Frd, i.e. it outputs a negligible number of candi-
dates for the last Feistel function, and the correct one is always among them.

Experiment. I have implemented the attack in Sage [SD19] and performed a
few experiments on small values of the branch size n. For all n ∈ {3, 4, 5, 6, 7}
and d ∈ {2, 3, n− 1, n}, I generated 100 random instances of Frd (and Prn−1)
for maximum r such that the structure has the type-II distinguisher. Then for
the first r − 1 rounds I empirically evaluated all impossible monomial classes.
Using these classes, I generated the equation system of the impossible monomial
attack for each of the 100 instances. I computed the average rank of the system
and the system’s dimension, i.e. the number of unknowns. In addition, I verified
that the actual last round Feistel function satisfies the equations. The results
of the experiment are given in Table 3.3.

The results show that the rank is close to the maximum on average. It means
that there are only a few solutions on average and the impossible monomial
attack succeeds in the analyzed cases. The rank deficiency is larger for cases
with n = 3 and decreases fast with the growth of n. Furthermore, the results
confirm the conjecture on the analyzed cases.

3.6.3 Relation with Integral Attack from [BLP15]

An integral distinguisher was already used to mount a Feistel function recovery
attack by Biryukov et al. [BLP15]. They show that, for a 5-round Feistel Net-
work, a 4-round integral distinguisher provides a linear equation on the values
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n
#rounds : avg. rank / dimension

d = 2 d = 3 d = n− 1 d = n d = n− 1, bij.

3 5 : 3.80/6 3 : 6.62/7 5 : 3.80/6 3 : 6.62/7 5 : 4.21/6

4 5 : 7.63/10 4 : 13.97/14 4 : 13.97/14 3 : 15.00/15 5 : 13.97/14

5 6 : 14.97/15 5 : 24.06/25 4 : 30.00/30 3 : 31.00/31 5 : 30.00/30

6 7 : 20.16/21 5 : 41.00/41 4 : 62.00/62 3 : 63.00/63 5 : 62.00/62

7 7 : 28.00/28 5 : 63.00/63 4 : 126.0/126 3 : 127.0/127 5 : 126.0/126

Table 3.3: The maximum number of rounds for type-II distinguisher
and the average rank of the equation system in the impossible mono-
mial attack on 2n-bit Feistel Networks. Evaluated experimentally on 100

random instances per each parameter set.

of the last Feistel function. The impossible monomial attack described in this
section considers the same equation system but in the monomial basis. That
is, the unknown variables are the monomial coefficients in the ANFs of the co-
ordinates of the Feistel function. Since the ANF coefficients can be computed
by summing the function over particular sets, this is a change of basis (in other
words, the Möbius transform is linear). The advantage of the monomial basis
is that an upper bound on the degree of the Feistel functions can be used to
decrease the number of unknowns.

3.7 Conclusions
This work started by observing interesting patterns in the LAT modulo 8 of
small Feistel Networks. The analysis of the patterns resulted in the definition of
High-Degree Indicator Matrix (HDIM). This tool shows a link between the LAT
and the highest-degree monomials in the ANF. Furthermore, its properties allow
to prove upper bounds on the algebraic degree of cryptographic structures and
to prove finer algebraic degeneracies. Though these results do not improve the
state of the art, the upper bounds given are expressed in a simple closed formula
and there is a room for improvement, e.g. by combining methods. Finally, the
most useful application of HDIM is in the cryptanalysis of Feistel Networks
masked with secret affine layers. The generalized HDIM-motivated ideas allow
to prove lower-degree degeneracies as well, i.e. impossible monomials. I show
how they can be used to mount decomposition attacks on Feistel Networks.
The results of this chapter together allow to fully decompose affinely-whitened
Feistel Networks satisfying the attack conditions. I think it provides many
useful tools for S-Box reverse-engineering and white-box analysis toolkit.

The work leaves several open problems:

1. Better degree evaluation. Is it possible to improve the HDIM-motivated
method? Is it possible to combine it with other methods, e.g. division
property?
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2. Proving Conjecture 3.33. Are there always enough impossible monomials
to recover the last Feistel function, if the type-II distinguisher applies?

3. In which cases it is possible to decompose Feistel Networks having at least
1 more round than Feistel Networks satisfying the type-II distinguisher?

4. A big open problem: lower bounds in Feistel Networks or Substitution-
Permutation Networks. How to prove non-trivial lower bounds on the
degree of a structure, i.e. that at least one instance of the structure has
high enough degree? Strong lower bounds could shed light on how close
are current degree evaluation methods to optimal ones.
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In this chapter, I describe two interesting decompositions of the S-Box used
in the recent Russian cryptographic “GOST” standards (Kuznyechik block ci-
pher and Streebog [Fed12] hash function). The S-Box was also used in the
first version of the authenticated cipher STRIBOB [Saa14], a candidate of
the CAESAR competition; later, the S-Box was replaced. This chapter is
based on the joint work with Alex Biryukov and Léo Perrin from EURO-
CRYPT 2016 [BPU16] and on the joint work with Léo Perrin from TOSC 2016 [PU17].
In the first work we describe a Feistel Network-like decomposition with finite
field multiplications and affine whitening layers. In the second work we show
that this structure is related to exponentiation/logarithm in the finite field,
which was also used in the standard block cipher of Belarus, BelT [Bel11].
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4.1 Introduction
S-Boxes play important role in the design of symmetric cryptographic primi-
tives. It is one of the two components of an SPN structure and often S-Boxes
are used inside the Feistel functions in Feistel Networks. The main role of
S-Boxes is to provide non-linearity and confusion. An S-Box at least should
have low linearity, low differential uniformity and high algebraic degree. It is
also desirable that the S-Box has good implementation properties: an efficient
hardware/bit-slice implementation, small size in order to reduce the memory
footprint.

The cryptographic community expects designers to explain all choices done
during the design procedure. How the S-Boxes were generated? Do they have
an algebraic structure, e.g. an inversion in the finite field? Or do they have a
Feistel Network structure? Were they generated at random? If yes, what was
the seed used? Which cryptographic properties were optimized and how?

Unfortunately, often the designers describe the S-Box as a look-up table and
do not provide any rationale behind its choice. A prominent example is the S-
Box of the Skipjack block cipher designed by the American National Security
Agency (NSA). Léo Perrin and Alex Biryukov [BP15] attempted to reverse-
engineer it, i.e. to find the hidden design criteria, an underlying structure or
optimization procedure. They succeeded and described a simple optimization
method which generates S-Boxes with very close cryptographic properties. The
designers of the Russian cryptographic standards did not disclose any rationale
behind the S-Box as well, except that it has reasonable cryptographic properties.

The 8-bit S-Box used in the Kuznyechik block cipher and in the Streebog
hash function is denoted π in this chapter. The look-up table of π : F8

2 → F8
2 is

given in Table 4.1. It has linearity equal to 56 and differential uniformity equal
to 8. Using methods developed in [BP15], it can be shown that the probability to
randomly sample an S-Box with as good differential properties is approximately
2−82.69. It follows that π has strong resistance against differential cryptanalysis,
compared to random S-Boxes. The algebraic degree of all coordinates of π is
maximal and equal to 7.

In this chapter I describe two decompositions of π and the way in which
they were obtained. A simplified view of the discovered structures of π is given
in Figure 4.1. The first decomposition is based on finite field multiplications.
It also contains four 4-bit S-Boxes and two whitening (external) linear layers.
Interestingly, 16 inputs clearly stand out from the patterns and force the usage
of a multiplexer (omitted in the simplified view). The second decomposition is
based on a finite field logarithm. It contains only one extra 4-bit S-Box, one
whitening linear layer and a simple arithmetic layer.

More recently, my former colleague Léo Perrin studied the logarithm-based
decomposition further [Per19]. He shows that the S-Box maps a partition of F8

2

into multiplicative cosets of F∗24 into a partition of F8
2 into additive cosets of F4

2.
Furthermore, he derives a structure called TKlog that π follows.
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.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .a .b .c .d .e .f
0. fc ee dd 11 cf 6e 31 16 fb c4 fa da 23 c5 04 4d
1. e9 77 f0 db 93 2e 99 ba 17 36 f1 bb 14 cd 5f c1
2. f9 18 65 5a e2 5c ef 21 81 1c 3c 42 8b 01 8e 4f
3. 05 84 02 ae e3 6a 8f a0 06 0b ed 98 7f d4 d3 1f
4. eb 34 2c 51 ea c8 48 ab f2 2a 68 a2 fd 3a ce cc
5. b5 70 0e 56 08 0c 76 12 bf 72 13 47 9c b7 5d 87
6. 15 a1 96 29 10 7b 9a c7 f3 91 78 6f 9d 9e b2 b1
7. 32 75 19 3d ff 35 8a 7e 6d 54 c6 80 c3 bd 0d 57
8. df f5 24 a9 3e a8 43 c9 d7 79 d6 f6 7c 22 b9 03
9. e0 0f ec de 7a 94 b0 bc dc e8 28 50 4e 33 0a 4a
a. a7 97 60 73 1e 00 62 44 1a b8 38 82 64 9f 26 41
b. ad 45 46 92 27 5e 55 2f 8c a3 a5 7d 69 d5 95 3b
c. 07 58 b3 40 86 ac 1d f7 30 37 6b e4 88 d9 e7 89
d. e1 1b 83 49 4c 3f f8 fe 8d 53 aa 90 ca d8 85 61
e. 20 71 67 a4 2d 2b 09 5b cb 9b 25 d0 be e5 6c 52
f. 59 a6 74 d2 e6 f4 b4 c0 d1 66 af c2 39 4b 63 b6

Table 4.1: The S-Box π in hexadecimal. For example, π(C2) = B3.

L
N

N
N

N
L

log

A

N

L

Figure 4.1: A simplified view of two decompositions of π. Linear (resp.
nonlinear) functions are denoted L (resp. N ). � denotes finite field
multiplication and log is a finite field logarithm. A denotes a simple

integer arithmetic layer.

4.1.1 Outline

Section 4.2 described the first decomposition, and Section 4.3 explains the sec-
ond decomposition. The results are summarized and discussed in Section 4.4.

4.1.2 Differences with [BPU16,PU17]

This chapter is a reworked version of the two papers [BPU16, PU17] that we
wrote with my colleagues Alex Biryukov and Léo Perrin. In this chapter I kept
only results directly related to decompositions of π. The decompositions are
kept the same, except that for the first decomposition I performed the analysis
for π from the beginning, without decomposing π−1 first. In this way T and U
are inverted and swapped, compared to [BPU16]. The final decomposition is
the same.
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4.2 Feistel-like Decomposition based on Finite Field
Multiplications

Similarly to Chapter 3, this chapter illustrates the usefulness of the "Jackson
Pollock representation" of the LAT of an S-Box. Consider a heatmap of LATπ

shown in Figure 4.2a. It looks rather random overall, except several vertical
stripes clearly sticking out. This effect is weaker or stronger depending on the
colormap chosen for plotting. By a closer inspection it can be observed that
the stripes stick out because of the same color appearing mote often than in
another columns. In order to strengthen the effect, I define a column frequency
table.

Definition 4.1. Let L be an n×m matrix. The column frequency table of L
is the n×m matrix CF(L) over Z given by:

CF(L)[y, x] := |{y′ | L[y′, x] = L[y, x]}| .

(a) LATπ (b) CF(LATπ)

Figure 4.2: Jackson Pollock representation of the LAT of π and its
column frequency table.

The column frequency table of the LATπ is shown in Figure 4.2b. The
same columns are clearly sticking out as in the LAT of π. Let S denote their
x-coordinates:

S = {00, 1A, 20, 3A, 44, 5E, 64, 7E,
8A, 90, AA, B0, CE, D4, EE, F4} ⊆ F8

2.

Note that 00 was added in order to complete the set to a linear subspace of F8
2.

It follows that we can choose 4 linearly independent coordinates and they will
correspond to 4 linearly independent components of π. By composing π with a
linear map, the outstanding columns of the LATπ can be grouped together. Let
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L ∈ GL8(F2) be such that

L(80) = 08, L(40) = 04, L(20) = 02, L(10) = 01,

L(08) = 8A, L(04) = 44, L(02) = 20, L(01) = 1A.

Let π1 := L> ◦ π. The LAT of π1 is shown in Figure 4.3a. According to Propo-
sition 2.7 from Chapter 2, the outstanding columns are grouped on the left.
Furthermore, inside these 16 columns we can now observe similarly outstanding
rows. Coincidentally, their coordinates form the same linear subspace S. In
order to group the rows on the top, let π2 := L> ◦ π ◦ (L−1)>. The LAT of π2
is shown in Figure 4.3b.

(a) LATπ1 (b) LATπ2

Figure 4.3: Jackson Pollock representation of the LAT of π1 and π2.

4.2.1 TU-decomposition

The LAT of π2 has interesting artifacts. The special 16 columns now have a
visible structure consisting of 16× 16 squares. More importantly, the topmost
square fully consists of zeroes, i.e. LATπ2(a, b) = 0 for 0 � a, b � 0F. These
zeroes can be interpreted as follows: if we fix any linear combination of the
4 rightmost input bits to any constant, then any linear combination of the 4
rightmost output bits is balanced. Following this idea, the following multiset
property can be verified: for any c ∈ F4

2,

right (π2(X)) = F4
2, where X :=

{
(l, c) | l ∈ F4

2

}
.

In other words, there exists 16 permutations T0, . . . , TF of F4
2 such that for all

l, r ∈ F4
2

right(π2(l, r)) = Tr(l).

Let U0, . . . , UF : F4
2 → F4

2 be such that UTr(l)(r) := left(π2(l, r)) for all l, r ∈ F4
2.

Then
π2(l, r) =

(
UTr(l)(r), Tr(l)

)
.
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The high-level decomposition of π2 into T and U is shown in Figure 4.4 and the
look-up tables of T and U are given in Table 4.2. Note that since π2 and all Ti
are permutations, all Ui must be permutations as well. It can be easily verified
from the look-up table of U . Due to this bijectivity, T and U can be viewed
as mini-block ciphers. Such decomposition into two mini block-ciphers shall be
called a TU-decomposition. It will prove its usefulness again in Chapter 5.

T

U

Figure 4.4: TU-decomposition of π2.

0 1 2 3 4 5 6 7 8 9 A B C D E F
T0 2 A 3 9 E 5 6 B 0 7 F D C 4 8 1
T1 7 A 6 3 9 D C 2 0 E F B 1 4 8 5
T2 6 8 9 0 1 7 F C 5 3 E D A 4 2 B
T3 4 C 6 E B 7 9 5 1 2 3 0 F A D 8
T4 E 7 1 D 8 2 B 6 5 C F 3 0 A 4 9
T5 F 7 2 4 0 6 D 5 3 E 8 9 A B 1 C
T6 5 A 3 4 7 8 1 6 D B E 2 F 9 C 0
T7 A 3 B E 7 6 F 0 C 9 1 8 2 D 4 5
T8 9 B F D 5 7 A 8 C E 0 2 4 6 3 1
T9 E 4 0 1 9 7 D A F 8 B 5 2 3 C 6
TA 7 4 9 E F 2 8 3 D 0 A 1 5 6 B C
TB 7 0 2 5 3 B 9 1 8 C E A 4 D F 6
TC D C 4 8 7 3 0 B F E 6 A 5 1 2 9
TD E 1 F 5 7 D 3 C 6 2 A 9 B 8 0 4
TE 2 7 8 E 5 0 C A B 1 6 D 3 9 F 4
TF C 7 4 B F 1 A 2 6 9 E 5 8 0 D 3

(a) T .

0 1 2 3 4 5 6 7 8 9 A B C D E F
U0 C 7 2 8 E 3 F 4 6 D B 5 9 A 0 1
U1 C 8 0 A 3 F 5 6 9 1 2 7 D B 4 E
U2 C 7 2 8 E 3 F 4 6 D B 5 9 A 0 1
U3 C 9 3 D 2 0 4 5 7 A E 6 8 1 F B
U4 8 9 B 5 4 0 2 3 C F 7 D E A 1 6
U5 8 7 C B D 9 5 F 6 0 3 A 4 1 E 2
U6 8 4 9 0 C E F A 7 1 D 6 B 2 5 3
U7 8 9 B 5 4 0 2 3 C F 7 D E A 1 6
U8 E D 8 7 F 3 C 0 2 4 A 1 6 5 9 B
U9 E 8 6 9 D 7 5 B F C 2 A 3 0 4 1
UA E 7 9 5 3 C 1 2 6 B 8 D 4 A 0 F
UB E B 1 F 0 2 6 7 5 8 C 4 A 3 D 9
UC A D 0 4 3 1 E B 7 5 2 C 8 6 F 9
UD A C 2 D 9 3 1 F B 8 6 E 7 4 0 5
UE A 9 C 3 B 7 8 4 6 0 E 5 2 1 D F
UF A 1 4 E 8 5 9 2 0 B D 3 F C 6 7

(b) U .

Table 4.2: The mini-block ciphers used to decompose π2.

Remark 10. It might seem that the TU-decomposition provides little insight
into the structure. Indeed, any 8-bit function can be described by two tables of
the same size as T and U , for example by considering the left and right halves of
the output separately. The only special property that TU-decomposition adds
is that each Ti is a permutation (and thus, each Ui). This is a very unlikely
event that a random permutation has such decomposition, even if extra linear
encodings (such as L in the case of π) are allowed. This property justifies the
separation of T and U and their independent analysis.

The decomposition procedure of T and U are described in Section 4.2.3 and
Section 4.2.2 respectively.
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4.2.2 Decomposition of U

Let α : F4
2 → F4

2 be given by
α(x) := Ux(0)

and let U ′0, . . . , U ′F be permutations of F4
2 given by

U ′k(x) := Uk(x)⊕ α(k).

It follows that for all k ∈ F4
2, U ′k(0) = 0. The codebook of U ′ is given in

Figure 4.3a.

0 1 2 3 4 5 6 7 8 9 A B C D E F
U ′0 0 B E 4 2 F 3 8 A 1 7 9 5 6 C D
U ′1 0 4 C 6 F 3 9 A 5 D E B 1 7 8 2
U ′2 0 B E 4 2 F 3 8 A 1 7 9 5 6 C D
U ′3 0 5 F 1 E C 8 9 B 6 2 A 4 D 3 7
U ′4 0 1 3 D C 8 A B 4 7 F 5 6 2 9 E
U ′5 0 F 4 3 5 1 D 7 E 8 B 2 C 9 6 A
U ′6 0 C 1 8 4 6 7 2 F 9 5 E 3 A D B
U ′7 0 1 3 D C 8 A B 4 7 F 5 6 2 9 E
U ′8 0 3 6 9 1 D 2 E C A 4 F 8 B 7 5
U ′9 0 6 8 7 3 9 B 5 1 2 C 4 D E A F
U ′A 0 9 7 B D 2 F C 8 5 6 3 A 4 E 1
U ′B 0 5 F 1 E C 8 9 B 6 2 A 4 D 3 7
U ′C 0 7 A E 9 B 4 1 D F 8 6 2 C 5 3
U ′D 0 6 8 7 3 9 B 5 1 2 C 4 D E A F
U ′E 0 3 6 9 1 D 2 E C A 4 F 8 B 7 5
U ′F 0 B E 4 2 F 3 8 A 1 7 9 5 6 C D

(a) U ′.

0 1 2 3 4 5 6 7 8 9 A B C D E F order
M0 0 1 2 3 4 5 6 7 8 9 A B C D E F 1
M1 0 3 E D 5 6 B 8 C F 2 1 9 A 7 4 15
M2 0 1 2 3 4 5 6 7 8 9 A B C D E F 1
M3 0 C 5 9 2 E 7 B 1 D 4 8 3 F 6 A 15
M4 0 9 6 F E 7 8 1 3 A 5 C D 4 B 2 5
M5 0 5 3 6 C 9 F A 2 7 1 4 E B D 8 5
M6 0 E 9 7 3 D A 4 5 B C 2 6 8 F 1 3
M7 0 9 6 F E 7 8 1 3 A 5 C D 4 B 2 5
M8 0 6 D B 9 F 4 2 E 8 3 5 7 1 A C 15
M9 0 D 7 A 6 B 1 C 9 4 E 3 F 2 8 5 15
MA 0 B A 1 F 4 5 E 7 C D 6 8 3 2 9 15
MB 0 C 5 9 2 E 7 B 1 D 4 8 3 F 6 A 15
MC 0 A 8 2 B 1 3 9 F 5 7 D 4 E C 6 5
MD 0 D 7 A 6 B 1 C 9 4 E 3 F 2 8 5 15
ME 0 6 D B 9 F 4 2 E 8 3 5 7 1 A C 15
MF 0 1 2 3 4 5 6 7 8 9 A B C D E F 1

(b) M .

Table 4.3: The mini-block ciphers U ′ and M .

In [BCBP03], Biryukov et al. propose efficient algorithms for checking affine
and linear equivalence of permutations. Applying these algorithms to the per-
mutations U ′i shows that all U ′i are pairwise linear equivalent. Furthermore, they
differ only by a linear layer in the output. Formally, let M0, . . . ,MF : F4

2 → F4
2

be given by
Mk(x) := U ′k(x) ◦ U ′−10 (x).

Then, each Mi is linear. The codebook of M is given in Figure 4.3b.

Remark 11. In the hindsight, it could be trivially checked that Ui ◦ U−1j is
linear for all i, j ∈ F4

2. However, it is not always clear which properties or rela-
tions can be expected. For this reason, the linear/affine equivalence algorithms
from [BCBP03] and their improved variants by Dinur [Din18] are very useful
tools for S-Box reverse-engineering.

The next step is to observe that the functions Mi have two interesting prop-
erties:

1. the functions Mi have orders 1, 3, 5, 15; those with order 15 generate all
Mi;



66 Chapter 4. Decompositions of the GOST S-Box

2. the functionsMi are linearly related: they are contained in linear subspace
of dimension 4;

These properties point towards a finite field structure. Let b := M0⊕M5. Then
b is linear-similar to the multiplication by X in the finite field

F24 ' F2[X]/(X4 +X3 + 1).

By “linear-similar” it is meant that

b = l ◦ (· �X) ◦ l−1

for some linear bijection l ∈ GL4(F2), where (· �X) denotes the multiplication
in the finite field by X. In this case, l = l′ = swap2lsb, where

swap2lsb : F4
2 → F4

2, swap2lsb(x1, x2, x3, x4) := (x1, x2, x4, x3).

Among all choices of b and the field defining polynomial, this choice results in
the simplest mapping l.

Note that similarity is preserved for powers, i.e. bi = swap2lsb ◦ (· �X i) ◦
swap2lsb. It follows that for all k ∈ F4

2, swap2lsb◦Mk ◦ swap2lsb is the finite field
multiplication by the power of X equal to the discrete logarithm of Mk base b.
More precisely, let γ : F4

2 → F4
2 be such that

γ(k) := (swap2lsb ◦Mk ◦ swap2lsb)(1).

Furthermore, let β : F4
2 → F4

2 be given by

β(x) := U ′0(swap2lsb(x))⊕ C.

Then U can be decomposed as follows:

Uk(x) = α(k)⊕ β(γ(k)� swap2lsb(x))⊕ C.

Note that α is affine such that α⊕ C is linear:

α(x1, x2, x3, x4) = (1, x2 ⊕ 1, x1, 0).

The constant part of α cancels with the constant from β and the linear part
can be merged with the outer linear encoding L. The graphical representation
of the final decomposition of U and the codebooks of α, β, γ and swap2lsb are
given in Figure 4.5.

4.2.3 Decomposition of T

The decomposition of T follows similar path as that of U , but with a couple
of differences. all permutations Ti are linearly-equivalent, excluding T0. The
latter function stands out and does not follow any patterns. Furthermore, all
Ti, i 6= 0 are related only by linear layer in the input. Let N1, . . . , NF : F4

2 → F4
2
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k4k3k2k1

Uk(x)

⊕⊕
β

γ�

kx3x4x2x1 0 1 2 3 4 5 6 7 8 9 A B C D E F

α C C C C 8 8 8 8 E E E E A A A A

β 0 E B 4 2 3 F 8 A 7 1 9 5 C 6 D

γ 1 D 1 6 5 3 A 5 E 7 9 6 8 7 E 1

swap2lsb 0 2 1 3 4 6 5 7 8 A 9 B C E D F

Figure 4.5: The decomposition of Uk(x).

be given by
Nk(x) := T−1k (x) ◦ T1(x).

For any k 6= 0, Tk = T1 ◦Nk and each of Ni is affine. The look-up table of N is
given in Table 4.4a.

In order to obtain linear mapping from affine, we detach the constant xor
before the linear map. It could also be detached after, but detaching before
allows to merge it with the outer linear layer L. Let δ : F4

2 → F4
2 be given by

δ(k) :=

{
0, if k = 0,

N−1k (0), otherwise.

It turns out that δ is a linear map:

δ(k1, k2, k3, k4) = (0, k1 ⊕ k3, 0, k1 ⊕ k2 ⊕ k3).

Let N ′1, . . . , N ′F : F4
2 → F4

2 be given by

N ′k(x) = Nk(x⊕ δ(k)).

Then all N ′k are linear functions, i.e. N ′k(0) = 0 for all k ∈ F4
2, k 6= 0. The

codebook of N ′ is given in Table 4.4b.
Consider N ′2 (other choices are possible, but this one leads to simplest linear

layers in the decomposition). It is linear-similar to the same field multiplication
chosen in the decomposition of U : there exists η ∈ GL4(F2) such that

N ′2 = η ◦ (· �X) ◦ η−1.

Such η is given by:

η(x1, x2, x3, x4) := (x1, x2 ⊕ x4, x3 ⊕ x2, x4).
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0 1 2 3 4 5 6 7 8 9 A B C D E F
N1 0 1 2 3 4 5 6 7 8 9 A B C D E F
N2 2 E 4 8 C 0 A 6 F 3 9 5 1 D 7 B
N3 D 6 2 9 B 0 4 F C 7 3 8 A 1 5 E
N4 9 0 C 5 E 7 B 2 F 6 A 3 8 1 D 4
N5 A 0 7 D 8 2 5 F 3 9 E 4 1 B C 6
N6 F 1 3 D 0 E C 2 5 B 9 7 A 4 6 8
N7 1 3 B 9 0 2 A 8 6 4 C E 7 5 D F
N8 4 B A 5 F 0 1 E 6 9 8 7 D 2 3 C
N9 9 D 8 C 4 0 5 1 A E B F 7 3 6 2
NA 0 D 4 9 A 7 E 3 5 8 1 C F 2 B 6
NB 0 8 7 F 3 B 4 C E 6 9 1 D 5 A 2
NC 5 6 D E 0 3 8 B A 9 2 1 F C 7 4
ND 9 C A F 0 5 3 6 2 7 1 4 B E 8 D
NE 7 0 E 9 F 8 6 1 B C 2 5 3 4 A D
NF 6 0 D B A C 1 7 2 4 9 F E 8 5 3

(a) N

0 1 2 3 4 5 6 7 8 9 A B C D E F
N ′1 0 1 2 3 4 5 6 7 8 9 A B C D E F
N ′2 0 C 6 A E 2 8 4 D 1 B 7 3 F 5 9
N ′3 0 B F 4 6 D 9 2 1 A E 5 7 C 8 3
N ′4 0 9 5 C 7 E 2 B 6 F 3 A 1 8 4 D
N ′5 0 A D 7 2 8 F 5 9 3 4 E B 1 6 C
N ′6 0 E C 2 F 1 3 D A 4 6 8 5 B 9 7
N ′7 0 2 A 8 1 3 B 9 7 5 D F 6 4 C E
N ′8 0 F E 1 B 4 5 A 2 D C 3 9 6 7 8
N ′9 0 4 1 5 D 9 C 8 3 7 2 6 E A F B
N ′A 0 D 4 9 A 7 E 3 5 8 1 C F 2 B 6
N ′B 0 8 7 F 3 B 4 C E 6 9 1 D 5 A 2
N ′C 0 3 8 B 5 6 D E F C 7 4 A 9 2 1
N ′D 0 5 3 6 9 C A F B E 8 D 2 7 1 4
N ′E 0 7 9 E 8 F 1 6 C B 5 2 4 3 D A
N ′F 0 6 B D C A 7 1 4 2 F 9 8 E 3 5

(b) N ′.

Table 4.4: The keyed permutations ciphers N and N ′.

Further, all N ′k turn out to be multiplications by a k-dependent constant in the
finite field. Let ε : F4

2 → F4
2 be given by

ε(k) :=

{
0, if k = 0,

η−1 ◦N ′k ◦ η(1), otherwise.

Then ε turns out to be a bijection, and the following holds for k 6= 0:

η−1 ◦N ′k ◦ η(x) = ε(k)� x,

ε seems to be a complicated permutation without any pattern. Note that when
the inverse of T is computed, the field multiplication becomes the field division
and thus, the output of ε is inverted. Denote the composition of the inversion
in the finite field with ε by 1/ε (defining 1/0 = 0). Surprisingly, it is a linear
function. Furthermore, when composed with swap2lsb which appears here from
the decomposition of U , it becomes a simple multiplication by a constant in the
finite field:

1/ε ◦ swap2lsb(k) = k � (X3 +X2)

for all k ∈ F4
2. It follows that

ε(k) = 1/(swap2lsb(x)� (X3 +X2)) = X � (1/swap2lsb(k)),

where X � (X3 + X2) = 1 in the chosen finite field. The multiplication by
constant can be transferred through the main multiplication in N ′ and merged
with T1.

We obtain that, when k 6= 0, Tk can be computed as:

Tk(x) = T1 ◦ η(· �X)
(
(1/swap2lsb(k))� η−1(x⊕ δ(k))

)
.
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The addition of δ(k), η−1 and swap2lsb can be merged with the outer linear layer
L. η can be merged with T1, and swap2lsb will cancel out when T is merged
with U .

Let

ζ0 := T0 ◦ η,
ζ+ := T1 ◦ η ◦ (�X).

Then

Tk(x) =

{
ζ+ ((1/swap2lsb(k))� η−1(x⊕ δ(k))) , if k 6= 0,

ζ0 (η−1(x⊕ δ(k))) , if k = 0.

The final decomposition of T−1 and the codebooks of δ, η, swap2lsb, ζ0, ζ+ and
the field inverse 1/x are given are shown in Figure 4.6. It uses a multiplexer,
which chooses its left input branch if the control branch (i.e., k) is equal to zero,
and its right input branch otherwise. The only differences between T and T−1
are using the inverses of ζ0, ζ+, removing the field inversion, and changing the
position of the multiplexer. Note that η is an involution, and the addition of
δ(k) is involution too.

k4k3k2k1

ζ−1+ζ−10

�

x

Multiplexer

⊕⊕
⊕
⊕
⊕
⊕
⊕

η

⊕δ(k) 0 1 2 3 4 5 6 7 8 9 A B C D E F

δ 0 0 5 5 1 1 4 4 5 5 0 0 4 4 1 1

η 0 5 2 7 6 3 4 1 8 D A F E B C 9

swap2lsb 0 2 1 3 4 6 5 7 8 A 9 B C E D F

ζ0 2 5 3 B 6 9 E A 0 4 F 1 8 D C 7

ζ+ 7 6 C 9 0 F 8 1 4 5 B E D 2 3 A

I 0 1 C 8 6 F 4 E 3 D B A 2 9 7 5

Figure 4.6: The decomposition of T−1k (x).

4.2.4 Full Decomposition

The full decomposition of π is obtained from the decompositions of mini-block
ciphers T and U . First, let me describe the whitening linear layers.

Recall the whitening linear layer L> L was described in the beginning of
Section 4.2. Let Lin ∈ GL8(F2) be given by

Lin := lswap2lsb ◦ lη ◦ lδ ◦ L>,
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where L was described in the beginning of Section 4.2, lη, lδ, lswap2lsb ∈ GL8(F2)
are given by

lδ(x, k) := (x⊕ δ(k), k),

lη(x, k) := (η(x), δ(k)),

lswap2lsb(x, k) := (x, swap2lsb(k)).

Let Lout ∈ GL8(F2) be given by

Lout := (L−1)> ◦ lα,

where lα ∈ GL8(F2) is given by

lα(x, k) := (x⊕ α(k), k),

The matrix representations of Lin and Lout are as follows:

Lin =



0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 1
0 1 0 0 0 0 1 1
1 1 1 0 1 1 1 1
1 0 0 0 1 0 1 0
0 1 0 0 0 1 0 0
0 0 0 1 1 0 1 0
0 0 1 0 0 0 0 0


, Lout =



1 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
1 0 1 0 1 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 1 0 0 0
0 0 0 1 0 0 0 0


. (4.1)

The final decomposition of π using the linear layers Lin, Lout and the non-
linear components are given in Figure 4.7. An algorithmic representation of the
decomposition is shown in Algorithm 4.1.

Lout

β

γ�

ζ+ζ0

I�

Lin

0 1 2 3 4 5 6 7 8 9 A B C D E F

I 0 1 c 8 6 f 4 e 3 d b a 2 9 7 5
ζ0 2 5 3 B 6 9 E A 0 4 F 1 8 D C 7

ζ+ 7 6 C 9 0 F 8 1 4 5 B E D 2 3 A

I 0 1 C 8 6 F 4 E 3 D B A 2 9 7 5

γ 1 D 1 6 5 3 A 5 E 7 9 6 8 7 E 1

β 0 E B 4 2 3 F 8 A 7 1 9 5 C 6 D

Figure 4.7: The decomposition of π. The multiplexer chooses its left
input branch if the control branch is equal to zero, and its right input

branch otherwise. Lin and Lout are given in Equation 4.1.
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Algorithm 4.1 Computing π: v = π(u) using finite field multiplications.
1: (x, k)← Lin(u)
2: if r = 0 then
3: x← ζ0(x)
4: else
5: x← ζ+(x� I(k)) . in F24 ' F2[X]/(X4 +X3 + 1)

6: (x, k)← (k, x)
7: x← β(x� γ(k)) . in F24 ' F2[X]/(X4 +X3 + 1)
8: v ← Lout(x, k)
9: return v

4.3 Decomposition based on Finite Field Loga-
rithm

4.3.1 BelT Block Cipher and its S-Box

BelT is a block cipher from the Belarusian cryptographic standard [Bel11].
It uses an 8-bit S-Box H : F8

2 → F8
2 which is given as a look-up table in the

standard. The rationale behind this S-Box is not given in the standard, but
instead in a separate rationale document by Agievich et al. [AGMK02].

Proposition 4.2 (The BelT S-Box Construction, [AGMK02] (translated)). The
look-up tables of the S-Box coordinate functions were chosen as different seg-
ments of length 255 of different linear recurrences defined by the irreducible
polynomial p(λ):

p(λ) = λ8 + λ6 + λ5 + λ2 + 1.

Additionally, a zero element was inserted in a fixed position of each segment.

Agievich also explains in [AA04,AA05] that such a construction is equivalent
to an exponential function in the finite field.

Definition 4.3. For a primitive element w ∈ F2n let x 7→ w(x) be the map from
Fn2 to itself, obtained by raising w to the power given by the integer represented
by x ∈ Fn2 , and representing the result as an element of Fn2 , where the polynomial
defining the field should be clear from context.

The exponential mapping can be turned into a permutation of Fn2 by letting
it map 0 to 0. Let w ∈ F2n be a primitive element. Let expw be a permutation
of Fn2 given by:

expw(x) :=7→
{

0, if x = 0,

w(x), otherwise.

Let logw : Fn2 → Fn2 denote the functional inverse of expw:

logw := exp−1w .

Remark 12. In the S-Box H used in BelT, the zero was inserted at x = 0A ∈ F8
2

instead of 0.
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Figure 4.8 shows the Jackson Pollock representations of the column and row
frequency tables of the LAT of H. In the row frequency table several rows stick
out, similarly to the special columns in the column frequency table of the LAT
of π. This similarity suggests that there might be a relation between H and the
inverse of π.

Since this chapter is devoted to π, for a closer analysis of the S-Box used in
BelT, I refer to our paper [PU17].

(a) CF(LATH) (b)
(
CF(LAT>H)

)>
Figure 4.8: Jackson Pollock representation of the column and row fre-

quency tables of the LAT of H.

4.3.2 Exponential Behaviour of π

An exponential function x 7→ wx has the following property: for all x, c ∈ F8
2

w(x+c) = w(x) � w(c).

This property can be used to distinguish exponential permutations or functions
close to them. However, the integer addition can be partially hidden by a
whitening affine layer. Still, a strong property can be observed if the addition
is approximated by XOR. Indeed, for a unit vector ei of Fn2 and all x ∈ F8

2,

x⊕ ei =

{
x� ei, if 〈x, ei〉 = 0,

x� ei, if 〈x, ei〉 = 1.

An advantage of this approximation is that the XOR with ei after a whitening
input linear map L ∈ GLn(F2) maps back to the XOR with L−1(ei) before the
application of L. And indeed such behaviour can be observed in π! By an
exhaustive search over the parameters, the following relations were found in π.

Observation 4.4. Let c ∈ (12, 26, 24, 30). For any i ∈ [1 . . . 4]

Pr
x∈F8

2

[
π−1(x⊕ ci) = π−1(x)�X2i−1

or

π−1(x⊕ ci) = π−1(x)�X2i−1

.

]
= 240/256, (4.2)
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.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .A .B .C .D .E .F
0. 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
1. 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
2. 143 144 141 142 139 140 137 138 151 152 149 150 147 148 145 146
3. 160 161 158 159 156 157 154 155 168 169 166 167 164 165 162 163
4. 216 215 214 213 220 219 218 217 208 207 206 205 212 211 210 209
5. 97 96 95 94 101 100 99 98 89 88 87 86 93 92 91 90
6. 48 47 50 49 44 43 46 45 40 39 42 41 36 35 38 37
7. 82 81 84 83 78 77 80 79 74 73 76 75 70 69 72 71
8. 172 171 174 173 176 175 178 177 180 179 182 181 184 183 186 185
9. 53 52 55 54 57 56 59 58 61 60 63 62 65 64 67 66
A. 127 126 125 124 123 122 121 120 135 134 133 132 131 130 129 128
B. 246 245 244 243 242 241 240 239 254 253 252 251 250 249 248 247
C. 232 233 230 231 236 237 234 235 224 225 222 223 228 229 226 227
D. 113 114 111 112 117 118 115 116 105 106 103 104 109 110 107 108
E. 221 238 255 0 153 170 187 204 85 102 119 136 17 34 51 68
F. 13 14 15 16 9 10 11 12 5 6 7 8 1 2 3 4

Table 4.5: The look-up table of logX ◦ π−1 ◦ α−1 (as integers).

where multiplication � and division � are performed in the finite field F28 '
F2[X]/(X8 +X4 +X3 +X2 + 1) and X defines a primitive element.

This strong property suggests that the output side of π−1 is not masked by
a random linear layer. Otherwise, the multiplication and the division by X2i

would be masked and not triggered by the constant XOR in the input. There-
fore, we assume that the output of π−1 is the output of an exponential function
composed with some simple layer. The simple layer then can be analyzed sep-
arately as logX ◦ π−1.

4.3.3 Decomposing the Arithmetic Layer

Our hypothesis was that there is a linear whitening layer mapping all ci to unit
vectors. Equation 4.2 suggests that the unit vectors are consecutive powers of
2. Let α ∈ GL8(F2) be given by

α :=



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 1 1 0
0 0 0 0 1 0 0 1
0 0 1 0 0 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 1
0 0 0 1 0 0 0 0



−1

.

It is such that for all i ∈ {1, 2, 3, 4}, α(ci) is the unit vector corresponding to
2i−1. Preimages of the other four unit vectors were chosen randomly to complete
the map. The look-up table of logX ◦ π−1 ◦ α−1 is given in Table 4.5.
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.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .A .B .C .D .E .F
0. 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
1. 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
2. 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
3. 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
4. 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
5. 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
6. 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
7. 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
8. 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
9. 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
A. 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
B. 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
C. 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
D. 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
E. 17 34 51 68 85 102 119 136 153 170 187 204 221 238 255 0
F. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Table 4.6: The look-up table of logX ◦ π−1 ◦ β−1 (as integers).

The rows of Table 4.5 are clearly structured. We observe that each row can
be sorted by modifying the linear mapping α (except the zero value). Indeed,
let β ∈ GL8(F2) be given by

β :=



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 1 1 0
1 0 0 0 1 0 0 1
0 0 1 0 0 0 0 0
0 1 0 0 0 1 1 0
1 0 1 0 0 0 1 1
0 0 0 1 0 0 0 0


.

Then the look-up table of logX ◦ π−1 ◦ β−1 is the same as the look-up table of
logX ◦ π−1 ◦ α−1 with sorted rows. It is shown in Table 4.6.

Furthermore, the rows can be reordered by applying a 4-bit nonlinear map-
ping to the left branch. Let q be a permutation of F4

2 given by its lookup table

LookupTable(q) := (12, 2, 9, 10, 13, 6, 3, 5, 11, 4, 8, 15, 14, 7, 0, 1).

Let qL be a permutation of F8
2 made by applying q to the left half of the input:

qL(x, y) := (q(x), y)).

Then the look-up table of logX ◦ π−1 ◦ β−1 ◦ q−1L has a very simple structure. It
is shown in Table 4.7. This structure has a simple arithmetic expression. As
a result, an algorithmic decomposition of π−1 can be deduced. It is given in
Algorithm 4.2.
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.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .A .B .C .D .E .F
0. 17 34 51 68 85 102 119 136 153 170 187 204 221 238 255 0
1. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2. 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
3. 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
4. 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
5. 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
6. 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
7. 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
8. 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
9. 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
A. 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
B. 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
C. 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
D. 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
E. 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
F. 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254

Table 4.7: The look-up table of logX ◦ π−1 ◦ β−1 ◦ q−1L (as integers).

Remark 13. It is also possible to define q such that it moves the row (17, 34, . . . , 255, 0)
to the end of the table. This change results in similar expressions.

Algorithm 4.2 Computing the inverse of π: y = π−1(x).
1: (l, r)← β(x)
2: l← q(l)
3: if l = 0 then
4: z ← 17× ((r + 1) mod 16) . integer arithmetic
5: else
6: z ← 17× l + r − 16 . integer arithmetic
7: y ← logX(z)
8: return y

4.3.4 Obtaining a Decomposition of π

Let π̂ be the permutation of F8
2 given by

π̂ := logX ◦ π−1 ◦ β−1 ◦ q−1L .

It corresponds to the arithmetic part of the decomposition. Observe that it has
a TU-decomposition as π has itself (see Section 4.2.1).

Observation 4.5. There exist permutations of F4
2 T0, . . . , TF and U0, . . . , UF

such that for all l, r ∈ F4
2

π̂(l, r) = UTl(r)(l), Tl(r).
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0 1 2 3 4 5 6 7 8 9 A B C D E F
T0 1 2 3 4 5 6 7 8 9 A B C D E F 0
T1 1 2 3 4 5 6 7 8 9 A B C D E F 0
T2 2 3 4 5 6 7 8 9 A B C D E F 0 1
T3 3 4 5 6 7 8 9 A B C D E F 0 1 2
T4 4 5 6 7 8 9 A B C D E F 0 1 2 3
T5 5 6 7 8 9 A B C D E F 0 1 2 3 4
T6 6 7 8 9 A B C D E F 0 1 2 3 4 5
T7 7 8 9 A B C D E F 0 1 2 3 4 5 6
T8 8 9 A B C D E F 0 1 2 3 4 5 6 7
T9 9 A B C D E F 0 1 2 3 4 5 6 7 8
TA A B C D E F 0 1 2 3 4 5 6 7 8 9
TB B C D E F 0 1 2 3 4 5 6 7 8 9 A
TC C D E F 0 1 2 3 4 5 6 7 8 9 A B
TD D E F 0 1 2 3 4 5 6 7 8 9 A B C
TE E F 0 1 2 3 4 5 6 7 8 9 A B C D
TF F 0 1 2 3 4 5 6 7 8 9 A B C D E

(a) T .

0 1 2 3 4 5 6 7 8 9 A B C D E F
U0 0 1 2 3 4 5 6 7 8 9 A B C D E F
U1 1 0 2 3 4 5 6 7 8 9 A B C D E F
U2 2 0 1 3 4 5 6 7 8 9 A B C D E F
U3 3 0 1 2 4 5 6 7 8 9 A B C D E F
U4 4 0 1 2 3 5 6 7 8 9 A B C D E F
U5 5 0 1 2 3 4 6 7 8 9 A B C D E F
U6 6 0 1 2 3 4 5 7 8 9 A B C D E F
U7 7 0 1 2 3 4 5 6 8 9 A B C D E F
U8 8 0 1 2 3 4 5 6 7 9 A B C D E F
U9 9 0 1 2 3 4 5 6 7 8 A B C D E F
UA A 0 1 2 3 4 5 6 7 8 9 B C D E F
UB B 0 1 2 3 4 5 6 7 8 9 A C D E F
UC C 0 1 2 3 4 5 6 7 8 9 A B D E F
UD D 0 1 2 3 4 5 6 7 8 9 A B C E F
UE E 0 1 2 3 4 5 6 7 8 9 A B C D F
UF F 0 1 2 3 4 5 6 7 8 9 A B C D E

(b) U .

Table 4.8: The mini-block ciphers T,U decomposing π̂.

Such T, U are given in Table 4.8. They can also be expressed arithmetically:

Tk(x) =

{
x+ k, if k 6= 0,

x+ k + 1, otherwise,
Uk(x) =

{
((x− k − 1) mod 15) + k + 1, if x 6= 0,

k, otherwise.

T and U can be inverted separately. By further using the finite field loga-
rithm and inverses of β and qL, the logarithmic decomposition of π is obtained.
The corresponding algorithm is given in Algorithm 4.3 and graphical represen-
tation is given in Figure 4.9.

Algorithm 4.3 Computing the S-Box y = π(x) using the logarithmic decom-
position.

(l, r)← logX(x)
l← l − r
if l = 0 then

r ← r − 1
else

l← (l + r − 1) mod 15 + 1

r ← r − l
l← q−1(l)
y ← β−1(l||r)
return y
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logX

1
mod 15

1

[l = 0]

q−1

β−1

Figure 4.9: The logarithmic decomposition of π.

4.4 Discussion and Conclusions
This chapter presented two different decompositions of π, the S-Box used in
Russian cryptographic standards. The decompositions show that the S-Box has
a strong structure related to the finite field arithmetic. The reasons behind such
structure are unclear. It is not known whether a trapdoor can be hidden in such
S-Box, such that the block cipher or the hash function using it becomes weaker.
A more likely reason is the possibility of having better hardware implementation
than for a random S-Box.

The first decomposition, presented in Section 4.2, is based on finite field
multiplications forming a Feistel-like 2-round network, several 4-bit S-Boxes
and two 8-bit whitening linear layers. The bijectivity is preserved differently in
each round. In the first round, a multiplexer is used such that multiplication
by 0 is not performed. In the second round, the multiplication is performed
by a non-bijective function of the left branch, which is never equal to 0. Such
structure was never used before in cryptography.

The second decomposition, presented in Section 4.3, is based on the finite
field logarithm, one 4-bit S-Box, one 8-bit whitening linear layer and a sim-
ple but strange arithmetic layer, given in Table 4.7. It is almost the identity
mapping, except that multiples of 17 are cut out and placed in the beginning,
together with 0. This simplicity suggests that indeed π is very closely related
to the finite field logarithm. Nevertheless, we could not find a meaningful arith-
metic expression or simple circuit for computing it.

The second decomposition is “lighter” then the first one, because it contains
less information-heavy elements, as the large part of the complexity is taken
away by the finite field logarithm. The relation between the two decompositions
is also not clear. The first decomposition can be seen as an implementation of
the finite field logarithm using operations in the smaller field, F24 . This is
similar to the Canright’s implementation of the AES S-Box [Can05], the finite
field inversion. Note however, that the finite field logarithm itself does not
have a TU-decomposition. It is the extra part of π that activates this multiset
property. There is also a possibility that both decompositions are a side effect
of another algebraic construction.
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This chapter shows usefulness of the following S-Box reverse-engineering
tools:

1. Jackson-Pollock representation of the LAT for visual patters.

2. TU-decomposition as initial step and high-level decomposition.

3. Affine-equivalence algorithms.

It also shows different methods of simplifying complicated structures and random-
looking components. The ways of reasoning employed to obtained the decom-
positions of π are proved to be useful again in Chapter 5, where it is shown
that mathematical structures can also be decomposed using S-Box reverse-
engineering methods.
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Almost Perfect Non-linear (APN) permutations are bijective S-Boxes with
optimal resistance against differential cryptanalysis. The existence of APN
permutations in even dimensions was a long-standing problem until Dillon et
al. discovered a 6-bit APN permutation [BDMW10,Dil09] and presented it in
2009. Since then, no new APN permutation with even number of bits were
discovered, neither their existence was disproved. This question remains a big
open problem in the field of Boolean functions. In this chapter, I describe
an application of S-Box reverse-engineering methods to the only known APN
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permutation in even dimension. As a result, a simple algebraic structure of
the Dillon’s permutation is discovered, which we call the Butterfly structure.
The result leads to much simpler representations of the permutation, which are
further generalized to higher dimensions. Though, no new APN permutations
are found.

This chapter highlights the usefulness of the S-Box reverse-engineering meth-
ods for obtaining decompositions of S-Boxes.

5.1 Introduction
S-Boxes are used to provide non-linearity in SPN-based block ciphers. They
provide basic resistance against linear and differential cryptanalysis, and the
rest of the structure ensures that many S-Boxes are activated in a linear or
differential trail. The resistance of an S-Box can be quantified. The lower are
the linearity and the differential uniformity of an S-Box, the more resistant it
is. Everything else being equal, a stronger S-Box allows to use less rounds in
the block cipher using it for the same security level.

The differential uniformity is always even and at least equal to 2. When this
bound is achieved, the S-Box is called Almost Perfect Non-linear (APN). The
finite field cube function is APN in all field dimensions [Nyb93]. However, it is a
permutation only in odd dimensions. This is a problem, since in most cases (e.g.
an SPN block cipher) the S-Boxes are required to be bijective. For efficiency
reasons, even-dimensional S-Boxes are preferable, especially powers of 2. And
this is exactly the case, where the existence of APN functions is not established:
bijective S-Boxes in even dimensions with differential uniformity 2, i.e. APN
permutations of Fn2 for n even. For n = 4 there exist no APN permutations
of Fn2 . For n = 6 this question was a long standing problem until Dillon et al.
presented a 6-bit APN permutation [BDMW10,Dil09] in 2009. Since then, no
answers were obtained for even n ≥ 8, despite many attempts [Göl15,TCT15].
This remains a big open problem in the field of Boolean functions.

The 6-bit APN permutation is found by a computer search, by transforming
the 6-bit APN function, called the Kim mapping κ : F26 → F26 :

κ(x) := vx24 + x10 + x3,

where v is a primitive element of F26 . Even though the Kim mapping is a
trinomial function, the resulting APN permutation is an object without clear
structure. For example, its polynomial form contains 52 monomials.

Using the methods of S-Box reverse-engineering described in previous chap-
ters (developed in [BPU16]), I and my coauthors managed to find a simple
algebraic structure of the Dillon’s APN permutation. We call this structure a
“Butterfly” because of its graphical representation the way it changes by particu-
lar transformations. The decomposition is established in Theorem 5.9, restated
here:

Main theorem (A Family of 6-bit APN Permutations). The 6-bit
permutation described by Dillon et al. in [BDMW10] is affine equivalent to any
involution built using the structure described in Figure 5.1, where � denotes
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A
A−1

�α
⊕

⊕
3 bits

A
A

�α
⊕

⊕

Figure 5.1: A family of APN permutations affine equivalent to the
Dillon’s permutation.

multiplication in the finite field F23 , α 6= 0 is such that tr(α) = 0 and A denotes
any 3-bit APN permutation.

5.1.1 Notations

For any f : Fn2 → Fn2 let Pf : F2n
2 → F2n

2 be the parallel application of f given by

Pf (x, y) = (f(x), f(y)).

For any a, b ∈ Fn2 let Xf : F2n
2 → F2n

2 be parallel xor with constants a, b:

Xf (x, y) = (x⊕ a, y ⊕ b).

The finite field trace function is denoted by Tr : F2n → F2, it is given by

Tr(x) :=
n−1∑
e=0

xe.

5.1.2 Outline

Section 5.2 explains the decomposition process of the APN permutation. In Sec-
tion 5.3 I describe new properties of the APN permutation that follow from the
discovered structure. Section 5.4 studies the flexibility of the structure, i.e. how
can we modify the structure while preserving the APN property? In Section 5.5
I show new relations between the APN permutation, the Kim mapping, mono-
mial functions and 3-round Feistel Network structure. Finally, I briefly conclude
the chapter in Section 5.6.

5.2 Decomposition of the 6-bit APN permuta-
tion

Let S0 be the APN permutation of F6
2 proposed in [BDMW10]. The look-up

table of S0 is given in Table 5.1.
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.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .A .B .C .D .E .F

0. 00 36 30 0D 0F 12 35 23 19 3F 2D 34 03 14 29 21

1. 3B 24 02 22 0A 08 39 25 3C 13 2A 0E 32 1A 3A 18

2. 27 1B 15 11 10 1D 01 3E 2F 28 33 38 07 2B 2C 26

3. 1F 0B 04 1C 3D 2E 05 31 09 06 17 20 1E 0C 37 16

Table 5.1: The Dillon APN permutation S0 in hexadecimal (e.g. S0(10) = 3B).

(a) LATS0 (b) LATη>◦S0

Figure 5.2: The absolute LAT of S0 and η>◦S0. White, grey and black
pixels correspond to 0, 8 and 16 respectively.

5.2.1 TU-decomposition

The first step to the decomposition of S0 completely resembles the reverse-
engineering of the GOST S-Box. We start by looking at the visualization of
the LAT of S0 (see Figure 5.2a). In the same way, there are 7 special columns
and their indices (i.e., the linear masks defining the coordinates of S0) together
with 00 form a 3-dimensional linear subspace V ⊆ F6

2:

V = {00, 04, 0A, 0E, 10, 14, 1A, 1E} = span(04, 0A, 210).

Following the same path as in Chapter 4, we compose S0 with a linear map to
“move” the special lines to the left. Let η ∈ GL6(F2) be such that

η(01) := 04, η(02) := 0A, η(04) := 10,

η(08) := 01, η(10) := 02, η(20) := 20,

where the first 3 values correspond to the basis of V and the last 3 values
were chosen arbitrarily to complete the map to bijection. As a result, the
special columns are aligned to the left in the LAT of η> ◦ S0, see Figure 5.2b.
Furthermore, a clear square-based structure emerged in the LAT. Note that in
the case of the GOST S-Box, the lines of the LAT had also to be reordered,
and the inverse of the same linear mapping accidentally could be used to do
it. Here, only the output of the S-Box has to be composed with a linear map.
Indeed, already a white 8 × 8 square is observed in the top-left corner. In the
decomposition of the GOST S-Box, it suggested multiset properties which led
to the high-level TU-decomposition. The same decomposition is obtained for
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T

U

(a) TU-decomposition

0 1 2 3 4 5 6 7
T0 0 6 4 7 3 1 5 2
T1 7 5 1 6 4 2 0 3
T2 4 3 2 0 5 6 1 7
T3 3 5 2 1 4 6 7 0
T4 1 2 0 6 4 3 7 5
T5 6 5 2 4 7 0 1 3
T6 5 2 6 4 0 3 1 7
T7 2 0 1 6 5 3 4 7

(b) T

0 1 2 3 4 5 6 7
U0 0 3 6 4 2 7 1 5
U1 7 4 0 2 3 6 1 5
U2 1 4 2 6 3 0 5 7
U3 7 2 5 1 3 0 4 6
U4 7 3 4 1 0 2 6 5
U5 3 7 1 4 2 0 5 6
U6 1 3 7 4 6 2 5 0
U7 4 6 3 0 5 1 7 2

(c) U

Figure 5.3: The TU-decomposition of η> ◦ S0.

S0 as well.

Proposition 5.1 (TU-decomposition of η> ◦ S0). There exist 16 permutations
T0, . . . , T7, U0, . . . , U7 of F3

2 such that for all l, r ∈ F3
2

η> × S0(l, r) =
(
UTr(l)(r), Tr(l)

)
.

The codebooks of the keyed permutations T and U are given in Figure 5.3.

The algebraic degrees of the functions (x, k) 7→ Tk(x) and (x, k) 7→ T−1k (x)
are 3 and 2 respectively. For U , the respective degrees are 2 and 3. This
observation suggests that U and T−1 should be easier to decompose and that
these keyed permutations may be related. We applied the linear equivalence
algorithm from [BCBP03] to the mappings (x, k) 7→ (T−1k (x), k) and (x, k) 7→
(Uk(x), k) and found that they are linearly related.

Proposition 5.2 (Linear Equivalence of T−1 and U). Let T, U be permutations
of F6

2 given by

T (x, k) := (Tk(x), k), U(x, k) := (Uk(x), k).

Let MU ,M
′
U ∈ GL8(F2) be given by

MU :=


0 1 1 0 1 0
1 0 0 0 1 0
0 0 1 0 1 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 1 1

 , M ′
U :=


1 1 0 0 0 0
0 1 0 0 1 0
1 0 1 1 1 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 1 1

 .

Then
U = M ′

U ◦ T−1 ◦MU .

Since T−1 and U are linear-equivalent, it is enough to decompose one of
them. Since the linear layer η> was applied at the output side, it could “ob-
fuscate” some algebraic structure in U . Therefore, we choose to decompose
T−1. Afterwards, the two decompositions will be joined and the linear layer in
between will be simplified.
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T ′−1

t⊕

(a) Detaching a lin-
ear Feistel round.

L

t

N

⊕

⊕

(b) Splitting T ′−1 into N
and L.

L

t

I

p

p−1

⊕

⊕

(c) Simplifying N into I
and linear functions.

Figure 5.4: Simplifying the keyed permutation T ′−1.

0 1 2 3 4 5 6 7 Interpolation polynomial

T ′−10 0 5 7 4 2 6 1 3 w3x6 + w1x5 + w3x4 + w6x3 + w1x2 + 0 x
T ′−11 0 3 1 4 7 5 2 6 w3x6 + w1x5 + w7x4 + w6x3 + w2x2 + w1x
T ′−12 0 4 5 7 3 6 2 1 w3x6 + w1x5 + 0 x4 + w6x3 + 0 x2 + 0 x
T ′−13 0 2 3 7 6 5 1 4 w3x6 + w1x5 + w1x4 + w6x3 + w4x2 + w1x
T ′−14 0 2 5 1 7 4 6 3 w3x6 + w1x5 + w3x4 + w6x3 + 0 x2 + w6x
T ′−15 0 4 3 1 2 7 5 6 w3x6 + w1x5 + w7x4 + w6x3 + w4x2 + w5x
T ′−16 0 3 7 2 6 4 5 1 w3x6 + w1x5 + 0 x4 + w6x3 + w1x2 + w6x
T ′−17 0 5 1 2 3 7 6 4 w3x6 + w1x5 + w1x4 + w6x3 + w2x2 + w5x

Table 5.2: The codebook and polynomial representation of each T ′−1k .

5.2.2 Decomposition of T−1

Step 1. Similarly to the decomposition process of the GOST S-Box, we “detach”
a Feistel function from T in order to obtain a new keyed permutation T ′ such
that T ′k(0) = 0 for all k ∈ F3

2. Detaching such function at the input and at the
output of T−1 leads to the Feistel functions t and t̂ respectively, a permutations
of F3

2 given by
t(k) := Tk(0), t̂(k) := T−1k (0).

t is linear and t̂ has algebraic degree 2. We conclude that detaching t at the
input of T−1 leads to simpler decomposition. Let T ′0, . . . , T ′7 be permutations of
F3
2 given by, for any k ∈ F3

2,

T ′k(x) := Tk(x)⊕ t(k).

The result of this step is shown in Figure 5.4a.
Step 2. Due to the algebraic nature of the S-Box, we may expect an

algebraic structure. We consider the field

F23 ' F2[w]/(w3 + w + 1),

The primitive element w will be used to express field elements. As was noted in
Chapter 2, from now on the isomorphism between F3

2 and F23 will be implicit.
We now apply Lagrange interpolation method to each permutation T ′−1k to
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obtain its polynomial representation, see Table 5.2. It is clear that the coeffi-
cients of the nonlinear part (i.e. the coefficients of x3, x5, x6) are independent
of k for each T ′−1k . This leads to the following proposition, illustrated in Fig-
ure 5.4b.

Proposition 5.3. Let N be a permutation of F3
2 given by its polynomial repre-

sentation in F23: N(x) := w3x6 + w1x5 + w6x3. Let L0, . . . , L7 be permutations
of F3

2 given by
Lk(x) := T ′−1k (x)⊕N(x).

Then for any k ∈ F3
2, Lk is linear.

Step 3. We continue by simplifying the nonlinear function N . We do so by
composing a linear bijection of our choice with N and Lk. Its inverse will then
merge to the outer linear layer. It turns out that N can be transformed into
the finite field inverse function, which we denote I : F3

2 → F3
2. Its polynomial

representation is
I(x) = x6.

Proposition 5.4. Let p ∈ GL3(F2) be given by its F23-polynomial

p(x) := w2x4 + x2 + x.

Then
p(N(x)) = x6 = I(x)

is the inversion in the finite field, and also for all k ∈ F3
2

p(Lk(x)) = l2(k + w)x2 + l4(k + w)x4,

where l2, l4 ∈ GL3(F2) are given by

l2(x) := wx4 + w2x2 + x,

l4(x) := x4 + w4x2 + wx.

Note that k+w was used because L2 = 0 (w corresponds to 2), so that l2 and
l4 are linear. The composition of p with N and Lk is illustrated in Figure 5.4c.

Step 4. The next step is to simplify the linear bijections l2 and l4. By
composing l2 with an arbitrary linear bijection q ∈ GL3(F2), an arbitrary linear
bijection may be obtained. However, l4 has to be composed with the same linear
map q. Therefore, q should simplify both l2 and l4. By exhaustive search of q,
we found q such that l2(q(x)) = x4, l4(q(x)) = x2. These expressions lead to a
simple expression for p ◦ Lk, as it is shown by the following proposition.

Proposition 5.5. Let q ∈ GL3(F2) be given by its F23-polynomial:

q(x) := w3x4 + w5x2 + w3x.

Then, for all x ∈ F23,

p(T ′−1k (x)) = x6 + x2k′4 + x4k′2 = (x+ k′)6 + k′6, (5.1)
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L

t

I

p
⊕

⊕
2

q1 q−1 ⊕
2

⊕

(a) Using k′ = q(k)⊕ 2.

t

I
I⊕

q−1 ⊕
2

⊕
⊕

(b) Using Equation 5.1.

Figure 5.5: Simplifying p ◦L (and p−1 ◦ T ′−1). The dashed area corre-
sponds to the application of Equation 5.1.

t
q−1
5

I
I

5
q

(a)

q−1

I

qt⊕
⊕
⊕5 ⊕5

I⊕

(b)

q−1

I

z⊕
⊕5 ⊕5

I⊕

(c)

Figure 5.6: Merging affine mappings in the decomposition of T−1.

where k′ = q−1(k + w).

Proof. Recall that

p(T ′−1k (x)) = x6 + l2(k + w)x2 + l4(k + w)x4,

where
l2(k + w) = l2(q(q

−1(k + w))) = (q−1(k + w))4 = k′4.

Similarly, l2(k + w) = k′2.

The graphical representation of the effect of this proposition is shown in
Figure 5.5.

Step 5. The final step is to simplify the affine layers. The application of q′
and the addition of w can be moved from the Feistel function into the input and
output linear layers of T ′−1. The output affine layer of T ′−1 can be omitted,
since it corresponds to an S-Box affine-equivalent to S0. The simplification
process is illustrated in Figure 5.6.

Proposition 5.6 (Decomposition of T ′−1). For all x, k ∈ F23,

T−1k (x) = p−1(k′6 + (x+ k′′)6),



5.2. Decomposition of the 6-bit APN permutation 87
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(a) Joining the decompo-
sitions of T and U .
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M
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(b) Merging linear layers.

I
I
a a

M

b b

I
I

(c) Allowed transforma-
tions.

Figure 5.7: Simplifying the middle affine layer. The linear mappings in
the dotted area in Figure 5.7a form the linear layer M .

where

k′ = q−1(k)⊕ w6,

k′′ = z(q−1(k))⊕ w6,

z ∈ GL3(F2), z(y) := t(q(y)) + y. q ∈ GL3(F2), q(y) := w3y4 + w5y2 + w3y.

Proof. Recall that
T−1k (x) = T ′−1k (x⊕ t(k)).

Together with Proposition 5.5, it is enough to have

k′′ = k′ ⊕ t(k).

This is true, because

k′ = q−1(k ⊕ w) = q−1(k)⊕ w6,

k′′ = z(q−1(k))⊕ w6 = t(k)⊕ q−1k ⊕ w6.

5.2.3 Combining T and U

We can now obtain a decomposition of full S0. Recall that

U = M ′
U ◦ T−1 ◦MU .

The decomposition of T follows from the decomposition of T−1 by inverting q in
the middle. We omit all outer affine maps and merge the inner linear maps into
one linear transformation of F6

2. The resulting structure is given in Figure 5.7a,
Figure 5.7b.
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Proposition 5.7. The APN permutation S0 is affine-equivalent to the structure
given in Figure 5.7b. Formally, let V be the permutation of F3

2 × F3
2 given by

V (x, k) = (I(x⊕ I(k)), k),

and let M ∈ GL6(F2) be given by its matrix:

M =


1 0 1 1 1 1
1 1 0 0 1 0
0 0 1 1 1 0
1 1 0 1 0 1
1 1 1 1 1 0
1 0 1 0 0 1

 .

Then the permutation SM of F6
2 defined as SM := V −1 ◦X5,5 ◦M ◦X5,5V is APN

and is affine-equivalent to S0.

Proof. The proposition follows form the TU-decomposition of S0, decomposition
of T−1 and linear relation between T−1 and U . Furthermore, M is obtained
through composition including linear maps q, q−1, z and MU .

We further studied how the middle affine layer can be changed while pre-
serving the APN property. It turns out that, for affine layers a, b : F3

2 → F3
2,

applying a to both branches before M and applying b to both branches after M
always leads to an APN permutation affine-equivalent to S0. This is formally
stated and proved in Section 5.4.1.

We observe that removing the constant addition (i.e. X5,5) from the struc-
ture does not break the APN property. Therefore, it is left to simplify the linear
map M . By exhaustive search over linear maps a, b ∈ GL3(F2) we found that
M can be transformed into a 2× 2 matrix over F23 .

Proposition 5.8. Let V be defined as in Proposition 5.7. Let M ′ ∈ GL2(F23)
be given by:

M ′ :=

[
w,w6,
1, w

]
.

Then the permutation SM ′ of F6
2 defined by

SM ′ := V −1 ◦M ◦ V

is APN.

Proof. Let a, b ∈ GL3(F2) be given by F23-polynomials:

a(x) = wx4 + wx2 + w2x,

b(x) = wx4 + w3x2 + wx,

Then,
M ′ = Pb ◦M ◦ Pa.

According to Theorem 5.10, SM ′ is APN.
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Figure 5.8: The APN involution SI .

Observe that M ′ happens to be an involution, making SM ′ an involution
too due to its symmetric structure. Furthermore, M ′ can be decomposed as a
two-round Feistel Network with multiplication by w as the Feistel function. The
following theorem finalizes our decomposition, which is illustrated in Figure 5.8.

Theorem 5.9 (Decomposition of S0). Let W, swap be permutations of F3
2 × F3

2

given by their bivariate F23-polynomials:

W (x, k) = ((x+ wk)6 + k6, k), swap(x, k) = (k, x).

Then the permutation SI of F6
2 given by

SI := W ◦ swap ◦W−1

is an APN involution and is affine-equivalent to S0:

S0(x) = B(SI(A(x)⊕ 9)⊕ 4,

where A,B ∈ GL6(F2) are given by

A =


1 1 0 1 0 1
1 1 1 1 0 0
1 0 0 0 0 0
0 0 0 1 0 1
0 0 0 1 0 0
0 0 0 1 1 0

 , B =


0 1 1 1 0 1
0 0 0 0 0 1
0 0 1 1 1 0
0 0 0 1 1 1
0 0 1 0 1 0
1 0 1 1 0 1

 .

5.3 Properties of the Decomposition

5.3.1 Cryptographic Properties

The decomposition uncovers an interesting property of the 6-bit APN permuta-
tion S0: it is affine-equivalent to a 6-bit APN involution SI . The DDT and the
LAT of the involution SI are illustrated in Figure 5.9 (the DDT of swap◦SI◦swap
is illustrated, because it has clearer structure). SI has differential uniformity
2 and its linearity is 16. The left and right halves of the output of SI have
algebraic degree 4 and 3 respectively.
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(a) DDT of swap ◦ SIswap (white: 0,
black: 2).

(b) LAT of SI (white: 0, grey: 8, black:
16).

Figure 5.9: The DDT and the LAT of SI .

We used the algorithm from [BCBP03] to find all pairs of affine self-equivalence
mappings, i.e. maps A,B ∈ GA6(F2) such that SI = B ◦ SI ◦ A. In [BCBP03]
it was suggested as a measure of symmetry of the permutation. The number of
such pairs is invariant under affine-equivalence. Therefore, the decomposition is
not necessary to count them. On the other hand, the decomposition shows that
these maps have a simple expression. Let (a, b) ⊗ (c, d) := (ac, bd) denote the
component-wise F23-multiplication. Then, for each λ ∈ F23 , λ 6= 0 the following
holds for all x, y ∈ F23 :

SI(λx, λ
−1y) = (λ, λ−1)⊗ SI(x, y).

That is, multiplying the input halves by λ and λ−1 is equivalent to multiplying
the output halves by λ and λ−1. In Section 5.5 it is shown that this property is
similar to a property that the Kim mapping has.

5.3.2 Univariate Representations

In this section I show that there exist 6-bit APN permutations with simpler
univariate polynomials, than a random permutation or the Dillon’s APN per-
mutation has. These results are based on interpolating the involution SI in
F26 ' F23 × F23 using different field basis. This is done by composing SI with
linear maps corresponding to the basis change. All polynomial presented in this
section are defined over F26 ' F2[v]/(v6 + v4 + v3 + v+ 1), where v is primitive.

Single polynomial. In [BDMW10], the APN permutation was given as a
univariate polynomial over F26 with 52 nonzero coefficients. Our decomposition
allows to obtain an APN permutation from 25 monomials. The permutation s
of F26 given by

s(x) = x58 + x51 + x44 + x37 + v27x36 + v38x32 + x30

+ v53x28 + v7x25 + v51x24 + x23 + v53x21 + v7x18 + v24x17

+ v7x16 + v46x14 + v7x11 + v4x10 + x9 + v22x8 + v46x7

+ v3x4 + v50x3 + v56x2 + v52x

is APN.
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Composition of 2 polynomials. Dillon et al. also represented S0 as the
composition S0 = f2 ◦ f−11 , where polynomials f1 and f2 contain 18 monomials
each. Using our decomposition, we found more compact polynomials. Let f ′1, f ′2
be permutations of F26 given by

f ′1(x) = v11x34 + v53x20 + x8 + x,

f ′2(x) = v28x48 + v61x34 + v12x20 + v16x8 + x6 + v2x.

Then f ′2 ◦ f ′−11 is an APN permutation.
Composition of 3 polynomials. Finally, the representation becomes even

simpler if 3 functions are used in the composition. Let i,m be permutations of
F26 given by

i(x) = v21x34 + x20 + x8 + x, m(x) = v52x8 + v36x.

Then i ◦m ◦ i−1 is an APN permutation. Similarly, let i′,m′ be permutations
of F26 given by

i′(x) = v37x48 + x34 + v49x20 + v21x8 + v30x6 + x, m′(x) = x8.

Then i′ ◦ m′ ◦ i′−1 is also an APN permutation. These decompositions are
obtained by interpolating parts of the decomposition separately. i and i′ corre-
spond to the part with the inverses and m,m′ correspond to the central linear
layer.

5.4 Modifying Components
In this Section I study flexibility of the decomposition and of the discovered
structure. What can be changed without breaking the APN property?

5.4.1 Propagation of Affine Mappings through the Com-
ponents

Recall the decomposition from Proposition 5.7 (Figure 5.7b). It is easy to check
experimentally, that changing the xor constant or removing it does not break
the APN property. Furthermore, the resulting permutation is affine-equivalent
to S0. It is not trivial to see how the constant xor goes through the nonlinear
finite field inversions to the outside affine-equivalence maps. Furthermore, we
observed experimentally, that changing the finite field inverse to an arbitrary
3-bit APN permutation (on the left branch in the first half of the structure
its inverse must be used to preserve symmetry) leads to affine-equivalence with
S0 again. This property will be explained further in Section 5.4.3. From this
observations we deduced the following theorem.

Theorem 5.10. Let V be the permutation of F3
2 × F3

2 given by

V (x, k) := (I(x⊕ I(k)), k).
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Let L ∈ GL6(F2) be given by a 2× 2 block matrix:

L :=

[
L1,1 L1,2

L2,1 L2,2

]
,

where Li,j ∈ F3×3
2 and L1,2 ∈ GL3(F2).

Then, for any al, ar, bl, br ∈ F3
2, A,B ∈ GL3(F2), the permutations S, S ′ of

F6
2 given by

S := V −1 ◦ L ◦ V,
S ′ := V −1 ◦Xbl,br ◦ PB ◦ L ◦ PA ◦Xal,ar ◦ V,

are affine-equivalent. The structures of S, S ′ are illustrated in Figure 5.10.

I
I

L

I
I

I
I

al ar
A A

L
B B

bl br
I

I

Figure 5.10: Affine-equivalent structures.

Proof. Part 1: constants. Consider the case when A and B are identity
mappings. Let a′r, b′r ∈ F3

2 be given by

a = ar ⊕ L−11,2(L1,1(al)⊕ bl),
b = br ⊕ L2,1(al)⊕ L2,2(L

−1
1,2(L1,1(al)⊕ bl)).

It is easy to verify that L(0, a) ⊕ (0, b) = L(al, ar) ⊕ (bl, br). Therefore, it is
enough to consider the constants on the right branches:

Xbl,br ◦ L ◦Xal,ar = X0,b ◦ L ◦X0,a.

This transformation is illustrated in Figure 5.11a and Figure 5.11b.
It is left to show that the constant propagates through the Feistel function,

the field inverse. Indeed, observe that

I(x⊕ b) = (x+ b)6 = x6 + b2x4 + b4x2 + b6 = I(x)⊕ ib(x),

where ib ∈ GA3(F2) is an affine map. It can be also explained by the fact that
Ix is quadratic and therefore, all its derivatives are linear. ib can be considered
as an additional Feistel round, which is a part of the outer affine mapping. This
transformation is shown in Figure 5.11c and Figure 5.11d. It can be equivalently
applied to the other part of the structure to propagate the constant a outside
the structure.
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al ar

L
bl br

(a)

a

L

b

(b)

b
I
(c)

I
ib

b

(d)

Figure 5.11: Propagating the constant XOR from the central layer to
the outside affine layers.

B

I
=

I

B′

(a) Linear, B(x) = λx2
e

B

c = τ 5B

I
=

I

B′

c′ = τ 2B

(b) Affine, arbitrary B ∈ GL3(F2)

Figure 5.12: Propagation of linear/affine maps through the finite field
inverse (only F23).

I conclude that arbitrary constants can be added around the central linear
layer, without changing the affine-equivalence class.

Part 2: linear layers. Consider first the propagation of a linear map
L ∈ GL3(F2) through the finite field inverse I. It can be verified exhaustively
that the only linear maps that propagate through the inverse (i.e. a linear map
B such that I ◦ B = B′ ◦ I and B′ ∈ GA6(F2)) are the maps of the form
x 7→ λx2

e , where λ ∈ F3
2, e ∈ {0, 1, 2}. Indeed, I(λx2

e
) = λ6(x6)2

e
= λ6I(x)2

e .
This propagation is illustrated in Figure 5.12a.

How do other linear maps propagate then? It turns out that an addition of
constant is needed in order to propagate an arbitrary linear map. Interestingly,
this phenomenon seems to work only in F23 . For example, in F24 ,F25 the only
affine mappings that propagate through the field inverse into an affine mapping
are those of the form x 7→ λx2

e . The following observation was deduced and
verified experimentally. Its effect is illustrated in Figure 5.12a.

Observation 5.11. Let B ∈ GL3(F2) be given by its F23 polynomial:

B(x) := λ4x
4 + λ2x

2 + λ1x.

Let

τB := λ1λ2λ4 ∈ F23 ,

c := (τB)5 ∈ F23 ,

c′ := (τB)2 ∈ F23 ,

B′ := c′ ⊕ (I ◦ (B ⊕ c) ◦ I) , B′ : F23 → F23 .

Then, B′ is linear, i.e. B′ ∈ GL3(F2). By construction, it is such that

I ◦ (B ⊕ c) = (B′ ⊕ c′) ◦ I.



94 Chapter 5. Decomposition of the 6-bit APN Permutation

L
x y

B B
c = τ 5B c = τ 5B

I
I

x′ y′

L
x y

I
I

B′ B

0 c = τ 5B
x′ y′

Figure 5.13: Propagation of affine mappings through the inverses. The
dashed area contains the outer affine parts.

Furthermore, such c is uniquely determined by the mapping B. That is, for
any other ĉ 6= c, the mapping

I ◦ (B ⊕ ĉ) ◦ I

is never affine.

This observation sheds light on how arbitrary linear maps propagate through
the inverse function. Note that the linear map

L′ := PB ◦ L ◦ PA ∈ GL6(F2)

satisfies the conditions of this theorem, namely that the top-right 3× 3 subma-
trix of L′ is invertible. Therefore, the constants al, ar, bl, br can be arbitrarily
modified. Let us change them to τ 5A, τ 5A, τ 5B, τ 5B respectively. Let x, y ∈ F3

2 denote
the output of the central linear layer L, and let x′, y′ ∈ F3

2 denote the output of
the map S ′. The placement of these variables is shown in Figure 5.13. Observe
that

y′ := B(y)⊕ τ 5B,
x′ := I(B(x)⊕ τ 5B)⊕ I(B(y)⊕ τ 5B).

By Observation 5.11, there exists B′ ∈ GL6(F2) such that

x′ = B′(I(x))⊕ τ 2B ⊕B′(I(y))⊕ τ 2B = B′(I(x)⊕ I(y)).

The propagation of the linear map A to the input affine layer is symmetric.
This concludes the proof.

5.4.2 Modifying the Central Linear Layer

In Theorem 5.9 it was shown the permutation

SI := V −1 ◦M ◦ V,
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σ

σ

(a) The linear layer
from the decomposi-

tion

A A

σ

σ

B B

(b) Applying arbitrary
linear bijections A and B

AσA−1

AσA−1

A A

B B

(c) Moving the linear func-
tions A down

Figure 5.14: Propagation of the linear function A through the middle
linear layer.

where M :=

[
w w6

1 w

]
∈ GL2(F23), is APN. Such M has a 2-round Feistel

network structure:

M(l, r) = (r + w(l + wr), l + wr).

The next proposition shows which Feistel functions can be used instead of mul-
tiplication by w.

Proposition 5.12. Let Mσ ∈ GL6(F2) be a 2-round Feistel network with σ ∈
GL3(F2) as the Feistel function. Its 2× 2 block matrix is

Mσ =

[
σ I3×3 ⊕ σ2

I3×3 σ

]
.

Then the permutation Sσ of F6
2 given by

Sσ := V −1 ◦Mσ ◦ V

is APN if and only if σ is similar to the matrix of multiplication by w in F23.
In particular, σ can be set to the matrix of multiplication by c ∈ F23 such that
c 6= 0 and Trc = 0, independently of the choice of the field defining polynomial.

Proof. By Theorem 5.10,Mσ with σ(x) = wx can be composed with PA and PB
for arbitrary A,B ∈ GL3(F2). Observe that PA propagates through the Feistel
network (see Figure 5.14:

PB ◦Mσ ◦ PA = PB×A ◦MA−1×σ×A.

Setting B = A−1 proves that σ can be replaced by any similar linear mapping.
The fact that using another maps for σ does not lead to an APN permutation
can be verified experimentally exhaustively.

Since multiplication by w works, it follows that multiplication by w2 and
w4 work too, as all these are similar linear maps. In the finite field F23 '
F2[w

′]/(w′3 +w′2 + 1), such constants form the set {w′3, w′5, w′6}. Observe that
all this elements can be identified unambiguously with Trc = 0, c 6= 0. There
are no other irreducible polynomials of degree 3 over F2.
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I
I α

αI
I

(a) No swaps

I
I α

αI
I

(b) Swap after

I
I α

αI
I

(c) Swap before

I
I α

αI
I

(d) Both swaps

Figure 5.15: Four APN permutations from different affine-equivalence
classes, obtained by adding swaps before and/or after the central linear

layer.

Besides modifying the Feistel function and composing PB from one side,
for arbitrary B ∈ GL3(F2), there are another ways of modifying the central
linear layer without breaking the APN property. We performed an exhaustive
search over all invertible matrices L ∈ GL6(F2), optimized by exploiting the
equivalence classes given by Theorem 5.10. By analyzing the results, we deduced
that the branch swap function swap can be appended and/or prepended to the
linear layer L without breaking the APN property. However, on the contrast
with transformations from Theorem 5.10, inserting these swaps results in APN
permutations from different affine-equivalence classes. Though, all such APN
permutations lie in the same CCZ-equivalence class. The 4 resulting affine-
inequivalent APN permutation classes are represented in Figure 5.15.

Observation 5.13. Let M ∈ GL6(F2) be defined as in Theorem 5.9. Then the
permutation SM ′ of F6

2 given by

SM ′ := V −1 ◦M ′ ◦ V

is APN if
M ′ ∈ {M, swap ◦M,M ◦ swap, swap ◦M ◦ swap} .

5.4.3 Modifying the Inverse Mapping

In previous sections I showed how flexible is the linear layer in the decompo-
sition. It is left to show how the nonlinear part, i.e. the finite field inverse
function, can be modified without breaking the APN property. The following
proposition shows that, in fact, any 3-bit APN permutation can be used instead.

Proposition 5.14. Let A,B be 3-bit APN permutations. Let VA, VB be permu-
tations of F6

2 defined by

VA(x, k) := (A−1(x⊕B(k)), k),

VB(x, k) := (B−1(x⊕B(k)), k).

Let M be any linear map from Observation 5.13. Then the permutation SA,B
of F6

2 given by
SA,B = V −1B ◦M ◦ VA
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is APN.

Proof. This proposition relies on the fact that all 10752 APN permutations of F3
2

are all pairwise affine-equivalent, established experimentally. By Theorem 5.10,
we can compose M with PC for arbitrary C ∈ GA3(F2). Let µ, η ∈ GA3(F2) be
such that

B = η ◦ I ◦ µ.
It follows that

Pη ◦ V −1 ◦ Pµ(x, k) =
(
η ◦ I ◦ µ(x)⊕ η ◦ I ◦ µ(k), η ◦ µ(k)

)
= R ◦ V −1B ,

where R ∈ GA6(F2), R(x, k) := (x, η ◦µ◦ (k)). By applying the same method to
VA, we show that SA,B is affine-equivalent to SI and is an APN permutation.

5.5 Relations with other Maps

5.5.1 Butterfly Structure

The structure discovered in the 6-bit APN permutation can be naturally gen-
eralized to arbitrary dimensions. In order to keep the algebraic properties, we
restrict the nonlinear components to monomial functions in the finite field.

Definition 5.15 (Butterfly Structure). Let n be an integer, n ≥ 3, let α ∈ F2n,
e be an integer such that x 7→ xe is a permutation of F2n. Let re,α, Re,α be
defined as

re,α : F2n × F2n → F2n ,

re,α(x, k) = (x+ αk)e + ke,

Re,α : F2n × F2n → F2n × F2n ,

Re,α(x, k) = (re,α(x, k), k).

We call Butterfly Structures the mappings of F2n × F2n to itself defined as
follows:

• the Open Butterfly with branch size n, exponent e and coefficient α is the
permutation denoted Hα

e defined by:

Hα
e = Re,α ◦ swap ◦R−1e,α.

• the Closed Butterfly with branch size n, exponent e and coefficient α is
the function denoted Vα

e defined by:

Vα
e (x, y) =

(
re,α(x, y), re,α(y, x)

)
.

The butterfly structure was generalized and studied in consequent works [LTYW18,
CDP17, FFW17]. Many instances of this structure are proved to be differ-
entially 4-uniform, but no new APNs were found. Recently, Canteaut et al.
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(b) Closed (non-bijective) butterfly Vαe .

Figure 5.16: The two kinds of butterfly structure.

prove [CPT18] that the generalized butterfly structure is never APN for n > 6.
In this chapter I analyze only relations between the butterfly structure and
other mappings in F6

2.

Proposition 5.16. For all n, e, α, the structures H := Hα
e and V := Vα

e are
CCZ-equivalent.

Proof. Let ΓH and ΓV be the graphs ofH and V respectively. LetR := Re,α, r :=
re,α. Observe that

ΓV =
{(
x, y, r(x, y), r(y, x)

)
| x, y ∈ F23

}
,

ΓH =
{(
r(y, x), x, r(x, y), y

)
| x, y ∈ F23

}
.

Clearly, the graphs differ by a simple reordering of the 3-bit nibble and thus are
linear-equivalent.

5.5.2 Relations with the Kim Mapping

Recall the Kim mapping κ : F26 → F26 :

κ(x) := vx24 + x10 + x3,

where v is a primitive element of F26 . It is CCZ-equivalent to the Dillon’s APN
permutation. It turns out that the Kim mapping is actually affine-equivalent
to the closed butterfly Vw

6 , the closed version of SI = Hw
6 . This equivalence

sheds light on the structure of the CCZ-transformation applied by Dillon et
al. to the Kim map in order to obtain the APN permutation. Indeed, it can
be seen as “opening” the closed butterfly Vw

6 , in a particular field basis. Note
that Proposition 5.16 shows that Vw

6 (a quadratic APN function) can be CCZ-
transformed into Hw

6 (a degree-4 APN permutation) simply by reordering nibbles
in the function’s graph.

Observation 5.17. The functions Vw
6 and κ are affine-equivalent:

κ = B ◦ Vw
6 ◦ A,
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where A,B ∈ GL6(F2) are given by

A =


0 1 0 1 0 0
1 0 0 1 1 0
1 1 1 0 1 0
0 1 1 1 1 0
0 1 1 0 1 0
0 0 0 1 0 1

 , B =


0 1 0 0 1 0
1 0 1 0 0 1
0 1 1 1 1 0
0 1 0 1 0 0
0 0 1 0 0 1
1 1 0 1 0 1

 .

An anonymous reviewer of [PUB16] pointed out that the Kim mapping has
the following property: for all λ, x ∈ F23

κ(λx) = λ3κ(x).

The closed butterfly inherits this linear self-equivalence property, which is then
expressed in a bivariate way. The following proposition describes this expression
and generalizes the similar property of SI observed in Section 5.3.

Proposition 5.18 (Linear Self-Equivalence of Butterflies). For any n, e, α, the
closed butterfly Vα

e satisfies the following property: for all λ, x, y ∈ F2n

Vα
e (λx, λy) = (λe, λe)⊗ Vα

e (x, y).

Furthermore, the open butterfly Hα
e , when it is well-defined, satisfies the follow-

ing property: for all λ, x, y ∈ F2n

Hα
e (λex, λy) = (λe, λ)⊗ Hα

e (x, y).

Proof. The propagation of multiplications by λ can be easily traced through
the structures.

5.5.3 Relation with a 3-round Feistel Network

Consider butterfly structures with e = 1. The open butterfly with e = 1 (Fig-
ure 5.17a) is functionally equivalent to a 3-round Feistel network with Feistel
functions xe, x1/e, xe (Figure 5.17b). The closed butterfly with e = 1 (Fig-
ure 5.17c) is an interesting structure similar to the Lai-Massey structure.

Definition 5.19 (The Fe structure). Let n ≥ 1, and let e be an integer such
that xe is a permutation of F2n. The structure Fe is defined as a 2n-bit 3-round
Feistel network with round functions xe, x1/e, xe, where 1/e is the multiplicative
inverse of e modulo 2n − 1.

In [LW14] the authors notice that the 6-bit structure F3 is CCZ-equivalent to
the monomial mapping x5 of F23 to itself. We noticed that the closed butterfly
V1
5 is affine-equivalent to the monomial mapping x5. From CCZ-equivalence

of open and closed butterflies, we obtain a full proof of CCZ-equivalence of
the monomial mapping x5 and the Feistel network F3. We generalize these
observations in the following theorem.
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Figure 5.17: The equivalence between H1
e and Fe.

Theorem 5.20. Let n ≥ 3 be an odd integer and e = 22k + 1 for some pos-
itive integer k. Then the closed 2n-bit butterfly V1

e is linear-equivalent to the
monomial mapping x 7→ xe of F22n.

Corollary 5.21. Let n ≥ 3 be an odd integer and e = 22k + 1 for some k ∈ Z+,
such that the monomial x 7→ xe defines a permutation of F22n. Then the 2n-bit
Feistel Network Fe is CCZ-equivalent to this permutation.

Proof. Let us represent an element x of F22n by a linear polynomial x = au+ b
over F2n with multiplication modulo the irreducible polynomial u2 + u + 1.
Note that u2 = u + 1, u4 = u, . . . , u2

2k
= u, u2

2k+1 = u + 1. Then, by linearity
of x 7→ xe−1:

xe = (au+ b)e = (au+ b)e−1(au+ b) = aeue + ae−1ue−1b+ aube−1 + be

= (ae + ae−1b+ abe−1)u+ ae + be

= (be + (a+ b)e)u+ ae + be.

Note that (au+b) 7→ ((a+b)u+a) is a linear map. Therefore (au+b) 7→ (au+b)e

is linear-equivalent to

(ae + (a+ b)e)u+ be + (a+ b)e.

This expression is exactly the same as in the closed butterfly:

V1
e(a, b) = (ae + (a+ b)e, be + (a+ b)e)).

Therefore, Fe is linear-equivalent to H1
e. Finally, H1

e is CCZ-equivalent to V1
e,

whenever x 7→ xe defines a permutation.

5.6 Conclusions
In this chapter I described a decomposition of the 6-bit APN permutation,
which we obtained together with my colleagues Léo Perrin and Alex Biryukov.
The discovered structure is simple and algebraic: it is based on the finite field
arithmetics. We generalized this structure to larger dimensions, though no new
APN permutations were found. The decomposition also shed more light on the
process used to obtain it by Dillon et al.. Furthermore, many new interesting
properties and relations with other structures were observed.
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I would like to highlight main tools used to obtain the decomposition and
study it:

1. TU-decomposition. This tool is the most effective way to obtain a high-
level decomposition when it is possible.

2. Affine- and linear- equivalence algorithm from [BCBP03]. It helps to dis-
cover relations between different components and between parts of a single
component, e.g. between single permutations inside a keyed permutation.
The algorithm is also useful to find affine and linear- self-equivalence map-
ping pairs.

3. Polynomial interpolation in the finite field. This tool was particularly
useful due to the mathematical nature of the analyzed object.

4. Algebraic degree evaluation. In the decomposition process it makes sense
to choose steps that result in components of lower algebraic degree.

Unfortunately, no new APN permutations in even dimensions were found,
even though many natural generalizations emerged. Recently, Canteaut et al.
proved that a generalized butterfly structure is not APN for n > 6. Therefore,
the big APN problem is still unsolved:

Do there exist APN permutations of F2n for even n ≥ 8?
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Part II

Nonlinear Invariant Cryptanalysis
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In this part, I present the work I have done on cryptanalysis techniques based
on nonlinear invariants and, in particular, invariant subspaces. These techniques
were applied recently to several lightweight block ciphers [LAAZ11,TLS16] and
are studied actively [BCLR17,Bey18,WYWP18,BCL18].

First, I contributed to the analysis of the permutation used in the NORX
authenticated encryption, a third-round candidate of the CAESAR competi-
tion [Com19]. It is a joint work with Alex Biryukov and Vesselin Velichkov,
available as a report [BUV17]. We found symmetries on different levels of the
structure and verified the absence of nonlinear invariants of low degree in the G
function used in NORX8. One of the symmetries was independently discovered
in [CFG+17] and was used to attack the previous version of NORX.

Second, together with Christof Beierle and Alex Biryukov, we developed the-
oretical aspects of nonlinear invariants with respect to linear layers [BBU18]. We
studied whether quadratic invariant attacks from [TLS16] can be generalized
to higher degrees. As one of our results, we prove that there exist no bijec-
tive linear maps that preserve cubic invariants of the same form as in [TLS16].
We also show that such expanding linear maps exist and study the minimum
expansion rate. This work is currently available as a report [BBU18].
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In this chapter, I describe an analysis of the core permutation F of NORX [AJN16],
one of the fifteen authenticated encryption algorithms that have reached the
third round of the CAESAR competition [Com19]. I show that it has rota-
tional symmetries on different structure levels. This yields simple distinguish-
ing properties for the permutation, which propagate with very high probability
or even probability one. The stronger symmetry was independently discovered
by Chaigneau et al. in [CFG+17] and was used to attack a previous version of
NORX. The latest version of NORX is not susceptible to the attack. I describe
three attacks on slightly modified variants of NORX exploiting the discovered
symmetries.

I also propose an algorithm to prove absence of low-degree nonlinear invari-
ants based on the cycle decomposition of a permutation. I use it to prove that
there are no nonlinear invariants of a low degree in the 32-bit permutation G
used in NORX8.
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6.1 Introduction
CAESAR is a finished competition of authenticated ciphers aiming to select a
portfolio of ciphers suitable for different usage scenarios. NORX [AJN16] is one
of the fifteen candidates that have reached the third round. NORX is based on
the Monkey Duplex [BDPVA12a, BDPVA12c] construction which is a sponge
mode tailored for authenticated encryption schemes.

In this chapter, I report on some non-random properties of the NORX per-
mutation. More specifically, I show that it exhibits some rotational symmetries
on different structure levels. They yield simple distinguishing properties for the
permutation, which propagate with very high probability or even probability
one.

6.1.1 Outline

The rest of the chapter is organized as follows. I begin by briefly outlining the
NORX algorithm in Section 6.2. In Section 6.3, I describe rotational symmetric
properties in its core permutation, both at the state and at the word level and
show attacks on slightly modified versions of NORX exploiting these properties.
In Section 6.4, I propose an algorithm to search for nonlinear invariants of low-
degree from the cycle decomposition of a permutation and apply the algorithm
to the permutation G used in NORX8.

6.2 Description of NORX
NORX has a sponge structure and is based on the monkeyDuplex construction.
It uses ARX-like (Addition/Rotation/XOR) operations. More specifically, it is
inspired by the ChaCha stream cipher, where the addition operation is replaced
by its 1-st order approximation: x⊕ y ⊕ ((x&y)� 1).

The original submission [AJN16] proposes versions of NORX with 32- and
64-bit words called respectively NORX32 and NORX64. Subsequently two more
versions were proposed, with 8- and 16-bit words called resp. NORX8 and
NORX16 [AJN15]. The word size is denoted by w. The internal state of all
NORX variants is composed of 16 words organized as a 4× 4 matrix.

The basic building block of NORX is a permutation F of Fb2 ' (Fw2 )16, where
b = r+ c = 16w is called the width, r is the rate and c is the capacity. F is also
called a round, and F l is an l-fold iteration of F . The recommended instances
of NORX use l = 4 or l = 6 rounds. The initialization phase is always followed
by a data processing phase and as a result the state effectively goes through F 2l

before any absorption. NORX allows parallelization but we consider only the
sequential construction (the parameter p = 1). The parameter combinations
of the NORX variants are given in Table 6.1. The full scheme is depicted on
Figure 6.1.

F is composed of the column step denoted by Fcol : (Fw2 )16 → (Fw2 )16 followed
by the diagonal step denoted by Fdiag : (Fw2 )16 → (Fw2 )16:

F = Fdiag ◦ Fcol.
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word size rounds rate capacity state size nonce key tag
(w) (l) (r) (c) (b) (N) (K) (t)

8 4 or 6 40 88 128 32 80 80
16 4 or 6 128 128 256 32 96 96
32 4 or 6 768 256 1024 128 128 128
64 4 or 6 1536 512 2048 256 256 256

Table 6.1: Parameters of the NORX instances.

Figure 6.1: The NORX v3.0 AE scheme with parallelization parameter
p = 1. K and N denote a key and a nonce resp., A and Z denote a header
and a trailer resp.,Mi and Ci denote plaintext and ciphertext blocks resp.,
T is the authentication tag. (credits: NORX specification [AJN16])

Let G(a, b, c, d) be the permutation of (Fw2 )4 represented by the circuit shown in
Figure 6.2. The column step Fcol applies G in parallel to each of the 4 columns.
The diagonal step Fdiag applied G in parallel to each of the 4 main diagonals.
These steps are illustrated in Figure 6.3.

Figure 6.2: The G circuit used in NORX. (credits: NORX specifica-
tion [AJN16])

The security of each of the four versions of NORX is limited by the key size
and the tag size. The designers require unique nonces and abort on verification
failure. In addition, at most 2e messages are allowed to be processed with a
single key, where e is equal to 24, 32, 64, 128 respectively for NORX8, NORX16,
NORX32, NORX64.

For a more detailed description of NORX I refer the reader to the specifica-
tion [AJN16].

6.3 Rotational Invariants in NORX
In this section I describe rotational symmetries in the permutation F of NORX.
They exist both on the word level (inherited from G) and on the state level
(structural).
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Figure 6.3: The G circuit applied to the columns (left) and diagonals
(right) of the state. (credits: NORX specification [AJN16])

6.3.1 State Invariants

We can see a 4x4 NORX state S as a list of 4 columns: S = (c1, c2, c3, c4).

Definition 6.1 (Columns Rotation). For an integer n denote by Rn the function
rotating of the columns left by n positions. For example R1(c1, c2, c3, c4) =
(c2, c3, c4, c1) for arbitrary c1, c2, c3, c4 ∈ (Fw2 )4.

The following proposition shows that the permutation F is column rotation-
symmetric.

Proposition 6.2. The permutations Rn and F l commute for any integers n
and l ≥ 1:

F l ◦Rn = Rn ◦ F l.

Proof. Clearly, the rotation of columns does not affect the column step Fcol,
since it transforms each column separately: Fcol ◦Rn = Rn◦Fcol. Such rotations
do not break the diagonals as well, because the diagonals are simply reordered.
Therefore, Fdiag ◦ Rn = Rn ◦ Fdiag. It follows that F commutes with Rn and
thus F l commutes with Rn too.

Definition 6.3. A state s ∈ (Fw2 )16 is said to be column n-rotation invariant if

Rn(s) = s.

Let s ∈ (Fw2 )16 be a column n-rotation invariant state for a fixed positive
integer n. Observe that

Rn(F (s)) = F (Rn(s)) = F (s),

i.e. F (s) is also column n-rotation invariant. It follows that the property of a
state being column n-rotation invariant is an invariant of the round function F .
It is easy to see that this invariant corresponds to an invariant subspace.

Proposition 6.4. For a fixed integer n, 1 ≤ n ≤ 3, the set of all column n-
rotation invariant states is a linear subspace of (Fw2 )16. For n = 1 or n = 3
this is the same subspace of dimension 4w, for n = 2 the invariant subspace has
dimension 8w.
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Proof. If n = 1 or n = 3, then for any c1, c2, c3, c4 ∈ (Fw2 )4

(c1, c2, c3, c4) = (c2, c3, c4, c1)

and it follows that all columns are equal: c1 = c2 = c3 = c4. There are 24w

out of 216w such states. The designers of NORX noted these states in [AJN14].
A constraint ci = cj consists of 4w linear equations ci,y,x ⊕ cj,y,x = 0, where
1 ≤ y ≤ 4, 1 ≤ x ≤ w. Therefore, these constraints define a linear subspace of
dimension 16w − 3 · 4w = 4w.

If n = 2, then for any c1, c2, c3, c4 ∈ (Fw2 )4

(c1, c2, c3, c4) = (c3, c4, c1, c2)

and it follows that the two pairs of columns are equal: c1 = c3 and c2 = c4.
There are 28w out of 216w such states. Similarly, these constraints define a linear
subspace of dimension 8w.

Hitting such a special state even for the case n = 2 is not easy under the
NORX security claims. However, 28w is a more serious fraction of states than
the 24w weak states which were known to the designers. To illustrate possible
dangers of such properties, I refer to the forgery attack [CFG+17] on the previous
version of NORX exploiting this invariant, and I also describe two hypothetical
attacks on NORX8 [AJN15], a NORX version with 8-bit words for low-end
devices. I remark that NORX8 is not a part of the CAESAR submission.

The fist attack shows a weak-key set, which could be exploited if the domain
separation constants were rotation-invariant. The weak-key set is relatively
small, 232 keys out of 280. The second attack is a state/key recovery attack
in a known plaintext scenario. It succeeds with probability 2−64 for each two
consequent known-plaintext blocks, and the total time complexity is 272 to
recover an 80-bit key. Note that the designers restrict the data per single key
to 224 message blocks, therefore, the attack can break a concrete key with
probability only 2−40.

Both attacks are independent of the number of rounds l used in the permu-
tation.

6.3.2 Hypothetical Weak-key Attack on NORX8 Initial-
ization

The initial state of NORX8 is given by
n1 n2 n3 n4

k1 k2 k3 k4
k5 k6 k7 k8

k9 ⊕ w k10 ⊕ l u15 ⊕ p u16 ⊕ t

 ∈ (F8
2)

16, (6.1)

where ni and ki denote bytes of the nonce and the key respectively, ui are con-
stants and w, l, p, t are constants encoding parameters of NORX. It is possible
to construct valid initial states with two equal halves, i.e. a column 2-rotation
invariant state. Indeed, let us fix the four key bytes (k3, k4, k7, k8) arbitrarily
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and let us choose the two nonce bytes (n3, n4) arbitrarily. Then we can set the
left half of the state equal to the right half, i.e.

(n1, n2) = (n3, n4),

(k1, k2) = (k3, k4),

(k5, k6) = (k7, k8),

(k9, k10) = (u14 ⊕ p⊕ w, u15 ⊕ t⊕ l).

There are 232 weak keys out of 280 and 216 nonces that result in such a weak
state. The column 2-rotation invariant of such state is preserved through ar-
bitrary number of rounds of F . However, after the first F l rounds the domain
separation constant will be added to the last word of the state (see Figure 6.4).
This constant is not column 2-rotation invariant and therefore it will break the
property. Therefore, we consider a slightly modified version of NORX8 where
the domain separation constant is column 2-rotation invariant. For example,
the original constant may be added not only to the last word, but to all words of
the state or to all words in the last row. In such case the invariant is preserved
through the next F l rounds and the rate part of the state is then observed by an
adversary. This leads to a simple distinguisher: the adversary simply compares
the left and right halves of the exposed part of the state. In NORX8 the rate
part consists of only 5 bytes. It allows to check only the topmost 4 words with
error probability 2−16. By using a few more encryptions with another weak
nonces the error probability can be decreased to negligible.

I remark that the weak key space is very small and the attack requires
symmetric domain separation constants. On the other hand, it is powerful in
that it is independent of the number of rounds. The attack illustrates possible
dangers of having such strong invariants in the permutation.

6.3.3 State Recovery Attack on NORX8

The column 2-rotation invariant can be used to mount a state/key recovery
attack on NORX8, though exceeding the data usage limit defined by the de-
signers.

Figure 6.4: The NORX v2.0 AE scheme with parallelization parameter
p = 1. NORX8 and NORX16 follow this scheme. (credits: NORX

specification [AJN16])

Assume that we have a two-block known-plaintext message. That is, we
know the rate part before and after a call to the NORX8 core permutation F l.
Denote the input rate part by a and the output rate part by b. Recall that the
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rate in NORX8 is 40 bits, which is five 8-bit words. With probability 2−16 we
will observe a1 = a3, a2 = a4. Then there are two cases:

1. The whole state is column rotation-2 invariant. The probability of this is
equal to 2−6·8 = 2−48, given the observed rate part. Indeed, a uniformly
random state is column 2-rotation invariant with probability 2−64. In
this case the output state will be also column rotation-2 invariant with
probability 1 and we will observe b1 = b3, b2 = b4.

2. The whole state is not column rotation-2 invariant. Then with probability
2−16 we will observe b1 = b3, b2 = b4 as a false positive.

As a result, when we observe both a1 = a3, a2 = a4 and b1 = b3, b2 = b4, the
probability of the state being column rotation-2 invariant is equal to 2−32 and
in the other cases it is a false positive. In the first case the state before the call
to F l contains 5 unknown words x1, . . . , x5 ∈ F8

2:
a1 a2 a3 = a1 a4 = a2
a5 x1 a5 x1
x2 x3 x2 x3
x4 x5 x4 x5

 .

We can exhaustively check all 240 possibilities for x1, . . . , x5 by encrypting
through F l and obtaining extra filter with probability 2−24 from b. The re-
maining 216 candidates can be checked by decrypting the state up to the initial
state and matching the constants and further verifying the tag.

As a result, with probability 2−64 two consequent known-plaintext blocks
allow to recover the full state and the secret key. The initial filter has strength
2−32 and the time complexity of checking a block pair is 240. Note that the
designers set a limit to 224 data, therefore the attack succeeds for a concrete
key only with probability around 2−40.

6.3.4 Word Invariants

A similar rotational symmetry exists on the word level too. Let G′ be the
permutation of (Fw2 )4 to itself obtained from G by replacing the four left shift
operations by left rotations.

Proposition 6.5. G′ = G is conditioned by 4 bit equations, where each equation
holds with probability 3/4.

Proof. The left shift by one inserts a zero in the least significant bit of the
result. If the most significant bit of the input is equal to 0, then the left shift
is equivalent to the left rotation. There are 4 left shifts in G, each yields such
bit equation. The input of a left shift in G is simply an AND of two state bits,
which are uniformly distributed.

Observation 6.6. Experimentally, it is observed that Pr[G′ = G] is close to
2−1.82, where the input is sampled uniformly at random, for all word sizes w ∈
{8, 16, 32, 64}.
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Note that this observation shows the effect of dependency of the four quarter-
steps in G. The probability that all these bits are equal to zero can be estimated
as (3/4)4 ≈ 2−1.66. However, the actual probability is lower due to the depen-
dency of the equations.

Definition 6.7. Let rn : Fw2 → Fw2 be the mapping which rotates a word left by
n bits and let rn : (Fw2 )4 → (Fw2 )4 be defined as

rn(a, b, c, d) := (rn(a), rn(b), rn(c), rn(d)).

Proposition 6.8. For any integer n, 1 ≤ n < w, rn commutes with G′:

G′ ◦ rn = rn ◦G′.

Furthermore, rn commutes with G conditioned by 8 bit equations, each holding
with probability 3/4.

Proof. First, it is easy to verify that all operations in G′ commute with rn. For
a binary operation to commute it is required that rn applied to both inputs is
equivalent to rn applied to the output.

The second claim follows by applying Proposition 6.5 to the equation G′ ◦
rn = rn ◦G′ two times.

Observation 6.9. Experimentally, it is observed that Pr[G′ ◦ rn = rn ◦G′] varies
from 2−3.84 to 2−3.59 depending on the word size and rotation amount n. The
rotation amounts corresponding to the smallest probabilities are 1 and w − 1.

Similarly to the column n-rotation invariant, define the word n-rotation
invariant.

Definition 6.10. A columns c ∈ (Fw2 )4 (resp. a state s ∈ (Fw2 )16) is said to be
word n-rotation invariant if for each its word ci (resp. si) the following holds:

rn(ci) = ci (resp. rn(si) = si).

Proposition 6.11. The set of all word n-rotation invariant states is a linear
subspace of dimension 16 · gcd(n,w).

Proof. It is easy to see that a word v ∈ Fw2 is word n-rotation invariant if and
only if it is made of w/gcd(n,w) copies of the same vector u ∈ Fgcd(n,w)2 . Clearly,
all such words form a linear subspace of Fw2 of dimension gcd(n,w). As there
are 16 words in the state, the proposition follows.

Note that the property of a state or column being invariant requires only
one approximation of G by G′, i.e. it is approximately twice as more probable
than the commutation.

Proposition 6.12. Let c ∈ (Fw2 )4 be a word n-rotation invariant column. Then

Pr[rn(G(c)) = G(c)] ≥ Pr[G(c) = G′(c)],

where the probabilities are taken over c sampled uniformly at random from the
set of all word n-rotation invariant columns.
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Proof. Consider the following equation:

rn(G(c)) ≈ rn(G′(c)) = G′(rn(c)) = G′(c) ≈ G(c).

The two approximations are applied to the same input: G(c) ≈ G′(c), therefore
the equation holds with probability at least Pr[G(c) = G′(c)].

Experimentally, no difference is observed on Pr[G(c) = G′(c)] when c is sam-
pled uniformly at random from (Fw2 )4 and when it is sampled uniformly at ran-
dom from the set of all word n-rotation invariant columns. Therefore, it can
be expected that a word n-rotation invariant is preserved through F with a
probability approximately (2−1.82)8 = 2−14.56. The commutation of F and the
n-rotation of each word can be expected to happen with probability approxi-
mately (2−3.59)8 = 2−28.72 if 1 < n < w − 1.

It is worth noting that the word n-rotation invariants can be seen as prob-
abilistic invariant subspaces of F .

6.3.5 Hypothetical Attack on NORX128 v2.0

As the probability of rn commuting withG′ does not seem to depend on the word
size, the distinguishing property is stronger for instances with larger words and
key size. I consider an existential forgery attack similar to the one proposed
in [CFG+17]. Similarly, I consider NORX v2.0 since NORX v3.0 breaks the
attack by injecting the key in the finalization stage.

Consider the forgery attack scenario. The finalization stage of NORX con-
sists of 8 iterations of F . Let us assume that the words in the rate part
of the state before the finalization are w/2-rotation invariant. This happens
with probability 2−2w. Then we can attempt a forgery by rotating each word
in the last ciphertext block by w/2. Then, with probability approximately
(2−3.59)64 = 2−229.76 we expect the rotation to commute with the finalization:

F 8(rn(s)) = rn(F 8(s)),

where s is the state before the finalization stage. Since the tag is obtained by
truncating the final state and we have observed the tag in the first encryption,
we can expect the new tag to be equal to the word w/2-rotated version of the
original tag.

For NORX64, the probability of the rate to be 32-rotation invariant is equal
to 2−128. Unfortunately, the attack’s success probability then is worse than for
a generic attack (i.e. 2−256). For this reason, I suggest to increase the word size
even more and to consider NORX128, a generalization of NORX64 by increasing
the word size to 128 bits. In this hypothetical cipher, the full attack success
probability is approximately 2−256 · 2−229.76 < 2−512, i.e. it is better than a
generic attack.

This attack on the hypothetical instance of NORX shows the possibility of
exploiting the word-level symmetries as well. The attack does not apply directly
to main instances of NORX.
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6.4 Proving Absence of Low Degree Invariants
Recently, a nonlinear invariant attack was introduced by Todo et al. in [TLS16].
They show that, for any SPN-based cipher, if there exists a quadratic invariant
for the S-Box and the linear layer is orthogonal, then it is possible to con-
struct a nonlinear invariant for the full round of the cipher. Together with
Christof Beierle and Alex Biryukov, we studied and generalized such linear lay-
ers in [BBU18]. I describe the results in Chapter 7. In this chapter, I keep the
focus on invariants of nonlinear functions.

In [TLS16] it was noted that all nonlinear invariants of an S-Box can be
obtained from its cycle decomposition. Indeed, an invariant must take a con-
stant value on each cycle. If an S-Box S has t cycles, then there are precisely
2t invariants corresponding to 2t possible assignments of the invariant values to
all t cycles. A special kind of invariants was considered in [TLS16], where the
output value of the invariant is allowed to be a negation of the input value., i.e.
a function g such that g(S(x)) = g(x)⊕1. This case is only possible if all cycles
of S have even length.

Quadratic invariants are interesting because they are preserved by an or-
thogonal linear layer. However, one can argue that any low-degree invariant is
an interesting property, even if no orthogonal layer is used in the analyzed ci-
pher. First, the algebraic degree can be seen as a measure of simplicity. Second,
invariants may be used to generate equation systems of a cipher, and low-degree
equations are generally easier to solve. Third, low-degree invariants are also an
evidence that the analyzed component is non-ideal.

6.4.1 Low Degree Invariants from Cycle Decomposition

A naive approach

Let S be a permutation of Fn2 with t cycles. The most straightforward approach
of finding all invariants g : Fn2 → F2 of S of degree at most d is to generate
all 2t invariants and check their algebraic degree. Generating the ANF of an
n-bit Boolean function requires n2n operations. As a result, the complexity of
this approach is n2t+n. It is possible to compute a single ANF coefficient of a
monomial degree d + 1 in 2d+1 evaluations of the function. If the coefficient is
equal to one, then the considered invariant has degree at least d + 1 and can
be excluded. Otherwise, other monomials must be checked. In the best case
(when the first chosen coefficient is equal to 1), the complexity is 2t+d+1.

An improved approach

The method can be improved by replacing the enumeration of all 2t invariants
by solving a linear algebra problem. Consider an affine subspace A of dimension
d+ 1. Any possible invariant g of degree at most d must sum to zero over this
subspace: ⊕

x∈A

g(x) = 0.
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As g must be constant on each cycle of S, g can be defined by t unknowns -
values of the invariant on each of the cycles. Let c1, . . . , ct ⊆ Fn2 be cycles of S.
Denote by g1, . . . , gt ∈ F2 the unknowns, where gi corresponds to the value of
g on all elements from ci. It follows that the sum of g over A can be expressed
as a linear combination of gi:⊕

x∈A

g(x) =
⊕
1≤i≤t

λigi = 0, where

λi = |A ∩ ci| mod 2.

The improved approach is to generate enough linear equations on the un-
knowns gi and solve the system.

Complexity. Generating one equation requires 2d+1 operations, assuming
that the map x 7→ (i : x ∈ ci) is efficient. This assumption can be implemented
by a precomputation, which requires O(2n) memory. This is a downside of this
approach. O(t) equations are needed, and can be generated in time O(t2d+1).
Solving the linear equation system requires O(t3). Thus, the final time com-
plexity is O(t2d+1 + t3). In particular, all degrees (lower bounds) of invariants
can be computed in time O(t2n + t3n) using memory O(2n). On practice, the
algorithm is reasonably efficient for S-Boxes of sizes up to 32 bits and with a
non-extremely large number of cycles. A parallelization is possible but requires
a significant amount of memory.
Remark 14. Generating equations requires special care. If we choose a random
affine subspace of dimension d, it is likely that only large cycles will be covered
by the generated equation and we obtain no constraints on small cycles. There-
fore, when generating an affine subspace, we ensure that multiple elements from
the subspace lie in distinct cycles. This can be done by choosing basis vectors
accordingly. For example, we can choose a cycle uniformly at random and then
choose an element of the cycle uniformly at random.
Remark 15. The algorithm has a one-sided error possibility. If the generated
linear system has no solutions (besides the constant ones g = 0 and g = 1), then
surely there are no invariants of degree at most d. In this way, the algorithm
provides a tool for provable security against low-degree invariants.

However, a solution to the system is not guaranteed to have degree at most
d, only that it sums to 0 on generated affine spaces of dimension d + 1. I
argue that we do not restrict the affine subspaces to be cosets of cubes, and an
unrestricted affine subspace corresponds to a monomial coefficient in a random
basis. In this way, even an invariant with a sparse ANF can be disproved to
have a low degree with high probability, since in a random basis it may have a
non-sparse ANF.

The pseudo-code of the proposed algorithm is given in Algorithm 6.1.

6.4.2 Cycle Decomposition of G from NORX8

States consisting of four equal columns lie on the cycles of Fcol and Fdiag func-
tions that correspond directly to cycles of the G function. Indeed, such states
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Algorithm 6.1 Low-Degree Invariants from Cycle Decomposition.
Input: partition c1, . . . , ct ⊆ Fn2 of Fn2 corresp. to the cycles of S : Fn2 → Fn2 ;

an integer d, 1 ≤ d ≤ n− 1.
Output: an invariant g : Fn2 → F2 of S with possibility that deg g ≤ d;

or No invariants with deg g ≤ d.
1: E ← an empty equation system
2: for i ∈ {0, . . . , t+ ε} do
3: u← a random element from c1+(i mod t)

4: V ← a random linear subspace of Fn2 of dimension d+ 1
such that several v ∈ V belong to distinct cycles.

5: A← u⊕ V
6: for j ∈ {1, . . . , t} do
7: λj ← 0

8: for x ∈ A do
9: λk ← λk ⊕ 1, where k is such that x ∈ ck
10: E ← E ∪ (

⊕
1≤k≤t λkgk = 0)

11: if E has non-trivial solutions then
12: (g1, . . . , gt)← a non-trivial solution of E
13: g ← (x 7→ (gi such that x ∈ ci))
14: return g
15: else
16: return No invariants with deg g ≤ d

always consist of four copies of a single column and applying Fcol or Fdiag to such
state is equivalent to applying G to the corresponding column. For instance,
it is possible to enumerate all cycles of the G function for NORX8, where G
permutes (F8

2)
4. All these cycles of G can be transformed into cycles of Fcol or

Fdiag by simply making 4 copies of the column. These cycles then are also cycles
of F , except that all even cycles will split into two cycles each, because we need
to consider cycles of G2. I provide the cycle decomposition of G : (F8

2)
4 → (F8

2)
4

from NORX8 in Table 6.2 by providing starting points and lengths of the cycles.

6.4.3 Low-Degree Invariants in G from NORX8

I applied the proposed approach to the function G from NORX8 permuting F32
2 .

In the previous section I described the cycle decomposition of G. There are 22
cycles and thus there are 222 invariants of G. Note that there are cycles with
odd length, therefore there exist no “switching” invariants of G.

The algorithm used around 36 gigabytes of memory and ran for 25 hours on
a single 3.5GHz core. It generated 100 linear equations over 22 unknowns for
each subspace dimension in [1 . . . 32]. Solving the systems took negligible time.

The results are as follows. For all dimensions d ≤ 31, there are no non-trivial
invariants of degree d−1. For the dimension d = 32, there a space of dimension
21 of invariants of degree d − 1 = 31. It follows that the other coset of this
space has invariants of degree 32. That is, a half of the invariants have degree 32
and the other half are of degree 31. Note that these are the maximum possible
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Starting point Cycle length Starting point Cycle length

(00, 00, 00, 01) 3294443807 (00, 00, 2B, 65) 399843
(00, 00, 00, 08) 621984749 (00, 02, 1C, 06) 52972
(00, 00, 00, 56) 212798071 (00, 00, 5C, 28) 23344
(00, 00, 00, 07) 56236016 (00, 00, 00, D5) 8301
(00, 00, 00, 06) 55712043 (00, 00, B8, D2) 6339
(00, 00, 00, 02) 21461014 (00, 05, 94, D3) 2124
(00, 00, 02, 29) 9062510 (01, 66, 26, D2) 848
(00, 00, 04, 52) 7374122 (00, 4E, 63, C1) 595
(00, 00, 00, 46) 7328319 (00, 9D, 2B, C3) 137
(00, 00, 08, 4E) 5608893 (03, 4F, 69, 6C) 78
(00, 00, 01, F7) 2463170 (00, 00, 00, 00) 1

Table 6.2: Cycles of G from NORX8. Starting points are of the form
(a, b, c, d) ∈ (F8

2)
4 (see Figure 6.2).

degrees of invariants, since any pair of invariants of degree 32 must sum to an
invariant of lower degree.

Furthermore, I searched for low-degree invariants of iterated G, i.e. Gl for
1 ≤ l ≤ 16 and for particular values of l that lead to an increased number of
cycles. Each cycle of G of length c splits into gcd(l, c) cycles of Gl of lengths
c/gcd(l, c). Thus, the number of cycles grows and the number of invariants too.
For example, G8 has 54 cycles and thus, 254 invariants. The results show that
for 1 ≤ l ≤ 16 and for l ∈ {24, 30, 32, 36, 51, 59}, all non-trivial invariants of Gl

have degree at least 30. More detailed results are given in Table 6.3. Evaluation
of Gl for a single l took the time proportional to the number of cycles in Gl.

I also verified correctness of the algorithm on a toy S-Box permutation of
F16
2 with an invariant of degree 11. The algorithm successfully recovered this

invariant.
I conclude that invariants of the mapping G : (F8

2)
4 → (F8

2)
4 from NORX8

have maximum degree. Furthermore, invariants of G iterated for several rounds
have also close to maximum degree. I remark that this observation does not
rule out a possibly simple structure or property of those invariants. Indeed,
the invariant subspace of dimension 28w shown in Section 6.3 corresponds to an
invariant function of quite large degree 8w. On the other hand, a low-degree
invariant could correspond to a bit-level property of G, whereas the invariant
subspace from Section 6.3 corresponds to a high-level structural property of the
NORX’s permutation.
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function d ≤ 29 d ≤ 30 d ≤ 31 d ≤ 32 = #cycles

G1 1 1 21 22
G2 1 2 31 32
G3 1 5 37 38
G4 1 9 41 42
G5 1 2 33 34
G6 1 19 51 52
G7 1 2 33 34
G8 1 21 53 54
G9 1 23 55 56
G10 1 19 51 52
G11 1 1 21 22
G12 1 33 65 66
G13 1 2 33 34
G14 1 17 49 50
G15 1 17 49 50
G16 1 45 77 78
G24 1 45 77 78
G30 1 39 71 72
G32 1 45 77 78
G36 1 69 101 102
G51 1 85 117 118
G59 1 163 195 196

Table 6.3: Upper-bounds on dimensions of the spaces of the invariants
of degree at most d of the function G from NORX8 iterated multiple

times.
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In this chapter, I show a study of linear layers that preserve all low-degree
invariants of a particular form. It is a generalization of orthogonal linear layers,
which preserve all quadratic invariants, exploited in [TLS16]. Our main result
is that for cubic invariants, there is no such bijective linear map that preserves
all of them. However, we exhibit such expanding linear maps. We study the
minimum expansion rate of these maps. This is a joint work with Christof
Beierle and Alex Biryukov and it is currently in a process of submission to a
Boolean functions journal.
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7.1 Introduction
After the introduction of linear cryptanalysis in [Mat93] as a powerful method
to attack symmetric cryptographic primitives, people started studying how to
generalize this method in order to exploit nonlinear approximations for crypt-
analysis, see, e.g., [HKM95] and [KR96]. While it might be easier to find a
nonlinear approximation over parts of the primitive, e.g., over an S-box of small
size, a crucial problem in nonlinear cryptanalysis is to find nonlinear approxima-
tions that hold true for the whole round function of the primitive. An example
that exploits nonlinear approximations that are preserved over the whole round
function is bilinear cryptanalysis over Feistel ciphers [Cou04].

More recently, an interesting solution for the above problem was described by
Todo, Leander and Sasaki in [TLS16] for round functions that can be described
in terms of an LS-design [GLSV14]. Let one round of a substitution-permutation
cipher operating on n S-boxes of t-bit length be given as depicted in Figure 7.1
and let the linear layer L(t) : Fnt2 → Fnt2 only XOR the outputs of the S-boxes, i.e.,
each (y1, . . . , yn) for yj ∈ Ft2 is mapped to (z1, . . . , zn) where zj =

∑n
i=1 αi,jyi for

particular αi,j ∈ F2. In that case, L(t) can be defined by t parallel applications
of the matrix L given by

L =


α1,1 α1,2 . . . α1,n

α2,1 α2,2 . . . α2,n
...

... . . . ...
αn,1 αn,2 . . . αn,n

 .

Todo et al. observed that if L is orthogonal, then for any t-bit Boolean function
f of algebraic degree less than or equal to 2 and for any y1, . . . , yn ∈ Ft2 it is

f(y1) + f(y2) + · · ·+ f(yn) = f(z1) + f(z2) + · · ·+ f(zn) . (7.1)

This fact was used to successfully cryptanalyze the block ciphers Midori, Scream
and iScream in a weak key setting. Indeed, if f is any invariant function for the
S-box S, i.e., if for all x ∈ Ft2, f(x) = f(S(x)), and if deg(f) ≤ 2, one obtains
an invariant function for the whole round according to Equation 7.1.

An interesting question is whether the property of L being orthogonal is
also necessary for Equation 7.1 to hold for all f with degree upper-bounded
by 2. More generally, we would like to understand the necessary and sufficient
properties of the linear layer that preserve such invariants in the case when
deg(f) ≤ d for d > 2. Although the existence of a non-trivial1 linear layer
for which Equation 7.1 holds for all f with deg f ≤ d is totally unclear, such
a construction would be of significant interest. On the one hand, it would
deepen the knowledge on how to design strong symmetric cryptographic prim-
itives and to avoid possible attacks and could on the other hand be useful in
order to design symmetric trapdoor ciphers to be used as public-key schemes,
see, e.g., [RP97,PG97,BBF16]. The idea would be to hide a nonlinear approxi-
mation as the trapdoor information. If the linear layer is designed such that it

1By non-trivial, we mean that the matrix of L is not a permutation matrix.
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S S S

L(t)

. . .

x1 x2 xn

z1 z2 zn

y1 y2 yn

t

Figure 7.1: The round function of a substitution-permutation cipher
based on an LS-design.

preserves all invariants of a special form, e.g., all functions of degree at most
d, the specification of the linear layer would not leak more information on the
particular invariant and thus on the trapdoor. There could also be applications
besides cryptography, so the above problem might be of independent interest.

7.1.1 Our Contribution

In this work we answer the above question and consider the case of L ∈ Fn×m2 ,
i.e., the number of outputs might be different than the number of inputs. We
precisely characterize the matrices that preserve all invariants of the form sim-
ilar as given in Equation 7.1, i.e.,

f(y1) + · · ·+ f(yn) = f(z1) + · · ·+ f(zm) + f(0) · (m+ n mod 2) , (7.2)

where the degree of f is upper bounded by d. We call such matrices degree-d
sum-invariant. We show that such matrices correspond to n-bit Boolean func-
tions of degree at most n − d − 1 which admit no linear annihilators. We call
the supports of such Boolean functions degree-d zero-sum sets of rank n. This
characterization is obtained in Proposition 7.6, Proposition 7.8 and Proposi-
tion 7.13. Our results imply that m ≥ n and, for the case of d = 2, the property
of L being (semi-)orthogonal is not only sufficient, but also necessary. Moreover,
we obtain an interesting characterization of orthogonal matrices over F2, i.e.,
L ∈ Fn×n2 is orthogonal if and only if in every 2 × 2n submatrix of

[
In L

]
,

each column occurs an even number of times.
Besides showing the link between degree-d zero-sum sets and degree-d sum-

invariant matrices, we study degree-d zero-sum sets of full rank in more detail.
We are in particular interested in the smallest of such sets. Let F (n, d) denote
the minimum number of elements in a degree-d zero-sum set of rank n. The
following theorem summarizes our main results.

Theorem 7.1. Let n, d ∈ Z+ with n > d ≥ 1. Then the following properties of
F (n, d) hold.

(i) F (n, d) = min{wt(g) | g ∈ BFn,n−d−1\{0} with g having at most 1 affine
annihilator}.

(ii) F (n, 1) = n+ 2− (n mod 2) and, for n = 4 or n > 5, F (n, 2) = 2n.
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As exceptions, F (3, 2) = 8 and F (5, 2) = 12.

(iii) F (d + 1, d) = F (d + 2, d) = 2d+1. Moreover, F (d + 3, d) = 3 · 2d and
F (2d+ 4, d) = 2d+2. For d+ 4 ≤ n ≤ 2d+ 3,

F (n, d) = 22d−n+4(2n−d−2 − 1) .

(iv) for any fixed d, the sequence F (n, d) is increasing, i.e., F (n + 1, d) ≥
F (n, d).

(v) for n1, n2 > d, the inequality

F (n1 + n2, d) ≤ F (n1, d) + F (n2, d)

holds. Moreover, for d ≥ 2, it is

F (n+ d, d− 1) ≤ F (n, d) ≤ 2F (n− 1, d− 1) .

The last inequality implies that, for n ≥ 4, F (n, 3) ≥ 2n+ 6.

We prove the above values by providing a construction of the corresponding
zero-sum sets (resp. Boolean functions). In case where we only prove an upper
bound, we provide a construction that meets this bound. Table 7.1 shows the
values and bounds for F (n, d) for n ≤ 30 and d ≤ 10.

The last inequality in Theorem 7.1 implies that any degree-d sum-invariant
matrix L ∈ Fn×n2 for d ≥ 3 must be a permutation matrix, i.e. an invertible
matrix with exactly n ones. In other words, the observation of Todo et al.
cannot be extended for higher-degree invariants without L being expanding.

7.1.2 Organization

In Section 7.2, I fix notation specific to this chapter. I also recall the observations
made in [TLS16] with regard to orthogonal matrices and the preservation of
degree-2 invariants. For motivating the remainder of the chapter, I directly
present an example construction of an expanding linear mapping that preserves
higher-degree invariants.

In Section 7.3, I show equivalent characterizations of degree-d zero-sum sets
and explain the links between degree-d sum-invariant matrices and degree-d
zero-sum sets.

Minimal degree-d zero-sum sets are studied in Section 7.4, where Theo-
rem 7.1 is proven. I further summarize the implications to degree-d sum-
invariant matrices in Section 7.5. Finally, the chapter is concluded in Sec-
tion 7.6.
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7.2 Preliminaries
In this chapter I use a specific notation to simplify expressions. A vector v ∈ Fn2
is considered a row vector. Any matrix L ∈ Fn×m2 defines a linear mapping
ϕ : Fn2 → Fm2 , x 7→ xL.

7.2.1 Higher-Order Derivatives, Affine Equivalence and
Algebraic Immunity of Boolean Functions

Boolean functions have several applications in cryptography, e.g., for designing
stream ciphers. In order to resist algebraic attacks, the notion of algebraic
immunity was introduced in 2004 as follows.

Definition 7.2 (Algebraic immunity [MPC04]). Let f : Fn2 → F2. An n-bit
Boolean function g 6= 0 is called an annihilator of f , if fg = 0. The set of
annihilators of f together with g = 0 form a vector space, denoted by AN(f).
We denote by ANd(f) the subspace of annihilators of f with algebraic degree at
most d together with the zero-function. The algebraic immunity of f , denoted
AI(f), is defined as the minimum k for which ANk(f) ∪ ANk(f + 1) 6= {0}.

An important concept for Boolean function is the notion of affine equiva-
lence.

Definition 7.3 (Domain Affine Equivalence). Two Boolean functions f, g : Fn2 →
F2 are called domain affine equivalent if there exists a linear bijection ϕ : Fn2 →
Fn2 and a vector c ∈ Fn2 such that g = f ◦ (ϕ + c). If c = 0, f and g are called
linear equivalent.

I remark that, in the literature, domain affine equivalence of Boolean func-
tions is called simply affine equivalence. I specify the term to avoid ambiguity,
as, for example, g and g ⊕ 1 are not domain affine equivalent in general. It is
well known that the weight, the algebraic degree and the dimensions of the an-
nihilator spaces (and thus the algebraic immunity) are invariant under domain
affine equivalence.

7.2.2 Orthogonal Matrices and Preservation of Nonlinear
Invariants

In [TLS16], Todo, Leander and Sasaki introduced the nonlinear invariant attack
and successfully distinguished the block ciphers Midori, Scream and iScream
from a random permutation for a significant fraction of weak keys. For an n-bit
permutation G : Fn2 → Fn2 , the main idea consists in finding a non-constant n-bit
Boolean function f and a constant ε ∈ F2 such that

∀x ∈ Fn2 : f(x) = f(G(x)) + ε.

Such a function f is called an invariant for G. In order to find an invariant
for the cipher, Todo et al.. observed that if L ∈ Fn×n2 is an orthogonal matrix,
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i.e., if 〈xL, yL〉 = 〈x, y〉 for all x, y ∈ Fn2 , then for all Boolean functions f ∈ BF t,2
it is

∀X ∈ Ft×n2 :
n⊕
i=1

f
(
(X>)i

)
=

n⊕
j=1

f
(
((XL)>)j

)
. (7.3)

In other words, any Boolean function f : Ft2 → F2 of algebraic degree at most 2
gives rise to an invariant over the linear layers of Midori, Scream and iScream
of the form (x1, . . . , xn) 7→ f(x1) + . . . f(xn), where n denotes the number of
S-boxes, t denotes the bit length of the S-box and xi ∈ Ft2.

We illustrate this from a slightly different point of view on the example of
the linear layer used in Midori (see [BBI+15]), which is defined by the following
matrix:

L =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 . (7.4)

It is easy to see that L is orthogonal. Thus, according to Equation 7.3, for any
f ∈ BF t,2 and all x1, x2, x3, x4 ∈ Ft2, the following equation holds:

f(x1) + f(x2) + f(x3) + f(x4) =

f(x2 + x3 + x4) + f(x1 + x3 + x4) + f(x1 + x2 + x4) + f(x1 + x2 + x3).

Consider an alternative way of proving this. The arguments of f form an
affine subspace of dimension 3, namely

x1 + span(x1 + x2, x1 + x3, x1 + x4).

Therefore, the equation is equivalent to

δx1+x2δx1+x3δx1+x4f(x1) = 0,

which is clearly true for any f ∈ BF t,2 and any x1, x2, x3, x4 since all third-order
derivatives of a quadratic function are equal to zero. This observation gives new
insights on how to generalize the linear layer in order to preserve higher-degree
invariants.

Proposition 7.4. Let d ≥ 2 be an integer. Then there exists a matrix L ∈ Fn×m2

with n = d + 2,m = 2d+1 − d − 2 and full rank n such that for any t ≥ 1 and
any f ∈ BF t,d, the following property holds:

∀X ∈ Ft×n2 :
n⊕
i=1

f
(
(X>)i

)
=

m⊕
j=1

f
(
((XL)>)j

)
. (7.5)

An example of such L is given by a matrix with columns taken as all vectors
from Fn2 with an odd Hamming weight greater or equal to 3.
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Proof. For any t ≥ 1 and any x0, . . . , xd+1 ∈ Ft2 consider the (d+1)-dimensional
affine subspace

V = x0 + span(x0 + x1, x0 + x2, . . . , x0 + xd+1) .

For any Boolean function f of degree d, any (d + 1)-th derivative vanishes.
Therefore,

⊕
v∈V f(v) = 0. This can be equivalently written as

f(x0) + f(x1) + . . .+ f(xd+1) = (7.6)

=
⊕

I⊆{1,...,d+1}
|I|≥2 even

f(x0 +
⊕
i∈I

xi) +
⊕

I⊆{1,...,d+1}
|I|≥3 odd

f(
⊕
i∈I

xi) (7.7)

=
⊕

I⊆{0,...,d+1}
|I|≥3 odd

f(
⊕
i∈I

xi). (7.8)

The right-hand side contains 2d+1 − d − 2 applications of f . Let Y be the set
of the linear functions defining the arguments of f in the right-hand side of
Equation 7.6, i.e.,

Y =

{⊕
i∈I

xi

∣∣∣∣ I ⊆ {0, . . . , d+ 1}, |I| ≥ 3 odd

}
,

and let L be the matrix of the linear function that maps (x0, x1, . . . , xd+1) to
(y1, y2, . . . , y2d+1−d−2), where yi ∈ Y and all yi are pairwise different. Then,
Equation 7.6 is equivalent to Equation 7.3 with the described L.

Since m ≥ n ≥ 4, any unit vector from Fn2 can be expressed a linear combi-
nation of 3 columns of L, e.g.,

(1, 0, 0, 0, . . . , 0) = (1, 1, 1, 0, . . . , 0) + (1, 0, 1, 1, . . . , 0) + (1, 1, 0, 1, . . . , 0).

We conclude that L has full rank n.

Example 2. For d = 2 we obtain the orthogonal matrix given in Equation 7.4.
For d = 3 we obtain an expanding linear mapping ϕ : F5

2 → F11
2 defined by the

following 5× 11 matrix L:

L =


0 0 0 0 1 1 1 1 1 1 1
0 1 1 1 0 0 0 1 1 1 1
1 0 1 1 0 1 1 0 0 1 1
1 1 0 1 1 0 1 0 1 0 1
1 1 1 0 1 1 0 1 0 0 1

 .

7.3 Degree-d Zero-Sum Sets and Sum-Invariant
Matrices

A natural question to ask is which other linear mappings have a similar property
as given in Equation 7.5. To answer this question, we study degree-d zero-sum
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sets as a generalization of the above problem.

Definition 7.5 (Degree-d Zero-Sum Set). Let S ⊆ Fn2 and let d ∈ N. We call
S degree-d zero-sum if, for all f ∈ BFn,d,⊕

s∈S

f(s) = 0. (7.9)

We define rank(S) to be the maximum number of linearly independent elements
in S and denote by ZSdn×m the set of degree-d zero-sum sets with m elements
and rank n.

We first show the following equivalent characterizations of degree-d zero-sum
sets.

Proposition 7.6. Let S = {s1, . . . , sk} ⊆ Fn2 and let d ∈ Z+. Let MS ∈
Fn×k2 be any matrix (up to a permutation of the columns) the columns of which
correspond to the elements of S, i.e.,

MS =
[
s>1 . . . s>k

]
.

Then the following statements are equivalent:

(i) S is a degree-d zero-sum set.

(ii) k is even and, for any choice of d (not necessarily distinct) rows r1, . . . , rd
of MS, it is 〈r1, . . . , rd〉 = 0.

(iii) in every d × k submatrix of MS, each column occurs an even number of
times.

(iv) deg(1S) ≤ n− d− 1.

(v) for all t ≥ 1 and all f ∈ BF t,d, ∀X ∈ Ft×n2 :
⊕

s∈S f(sX>) = 0.

In particular, the degree-d zero-sum sets in Fn2 are exactly the supports of the
n-bit Boolean functions of degree at most n− d− 1. Therefore, any non-empty
degree-d zero-sum set must contain at least 2d+1 elements.

Proof. To prove (i)⇒ (ii), let

MS =

 r1
...
rn


with ri ∈ Fk2. Let l1, . . . , ld be d (not necessarily distinct) row indices and
consider the monomial function f ∈ BFn,d, x 7→

∏d
i=1 xli , which has degree d.

From Equation 7.9, it must be

0 =
⊕
s∈S

f(s) =
⊕
s∈S

d∏
i=1

sli = 〈rl1 , . . . , rld〉 .
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Clearly, k must be even because
⊕

s∈S 1 = 0.
(ii) ⇒ (iii): We first see that any 1 × k submatrix of MS contains each

element in F2 an even number of times. Indeed, let r be any row in MS. From
(ii) we know that wt(r) mod 2 = 〈r〉 = 0 and thus r contains an even number
of 1’s. Because k is even, it must also contain an even number of 0’s. We now
use induction on the number of rows. Let d′ < d such that (ii)⇒ (iii) holds for
d′. Let us choose an arbitrary (d′ + 1) × k submatrix H = [mi,j]1≤i≤d′+1,1≤j≤k

of MS. We define H(0) := [m
(0)
i,j ] to be the submatrix of H that is obtained

by selecting exactly the columns m?,j of H for which md′+1,j = 0. Similarly,
let H(1) := [m

(1)
i,j ] be the submatrix of H that is obtained by selecting exactly

the columns m?,j of H for which md′+1,j = 1. We have already seen from the
initial step that both H(0) and H(1) must contain an even number of columns
(otherwise the row md′+1,? would have an odd weight). From (ii), we know that

0 = 〈m1,?, . . . ,md′,?,md′+1,?〉 =
〈
m

(0)
1,?, . . . ,m

(0)
d′+1,?

〉
+
〈
m

(1)
1,?, . . . ,m

(1)
d′+1,?

〉
=
〈
m

(1)
1,?, . . . ,m

(1)
d′,?

〉
=
〈
m

(0)
1,?, . . . ,m

(0)
d′,?

〉
.

Because of the induction hypothesis, H(0) and H(1) contain each column an even
number of times and therefore, every column of H occurs an even number of
times.

(iii)⇒ (iv): Let u ∈ Fn2 with wt(u) ≥ n− d. Because of (iii),

| {s ∈ S | s � u} |

is even (because d zeroes in positions i where ui = 0 occur an even number of
times among elements of S). It follows that

| {s ∈ S | s � u} | mod 2 =
⊕
s�u

1S(s) = 0

and thus, the monomial xu doesn’t occur in the ANF of 1S. Since this holds
for all u with wt(u) ≥ n− d, the algebraic degree of 1S is at most n− d− 1.

(iv) ⇒ (v): Let f ∈ BF t,d be an arbitrary function of degree at most d.
Observe that

∀X ∈ Ft×n2

⊕
s∈Fn2

1S · f(sX>) = 0, (7.10)

because deg 1S · (f ◦X) ≤ deg 1S + deg f ≤ n − 1. Here, f ◦ X denotes the
n-bit Boolean function s 7→ f(sX>). Equation 7.10 can equivalently be written
as

∀X ∈ Ft×n2

⊕
s∈S

f(sX>) = 0,

which proves (v). The implication (v) ⇒ (i) follows by letting t = n and
X = In×n.

To see that any non-empty degree-d zero-sum set contains at least 2d+1



130 Chapter 7. Nonlinear Invariant-Preserving Linear Layers

elements, we use the fact that any non-zero Boolean function of degree at most
n− d− 1 has a weight at least 2n−(n−d−1) = 2d+1.

It is worth remarking that the property of being degree-d zero-sum is invari-
ant under the application of an injective linear mapping. Indeed, if ϕ : span(S)→
Fn′2 is an injective linear function on the subspace span(S) of dimension rank(S),
then |ϕ(S)| = |S| and if S is degree-d zero-sum, so is ϕ(S). Further, rank(ϕ(S)) =
rank(S). Therefore, without loss of generality, we can represent a zero-sum set
S ∈ ZSdn×m as a subset of Fn2 and given by the columns of an n×m matrix MS

of the form

MS =
[
In×n L

]
(7.11)

for an L ∈ Fn×(m−n)2 . We say that a zero-sum set (resp. a matrix MS) given in
the representation of Equation 7.11 is in systematic form. We are in particular
interested in the properties of such matrices L that define zero-sum sets in
ZSdn×m in the above way. For instance, such an L can only exist if m is even.
We generalize this by introducing the notion of a degree-d sum-invariant matrix
as follows.

Definition 7.7 (Degree-d Sum-Invariant Matrix). A matrix L ∈ Fn×m2 is called
degree-d sum-invariant if, for all t ≥ 1 and all f ∈ BF t,d,

∀X ∈ Ft×n2 :
n⊕
i=1

f
(
(X>)i

)
=

m⊕
j=1

f
(
((XL)>)j

)
+ εm+nf(0), (7.12)

where εm+n = (m+ n) mod 2.

Proposition 7.8. Let L ∈ Fn×m2 be a linear mapping and let d ∈ N. Then the
following statements are equivalent:

(i) L is degree-d sum-invariant.

(ii) The columns of the matrix M̂L occurring with odd multiplicity define a
degree-d zero-sum set, where{

M̂L :=
[
In×n L

]
∈ Fn×(m+n)

2 , if m+ n is even ;

M̂L :=
[
In×n L 0

]
∈ Fn×(m+n+1)

2 , if m+ n is odd .
(7.13)

(iii) For all x1, . . . xd ∈ Fn2 it is 〈x1, . . . , xd〉 = 〈x1L, . . . , xdL〉.

Moreover, if L fulfills (i) and if d ≥ 2, then n ≤ m, LL> = In and L must have
full rank n.

Proof. We first prove (i) ⇒ (ii). If m + n is even, then Equation 7.12 is
equivalent to

∀X ∈ Ft×n2 :
n⊕
i=1

f
(
eiX

>)+
m⊕
j=1

f
(
(L>)jX

>) = 0, (7.14)
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where ei denotes the i-th unit vector. If there is a j for which (L>)j is equal
to a unit vector ek, then f((L>)jX

>) = f(ekX
>) and the two terms cancel in

Equation 7.14. Similarly, if there exist two different j1, j2 such that (L>)j1 =
(L>)j2 , then f((L>)j1X

>) and f((L>)j2X
>) cancel out. This is another way of

saying that the columns of the matrix M̂L =
[
In×n L

]
occurring with odd

multiplicity define a degree-d zero-sum set.
If m+ n is odd, then εm+n = 1 and Equation 7.12 can be written as

∀X ∈ Ft×n2 :
n⊕
i=1

f
(
eiX

>)+
m⊕
j=1

f
(
(L>)jX

>)+ f(0X>) = 0.

This is equivalent to say that the columns of the n × (m + n + 1) matrix
M̂L =

[
In×n L 0

]
occurring with odd multiplicity define a degree-d zero-

sum set.
(ii) ⇒ (iii). If the columns of M̂L occurring with odd multiplicity define a

degree-d zero sum set, then, because of Proposition 7.6, any d (not necessarily
distinct) rows

[
el1 Ll1

]
, . . . ,

[
eld Lld

]
of M̂L fulfill〈[

el1 Ll1
]
, . . . ,

[
eld Lld

]〉
= 0 ,

which is equivalent to

〈el1 , . . . , eld〉 = 〈el1L, . . . , eldL〉 .

Because of the linearity of the inner product, i.e.,

〈x1 + x′1, x2, . . . , xd〉 = 〈x1, x2, . . . , xd〉+ 〈x′1, x2, . . . , xd〉 ,

the statement follows.
(iii) ⇒ (i). If there are f1, f2 ∈ BF t,d such that Equation 7.12 holds for

both f1 and f2, then it clearly holds for f1 +1 and for f1 +f2 as well. Therefore,
without loss of generality, let f ∈ BF t,d be a monomial function, i.e., f(z) =∏d

k=1 zlk for 1 ≤ l1 ≤ · · · ≤ ld ≤ t. Let X ∈ Ft×n2 . Then,

n⊕
i=1

f((X>)i) =
n⊕
i=1

d∏
k=1

(X>)i,lk = 〈Xl1 , . . . , Xld〉

and

m⊕
j=1

f(((XL)>)j) + εm+nf(0) =
m⊕
j=1

d∏
k=1

((XL)>)j,lk = 〈Xl1L, . . . , XldL〉 .

It follows that if L preserves all generalized inner products of d elements, then
L is degree-d sum-invariant.

If L fulfills the equivalent statements (i) - (iii), then, for all x, y ∈ Fn2 , it is

xy> = 〈x, y〉 = 〈xL, yL〉 = xL(yL)> = xLL>y .
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It follows that LL> must be the identity and thus, L must have full rank n.

This result shows a relation between degree-d sum-invariant matrices and
semi-orthogonal matrices. A matrix L ∈ Fn×m2 with n ≤ m is called semi-
orthogonal if LL> = In×n. Indeed, we have shown that a matrix is degree-2
sum-invariant if and only if it is semi-orthogonal.2 Because of the above relation,
the degree-(d+ 1) sum-invariant matrices might also be called d-th order semi-
orthogonal.

The invertible semi-orthogonal matrices are exactly the orthogonal matrices
and the orthogonal matrices in dimension n form a multiplicative group, called
the orthogonal group. With the above equivalences, we obtain an interesting
characterization of the orthogonal groups over F2.

Corollary 7.9. A matrix L ∈ Fn×n2 is orthogonal if and only if in each 2× 2n
submatrix of

[
In×n L

]
, each column occurs an even number of times.

7.3.1 Relation to Orthogonal Arrays

Proposition 7.6 points out a relation between degree-d zero-sum sets and or-
thogonal arrays.

Definition 7.10 (Orthogonal Array [HSS99]). An m×n matrix M with entries
from a finite set of cardinality k is said to be an orthogonal array with k levels,
strength d and index λ, denoted OA(m,n, k, d), if every m× d submatrix of M
contains each d-tuple exactly λ times as a row. Without loss of generality, we
will assume that M is a matrix with elements in Zk.

For our purposes we are only interested in the case of k = 2. We directly
obtain the following.

Corollary 7.11. Let S ⊆ Fn2 . If M>S is an OA(|S|, n, 2, d) such that 2d+1 divides
|S| (i.e., if the index λ is even), then S is a degree-d zero-sum set.

As an example, for d = 3, there is a well-known construction of orthogo-
nal arrays from Hadamard matrices (see [HSS99, pp. 145–148]). A Hadamard
matrix of order n is a matrix H ∈ Zn×n which can only take values in {−1, 1}
and which fulfills H>H = nIn×n. For a matrix M with elements in {−1, 1}, we
denote by M̃ the F2 matrix obtained from M by replacing −1 with 0, i.e., we
define M̃ to be the result of 1

2
(M + 1), interpreted in F2.

If H is a Hadamard matrix of order 8k for k ∈ Z+, it is well known that

˜[ H
−H

]
is an OA(16k, 8k, 2, 3) of even index (see [HW78, Theorem 4.16]). Therefore, it
defines a degree-3 zero-sum set S ⊆ F8k

2 with 16k elements. However, its rank
can be at most 4k (see [PRV06, Proposition 2]) and we are interested in the
zero-sum sets of full rank.

2We only consider matrices with n ≤ m. If L ∈ Fn×m
2 with n > m, L would be defined

to be semi-orthogonal if L>L = Im. Then, L is semi-orthogonal if and only if L> is degree-2
sum-invariant.
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7.4 Minimal and Maximal Zero-Sum Sets
In this section we study zero-sum sets of particular rank n and prove results
on their existence. We are particularly interested in the smallest of such sets,
defined in the following sense.

Definition 7.12. We denote by F (n, d) the minimum number m ∈ Z+ for which
there exists an S ∈ ZSdn×m. We call a zero-sum set minimal if it is contained
in ZSdn×F (n,d). Analogously, a zero-sum set S ∈ ZSdn×m is called maximal if
ZSdn′×m = ∅ for all n′ > n.

Note that F (n, d) is only defined if n > d as otherwise, the only degree-d
zero-sum set in Fn2 is the empty set. We first characterize the zero-sum sets of
particular rank n in terms of Boolean functions.

7.4.1 Relations between Zero-Sum Sets and Affine Anni-
hilators of Boolean Functions

The first three existence results are presented in Proposition 7.13, Proposi-
tion 7.14 and Proposition 7.15 and outline the link between zero-sum sets and
the dimensions of degree-1 annihilator spaces of Boolean functions.

Proposition 7.13. There exists a degree-d zero-sum set S ∈ ZSdn×m if and
only if there exists a Boolean function h ∈ BFn,n−d−1 with wt(h) = m and
dim AN1(h) ≤ 1.

Proof. Let us assume that S ∈ ZSdn×m is given in systematic form, i.e., it can
be represented as in Equation 7.11. Then, S = supp(h) for a Boolean function
h ∈ BFn,n−d−1 for which ∀i ∈ {1, . . . , n} : h(ei) = 1. Such a function cannot
have a linear annihilator and therefore, any a ∈ AN1(h) \ {0} must be of the
form a = `+ 1 for a linear Boolean function `. It follows that dimAN1(h) ≤ 1.

Let now h ∈ BFn,n−d−1 with wt(h) = m and dim AN1(h) ≤ 1. Let
a ∈ AN1(h) \ {0}. If a = ` + 1 for a linear function `, then h has no lin-
ear annihilator. If a is linear, we fix a constant c ∈ Fn2 for which a(c) = 1 and
consider the function hc : x 7→ h(x + c) ∈ BFn,n−d−1 which is domain affine
equivalent to h and thus has the same weight. It is easy to verify that a+ 1 is
an affine annihilator for hc. Because the dimensions of the annihilator spaces
are invariant under domain affine equivalence, hc has no linear annihilators.
Therefore, without loss of generality, we can assume that h has no linear anni-
hilator. Let S = supp(h) ⊆ Fn2 be the support of h and consider a matrix MS

the columns of which form exactly the set S. Since h has no linear annihilator,
there is no linear combination of rows of MS that is equal to zero. We conclude
that MS has full rank n and S ∈ ZSdn×m.

Proposition 7.14. Given a function h ∈ BFn,n−d−1 with wt(h) = m and
AN1(h) = {0}, it is possible to construct a zero-sum set in ZSd(n+1)×m.

Proof. Consider the function

h′ : Fn+1
2 → F2, (x1, . . . , xn+1) 7→ xn+1h(x1, . . . , xn) .
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Note that h′ has degree at most n − d. Further, h′ has no linear annihilator.
Otherwise, by setting xn+1 = 1, we would obtain that h has an annihilator of
algebraic degree 1, contradicting AN1(h) = {0}. By Proposition 7.13, we can
construct S ∈ ZSd(n+1)×m.

The converse statement is true for maximal zero-sum sets.

Proposition 7.15. Let n ≥ 2 and let S ∈ ZSd(n+1)×m be maximal. Then, 1S is
domain linear equivalent to a function h ∈ BFn+1,n−d of the form

h(x1, . . . , xn+1) = xn+1 · g(x1, . . . , xn), (7.15)

where g ∈ BFn,n−d−1 with wt(g) = wt(h) = m and AN1(g) = {0}. Further, if
m < 2n−1, then AI(g) ≥ 2.

Proof. Let MS be a matrix which columns correspond to the elements of S.
Because S is maximal, the vector subspace of Fm2 spanned by the rows of MS

must contain the all-1 vector In := (1, 1, . . . , 1). Otherwise, one would obtain a
zero-sum set in ZSd(n+2)×m defined by the matrix[

MS

In

]
.

Therefore, we can apply a linear permutation A on the columns of MS such
that 1A(S) = h where h ∈ BFn+1,n−d is of the form as given in Equation 7.15
with g ∈ BFn,n−d−1 and wt(g) = wt(h). It is left to show that AN1(g) = {0}.

Clearly, g cannot have a linear annihilator. We assume now that g has an
annihilator of degree 1 of the form (x1, . . . , xn) 7→ 1+

⊕n
i=1 aixi. Then, g(x) = 0

for all x with
⊕n

i=1 aixi = 0. Let j be such that aj = 1. For the linear permu-
tation Q : Fn2 → Fn2 , Q(x1, . . . , xn) = (x1, . . . , xj−1,

⊕n
i=1 aixi, xj+1, . . . , xn), we

have
g(Q(x1, . . . , xn)) = xj · g′(x1, . . . , xj−1, xj+1, . . . , xn)

for a function g′ ∈ BFn−1,n−d−2. But this means that h is linear-equivalent
to a function of the form (x1, . . . , xn+1) 7→ xn+1 · xn · g′(x1, . . . , xn−1), which
has a linear annihilator xn+1 + xn. We get a contradiction and conclude that
AN1(g) = {0}.

If m < 2n−1, it is easy to see that g + 1 cannot admit an annihilator of
algebraic degree 1. Suppose that a ∈ AN1(g + 1) \ {0}. Then, wt(a) = 2n−1

and ag = a, which is impossible.

As Proposition 7.15 only holds for maximal zero-sum sets we cannot use it
to establish an equivalence between minimal degree-d zero-sums of rank n + 1
and n-bit Boolean functions of degree n−d−1 with algebraic immunity at least
2 and minimum weight. We therefore propose the following question:

Question 7.16. Let S ∈ ZSdn×F (n,d) be minimal. What are necessary and suffi-
cient conditions for S to be maximal?
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7.4.2 Minimal Zero-Sum Sets: Bounds and Values for
F (n, d)

In order to derive values for F (n, d), we basically have to study the Boolean
functions that admit at most one annihilator of algebraic degree 1 and find
those of minimum weight. Indeed, from Proposition 7.13, we know that

F (n, d) = min{wt(g) | g ∈ BFn,n−d−1 \ {0} with dim AN1(g) ≤ 1}.

For d = 1 and d = 2 we can easily determine the cardinalities of minimal
degree-d zero-sum sets, as stated in Proposition 7.17 and Proposition 7.18. The
proofs also provide a construction for a minimal zero-sum set. While the proof
for d = 1 is rather trivial, the proof for d = 2 relies on the relation between
degree-2 zero-sum sets and semi-orthogonal matrices.

Proposition 7.17. For n ≥ 2, F (n, 1) = n+ 2− (n mod 2).

Proof. Consider a zero-sum set S ∈ ZS1
n×m and its matrix in systematic form.

Each row must have an even weight, therefore there must be at least one extra
column besides the identity part, i.e. m ≥ n + 1. By setting the extra column
to the all-one vector In we make all rows to have even weight. Furthermore, m
must be even and we may also need to add the all-zero column. The proposition
follows.

Proposition 7.18. For n = 4 and for n > 5, it is F (n, 2) = 2n. Further,
F (3, 2) = 8 and F (5, 2) = 12.

Proof. Let n ≥ 3 and m be minimal such that there exists an S ∈ ZS2
n×m. Let

further L ∈ Fn×(m−n)2 such that S is in systematic form with MS =
[
In×n L

]
.

As MS cannot contain any repeated columns, it is MS = M̂L and thus, L must
be semi-orthogonal and n ≤ (m− n). It follows that F (n, 2) = m ≥ 2n.

Let now n = 4 or n ≥ 6. To prove the existence of an S ∈ ZS2
n×2n, we

observe that if L ∈ Fn×n2 is an orthogonal matrix for which each column has
weight larger than 1, M̂L defines a degree-2 zero-sum set of size 2n and rank n
according to Proposition 7.8. It is left to show that, for any dimension n = 4 or
n ≥ 6, there exists an orthogonal matrix for which no column corresponds to a
unit vector. We are going to distinguish four cases. Let us define the orthogonal
matrices M4 and M6 as

M4 =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 , M6 =


0 1 1 1 1 1
1 0 1 1 1 1
1 1 0 1 1 1
1 1 1 0 1 1
1 1 1 1 0 1
1 1 1 1 1 0

 .

Case 1 (n = 0 mod 4): The block-diagonal matrix diag(M4, . . . ,M4) which
containsM4 as its diagonal blocks is orthogonal and each column weight is equal
to 3.
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Case 2 (n = 2 mod 4): Because n > 5, it is n = 4k + 6 for k ≥ 0 and the
matrix diag(M6,M4,M4, . . . ,M4) is orthogonal and each column has weight at
least 3.

Case 3 (n = 3 mod 4): Because n > 5, it is n = 4k + 3 for k ≥ 1 and the
two matrices D1 = diag(1, 1, 1,M4,M4, . . . ,M4) and D2 = diag(M4, 1, 1, . . . , 1)
are orthogonal. Their product is orthogonal and of the form

D1D2 =


0 1 1 1
1 0 1 1
1 1 0 1

0 0 . . . 0
0 0 . . . 0
0 0 . . . 0

A D

 , (7.16)

where D is the 4k × (4k − 1) submatrix of diag(M4, . . . ,M4) omitting the first
column. It is obvious that each column has weight at least 3.

Case 4 (n = 1 mod 4): Because n > 5, it is n ≥ 9 and n = 4k + 6 + 3
for k ≥ 0. The two matrices D1 = diag(1, 1, 1,M6,M4, . . . ,M4) and D2 =
diag(M4, 1, 1, . . . , 1) are orthogonal. Their product is orthogonal and of the
form given in Equation 7.16 with D as the 4k + 6 × (4k + 6 − 1) submatrix
of diag(M6,M4,M4, . . . ,M4) omitting the first column. It is obvious that each
column has weight at least 3.

For n = 3 we use that any degree-d zero-sum set must contain at least 2d+1

elements. Thus, F (n, 2) ≥ 8. We obtain F (3, 2) = 8 because F3
2 is a degree-2

zero-sum set.
For n = 5, assume that there exists an orthogonal matrix L ∈ F5×5

2 which
does not have a unit vector as its row (or column). From point (iii) of Propo-
sition 7.6 it follows that any 2× 5 submatrix of L must contain an odd number
of columns equal to each of (0, 1), (1, 0), (0, 0) and an even number of columns
equal to (1, 1) (same applies for rows of any 5 × 2 submatrix of L). It follows
that, up to a permutation of rows, L has the following form:

L =


1 0 0 1 1
0 1 0 1 1
0 0 . . .
1 1 . . .
1 1 . . .

 . (7.17)

It is easy to see that it is not possible to complete this matrix such that all 2×5
and 5×2 submatrices satisfy the condition. Therefore, F (5, 2) > 10. Moreover,
it is easy to verify that

MS =


1 0 0 0 0 0 0 0 0 1 1 1
0 1 0 0 0 0 1 1 1 0 1 1
0 0 1 0 0 1 0 1 1 0 1 1
0 0 0 1 0 1 1 0 1 0 0 0
0 0 0 0 1 0 0 1 0 1 0 1


defines a zero-sum set in ZS2

5×12, thus F (5, 2) = 12.

Proposition 7.19 below presents a simple way to construct a d+ 1 zero-sum
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set of rank n + 1 from a degree-d zero-sum set of rank n. This construction
might be used to derive an upper bound on F (n, d).

Proposition 7.19. If there exists an S ∈ ZSdn×m, one can construct a zero-sum
set S ′ ∈ ZSd+1

(n+1)×2m. In particular, for n > d+ 1, F (n, d) ≤ 2F (n− 1, d− 1).

Proof. If S ∈ ZSdn×m, then the columns of the matrix[
0 . . . 0 | 1 . . . 1
MS | MS

]
define a degree-(d + 1) zero-sum set S ′ with 2m elements of rank n + 1. We
remark that both sets S and S ′ have essentially the same indicator function,
only the domain dimension is different.

Note that the upper bound on F (n, d) given by this construction is not
always tight. Let S ⊆ F9

2 be such that 1S(x) = x1(x2x3x4x5 + x6x7x8x9). It
easy to verify that S ∈ ZS3

9×30. It follows that F (9, 3) ≤ 30 6= 2F (8, 2) = 32.
The corresponding matrix MS is given by:

MS =



0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1


. (7.18)

Proposition 7.20. For any d ∈ Z+ and n1, n2 > d, F (n1 +n2, d) ≤ F (n1, d) +
F (n2, d).

Proof. If S1 ∈ ZSdn1×m1
, S2 ∈ ZSdn2×m2

, then the columns of the matrix

MS =


MS1

0 . . . 0
...

0 . . . 0
0 . . . 0

...
0 . . . 0

MS2


repeating an odd number of times define a degree-d zero-sum set S with

at most m1 + m2 elements of rank n1 + n2. More precisely, if both S1 and S2

contain the zero vector, then the resulting zero-sum set has size m1 + m2 − 2
due to the zero-vector being cancelled by the repetition. Otherwise, S has size
m1 +m2.

Proposition 7.21. Let d ≥ 2. If there exist an S ∈ ZSdn×m, one can construct
a zero-sum set in ZSd−1(n+d)×m. In particular, for n > d, F (n, d) ≥ F (n+d, d−1).
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Proof. Let MS =
[
In×n L

]
be a matrix for S in systematic form. By re-

ordering the rows of MS, one can bring it into the form[
1 . . . 1 1 0 . . . 0 0 . . . 0
A 0 B I(n−1)×(n−1)

]
, (7.19)

where A ∈ F(n−1)×m1

2 and B ∈ F(n−1)×m2

2 for somem1, m2 withm1+m2+n = m.
Moreover, m1 cannot be zero because the first row must have an even weight.
We see that

[
A 0

]
must define a degree-(d − 1) zero-sum set in Fn−12 , i.e.,[

A 0
]

= MT for a T ∈ ZSd−1r×(m1+1). This is simply because the Hadamard
(component-wise) product of any d−1 rows of

[
A 0

]
can be expressed as the

Hadamard (component-wise) product of d rows of MS, i.e., the d − 1 rows at
the same positions as those of

[
A 0

]
and the first row [11 . . . 100 . . . 0]. We

conclude that m1 = |T | ≥ 2d and thus, r ≥ d.
Let v1, . . . , vd be d linearly independent rows of A and consider the matrix

1 . . . 1 1 0 . . . 0 0 . . . 0
A 0 B I(n−1)×(n−1)
v1 0 0 . . . 0 0 . . . 0
v2 0 0 . . . 0 0 . . . 0
...

...
...

...
vd 0 0 . . . 0 0 . . . 0


,

which must define a zero-sum set in ZSd−1(n+d)×m by the same argument as above,
i.e., the Hadamard product of any d−1 rows can be expressed as the Hadamard
product of d rows of MS. It is also easy to see that no linear combination of
rows can be equal to zero, i.e. the constructed set has full rank n+ d.

Using the above result and Proposition 7.18, we can prove a lower bound on
F (n, 3) as follows.

Corollary 7.22. For n ≥ 4 it is F (n, 3) ≥ 2n+ 6.

So far, we were able to characterize the minimal degree-d zero-sum sets for
d = 1 and d = 2 and proved some inequalities for the general case. Further, we
can use the following classification theorem by Kasami, Tokura and Azumi in
order to derive some more exact values of F (n, d).

Theorem 7.23 ( [KT70,KTA76]). Let r ≥ 2 and let f ∈ BFn,r with wt(f) <
2n−r+1. Then f is domain affine equivalent to either (i) or (ii), where

(i) f = x1 . . . xr−2(xr−1xr + xr+1xr+2 + . . .+ xr+2`−3xr+2`−2), n ≥ r + 2`− 2

(ii) f = x1 . . . xr−`(xr−`+1 . . . xr + xr+1 . . . xr+`), r ≥ `, n ≥ r + ` .

A direct application leads to the following results.

Proposition 7.24 (Values of F (n, d) for n ≤ 2d+ 4).
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(i) F (d+ 1, d) = 2d+1.

(ii) F (d + 2, d) = 2d+1 and the minimal zero-sum sets in Fd+2
2 correspond to

the Boolean functions of algebraic degree 1.

(iii) F (d+ 3, d) = 3 · 2d and the minimal zero-sum sets in Fn2 correspond to the
Boolean functions domain affine equivalent to x 7→ x1x2 + x3x4.

(iv) For d+ 4 ≤ n ≤ 2d+ 3, F (n, d) = 22d−n+4(2n−d−2 − 1) = wt(hn,d), where

r = n− d− 1, hn,d : (x1, . . . , xn) 7→ x1(x2x3 . . . xr + xr+1xr+2 . . . x2r−1) .

(v) F (2d+ 4, d) = 2d+2 = wt(gd), where:

gd : (x1, . . . , x2d+4) 7→ x1(x2x3 . . . xd+3 + (x2 + 1)xd+4xd+5 . . . x2d+4) .

Proof. For d ∈ Z+, d < n, let us define the set

Sn,d := {g ∈ BFn,d \ {0} with dim AN1(g) ≤ 1} .

From Proposition 7.13 we know that F (n, d) = min{wt(g) | g ∈ Sn,n−d−1}.
Therefore, we trivially obtain F (d + 1, d) = 2d+1. Sd+2,1 is the set of Boolean
functions of algebraic degree 1 and thus F (d+ 2, d) = 2d+1.

To obtain the minimum weight of functions in Sd+3,2, we first note that every
Boolean function of algebraic degree 2 of the minimum weight 2d+1 must be
domain affine equivalent to a monomial function, i.e., x 7→ x1x2 (see Proposition
12 of [Car07]). As this monomial function admits the annihilators x 7→ x1 + 1
and x 7→ x2 + 1, the minimum weight in Sd+3,d must be at least 2d+2 − 2d (see,
e.g., [Car07, p. 70] for the possible weights of quadratic Boolean functions).
This weight is obtained by the function x 7→ x1x2 + x3x4, which clearly is in
Sd+3,2. To see that all other functions in Sd+3,2 of minimal weight are domain
affine equivalent to it, it is enough to see that all of the functions

qn,` : (x1, . . . , xn) 7→ x1x2 + x3x4 + · · ·+ x2`−1x2`

with ` ≥ 3 have a strictly larger weight. Indeed, by induction on `, it can be
easily shown that wt(qn,`) = 2n−1 − 2n−`−1.

Let now d+ 4 ≤ n ≤ 2d+ 3. It is easy to see that hn,d ∈ Sn,n−d−1. Further,
its weight can be computed as

wt(hn,d) = 2d+1 + 2d+1 − 22d−n+4 = 22d−n+4(2n−d−2 − 1) .

It is left to show that hn,d is an element of minimum weight in Sn,n−d−1.
Let therefore be h′ in Sn,n−d−1 with wt(h′) ≤ wt(hn,d). Since wt(hn,d) <
2n−(n−d−1)+1 = 2d+2, the assumptions of Theorem 7.23 are fulfilled and h′ would
be domain affine equivalent to one of the forms given in cases (i) and (ii) of
Theorem 7.23. If n ≥ d + 5, Case (i) corresponds to a Boolean function of
the form x 7→ x1x2g which admits x 7→ x1 + 1 and x 7→ x2 + 1 as degree-1
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annihilators. For n = d+ 4, Case (i) corresponds to a function of the form

x 7→ x1(x2x3 + x4x5 + · · ·+ x2`x2`+1) = x1g

for g ∈ Sn,2 and, therefore, its weight must be at least 2n−2−2n−4 = 22d−n+4(2n−d−2−
1).

Otherwise, h′ must be domain affine equivalent to one of the functions given
in Case (ii). Since it cannot admit two annihilators of algebraic degree 1, it
must be domain affine equivalent to either

x 7→ x1(x2x3 . . . xr + xr+1xr+2 . . . x2r−1) = hn,d,

or
gn,d : x 7→ x1x2 . . . xr + xr+1xr+2 . . . x2r,

where r = n− d− 1. As

wt(gn,d) = 22d−n+3(2n−d−1 − 1) > wt(hn,d) = 22d−n+3(2n−d−1 − 2),

the point (iv) follows.
It is easy to see that wt(gd) = 2d+2, i.e. F (2d + 4, d) ≤ 2d+2. By Proposi-

tion 7.19 and (iv) of this Theorem, F (2d+4, d) ≥ F (2d+5, d+1)/2 = (2d+2−1).
Since F (2d+ 4, d) has to be even, the Theorem follows.

We are now going to show that, for any fixed d, the sequence F (n, d) is
increasing with n. For that, we need the following lemma.

Lemma 7.25. For n > 2d+ 3, we have F (n, d) ≤ 2n

n+1
.

Proof. By repeatedly applying Proposition 7.19, we obtain

F (n, d) ≤ 2d−1(n− d+ 2) = 2n
n− d+ 2

2n−d+1
.

It is left to show that n−d+2
2n−d+1 ≤ 1

n+1
. We know that

(n+1)(n−d+2) < (2n−2d−2)(n−d+2) = 2(n−d−1)(n−d+2) ≤ 2n−d+1 ,

which is true for n− d ≥ 5. The latter is guaranteed by n ≥ 2d+ 4 and d ≥ 1.
This proves the statement.

Proposition 7.26. For n > d+ 1, it is F (n, d) ≥ F (n− 1, d).

Proof. We prove this statement by induction on d. If d = 1 and d = 2, the state-
ment is obviously true by Proposition 7.17 and Proposition 7.18. Let thereby
d ≥ 3 and assume that the statement is true for d− 1.

Let S ∈ ZSdn×m be a minimal zero-sum set, i.e., m = F (n, d), such that MS

can be given as in Equation 7.19 for A ∈ F(n−1)×m1

2 and B ∈ F(n−1)×m2

2 with m1,
m2 such thatm1+m2+n = m. Letm′ := m2+n−1. We see that [B|I(n−1)×(n−1)]
must define a degree-(d − 1)-zero-sum set in Fn−12 , i.e., [B|I(n−1)×(n−1)] = MT

for a T ∈ ZSd−1(n−1)×m′ . This is because every (d − 1) × (m′) submatrix of MT

must occur an even number of times (from the property of S being a degree-d
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zero-sum set) and, since MT contains I(n−1)×(n−1), it must have rank n− 1. We
now distinguish two cases.

Case 1 (m′ ≤ m
2
): In that case we directly obtain

m = F (n, d) ≥ 2F (n− 1, d− 1) ≥ 2F (n− 2, d− 1) ≥ F (n− 1, d) ,

where the second estimation follows from the induction hypothesis and the last
one follows from Proposition 7.19.

Case 2 (m′ > m
2
): We first remark that if n ≤ 2d+ 3, the statement directly

follows from Proposition 7.24. For example, for n ≥ d+ 5,

F (n, d) = 2d+2 − 22d−n+4 ≥ 2d+2 − 22d−n+5 = F (n− 1, d) .

Let us therefore assume that n > 2d + 3. Note that in the matrix MS, we
can add the first row [11 . . . 100 . . . 0] to any other row and would obtain an
equivalent zero-sum set. This operation does not change the right part of MS

containing I(n−1)×(n−1). Indeed, it allows us to obtain a zero-sum set Sc ∈ ZSdn×m
represented by

MSc =

[
1 . . . 1 1 0 . . . 0 0 . . . 0
A+ c> c> B I(n−1)×(n−1)

]
for any c ∈ Fn−12 . Let us denote by R the set of columns of A together with the
(n− 1)-bit zero vector. Our statement to prove follows if we can guarantee the
existence of a vector c̃ such that, for all v ∈ (R + c̃>), wt(v) ≥ 2. Then, we
would obtain a zero-sum set in ZSd(n−1)×m′′ defined by[

A+ c̃> c̃> B I(n−1)×(n−1)
]

as there won’t be any cancellation between [A + c̃> | c̃>] and I(n−1)×(n−1), thus
keeping the rank maximum. Indeed, such a vector must always exist. Assume
that, for all c ∈ Fn−12 , there exists a v ∈ (R + c̃>) with weight at most 1. This
is equivalent to say that the covering radius of the set R ⊆ Fn−12 is equal to 1.
By a simple counting argument it follows that |R| ≥ 2n−1

n
. On the other hand,

it is
|R| = m−m′ < F (n, d)− F (n, d)

2
=

1

2
F (n, d) ≤ 2n−1

n+ 1
,

where the last inequality follows from the previous lemma. We get a contradic-
tion, therefore such vector c̃ always exists.

7.5 Implications for Degree-d Sum-Invariant Ma-
trices

In this section, I point out the implications of the above results on degree-d
sum-invariant matrices. The most interesting implication is that any bijective
degree-3 sum-invariant matrix must be trivial. As the linear layer of a block
cipher based on an LS-design certainly has to be bijective, this shows that one
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cannot extend the observation of Todo et al.. to invariants of degree higher
than two.

Corollary 7.27. Let L ∈ Fn×n2 be a degree-d sum-invariant matrix for d ≥ 3.
Then L must be a permutation matrix.

Proof. Let us assume a degree-3 sum-invariant matrix L ∈ Fn×n2 and let M̂L be
given by

M̂L =
[
In×n L

]
∈ Fn×2n2 .

By Proposition 7.8 the columns of M̂L occurring an odd number of times corre-
spond to a degree-3 zero-sum set S ⊆ Fn2 . Note that the unit columns of In×n do
not repeat inside In×n. Therefore, after removing the even occurrences of each
column, the number of columns left in In×n will be not smaller than the number
of columns left in L. It follows that rank(S) ≥ |S|/2. From Corollary7.22,

|S| ≥ F (rank(S), 3) ≥ 2 · rank(S) + 6

Therefore, S must be empty and thus L is a permutation matrix.

Consider a degree-d sum-invariant matrix L and consider the matrix M̂L

defined as in Proposition 7.8:{
M̂L :=

[
In×n L

]
∈ Fn×(m+n)

2 , if m+ n is even;

M̂L :=
[
In×n L 0

]
∈ Fn×(m+n+1)

2 , if m+ n is odd,
(7.20)

where it is shown that the columns of M̂L occurring and odd number of times
define a degree-d zero-sum set. Because of the cancellations, the size and the
rank of the zero-sum set may be lower. We deduce the following decomposition
of sum-invariant matrices.

Proposition 7.28. Let L ∈ Fn×m2 be a degree-d sum-invariant matrix such that
no column of L is equal to zero. Then, up to permutations of rows and columns,
L can be expressed in the following form:

L =

[
A

0
Ik

M M

]
, (7.21)

where k, t are some integers, M ∈ Fn×t2 , A ∈ Fn×(m−2t−k)2 , and the columns of
A do neither contain unit vectors nor repetitive columns. Such integers k, t are
unique. Consider the matrix Â:

Â :=

[
In−k

0
A

]
∈ Fn×(m+n−2t−2k)

2 , if m+ n is even;

Â :=

[
In−k

0
A 0

]
∈ Fn×(m+n−2t−2k+1)

2 , if m+ n is odd.
(7.22)

The columns of the matrix Â are pairwise distinct and form a degree-d zero-sum
set.
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Proof. The columns of M̂L occurring an odd number of times form a degree-d
zero-sum set. The columns of In×n may only cancel with columns from L. Let
k be the number of unit vectors occurring an odd number of times in L. Let A
be the matrix consisting of the columns of L that are repeated an odd number
of times and which are not unit vectors. It follows that L can be expressed in
the form given in Equation 7.21. Now consider the matrix M̂L. After removing
even repetitions of columns, the matrix will be equal to Â. It follows that the
columns of Â define a degree-d zero-sum set.

To show uniqueness of k, t, first recall that A must not contain unit vectors.
It follows that all columns of L occurring an even number of times must be in
M , and all columns occurring an odd number of times must be either in A or
in Ik depending only on the column weight.

7.5.1 Minimum Expansion Rate

We have shown that for d ≥ 3, there exist no bijective degree-d sum-invariant
matrices. However, there exist rectangular degree-d sum-invariant matrices
resulting in expanding linear mappings. A natural problem would be to find a
degree-d sum-invariant matrix with a minimum expansion rate.

Definition 7.29 (Expansion Rate). The expansion rate of a matrix L ∈ Fn×m2

is the ratio m
n
.

Note that, given a degree-d sum-invariant matrix L ∈ Fn×m2 , we can always
build a a degree-d sum-invariant matrix in F(n+1)×(m+1)

2 of the form[
L 0
0 1

]
.

Therefore, by repetitively extending any matrix L by unit vectors in the above
way, we can construct a matrix with an expansion rate arbitrarily close to 1.
Indeed, the permutation matrices have an expansion rate of exactly 1. There-
fore, by the minimum expansion rate for a degree-d sum-invariant matrix of
fixed d, we refer to the minimum expansion rate over all degree-d sum-invariant
matrices that do not contain a unit vector as a column.

It is clear that for d = 2 the minimum expansion rate is 1 and is achieved by
orthogonal matrices. For d ≥ 3 the minimum expansion rate is an open problem.
It corresponds to the minimum value of F (n,d)

n
−1. Among the established values

of F (n, d) the minimum expansion rate is achieved for F (d + 2, d) = 2d+1, i.e.
by the matrices from the construction given in Proposition 7.4. We conjecture
that this is indeed the optimal expansion rate.

Conjecture 7.30. Let d ≥ 3. The minimum expansion rate of a degree-d
sum-invariant matrix is equal to 2d+1−d−2

d+2
.
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7.6 Conclusion and Open Problems
In the work I described in this chapter we have revealed the precise properties
of the linear layer used in LS-designs that allow to preserve nonlinear invariants
of a similar form than those observed by Todo et al.. As a negative result, we
have shown that it is not possible to construct such an LS-design block cipher
that generalizes the invariants to be preserved up to algebraic degree 3. Those
results were obtained by studying the Boolean functions of minimum weight
that admit no linear annihilator.

An interesting open question is stated in Question 7.16. That is, can we
understand in which cases the minimal degree-d zero-sum sets are also maximal?
A more general and indeed remarkable result would be to derive exact formulas
for F (n, d) in those cases where we were only able to provide upper and lower
bounds. Indeed, solutions to those problems would have interesting implications
such as understanding the minimum expansion rate of degree-d sum-invariant
matrices and deriving equivalences between degree-d zero-sum sets and Boolean
functions with algebraic immunity at least 2.

7.7 Values and Bounds for F (n, d)
In the following table we describe known exact values or known bounds of
F (n, d) for n ∈ {2, . . . , 30} and d ∈ {1, . . . , 10}. The exact values come from
Proposition 7.17, Proposition 7.18 and Proposition 7.24. The lower bounds
come from Proposition 7.21 and Proposition 7.19. The upper bounds come
from Proposition 7.24. We remark that for F (2d + 5, d) the upper bound is
obtained by using a slightly different construction. We use the same diagonal
construction but fill the free space with 1s. Consider the matrix M̂S given by

M̂S =


M̂S1

1 . . . 1
...

1 . . . 1
1 . . . 1

...
1 . . . 1

M̂S2


,

where S1 ∈ ZSd(d+1)×F (d+1,d), S2 ∈ ZSd(d+4)×F (d+4,d) and both M̂S1 , M̂S2 contains
a column (1, . . . , 1) so that two columns repeat in M̂S. Note that the row
span of S1 does not contain a row (1, . . . , 1) and thus rank(M̂S) = rank(M̂S1) +

rank(M̂S2) = 2d+5. The columns of M̂S form a zero-sum set from ZSd(2d+5)×(5·2d−2).
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Part III

White-box Cryptography
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White-box cryptography studies the security of cryptographic implementa-
tions in the white-box model. In this model, an adversary has full access to
the implementation, in the form of a program or a circuit. She can, there-
fore, read or write memory at any time, perform precise fault attacks, analyze
the program’s control flow. Her goal depends on the security requirement. For
white-box implementations of symmetric-key primitives, the most basic security
requirement is the secrecy of the key. Such implementations are a long-standing
open problem in cryptography. Starting from seminal works of Chow et al. [CE-
JvO02b,CEJvO02a] in 2002, several constructions were proposed in the litera-
ture. Unfortunately, all were broken by practical attacks. However, in industry,
such implementations are of large interest. Companies use white-box imple-
mentations with private designs. This led to a recent direction of applying
side-channel attacks to white-box implementations. Bos et al. [BHMT16] show
that most implementations can be broken by a side-channel attack in a fully
automated way.

In this part, I present the work I have done on white-box implementations
of symmetric-key primitives. I explore further the space of automated attacks
and provide provably secure protection against a new attack. This part is based
on the joint work with Alex Biryukov [BU18a].
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Attacks on White-box
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In this chapter, I describe several automated attacks on white-box implemen-
tations. It is assumed that the analyzed white-box implementation is protected
by some masking scheme, in a rather general sense. The main goal is not to
break existing implementations, but to discover properties that a secure obfus-
cation scheme has to satisfy. This chapter is based on the first part of [BU18a],
a joint work with Alex Biryukov.

8.1 Introduction
In the traditional symmetric cryptography, an adversary has access only to the
inputs and outputs of a cryptographic primitive. This model is called the black-
box model. Relaxation of this model is called grey-box and in it attacker may
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also obtain side-channel or fault information from the cryptographic implemen-
tation. In the extreme white-box model the adversary is given full access to
the implementation which contains secret keys. He can use both static and
dynamic analysis as well as fault analysis in order to break the cryptosystem,
e.g. to extract embedded secret keys. Implementations secure in such model
have many applications in industry. However, creating such implementations
turns out to be a very challenging if not an impossible task.

In 2002, Chow et al. [CEJvO02b,CEJvO02a] proposed first white-box im-
plementations of the AES and DES block ciphers. The main idea is to represent
small parts of a block cipher as look-up tables and compose them with random-
ized invertible mappings to hide the secret key information. Each such look-up
table by itself does not give any information about the key. In order to at-
tack such scheme, multiple tables must be considered. Another approach was
proposed by Bringer et al. [BCD06]. Instead of look-up tables, the cipher is rep-
resented as a sequence of functions over F2n for some n, with some additional
computations as noise. These functions are then composed with random linear
mappings to hide the secret key, similarly to the Chow et al. approach.

Unfortunately, both approaches fell to practical attacks [BGEC05,DMWP10,
LR13]. Consequent attempts to fix them were not successful [Kar10, XL09].
Moreover, Michiels et al. [MGH09] generalized the attack by Billet et al. [BGEC05]
and showed that the approach of Chow et al. is not secure for any SPN cipher
with MDS matrices. This follows from the efficient cryptanalysis of any SASAS
structure [BS01]. Recently several white-box schemes based on the ASASA
structure were proposed [BBK14a]. However the strong white-box scheme from
that paper was broken [MDFK15, GPT15, BKP17] (which also broadens the
white-box attacker’s arsenal even further). Another recent approach consists in
obfuscating a block cipher implementation using candidates for indistinguisha-
bility obfuscation (e.g. [GGH+13]).

Besides academia, there are commercial white-box solutions that are used
in real products. The design behind those implementations is kept secret, thus
adding security-by-obscurity protection. Nevertheless, Bos et al. [BHMT16]
proposed a framework for attacks on white-box implementations which can au-
tomatically break many white-box implementations. The idea is to apply tech-
niques from grey-box analysis (i.e. side-channel attacks) but using more precise
data traces obtained from the implementation. The attack is called differen-
tial computation analysis (DCA). Sasdrich et al. [SMG16] pointed out that the
weakness against the DCA attack can be explained using the Walsh transform
of the encoding functions. Banik et al. [BBIJ17] analyzed software countermea-
sures against the DCA attack and proposed another automated attack called
Zero Difference Enumeration attack. More recently, Bock et al. [BBMT18] an-
alyzed internal encodings in white-box implementations. Consequently, Rivain
and Wang [RW19] provided in-depth analysis and showed that internal encod-
ings can be easily broken in most cases, improved the attack complexities and
proposed a new collision attack.

In light of such powerful automated attack the question arises: how to create
a whitebox scheme secure against the DCA attack? The most common coun-
termeasure against side-channel attacks is masking, which is a form of secret
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Attack Ref. Time

Correlation [BHMT16],Sec. 8.3.1 O(ntk22t)

Time-Memory Trade-off Sec. 8.3.2 O(nds/2e + nbs/2ck)

Linear Algebra [GPRW18],Sec. 8.4.1 O(nω + n2k)

Generalized Lin. Alg. [GPRW18],Sec. 8.4.2 O(
(
n
≤d

)ω
+
(
n
≤d

)2
k)

LPN-based Gen. Lin. Alg. Sec. 8.4.4 TLPN(r,
(
n
≤d

)
)

1-Share Fault Injection Sec. 8.5.2 O(n2)

2-Share Fault Injection Sec. 8.5.1 O(n3)

Notations: n denotes size of the obfuscated circuit or its part selected for the
attack; s is the number of shares in the masking scheme; k is the number of
key candidates required to compute a particular intermediate value in the

circuit; t denotes the correlation order (t ≤ s); ω is the matrix multiplication
exponent (e.g. ω = 2.8074 for Strassen algorithm); d is the algebraic degree of
the masking decoder (see Section 8.4.2);

(
n
≤d

)
=
∑d

i=0

(
n
i

)
is the number of

monomials of n bit variables of degree at most d; r is the noise ratio in the
system of equations, TLPN(r,m), DLPN(r,m) are time and data complexities

of solving an LPN instance with noise ratio r and m variables.

Table 8.1: Attacks on masked white-box implementations.

sharing. It is therefore natural to apply masking to protect white-box imple-
mentations. We define masking to be any obfuscation method that encodes
each original bit by a relatively small amount of bits. Such masking-based ob-
fuscation may be more practical in contrast to cryptographic obfuscation built
from current indistinguishability obfuscation candidates [GGH+13,CMR17].

8.1.1 Our Contribution

This chapter studies the possibility of using masking schemes in the white-box
setting. We restrict the analysis to implementations in the form of Boolean
circuits.

We develop a more generic DCA framework and describe multiple generic
attacks against masked implementations. The attacks show that the classic
Boolean masking (XOR-sharing) is inherently weak. Previous and new attacks
are summarized in Table 8.1. We remark that conditions for different attacks
vary significantly and the attacks should not be compared solely by time com-
plexity. For example, the fault-based attacks are quite powerful, but it is rela-
tively easy to protect an implementation from these attacks. From the attacks
we conclude that more general nonlinear encodings are needed and we deduce
constraints that a secure implementation must satisfy. We believe that these
results provide new insights on the design of white-box implementations. Note
that a basic variant of the (generalized) linear algebra attack was independently
proposed by Goubin et al. [GPRW18].
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A code implementing the described attacks and protections from Chapter 9
is publicly available at [BU18b]:

https://github.com/cryptolu/whitebox

8.1.2 Outline

The general attack setting and attacks are described in Section 8.2. Combina-
torial and algebraic attacks in the DCA setting are described in Section 8.3 and
Section 8.4 respectively. In Section 8.5 I suggest fault-based attacks. Finally, I
conclude in Section 8.6.

8.2 Differential Computational Analysis
I describe the general setting for our attacks. We consider a keyed symmetric
primitive, e.g. a block cipher. A white-box designer takes a naive implemen-
tation with a hardcoded secret key and obfuscates it producing a white-box
implementation. An adversary receives the white-box implementation and her
goal is to recover the secret key or a part of it. We restrict our analysis to
implementations in the form of Boolean circuits.

Definition 8.1. A Boolean circuit C is a directed acyclic graph where each node
with the indegree k > 0 has an associated k-ary symmetric Boolean function gv.
Nodes with the indegree equal to zero are called inputs of C and nodes with the
outdegree equal to zero are called outputs of C.

Let x = (x1, . . . , xN) (resp. y = (y1, . . . , yM)) be a vector of input (resp.
output) nodes in a fixed order. For each node v in C we say that it computes a
Boolean function fv : FN2 → F2 defined as follows:

• for all 1 ≤ i ≤ N set fxi(z) = zi,

• for all non-input nodes v in C set fv(z) = gv(fc1(z), . . . , fck(z)),
where c1, . . . , ck are nodes having an outgoing edge to v.

The set of fv for all nodes v in C is denoted F(C) and the set of fxi for
all input nodes xi is denoted X (C). By an abuse of notation we also define the
function C : FN2 → FM2 as C = (fy1 , . . . , fym).

Masking Schemes

We assume that the white-box designer uses masking in some form, but we do
not restrict him from using other obfuscation techniques. The only requirement
is that there exists a relatively small set of nodes in the obfuscated circuit
(called shares) such that during a legitimate computation the values computed
in these nodes sum to a predictable value. We at least expect this to happen with
overwhelming probability. In a more general case, we allow arbitrary functions
to be used to compute the predictable value from the shares instead of plain
XOR. We call these functions decoders. The classic Boolean masking technique
is based on the XOR decoder. The number of shares is denoted by s.

https://github.com/cryptolu/whitebox
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I give a broad definition of a masking scheme that will be used also in
Chapter 9.

Definition 8.2 (Masking Scheme). An T -bit masking scheme is defined by an
encoding function Encode : F2 × FR2 → FT2 , a decoding function Decode : FT2 →
F2 and a set of triplets {(�, Eval�, C�), . . .} where each triplet consists of:

1. a Boolean operator � : F2 × F2 → F2,

2. a circuit Eval� : FT2 × FT2 × FR′2 → FT2 .

For any r ∈ FR2 and any x ∈ F2 it must hold that Decode(Encode(x, r)) = x.
Moreover, the following equation must be satisfied for all operators � and all
values r′ ∈ FR′2 , x1 ∈ FT2 , x2 ∈ FT2 :

Decode(Eval�(x1, x2, r
′)) = Decode(x1)�Decode(x2).

The degree of the masking scheme is the algebraic degree of the Decode
function. The masking scheme is called nonlinear if its degree is greater than 1.

Note that Eval� takes three arguments in the definition. The first two are
shares of the secret values and the third one is optional randomness that must
not change the secret values.

Predictable Values

A predictable value typically is a value computed in the beginning or in the end
of the reference algorithm such that it depends only on a few key bits and on
the plaintexts/ciphertexts. In such case the adversary makes a guess for the
key bits and computes the corresponding candidate for the predictable value.
The total number of candidates is denoted by k.

The obfuscation method may require random bits e.g. for splitting the
secret value into random shares. Even if the circuit may have input nodes for
random bits in order to achieve non-deterministic encryption, the adversary
can easily manipulate them. Therefore, the obfuscation method has to rely on
pseudorandomness computed solely from the input. Locating and manipulating
the pseudorandomness generation is a possible attack direction. However, as we
aim to study the applicability of masking schemes, we assume that the adversary
can not directly locate the pseudorandomness computations and remove the
corresponding nodes. Moreover, the adversary can not predict the generated
pseudorandom values with high probability, i.e. such values are not predictable
values.

Window Coverage

In a typical case shares of a predictable value will be relatively close in the
circuit (for example, at the same circuit level or at a short distance in the
circuit graph). This fact can be exploited to improve efficiency of the attacks.
The adversary covers the circuit by sets of closely located nodes. Any such set
is called a window (as in power analysis attack terminology e.g. from [BB17]).
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The described attacks can be applied to each window instead of the full circuit.
By varying the window size the attacks may become more efficient. Here we
do not investigate methods of choosing windows to cover a given circuit. One
possible approach is to assign each level or a sequence of adjacent levels in the
circuit to a window. Choosing the full circuit as a single window is also allowed.
In our attacks we assume that a coverage is already chosen. For simplicity, we
describe how each attack is applied to a single window. In case when multiple
windows are chosen, the attack has to be repeated for each window. The window
size is denoted by n. It is equal to the circuit size in the case of the single window
coverage.

General DCA Attack

I would like to note that the term “differential computation analysis” (DCA) is
very general. In [BHMT16] the authors introduced it mainly for the correlation-
based attack. In fact our new attacks fit the term well and provide new tools for
the “analysis” stage of the attack. The first stage remains the same except that
we adapt the terminology for the case of Boolean circuits instead of recording
the memory access traces. Our view of the procedure of the DCA attack on a
white-box implementation C is given in Algorithm 8.1

Algorithm 8.1 General procedure of DCA attacks on a Boolean circuit
C : FN2 → FM2
1: generate a random tuple of plaintexts P = (p1, p2, . . .), pi ∈ FN2
2: for all pi ∈ P do
3: compute the circuit C on input pi: ci ← C(pi) ∈ FM2
4: for all j ∈ [1 . . . |C|] do
5: vj,i ← computed value in the node indexed j
6: for all j ∈ [1 . . . k] do
7: ṽj,i ← predictable value indexed j

computed from plaintext pi and/or ciphertext ci
8: generate the list of all computed vectors:
V ← (v1, . . . , v|C|), where vj = (vj,1, . . . , vj,|P |) ∈ F|P |2

9: generate the list of all predictable vectors:
Ṽ ← (ṽ1, . . . , ṽk), where ṽj = (ṽj,1, . . . , ṽj,|P |) ∈ F|P |2

10: choose a coverage P of V by windows of size n
11: for all W ∈ P do
12: perform analysis on the window W ⊆ V

using the set of predictable vectors Ṽ

We remark that the correlation-based DCA attack from [BHMT16] can be
implemented on-the-fly, without computing the full vectors vj. In contrast, most
of our attacks require full vectors. Though, various optimizations are possible.

In the following two sections I describe two classes of DCA attacks: combina-
torial and algebraic. They both follow the procedure described above and differ
only in the analysis part (Step 12). Afterwards, I describe two fault-injection
attacks which allow to find locations of shares efficiently.
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8.3 Combinatorial DCA attacks
The most straightforward way to attack a masked implementation is to guess
location of shares inside the current window. For each guess we need to check
if the shares match the predictable value. In the basic case of classic Boolean
masking where the decoder function is simply XOR of the shares the check is
trivial. If an unknown general decoder function has to be considered, the attack
becomes more difficult. One particularly interesting case is a basic XOR decoder
with added noise (i.e. low-weight pseudorandom functions of the input). The
main attack method in such cases is correlation.

8.3.1 Correlation attack

The correlation DCA attack from [BHMT16] is based on correlation between
single bits. However, in the case of classic Boolean masking with strong pseu-
dorandom masks all s shares are required to perform a successful correlation at-
tack. In the case of a nonlinear decoder less shares may be enough: even a single
share correlation can break many schemes as demonstrated in [BHMT16,RW19].
Existing higher-order power analysis attacks are directly applicable to memory
or value traces of white-box implementations. However, the values leaked in the
white-box setting are exact in contrast to side-channel setting and the attack
may be described in a simpler way. I reformulate the higher-order correlation
attack in our DCA framework. Different correlation metrics of binary vectors
can be used, see e.g. [W+08]. In this chapter I defined the correlation as the
sample Pearson correlation coefficient.

Definition 8.3. The correlation of two n-bit vectors v1 and v2 is defined as

cor(v1, v2) =
n11n00 − n01n10√

(n00 + n01)(n00 + n10)(n11 + n01)(n11 + n10)
,

where nij denotes the number of positions where v1 equals to i and v2 equals
to j. If the denominator is zero then the correlation is set to zero. cor is the
sample Pearson correlation coefficient of two binary variables, also known as
the Phi coefficient.

Assume that locations of t shares are guessed and t vectors vj ∈ F|P |2 are
selected. For simplicity, I denote them by (v1, . . . , vt) ⊆ V . For each vector
m ∈ Ft2 we compute um ∈ F|P |2 where

um,i = (v1,i = m1) ∧ . . . ∧ (vt,i = mt).

In other words, um,i is equal to 1 if and only if during encryption of the i-th
plaintext the shares took the value described by m . For each predictable vector
ṽ we compute the correlation cor(um, ṽ). If its absolute value is above a pre-
defined threshold, we conclude that the attack succeeded and possibly recover
part of the key from the predictable value ṽ. Furthermore, the entire vector
of correlations (cor(u(0,...,0), ṽ), cor(u(0,...,1), ṽ), . . .) may be used in analysis, e.g.
the average or the maximum value of its absolute entries.
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We assume that the predictable value is not highly unbalanced. Then for the
attack to succeed we need the correlated shares to hit at least one combinationm
a constant number of times (that is obtain wt(um) ≥ const). Therefore the data
complexity is |P | = O(2t). However, with larger number of shares the noise
increases and more data may be required. We estimate the time complexity
of the attack as O(ntk2t|P |) = O(ntk22t). Here nt corresponds to guessing
location of shares inside each window (we assume t � n); k corresponds to
iterating over all predictable values; 22t corresponds to iterating over all t-bit
vectors m and computing the correlations.

The main advantage of this attack is its generality. It works against general
decoder functions even with additional observable noise. In fact, the attack
may work even if we correlate less shares than the actual encoding requires.
Indeed, the attack from [BHMT16] relied on single-bit correlations and still was
successfully applied to break multiple whitebox designs. The generality of the
attack makes it inefficient for some special cases, in particular for the classic
Boolean masking. We investigate this special case and describe more efficient
attacks.

8.3.2 Time-Memory Trade-off

Consider now the case of XOR decoder and absence of observable noise. That
is, the decoder function must map the shares to the correct predictable value
for all recorded plaintexts. In such case we can use extra memory to improve
the attack. Consider two simple cases by the number of shares:

1. Assume that the decoder uses a single share (i.e. unprotected implemen-
tation). We precompute all the predictable vectors and put them in a
table. Then we simply sweep through the circuit nodes and for each vec-
tor vi check if it is in the table. For the right predictable vector ṽ we will
have a match.

2. Assume that the decoder uses two shares (i.e. first-order protected imple-
mentation). We are looking for indices i, j such that vi ⊕ vj = ṽ for some
predictable vector ṽ. Equivalently, vi = ṽ ⊕ vj. We sweep through the
window’s nodes and put all the node vectors in a table. Then we sweep
again and for each vector vj in the window and for each predictable vector
ṽ we check if vj ⊕ ṽ is in the table. For the right ṽ we will have a match
and it will reveal both shares.

This method easily generalizes for arbitrary number of shares. We put the
larger half of shares on the left side of the equation and put the corresponding
tuples of vectors in the table. Then we compute the tuples of vectors for the
smaller half of shares and look-up them in the table. We remark that this
attack’s complexity still has combinatorial explosion. However the time-memory
trade-off essentially allows to half the exponent in the complexity.

The attack effectively checks nsk sums of vectors to be equal to zero. To
avoid false positives, the data complexity should be set to O(s log2 n + log2 k).
We consider this data complexity negligible, especially because for large number
of shares the attack quickly becomes infeasible. For simplicity, we assume the
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data complexity is O(1) and then the time complexity of the attack is O(nds/2e+
nbs/2ck).

The described attack is very efficient for unprotected or first-order masked
implementations. For small windows it can also be practical for higher-order
protections. In the following section I describe a more powerful attack whose
complexity is independent of the number of shares.

8.4 Algebraic DCA attacks

8.4.1 Linear Algebra Attack

For the classic Boolean masking the problem of finding shares consists in find-
ing a subset of the window’s vectors which sums to one of predictable vectors.
Clearly, this is a basic linear algebra problem. Let A be the matrix that has
as columns vectors from the current window. For each predictable vector ṽ we
solve the equation A× x = ṽ. A solution vector x reveals shares locations. To
avoid false-positive solutions the number |P | of encryptions should be increased
proportionally to the window size. For the same matrix A we need to check
all predictable vectors. Instead of solving the entire system each time, we pre-
compute the LU decomposition of the matrix and then use it for checking each
predictable vector much faster. We estimate the data complexity |P | = O(n)
and the time complexity O(nω + n2k), where ω is the matrix multiplication
exponent. This attack was independently proposed by the CryptoExperts team
in [GPRW18] and among other techniques was successfully applied [GPRW17]
during the WhibOx 2017 competition [ECR17] in order to break the winning
challenge “Adoring Poitras”.

We conclude that classic Boolean masking is insecure regardless of the num-
ber of shares. The attack complexity is polynomial in the circuit size. Even
though it may not be highly practical to apply the attack to entire circuits
containing millions of nodes, good window coverage makes the attack much
more efficient. The attack becomes especially dangerous if a window contain-
ing all shares may be located by analyzing the circuit. Indeed, this is how
team CryptoExperts attacked the main circuit of the winning challenge of the
WhibOx competition. They obtained a minimized circuit containing around
300000 nodes; they draw the data dependency graph (DDG) of the top 5%
nodes and visually located several groups of 50 nodes and successfully mounted
the described linear attack on each of the groups.

8.4.2 Generalization through Linearization

The described linear attack suggests that a nonlinear masking scheme has to be
used. We show that the attack can be generalized to nonlinear masking schemes
as well. Of course, the complexity grows faster. Still, the attack can be used to
estimate the security of such implementations.

The generalization is based on the linearization technique. The idea is to
compute products of vectors (with bitwise AND) and include them as possible
shares of the predictable vector. Each such product corresponds to a possible



160 Chapter 8. Attacks on White-box Implementations

monomial in the algebraic normal form of the decoder function. The correct lin-
ear combination of monomials equals to the decoder function. The correspond-
ing linear combination of products of vectors equals to the correct predictable
vector.

The set of products may be filtered. If a bound on the degree of the decoder
function is known, products with higher degrees are not included. For example,
for a quadratic decoder function only the vectors vi and all pairwise products
vivj should be included.

The data complexity is dependent on the number of possible monomials in
the decoder function. For simplicity, we consider an upper bound d on the
algebraic degree. Then the number of possible monomials is equal to(

n

≤ d

)
:=

d∑
i=0

(
n

i

)
.

This generalized attack has the data complexity O(
(
n
≤d

)
) and the time complex-

ity O(
(
n
≤d

)ω
+
(
n
≤d

)2
k).

The following definition is useful in formalizing the attack. It will be par-
ticularly useful in Chapter 9, where countermeasures against this attack are
analyzed.

Definition 8.4 (d-th order closure). Let V ⊆ Fn2 , V = {v1, v2, . . .}. Define the
d-th order closure of V (denoted V (d)) to be the vector space spanned by all
component-wise products of at most d vectors from V .

V (d) = span {1} ∪ {(vi1 ∧ vi2 ∧ . . . ∧ vid | 1 ≤ i1 ≤ i2 ≤ . . . ≤ id ≤ |V |)} .

Let V be a set of Boolean functions with the same domain FN2 . The d-th
order closure of V (denoted V(d)) is defined completely analogously to V (d).

Example 3.
V(1) is spanned by {1} ∪ {gi | gi ∈ V},
V(2) is spanned by {1} ∪ {gigj | gi, gj ∈ V} (includes V(1) as i = j is allowed).

The (first-order) linear algebra attack can then be described as searching for
a predictable vector ṽ in the vector space V (1). The generalized linear algebra
attack of order d then searches in the vector space V (d).

It is worth remarking that it is enough to consider only nonlinear (e.g.
AND, OR) and input nodes inside the current window. All other nodes are
affine combinations of these and are redundant. This fact is formalized in the
following proposition.

Proposition 8.5. Let C be a Boolean circuit. Let N (C) be the set of all
functions computed in the circuit’s nonlinear nodes (i.e. any node except XOR,
NOT, NXOR) together with functions returning input bits. Then for any integer
d ≥ 1 the sets F (d)(C) and N (d)(C) are the equal.

Proof. Note that for any set V we have V(d) = (V(1))(d). Therefore, we only
need to prove that F (1)(C) = N (1)(C). It is sufficient to show that any function
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from F belongs to N (1)(C). This can be easily proved by induction on circuit
levels.

Remark 16. Note that linear relations may still hold between functions com-
puted in the nonlinear gates. For example, the XOR gate may be implemented
by several NAND gates. All such relations can be exploited to reduce the search
space by simply reducing the set V to a basis of the space that it spans. It is
easy to show that the d-th order closure of such basis is equal to the d-th order
closure of V itself.

I describe an interesting scenario where this generalized attack is highly
relevant. Assume that a white-box designer first applies classic Boolean masking
to the reference circuit. Afterwards, each intermediate bit is encoded by e.g. 8
bits using a random nonlinear encoding. The masked circuit then is transformed
into a network of lookup tables which perform operations on the encoded bits
without explicitly decoding them. The motivation for such scheme is that there
will be no correlation between a single 8-bit encoding and any predictable vector
because of the linear masking applied under the hood. For the generalized linear
attack the degree bound is equal to 8 and normally, the time complexity would
be impractical. However, in this case the lookup tables reveal the locations
of encodings, i.e. the 8-bit groups. Therefore, we include only 28 products
from each group and no products across the groups. The attack works because
the predictable value is a linear combination of XOR-shares which in turn are
linear combinations of products (monomials) from each group. I remark that
the system has a simpler expression in the point basis, i.e. when we consider
functions of the form x 7→ (x = c) for all c ∈ F8

2 instead of monomial maps.

8.4.3 Value-restriction Analysis

The described algebraic attack can be modified to cover a broader range of
masking schemes. Consider a low-degree combination of vectors from the cur-
rent window and assume that the function it computes can be expressed as s∧r,
where s is the correct predictable value and r is some uniform pseudorandom
(unrelated) value. The basic algebraic attack will not succeed because s ∧ r is
not always equal to the predictable value s. However, it is possible to extend
the attack to exploit the leakage of s∧ r. The adversary chooses a set of inputs
for which the predictable value s is equal to 0 and adds a single random input
for which the predictable value is equal to 1 (the adversary may need to guess
a part of the key to compute the predictable value). Then with probability 1/2
he is expected to find a vector with all bits equal to 0 except the last bit equal
to 1. In case the predictable value is wrong, the chance of finding such vector is
exponentially small in the size of the plaintext set. The same approach works
for more complex leaked functions. In particular, the leaked function may de-
pend on multiple predictable values, e.g. on all output bits of an S-Box. The
only requirement is that the leaked function must be constant for at least one
assignment of the predictable values (except of course the case when the leaked
function is constant on all inputs). However, the adversary must be able to find
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the correct assignment of predictable values. As a conclusion, this attack vari-
ant reveals a stronger constraint that a masking scheme must satisfy in order
to be secure.

8.4.4 Algebraic Attack in the Presence of Noise

In spirit of the value-restriction analysis, we continue to explore classes of ex-
ploitable leaking functions. Assume that a low-degree combination of vectors
from the current window corresponds to a function s⊕ e, where s is the correct
predictable vector and e is a function with a low Hamming weight. The function
e may be unpredictable and we consider it as noise. The problem of solving a
noisy system of linear equations is well known as Learning Parity with Noise
(LPN). It is equivalent to the problem of decoding random linear codes. The
best known algorithms have exponential running time. We refer to a recent
result by Both and May [BM18] where the authors propose an algorithm with
approximated complexity 21.3nr, where n is the number of unknown variables
and r is the noise ratio. Several algorithms with low memory consumption were
recently proposed by Esser et al. [EKM17]. The best algorithm for the problem
depends on the exact instance parameters. The number of variables in our case
corresponds to the number of monomials considered, i.e. the window size n in
the linear attack and

(
n
≤d

)
in the generalized attack. For example, if a linear

combination of vectors from a 100-node window leaks s with noise ratio 1/4 then
the LPN-based attack will take time 232.5 using the algorithm from [BM18].

8.5 Fault Attacks
Previous attacks assumed that the adversary knows the obfuscated circuit and
can analyze it in an arbitrary way. Still, the attacks described in previous
sections were passive: they relied on analysis of computed intermediate val-
ues during encryptions of random plaintexts. In this section I describe active
attacks - fault injections - that can also be used to attack masked white-box
implementations. We assume that the classic Boolean masking is used. We also
allow any form of integrity protection which protects the values but does not
protect the shares. That is, the protection may detect a fault that influences
ciphertext, but does not detect a fault that modifies masks in a way that does
not alter the masked value.

8.5.1 Two-Share Fault Injection

The main goal of a fault attack against masking is to locate shares of the masked
values. Observe that flipping two XOR-shares of a value does not change the
value. This property can be used to locate positions of possible shares. The
attack procedure is given in Algorithm 8.2.

Remark 17. As shares of the same value should be placed closely in the circuit,
a window coverage can be used to improve efficiency of this attack too. The idea
is to choose two shares only inside each window and not across the windows.
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Algorithm 8.2 Two-share fault attack on a circuit C : FN2 → FM2
1: p

$←− FN2
2: c← C(p) ∈ FM2
3: for all i, j ∈ [1 . . . |C|] , i < j do
4: ci,j ← C(p) ∈ FM2 , with the values in the nodes indexed i and j

flipped during encryption
5: if c = ci,j then
6: repeat the check several times (for random plaintexts)
7: return possible shares i, j

Remark 18. There may be a lot of false positives. For example, if values in
the nodes indexed i and j are XORed and not used anymore, the attack will
always return these two nodes. In general, for any two nodes returned by the
algorithm, the two values can be compressed into one. Indeed, since flipping
both values does not change the result, then only the XOR of the two can be
relevant. Effectively this means that these two nodes can be excluded from
analysis, and their XOR included instead. After finishing the process, all shares
will be compressed into one and can be attacked with simple DCA attacks.

The described attack allows to locate all shares of each value, independently
of the sharing degree. The attack performs O(n2) encryptions and has time
complexity O(|C|n2).

8.5.2 One-Share Fault Injection

Recall that we allow an integrity protection on the values but not on the shares.
One possible way an integrity protection may be implemented is to perform the
computations twice and spread the difference between the two results across
the output in some deterministic way. In such way small errors are amplified
into random ciphertext differences. In case of such protection or absence of any
protection the efficiency of the fault attack can be improved.

The main idea for improvements comes from the following observation: if we
flip a single share of some value, the masked value will be flipped as well. This
results in a fault injected in the unmasked circuit. The assumption is that the
circuit output does not depend on which share was faulted. This observation
allows to split the two-share fault attack and perform fault injection only for
each node instead of each pair of nodes, at the cost of additional storage. The
procedure is given in Algorithm 8.3

The attack performs O(n) encryptions, which requires O(|C|n) time. It pro-
vides substantial improvement over previous attack, though it requires stronger
assumption about the implementation. The most relevant counter-example is
when the integrity protection does not amplify the error but simply returns a
fixed output for any detected error. In a sense, such protection does not reveal
in the output any information about the fault. On the other hand, it may be
easier to locate the error checking part in the circuit and remove the protection.
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Algorithm 8.3 One-share fault attack on a circuit C : FN2 → FM2
1: p

$←− FN2
2: c← C(p) ∈ FM2
3: initialize a hash map T : FM2 → {1, . . . , |C|}∗
4: for all i ∈ [1 . . . |C|] do
5: ci ← C(p) ∈ FM2 , with the value in the node indexed i

flipped during encryption
6: append i to T (ci)
7: if T (ci) contains more than one value then
8: (i1, i2, . . .)← T (ci)
9: repeat the check several times (for random plaintexts)
10: return possible shares (i1, i2, . . .)

The attacks can be adapted for nonlinear masking as well. In such case
the injected fault may leave the masked value unflipped. When a zero dif-
ference is observed in the output, the fault injection should be repeated for
other plaintexts. As plaintext is the only source of pseudorandomness, chang-
ing the plaintext should result in different values of shares. Flipping a share
would result in flipping the masked value with nonzero probability. The exact
probability depends on the decoder function.

Similarly to the two-share fault attack, there may be many false-positives.
That is, the algorithm may return nodes that do not correspond to shares of the
same value. Still, it is likely that there is a strong relation between the nodes.
The algorithm thus provides some information about the implementation, which
can be further used for detailed analysis.

Remark 19. The two described attacks perform faults on nodes of the circuit.
In some cases, a node value may be used as a share of multiple different values,
for example, if the same pseudorandom value is used to mask several values. A
more general variant of attacks would inject faults on wires. However, multiple
wires may need to be faulted in order to succeed and the attack may become
complicated and inefficient.

8.6 Conclusions
In this chapter we studied the possibility of using masking techniques for white-
box implementations. We presented several attacks applicable in different sce-
narios. As a result, we obtained several requirements for a masking scheme
useful for white-box implementations. In Chapter 9, I will describe an analysis
the requirements and a partial solution against DCA-style attacks - a nonlinear
masking scheme with provable properties that guarantee security against the
linear algebra attack.

We applied the attacks to several challenges from the WhibOx 2017 com-
petition [ECR17]. However, we did not perform an extensive study of the
applicability of the attacks to public white-box implementations. One problem
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is that most implementations can not be converted to a circuit in a simple way.
This is an interesting direction for future work.

Another interesting open problem is to develop countermeasures for fault
attacks in the white-box setting. Indeed, these attacks are quite powerful and
known gray-box protection may be not strong enough. From the attacks we
can see that the shares must be protected as well, meaning that an integrity
protection should be applied on top of a masking scheme.
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In this chapter, I describe analysis of the attacks from Chapter 8 and a gen-
eral method for protecting white-box implementations. The protection splits
into two independent components: value hiding and structure hiding. Value
hiding must provide protection against passive DCA-style attacks that rely
on analysis of computation traces. Structure hiding must provide protection
against circuit analysis attacks. We focus on the development of the value hid-
ing component. As a result, I show a nonlinear masking scheme provably secure
against the linear algebra attack, described in Chapter 8. This chapter is based
on the second part of [BU18a], a joint work with Alex Biryukov.

9.1 Introduction

9.1.1 Our Contribution

Components of Protection. We propose in Section 9.2 a general method for
designing a secure white-box implementation. The idea is to split the protection
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into two independent components: value hiding and structure hiding. The value
hiding component must provide protection against passive DCA-style attacks -
attacks that rely solely on analysis of computed values. In particular, it must
provide security against the correlation attack and the algebraic attack. We
suggest that security against these two attacks can be achieved by applying a
classic linear masking scheme on top of a nonlinear masking scheme protecting
against the algebraic attack. The structure hiding component must secure the
implementation against circuit analysis attacks. The component must protect
against circuit minimization, pattern recognition, pseudorandomness removal,
fault injections, etc. Possibly this component may be splitted into more sub-
components (e.g. an integrity protection). Development of a structure hiding
protection is left as a future work.

Provably Secure Construction. Classic t-th order masking schemes pro-
tect against adversaries that are allowed to probe t intermediate values com-
puted by the implementation. The complexity of the attack grows fast when
t increases. In the new algebraic attack the adversary is allowed to probe all
intermediate values but she can combine them only with a function of low al-
gebraic degree d. Similarly, the attack complexity grows fast when d increases
and also when the circuit size increases. We develop a framework for securing
an implementation against the algebraic attack. It includes a formal security
model and a proof of the composability of first-order secure circuits. Finally,
I describe our first-order secure masking scheme implementing XOR and AND
operations. As a result, our framework provides provable security against the
first-order algebraic attack. I show concrete security bounds for our construc-
tion. Finally, we implement the AES-128 block cipher protected using our new
masking scheme.

A code implementing the attacks from Chapter 8, verification of the algebraic
masking schemes and the masked AES-128 implementation is publicly available
at [BU18b]:

https://github.com/cryptolu/whitebox

9.1.2 Outline

I describe our general method for securing a white-box design in Section 9.2. In
Section 9.3 a framework is developed for countermeasures against the algebraic
attack. In Section 9.4 I describe a simple quadratic masking scheme follow-
ing the proposed framework. Finally, I conclude and suggest future work in
Section 9.5.

9.2 Protection Components
The attacks described in Chapter 8 significantly narrow down the space of
masking schemes useful for white-box obfuscation. We deduce the following
main constraints:

https://github.com/cryptolu/whitebox
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1. The number of shares should be high enough to avoid combinatorial at-
tacks. Moreover, the minimum number of shares that correlate with the
reference circuit values should be high as well.

2. There should be no low-degree decoders in order to prevent the algebraic
attack.

3. The circuit must not admit analysis that allows to locate shares of the
same values.

4. The integrity of pseudorandom shares must be protected.

The aim of this chapter is to analyze the possibility of using masking schemes
with relatively small number of shares for white-box cryptography. The com-
plexity of combinatorial attacks splits into two parts: locating the shares and
correlating them. If the number of shares is very high then the correlation part
becomes infeasible. Possibly, in such case it is not even necessary to hide the lo-
cation of shares. The downside is that designing such masking schemes is quite
challenging and this direction leads into rather theoretical constructions like
indistinguishability obfuscation [GGH+13] from fully homomorphic encryption
and other cryptographic primitives. We aim to find more practical obfusca-
tion techniques. Therefore, we have to study obfuscation methods relying on
hardness of locating shares inside the obfuscated circuit. Such obfuscation is a
challenging problem. In the light of described attacks, we suggest a modular
approach to solve this problem. We split the problem into two components:

1. (Value Hiding) Protection against generic passive attacks that do not rely
on the analysis of the circuit.

2. (Structure Hiding) Protection against circuit analysis and fault injections.

9.2.1 Value Hiding

The first component basically requires designing a proper masking scheme. As
we have shown, the requirements are much stronger than for the usual mask-
ing in the side-channel setting (e.g. the provably secure masking by Ishai et
al. [ISW03]). To the best of our knowledge, this direction was not studied in
the literature. However, there is a related notion: fully homomorphic encryp-
tion (FHE). Indeed, it can be seen as an extreme class of masking schemes.
FHE encryption is a process of creating shares of a secret value and the FHE’s
evaluation functions allow to perform arbitrary computations on the cipher-
texts (shares) without leaking the secret value. In fact, any secure FHE scheme
would solve the “Value Hiding” problem (even though the adversary may learn
the key from the decryption phase, the locations of intermediate shares should
remain unknown due to structure-hiding protection and the scheme may remain
secure). However, this direction leads to very inefficient schemes: typical FHE
schemes have very large ciphertexts and complex circuits. This contradicts our
goal to investigate schemes with reasonable number of shares.
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We suggest to further split the first component into two parts. The first
part is protection against algebraic attacks. It is a nonlinear masking scheme
without low-degree decoders. However, we allow the scheme to be imperfect:
the computed values may correlate with the secret values. Though one has to
be careful and avoid very strong correlation, otherwise the LPN-based variant
of the algebraic attack may be applicable. The second part is protection against
correlation attacks. It can be implemented using a provably secure linear mask-
ing scheme on top of the nonlinear masking from the first part. The two parts
may be composed in the following way: the algebraically secure nonlinear mask-
ing scheme is applied to the reference circuit and afterwards the linear masking
scheme is applied to the transformed circuit. We investigate possibilities for the
algebraically secure nonlinear masking in the next section.

9.2.2 Structure Hiding

The second component resembles what is usually understood by software ob-
fuscation. Indeed, the usual software obfuscation aims to obfuscate the control
flow graph and hide important operations. Often such obfuscation includes in-
tegrity protections to prevent patching. The computed values are not hidden but
merely blended among redundant values computed by dummy instructions. For
circuits the problem is less obscure and ad hoc. In particular, an integrity pro-
tection scheme for circuits was proposed by Ishai et al. in [IPSW06]. Though,
formalizing the "protection against analysis" is not easy. Applying structure
hiding protection on top of value hiding protection should secure the implemen-
tation from attacks described in Chapter 8. We do not investigate structure
hiding further in this work.

We note that it is not possible to formally separate value hiding from struc-
ture hiding. If we give the adversary computed vectors of values even in shuffled
order, she can reconstruct the circuit in reasonable time and then analyze it.
One possible direction is to mix the value vectors linearly by a random linear
mapping before giving to the adversary. It may be a difficult problem for the ad-
versary to recover the circuit or its parts from such input. However, such model
makes the correlation DCA attack almost inapplicable, since a lot of values are
unnaturally mixed up and the correlations are not predictable, even though it
is perfectly possible that the original unmixed values have strong correlations
with secret variables.

9.3 Framework for Algebraically Security
The algebraic attack is very powerful and the classic XOR-sharing masking
schemes can not withstand it. Therefore, it is important to develop new masking
schemes which are secure against the algebraic attack. In this section I describe
a formalization of security against the algebraic attack and a provably first-order
secure construction.

I start by discussing the attack model in Section 9.3.1. A formal game-based
security definition is given in Section 9.3.2. Ways of proving security in the new
model are developed in Section 9.3.3. Next, the composability is studied in
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Section 9.3.4. An algorithm for checking security of gadgets is proposed in
Section 9.3.5.

9.3.1 Security Model

Consider a subproblem from the whitebox design problem. Recall that during
the algebraic attack, the adversary tries to find a function f of low degree d
such that when applied to values computed in the nodes of the obfuscated cir-
cuit it would produce some predictable value. Typically, predictable value is
a value computed using the reference circuit and it depends on a small frac-
tion of the key. Our aim is to “hide” predictable values among unpredictable
values. The unpredictability of computed functions may only come from the
secret key/randomness used during the obfuscation process. In order to develop
a formal attack model we allow the obfuscated circuit to use random bits. We
underline that randomness here is merely an abstraction required for provable
security arguments.

In the real whitebox implementation the random bits may be implemented
as pseudorandom values computed from the input. Of course the pseudorandom
generation part has to be protected as well. However, the white-box designer is
free to choose arbitrary pseudorandom generator and its protection is an easier
task then obfuscating a general circuit. For example, the designer can choose
a random circuit satisfying some basic properties like computing a balanced
function. The resulting circuit protected against the algebraic attack using
pseudorandomly generated bits must further be obfuscated and protected from
removal of the pseudorandomness. This is type of protection that we called
structure hiding in Section 9.2 and it is out of the scope of this work. It is
indeed a challenging problem.

There is a strong similarity between the algebraic attack and the side channel
probing attack. In the t-th order probing attack the adversary may observe t
intermediate values computed in the circuit. In the d-th order algebraic attack
the adversary has access to all intermediate values but she can combine them
only with a function of degree at most d.

Semantic Security. The main idea of masking schemes is to hide the values
computed in the reference circuit using (pseudo)random masks. We assume that
the adversary knows the reference circuit. Given the inputs (e.g. a plaintext
and a key) she can compute all intermediate values. The final goal of the
adversary is to recover the key of an obfuscated implementation or, at least,
learn some partial information about it. To formalize this, we adapt classic
semantic security and indistinguishability ideas. The adversary may ask to
encrypt two different vectors of inputs. The challenger chooses randomly one
of the vectors and provides an oracle modelling the algebraic attack to the
adversary. The goal of the adversary is to decide which of the vectors was
encrypted. If she can not do this, then she can not learn any information about
the hidden inputs (e.g. the plaintext and the key). Note that the adversary
is allowed to choose many different keys which is not possible in the white-
box scenario. However, it leads to simpler definitions since we do not have to
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distinguish plaintext and key and we just treat them as one input. It is possible
to add a constraint allowing to choose only a single key per input vector, but
this would not lead to any improvement.

Algebraic Attack Oracle. The oracle modelling the algebraic attack should
not reveal too much information about computed values. Otherwise, it may
be possible for the adversary to reconstruct the obfuscated circuit and then
we would arrive in the general white-box scenario. We model the attack as
follows: the adversary chooses the target function among linear (or higher-
order) combinations of the intermediate functions in the circuit and she tries to
guess its values during encryptions of the inputs from one of the two vectors.
Note that some functions may have strong correlation with some function of
the input. For a small vector of inputs the adversary may simply guess the
value, ask the oracle a few times until the guess is correct and then compute
the correlations. However, in the real algebraic attack this is not possible due
to presence of "noise" in the circuit. For a small number of plaintexts there
will be a lot of false matches for any "predicted" value, because there are many
different functions computed in the circuit and it is highly probable that there
is a linear combination of them matching an arbitrary value. We take this into
account and require that only the function chosen by the adversary has to match
the predicted value. As a result, the adversary can not accurately predict values
of any single function in the d-th order closure of the circuit functions in order
to run the linear algebra attack.

Encoding and Decoding. The circuit in the model can not take the input
as it is, because these values allow for a simple distinguisher. Since we are
developing a masking scheme, we assume that he inputs are already masked
using random shares. The adversary targets masked operations, which we call
critical computations. This goes in parallel with the classic Boolean masking
scenarios. We would like to stress that this is necessary in order to formally
analyze the security of masked computations. Therefore, we do not consider the
initial encoding and the final decoding processes. Indeed, these procedures are
not relevant for the algebraic attack since they are not related to the reference
circuit. Therefore, their protection is a part of the structure hiding component.

The security model is illustrated in Figure 9.1.

9.3.2 Prediction Security

Taking into account the above discussions, we propose the following game-based
security definition:

Definition 9.1 (Prediction Security (d-PS)). Let C : FN ′2 × FRC2 → FM2 be a
Boolean circuit, E : FN2 × FRE2 → FN ′2 an arbitrary function, d ≥ 1 an integer
and A an adversary. Consider the following security game:
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Figure 9.1: (Pseudo)randomness in a masked circuit.

Experiment PSC,E,d(A, b):
(f̃ , x[0], x[1], ỹ)← A(C,E, d), where

f̃ ∈ F (d)(C) \ {0,1} , x[l] = (x
[l]
1 , . . . , x

[l]
Q), x

[l]
i ∈ FN2 , ỹ ∈ FQ2

(r1, . . . , rQ)
$←− (FRE2 )Q

(r̃1, . . . , r̃Q)
$←− (FRC2 )Q

For any f ∈ F (d)(C) define
y(f) =

(
f
(
E(x

[b]
1 , r1), r̃1

)
, . . . , f

(
E(x

[b]
Q , rQ), r̃Q

))
F ← {f ∈ F (d)(C) | y(f) = ỹ}
return F = {f̃}

In the above experiment, $←− means sampling uniformly at random. Define
the advantage of an adversary A as

AdvPSC,E,d[A] =
∣∣∣P[PSC,E,d(A, 0) = 1]− P[PSC,E,d(A, 1) = 1]

∣∣∣.
The pair (C,E) is said to be d-th order prediction-secure (d-PS) if for any

adversary A the advantage is negligible.

Example 4. Consider a white-box AES implementation with a first-order Boolean
masking protection. Assume that there are two nodes in the circuit computing
two masks of an output bit of an S-Box in the first round. Denote the functions
computed by masks as f1, f2. The adversary finds these nodes and chooses
f̃ = f1⊕f2 ∈ F (1)(C). She also chooses sufficiently large Q and random vectors
x[0] and x[1] of Q (plaintext, key) pairs. For example, the same key may be
used for all pairs in x[0] and another key for all pairs in x[1]. The adversary
computes ỹ = (s(x

[0]
1 ), ..., s(x

[0]
Q )) (where function s computes an output bit of

the attacked S-Box in the first round from the plaintext and the key). In this
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case the adversary succeeds in the game with advantage close to 1 and the im-
plementation is not prediction-secure (indeed, the adversary easily distinguishes
the two keys). Note that we required the adversary to find the nodes in order
to choose the right function f̃ . Since the adversary is unbounded, this is just a
technical requirement. In the real attack the adversary does not need to guess
the exact function, only to generate a predicted vector of its values.

The function E in the definition should be referred to as the encoding func-
tion. Though the definition allows the encoding function to be arbitrary, we
are mainly interested in the encodings with useful semantics, i.e. masking.
Moreover, we expect the encoding to be lightweight and universal: main com-
putations should be performed in the circuit C.

The circuit C can be completely unobfuscated but still prediction-secure,
because the adversary is forced to consider the whole vector space F (d)(C). In
a real white-box implementation this restriction is expected to be enforced by
the structure-hiding protection.

We now discuss possible attacks that are not covered by this definition.
The definition ensures that any single function from F (d)(C) is unpredictable.
However, it may be possible that multiple functions jointly exhibit a behaviour
that leads to an attack. For example, the dimension of F (d)(C) may differ
depending on the input being encoded. Though, such attack is related to the
value-restriction method from Section 8.4.3. The definition also does not cover
a general LPN-based attack.

Remark 20. The definition actually covers security against a simple LPN algo-
rithm, which simply tries to guess the error vector and solve the error-less linear
system. In general, security against any LPN algorithm can be achieved by in-
creasing the number of unknowns and increasing the error probability. As will
be shown further, the latter is harder and is the main difficulty. In fact, achiev-
ing a constant error probability for circuits of arbitrary size should be enough to
guarantee security, given that the number of unknowns (i.e., the window size)
can be increased arbitrarily by the structure hiding component.

9.3.3 Security Analysis

In the experiment both the encoding function E and the circuit C use random-
ness. However, the d-th order closure is computed only using functions from
F(C). Still, the inputs of C include the outputs of E and that is how the ran-
domness used in E affects the computations in C. In other words, E generates
some distribution in the inputs of C. Therefore, in order to study functions
from F (d)(C) we need to compose them with E.

It is crucial to study how functions from F (d)(C) composed with E behave
on a fixed input x. Consider a function f ∈ F (d)(C). If the function f(E(x, ·), ·)
is constant for some x and the function f(E(x′, ·), ·) is non-constant for some
x′ 6= x (or is constant but f(E(x, ·), ·) 6= f(E(x′, ·), ·), then these inputs are
distinguishable and the pair (C,E) is insecure1. More generally, if for some

1Unless f(E(x′, ·), ·) has extremely high bias and is indistinguishable from the constant
function on practice.
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f ∈ F (d)(C) \ {0,1} and for some x ∈ FN2 the function f(E(x, ·), ·) is non-
constant but has a high bias (i.e. it has very low or very high weight), then the
adversary still may have high chances to predict its output. We conclude that
for all functions f ∈ F (d)(C)\{0,1} and for all x ∈ FN2 the function f(E(x, ·), ·)
should have a low bias.

We now show that this requirement is enough to achieve d-th order predic-
tion security if there are enough random bits used in the main circuit. The
following proposition gives an upper bound on d-PS advantage from the maxi-
mum bias and the number of random bits.

Definition 9.2. Let C,E, d be defined as above. For any function f ∈ F (d)(C)\
{0,1} and for any x ∈ FN2 define fx : FRE2 × FRC2 → F2 given by

fx(re, rc) := f(E(x, re), rc)

and denote the set of all such functions R:

R :=
{
f(E(x, ·), ·) | f ∈ F (d)(C) \ {0,1} , x ∈ FN2

}
.

Furthermore, let ε be the maximum absolute correlation among all functions
from R:

ε := max
fx∈R
|fx| .

The pair (C,E) is then said to be a d-th order algebraically ε-secure (ε-d-AS)
scheme.

Proposition 9.3. Let (C,E) be a d-th order algebraically ε-secure scheme. Let
e := log2 ((1 + ε)/2). Then, for any adversary A choosing vectors of size Q

AdvPSC,E,d[A] ≤ min(2Q−RC , 2eQ). (9.1)

Proof. First, we prove that AdvPSC,E,d[A] ≤ 2Q−RC . If f̃ chosen by the adver-
sary is an affine function of random bits r (independent of x), then it is clear
that the advantage in this case is zero. Otherwise, we compute the probability
of the event when the predicted value ỹ matches some linear function of ran-
dom bits r. There are RC independent uniformly distributed random vectors
r1, . . . , rRC from FQ2 . Let p be the probability of the event that they span the
whole space FQ2 . In this case the experiment returns 0, because any ỹ matches
a function different from the one chosen by the adversary. The following holds
(see e.g. [FJVP13]):

p := Pr
r1,...,rRC

$←−FQ2

[span(r1, . . . , rRC ) = FQ2 ] =

Q−1∏
i=0

(
1− 2i−RC

)
,

log2 (1− p) ≤ Q−RC .

We conclude that p ≥ 1−2Q−RC and the advantage is upper bounded by 2Q−RC .
Now we prove that AdvPSC,E,d[A] ≤ 2eQ. We simply bound the probability

that the adversary submits f̃ , ỹ such that y(f̃) = ỹ in the experiment. Since
elements of y(f̃) are independent, the probability to have y(f̃) = ỹ is maximized
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when each bit of ỹ equals to the most probable value of the respective bit of
y(f̃) (the adversary would also need to use the least probable value at least once
to avoid matching with the constant functions). For each bit the probability is
bounded by (1 + ε)/2 = 2e, therefore for Q bits the upper bound is 2eQ.

Note that the bounds are quite loose. The randomness-based term takes
into account only single random bits from rc. The randomness in the inputs of
C (generated from re in the encoding process) as well as all intermediate values
computed in the circuit add much more noise (note that we can not directly
include re since it is used in the encoding process and not in the main circuit).
The correlation-based term bounds only the probability of predicting the output
for a single vector of inputs. It does not include the cost of distinguishing the
two vectors. We stick to these loose bounds as our current goal is to provide
a simple and sound provably secure protection. Assume that we know the
maximum absolute correlation ε in R and we want to achieve a better security
bound. We can always add “dummy” random bits to the circuit. Note that this
leads to stronger requirements for the structure-hiding protection. It follows
that given the maximum bias, we can compute how many “dummy” random
bits are needed to achieve any required security level:

Corollary 9.4. Let k be a positive integer. Then for any adversary A

AdvPSC,E,d[A] ≤ 2−k if

ε < 1 and RC ≥ k · (1− 1

e
).

Proof. Consider each term of the bound from Proposition 9.3:

Q−RC ≤ −k or eQ ≤ −k.

The result follows from the second term if Q ≥ −k
e
(note that e is negative

when ε < 1). To cover all other Q we need

RC ≥ Q+ k ≥ k · (1− 1

e
).

Remark 21. The advantage bound is information-theoretic as we do not con-
straint the adversary’s powers. This is an effect of the attack formalization
given in Definition 9.1: the attack requires that the adversary predicts the cho-
sen function precisely. An unbounded adversary could simply iterate over all
functions f ∈ F (d)(C) and e.g. compute the bias. We argue that this kind
of attack is not the linear algebra attack that we consider. Furthermore, the
attack model restricts the adversary to use the full circuit C. Without this
restriction it would be possible to choose a part of the circuit (a window) to
reduce the noise. In our model we expect that a structure-hiding protection is
used to prevent this.
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9.3.4 First-order Secure Construction

Given the notion of prediction security we are now interested in developing
secure constructions. A common strategy is to develop small secure circuits
(called gadgets) and compose them in a provably secure way. The definition
of prediction security does not immediately lead to composability, because it
includes the encoding step which is not expected to be present in the inter-
mediate gadgets. In order to proceed, we split up the prediction security into
circuit security and encoding security. The new notions are stronger in order to
get proofs of secure composability. They are limited to the first-order security
(d = 1) and it is not obvious how to extend them to higher orders.

Definition 9.5 (Circuit Algebraic Security (ε-1-AS)).
Let C(x, r) : FN ′2 × FRC2 → FM2 be a Boolean circuit. Then C is called first-
order algebraically ε-secure (ε-1-AS) if for any f ∈ F (1)(C) \ {0,1} one of the
following conditions holds:

1. f is an affine function of x,

2. for any x ∈ FN ′2 , |cor(f(x, ·))| ≤ ε, where f(x, ·) : FRC2 → F2.

Definition 9.6 (Encoding Algebraic Security (ε-1-AS)).
Let E(x, r) : FN2 × FRE2 → FN ′2 be an arbitrary encoding function. Let Y be
the set of the coordinate functions of E (i.e. functions given by the outputs
bits of E). The function E is called a first-order algebraically ε-secure encoding
(ε-1-AS) if for any f ∈ Y(1) \ {0,1} and for any x ∈ FN2 ,

|cor(f(x, ·))| ≤ ε,

where f(x, ·) : FRE2 → F2.

The following proposition shows that if both an encoding and a circuit are
algebraically secure, then their combination is prediction-secure:

Proposition 9.7. Let C(x′, r) : FN ′2 × FRC2 → FM2 be a Boolean circuit and let
E(x, r) : FN2 × FRE2 → FN ′2 be an arbitrary encoding function.

If C is εC-1-AS circuit and E is εE-1-AS encoding, then the pair (C,E) is
a max(εC , εE)-1-AS scheme.

Proof. If the function f̃ chosen by the adversary is an affine combination of the
input x′ of C, then the encoding security of E applies leading to the bound
with ε = εE. Otherwise, εC-1-AS security of C provides the bound with ε = εC
(the εC bound applies for any fixed input x′ of C, therefore it applies for any
distribution of x′ generated by E as well).

Finally, we show that ε-1-AS circuits are composable, i.e. are secure gadgets.
We can compose gadgets in arbitrary ways and then join the final circuit with
a secure encoding function to obtain a prediction-secure construction.

Proposition 9.8 (ε-1-AS Composability). Consider ε-1-AS circuits C1(x1, r1)
and C2(x2, r2). Let C be the circuit obtained by connecting the output of C1 to
the input x2 of C2 and letting the input r2 of C2 be the extra input of C:
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C(x1, (r1, r2)) := C2(C1(x1, r1), r2).

Then C(x1, (r1, r2)) is also a ε-1-AS circuit.

Proof. Consider an arbitrary function f̃(x1, r1, r2) ∈ F (1)(C). By linearity, it
can be written as u⊕ v, where u ∈ F (1)(C1) and v is a function from F (1)(C2)
composed with C1 (by connecting the output of C1 to the input x2 of C2). Since
C2 is ε-1-AS, v is either an affine function of x2 (which belongs to F (1)(C1))
or |cor(v)| is not greater than ε when x2 is fixed (i.e. when x1, r1 are fixed).
In the first case, we get that f̃ belongs to F (1)(C1) and security follows from
ε-1-AS security of C1. In the second case, observe that the absolute correlation
of v can not exceed ε for any fixed x2 and, therefore, it can not exceed ε for any
distribution of x2. Moreover, u is independent from r2. Therefore, for f̃ = u⊕v
it follows that |cor(f̃)| ≤ |cor(v)| ≤ ε since C2 is an ε-1-AS circuit.

This result shows that due to frequent use of fresh randomness it is guaran-
teed that the maximum bias does not grow when we build large algebraically
secure circuits from smaller ones. It means that ε-1-AS circuits offer a solid
protection against the LPN-based variant of the algebraic attack as well. The
complexity of LPN algorithms grows exponentially with the number of un-
knowns. Therefore, increasing the number of random nodes as suggested by the
Corollary 9.4 allows to reach any required level of security against LPN attacks
at the same time. Exact required number of random nodes depends on the
value of ε and chosen LPN algorithm.

9.3.5 Verifying Algebraic Security

Proposition 9.8 shows that we can compose algebraically secure circuits. Large
circuits can be constructed from a set of gadgets - small algebraically secure
circuits with some useful semantics. In order to design new gadgets we need to
be able to check their algebraic security. The simplest way to get a bound on
the absolute correlation is based on the algebraic degree of computed functions:
the minimum weight of a nonzero function of n bits of degree d is equal to 2n−d

(see e.g. [Car10a]). Therefore, we can think about the following algorithm for
checking a circuit C(x, rC): for any fixed input x compute the ANFs of the
functions computed in C(x, ·) (functions of rC) and return the maximum ob-
served degree. The degree does not grow when functions are combined linearly.
Therefore, the absolute correlation bound can not grow as well, except when the
resulting function is constant in which case the absolute correlation is maximal
and the gadget may be insecure. As a result, our method for verifying algebraic
security splits into two parts:

1. verify that there is no absolute correlation equal to 1 among restrictions of
functions from F (1)(C) except the constant functions and affine functions
of x;

2. compute the maximum degree among all restrictions of the intermediate
functions and compute the corresponding correlation bound.
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The second step is straight-forward. We describe an algorithm that solves
the first step.

Consider a circuit C(x, r) : FN2 × FR2 → FM2 . For all c ∈ FN2 let Lc be the
linear map that returns the restriction x = c of a function f from F (1)(C) (e.g.
if functions are represented as truth table vectors then Lc returns the truth
table entries corresponding to the case x = c). Note that the domain of Lc is
defined to be the subspace F (1)(C).

We now give an equivalent condition for the first part of the verification. It
serves as a basis for the verification algorithm given in Algorithm 9.1.

Proposition 9.9. The circuit C is ε-1-AS for some ε < 1 if and only if for all
c the following holds:

dim kerLc = N. (9.2)

Proof. For any c ∈ FN2 let Fc be the subspace of F (1)(C) containing functions
that are constant when x is fixed to c. Also let F =

⋃
c Fc. ε < 1 requires that

any f ∈ F (1)(C) either belongs to X (1)(C) or is non-constant for any fixed x. It
is equivalent to require that F is equal to X (1)(C). Note that each Fc includes
X (1)(C) as a subset. Therefore, F =

⋃
c Fc is equal to X (1)(C) if and only if for

all c Fc = X (1)(C). Since these are linear subspaces then we can compare their
dimensions.
X (1)(C) is spanned by all xi and the constant-1 function:

dimX (1)(C) = N + 1; (9.3)

The constant-1 function always belongs to F (1)(C) and to any of the Fc.
The subspace of functions that are constant on the restriction can be obtained
by adding the constant-1 function to the subspace of functions that are equal
to zero on the restriction:

Fc = kerLc ⊕ {0,1} , (9.4)
dimFc = dim kerLc + 1. (9.5)

By comparing the dimensions obtained in Equation 9.3,Equation 9.5 we
prove the proposition.

The algorithm operates on functions using their truth tables. The truth
tables are obtained by evaluating the circuit on all possible inputs and recording
the values computed in each node. The set of computed truth tables corresponds
to F(C). By removing redundant vectors we can compute a basis B of F (1)(C)
(and also ensure presence of the constant-1 vector). Then, for each c we take
the part of each basis vector that corresponds to the fixed x = c (and r taking
all possible values). These parts form the subspace ImLc. We compute a basis
Bc of these parts. Finally, we verify that

dim kerLc = dimF (1)(C)− dim ImLc = |B| − |Bc| = N. (9.6)

The algorithm is implemented in SageMath [SD19] and is publicly available
in [BU18b].
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Algorithm 9.1 Verification of Algebraic Security
Input: a Boolean circuit C(x, r) : FN2 × FR2 → FM2 ;
Output: Secure if the circuit C is ε-1-AS for some (unknown) ε < 1,

Insecure otherwise.
1: evaluate C on all possible inputs;
2: associate the vector of computed values to each node of C;
3: let V be the set of all associated vectors;
4: let B be a basis of V(1);
5: for all c ∈ FN2 do
6: let Vc be the set of all vectors from B restricted to the case of x = c;
7: let Bc be a basis of V(1)

c ;
8: if |B| − |Bc| 6= N then
9: return Insecure;
10: return Secure.

Complexity analysis. The truth tables have size 2N+R bits. Computing the
basis of F (1)(C) takes time O(min(2N+R, |C|)ω). The same holds for ImLc
except that the vectors have size 2R and for small R this can be done more
efficiently. The total complexity is O(min(2N+R, |C|)ω +2Nmin(2R, |C|)ω). Re-
call that by Proposition 8.5 we should consider only the nonlinear nodes of the
circuit.

9.4 Minimalist Quadratic Masking Scheme
In this section I show a first-order algebraically secure quadratic masking scheme.
Then I describe concrete circuits which can be verified to be first-order alge-
braically secure gadgets using Algorithm 9.1.

Minimalist Quadratic Masking.

Since the decoding function has to be at least quadratic, we need at least two bits
to encode a single bit. For two bits all nonlinear decoding functions are linear
equivalent to a quadratic monomial being simply the product of the two input
bits. Unfortunately, this decoding function is vulnerable to the linear algebra
attack. Any quadratic function with 2-bit input is unbalanced. Therefore, one
of the reference bit values can be encoded by 3 different values and the other
value has only 1 possible encoding. For example, if the value is equal to 1 and
the decoding function is simply AND, the input has to be equal to (1, 1). In
this case there is no randomness involved and the hidden value is leaked. The
conclusion is that any value of the original bit should include randomness in its
encoding. In particular, the decoding function can not be a point function.

We move on to 3-bit encodings. The simplest quadratic function using
all 3 input bits a, b, c is ab ⊕ c. Note the similarity with the broken 2-bit
scheme: the quadratic monomial ab is simply linearly masked by c. However,
this linear mask is enough to prevent the attack: in this case Decode(a, b, c) =
1 does not imply a = 1 or b = 1. In fact, such Decode is balanced: both
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Encode(x, ra, rb) = (ra, rb, rarb ⊕ x), (9.7)
Decode(a, b, c) = ab⊕ c, (9.8)

EvalXOR((a, b, c), (d, e, f)) = (a⊕ d, b⊕ e, ae⊕ bd⊕ c⊕ f), (9.9)
EvalAND((a, b, c), (d, e, f)) = (ae, bd, (cd)e⊕ a(bf)⊕ cf), (9.10)
Refresh((a, b, c), (ra, rb)) = (a⊕ ra, b⊕ rb, c⊕ rab⊕ rba⊕ rarb). (9.11)

Figure 9.2: An Insecure Quadratic Masking Scheme.

0 and 1 have exactly 4 preimages. We first describe an insecure yet simple
masking scheme based on this decoding function in Figure 9.2. It is easy to
verify that EvalXOR and EvalAND satisfy the requirements from Definition 8.2.
In addition, Refresh(a, r) returns fresh random encoding of a, meaning that
Decode(a) = Decode(Refresh(a, r)) for any r and new encoding reveals no
information about the old encoding.

We now observe that Refresh is not ε-1-AS for any ε < 1: the computed
term rab is constant when b is fixed to 0 and equals to ra otherwise (leading to
ε = 1). This can be fixed by using an extra random bit rc to mask a, b through
the computations:

Refresh((a, b, c), (ra, rb, rc)) =(
a⊕ ra, b⊕ rb, c⊕ ra(b⊕ rc)⊕ rb(a⊕ rc)⊕ (ra ⊕ rc)(rb ⊕ rc)⊕ rc

)
. (9.12)

The new Refresh function can be verified to be secure using the algo-
rithm from Section 9.3.5. Moreover, the circuit computing EvalXOR applied
to refreshed inputs is secure as well. However, EvalAND is not secure even if
composed with the fixed Refresh gadget. Consider the linear combination of
computed terms a(bf)⊕ cf = (ab⊕ c)f . Here the variables are refreshed masks
and can not be fixed by the adversary. However, the refreshing function does
not change the hidden value. Therefore, ab⊕ c would be equal to the value hid-
den by initial non-refreshed shares which can be fixed. Fixing the hidden value
to 0 makes the combination f(ab ⊕ c) equal to 0 and be equal to the random
share f when the hidden value is fixed to 1. We observe that it is possible to
use a trick similar to the one used to fix the Refresh function. In fact, the
extra random shares added to fix the Refresh function may be reused to fix
the EvalAND function. As a result, we obtain a fully secure masking scheme.
The complete description is given in Algorithm 9.2.

Security. First, we verifyEvalXOR and EvalAND gadgets using Algorithm 9.1.
We obtain that they are ε-1-AS circuits for some ε < 1. Then we construct the
ANFs of intermediate functions. The maximum degree is equal to 4. It is
achieved for example in the term cf in the gadget EvalAND: its ANF contains
the term rarbrdre. Therefore, EvalAND is ε-1-AS with ε ≤ 7/8. The gad-
get EvalXOR has degree 2 and is 1/2-1-AS. Unfortunately, we do not have a
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pen-and-paper proof for security of the gadgets and rely solely on the verifica-
tion algorithm (which is able to spot the described weaknesses in the insecure
versions of the gadgets).

Verifying security of the encoding function Encode can be done in the same
way. Clearly, no linear combination of ra, rb, rarb ⊕ x is constant for any fixed
x. The coordinate rarb ⊕ x has degree 2 and its absolute correlation is equal to
1/2. Therefore, Encode is an ε-1-AS encoding with ε = 1/2.

By applying Proposition 9.7, we obtain that for any adversary A, for any cir-
cuit C build from the gadgets EvalXOR, EvalAND and for the described Encode
encoding we have:

AdvPSC,E,d[A] ≤ min(2Q−RC , 2eQ), (9.13)

where e = log2 (1 + 7/8)/2 ≈ −0.093. According to Corollary 9.4, in order
to achieve provable 80-bit security we need to have RC ≥ 80(1 − 1/e) ≈ 940
random bits in the circuit. Note that it does not depend on the actual size
of the circuit, i.e. 940 random bits are enough for an arbitrary-sized circuit.
However, the adversary should not be able to shrink the window so that it
contains less than 940 random bits. This is expected to be guaranteed by a
structure hiding protection. Finally, we remark that the bounds are rather
loose and more fine-grained analysis should improve the bound significantly.

9.4.1 Implementation

We applied our masking scheme to an AES-128 implementation to estimate
the overhead. Our reference AES circuit contains 31,783 gates. It is based on
Canright’s S-Box implementation [Can05] and naive implementation of Mix-
Columns. After applying our nonlinear masking scheme and a first-order linear
masking scheme on top the circuit expands to 2,588,743 gates of which 409,664
gates are special gates modeling external random bits. The circuit can be en-
coded in 16.5 MB. Extra RAM needed for computations is less than 1KB. On
a common laptop it takes 0.05 seconds to encrypt 1 block. Since the implemen-
tation is bitwise, 64 blocks can be done in parallel at the same time on 64-bit
platforms. There is still a large room for optimizations. We used the Daredevil
CPA tool [HBE+16] to test our implementation. Due to the first-order linear
masking on top we did not detect any leakage. Pure nonlinear masking scheme
does leak the key so the combination of both is needed as we suggested in Sec-
tion 9.2. The implementation code is publicly available [BU18b]. We remark
that it is a proof-of-concept and not a secure white-box implementation; it can
be broken in various ways.

9.5 Conclusions
In this chapter we investigated the possibility of using masking techniques for
white-box implementations. We presented several attacks applicable in different
scenarios. As a result we obtained requirements for a masking scheme to be
useful. We divided the requirements into value hiding and structure hiding
protections. Furthermore, we suggested that value hiding may be achieved
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using an algebraically secure nonlinear masking scheme and a classic linear
masking scheme. We developed a framework for provable security against the
algebraic attack and proposed a concrete provably secure first-order masking
scheme. Therefore, a value hiding protection can be implemented.

We believe that our work opens new promising directions in obfuscation
and white-box design. We focused on value hiding protection and developed a
first-order protection against the algebraic attack. The natural open question
is developing higher-order countermeasures for the algebraic attack. Another
direction is to study structure hiding countermeasures. Finally, it seems that
pseudorandom generators play an important role in white-box obfuscation and
are useful at all layers of protection. Randomness helps to develop formal secu-
rity models and pseudorandom generators bridge the gap between theoretical
constructions and real world implementations. Therefore, designing an easy-to-
obfuscate pseudorandom generators is another important open problem.
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Algorithm 9.2 Minimalist Quadratic Masking Scheme.
1: function Encode(x, ra, rb)
2: return (ra, rb, rarb ⊕ x)

3: function Decode(a, b, c)
4: return ab⊕ c

5: function EvalXOR((a, b, c), (d, e, f), (ra, rb, rc), (rd, re, rf ))
6: (a, b, c)← Refresh((a, b, c), (ra, rb, rc))
7: (d, e, f)← Refresh((d, e, f), (rd, re, rf ))
8: x← a⊕ d
9: y ← b⊕ e
10: z ← c⊕ f ⊕ ae⊕ bd
11: return (x, y, z)

12: function EvalAND((a, b, c), (d, e, f), (ra, rb, rc), (rd, re, rf ))
13: (a, b, c)← Refresh((a, b, c), (ra, rb, rc))
14: (d, e, f)← Refresh((d, e, f), (rd, re, rf ))
15: ma ← bf ⊕ rce
16: md ← ce⊕ rfb
17: x← ae⊕ rf
18: y ← bd⊕ rc
19: z ← ama ⊕ dmd ⊕ rcrf ⊕ cf
20: return (x, y, z)

21: function Refresh((a, b, c), (ra, rb, rc))
22: ma ← ra · (b⊕ rc)
23: mb ← rb · (a⊕ rc)
24: rc ← ma ⊕mb ⊕ (ra ⊕ rc)(rb ⊕ rc)⊕ rc
25: a← a⊕ ra
26: b← b⊕ rb
27: c← c⊕ rc
28: return (a, b, c)



185

Part IV

Design of Symmetric-key
Algorithms
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In this part, I present the work I have done on the design of symmetric-
key primitives. The current trend in the design of cryptographic primitives is
lightweight cryptography. Lightweight cryptography targets small devices (e.g.
microcontrollers, smart cards, RFID tags). These devices are very constrained
in resources, and it is necessary to minimize memory usage, code size, energy
consumption, time of computation. Lightweight cryptography lowers the secu-
rity margin in order to obtain more efficient cryptosystems. Another reason
supporting the lightweight trend is that many existing designs survived many
years of cryptanalysis, and there were no breakthrough techniques in crypt-
analysis for a long time. Therefore, designing a secure primitive is a problem
with many existing solutions, and these solutions have to compete by other
properties, e.g. lightweightness.

I participated in the design of the SPARX family of block ciphers [DPU+16]
and the SPARKLE cryptographic permutation [BBdS+19b]. I and my colleagues
further used SPARKLE and the sponge construction to design the hash function
family Esch and authenticated encryption family Schwaemm. My main contri-
butions were in the security evaluations of the designs.

It has become a standard requirement for a symmetric-key design to include
a proof against linear and differential cryptanalysis. The designers of AES, the
current block cipher standard, used the so-called wide trail argument for the
proof. It is a quite effective argument for block ciphers with strong, small S-
Boxes and strong, heavy linear layers. However, it fails for ARX-based designs,
i.e. designs build only from addition, rotation, and XOR operations. Such
designs have certain advantages, such as better resistance against side-channel
attacks and better performance in software. My colleagues came up with a
novel way to prove security against linear and differential attacks, called a long
trail argument. It is effective for designs using light linear layers and light but
large S-Boxes. I designed an algorithm for applying the long-trail argument to a
particular subset of SPN structures. We used this algorithm to evaluate a large
class of linear layer candidates for the block cipher SPARX, together with the
division property [Tod15] for security evaluation against integral cryptanalysis.
I also used the algorithm to evaluate the security of SPARKLE, a cryptographic
permutation based on SPARX, that I and my colleagues designed for the NIST
call for lightweight cryptography.
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In this chapter, I describe the SPARX family of block ciphers. It is a joint
work with my coauthors Daniel Dinu, Léo Perrin, Vesselin Velichkov, Johann
Großschädl, and Alex Biryukov [DPU+16]. SPARX is the first ARX-based block
cipher with provable security against linear and differential cryptanalysis. The
design is a motivated by the novel long-trail strategy. My contributions are
designing an algorithm for long-trail evaluation, evaluation of potential linear
layers and integral cryptanalysis based on division property.

10.1 Introduction
Lightweight cryptography is a modern direction in the design of symmetric-key
primitives. It aims to provide cryptographic security with constrained resources.
Lightweight ciphers usually have a low security margin against unknown attacks
and rely on the cryptanalysis done in the design phase.

My colleagues developed a framework for benchmarking lightweight ciphers,
called FELICS [DCK+16,DBG+15,DCK+15]. A large amount of implementa-
tions for 3 target platforms - AVR, MSP, ARM - was collected and benchmarked.
The leading block ciphers were Chaskey [MMH+14], Simon and Speck [BSS+13],
RECTANGLE [ZBL+14], LEA [HLK+13], HIGHT [HSH+06], AES [DR98].
Chaskey is an Even-Mansour block cipher and has a data-security trade-off;
it does not have a security proof against linear/differential attacks. Simon and
Speck were designed by the NSA and do not have a proof too.
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As the top designs are ARX-based, i.e. they are composed from Addi-
tion, Rotation and XOR operations, we decided to design an ARX-based block
cipher. However, the current wide-trail strategy for proving security against lin-
ear/differential cryptanalysis does not apply well to ARX-based block ciphers.
For this reason, we developed a novel long-trail strategy. As a result, the block
cipher SPARX is the first ARX-based block cipher with provable security against
single-trail linear and differential cryptanalysis.

In this chapter, I describe briefly the long-trail strategy. Afterward, I de-
scribe my contributions to the design. I developed an algorithm for efficient
long-trail evaluation of a large class of SPN structures. We used this algo-
rithm and the division property [Tod15] to evaluate a large class of potential
linear layers. Interestingly, a Feistel-like linear layer turned out to provide an
optimal balance between the linear/differential and integral attacks resistance,
lightweightness of the primitive and simplicity. A few alternative linear layers
seem to be a good choice as well.

10.1.1 Outline

I describe briefly the long-trail strategy and my algorithms in Section 10.2. In
Section 10.3, I describe the procedure that we used to choose an optimal linear
layer for the cipher. I omit the specification of SPARX, because it is not required
for the contents of this chapter; it can be found in [DPU+16].

10.2 The Long-Trail Strategy
Linear and differential cryptanalysis are powerful methods of attacking block ci-
phers. It became a standard for new designs to be accompanied with arguments
for security against linear and differential cryptanalysis.

The goal of linear and differential cryptanalysis is to find a distinguisher of
a cryptographic function.

Definition 10.1 (Linear and Differential Distinguishers). Let E : Fn2 → Fn2 .
A pair αin, αout ∈ Fn2 is called a linear distinguisher of E with linear corre-

lation

LCE(αin, αout) := 2−nLATE(αin, αout),

if |LCE((αin, αout)| � 2−n/2.

A pair αin, αout ∈ Fn2 is called a differential distinguisher of E with differ-
ential probability

DPE(αin, αout) := DDTE(αin, αout),

if DPE(αin, αout)� 2−n.

For a keyed permutation Ek(x) : Fn2 × Fκ2 → Fn2 , a pair αin, αout ∈ Fn2 is a
linear/differential distinguisher if for a large enough fraction of keys k ∈ Fκ2 ,
(αin, αout is a linear/differential distinguisher of Ek.
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Cryptographic functions are in most cases built in an iterated way. Inter-
mediate values are analyzed and included in the distinguisher. The iterations
of the round function are assumed to be independent and linear/differential dis-
tinguishers of each round are linked in a chain, called a trail.

Definition 10.2 (Linear and Differential trail).
Let f = (f1, . . . , fr), fi : Fn2 → Fn2 . A trail over f is a sequence α of r+1 vectors:

α = (α0, . . . , αr), αi ∈ Fn2 .

The expected differential probability of the trail α is defined as

EDTPf (α) :=
r∏
i=1

DPfi(αi−1, αi).

The expected linear correlation of the trail α is defined as

ELTCf (α) :=
r∏
i=1

LCfi(αi−1, αi).

In order to ensure that a cryptographic primitive is secure against trail-based
differential/linear cryptanalysis, it is necessary to prove an upper-bound of the
maximum EDTP and ELTC among all trails.

Definition 10.3. Let f = (f1, . . . , fr), fi : Fn2 → Fn2 .
The maximum expected differential trail probability of f is denoted MEDTP(f)

and is equal to:
MEDTP(f) := max

α∈(Fn2 )r+1,α 6=0
EDTPf (α).

The maximum expected linear trail correlation of f is denoted MELTC(f)
and is equal to:

MELTC(f) := max
α∈(Fn2 )r+1,α 6=0

ELTCf (α).

10.2.1 The Wide-Trail Argument

The wide-trail strategy is the main method of proving an upper bound on the
MEDTP and MELTC of a cryptographic primitive. It was introduced by Daemen
and Rijmen [DR02] and was used to argue about the security of AES against
linear and differential attacks.

I describe the argument for the differential trail cryptanalysis, the linear
case is completely analogous.

Consider an SPN structure and a trail α with a nonzero MEDTP. Any
difference propagates through the linear layer of the structure with probability 1.
Furthermore, a zero difference propagates through an S-Box to a zero difference
with probability 1. It follows that the MEDTP of the trail depends only on
the differential probabilities of S-Boxes with nonzero input/output differences
in the trail. Such S-Boxes are called active S-Boxes.

The idea of the wide-trail strategy is to prove a lower bound on the number
of active S-Boxes in a trail. Then, the differential uniformity of the S-Box is used
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to obtain an upper bound on the expected differential probability of a trail, i.e.
the MEDTP. This is done by simply raising the minimum differential probability
of the S-Box to the power of the minimum number of active S-Boxes. The first
step is usually done by proving strong diffusion properties of the linear layer.
For example, the MixColumns operation in the AES has branch number 5 and
this already proves that every 2 rounds of AES have at least 5 active S-Boxes.
The second step suggests that an S-Box with a low differential uniformity (and
low linearity) should be used.

Assume that we want to design an ARX-based block cipher with provable
security against linear and differential trail-based cryptanalysis. We can use an
existing ARX-based block cipher with a small block as a (keyed) S-Box. We
then have to use the MEDTP of the small block cipher instead of the differ-
ential uniformity. Indeed, for small block sizes, the MEDTP can be obtained
for example using the Matsui search algorithm [Mat94]. This evaluation was
performed by Biryukov et al. in [BVLC16] for the block ciphers Speck-32 up
to Speck-64. See Table 10.1 for the results on 32-bit block size.

Remark 22. In order to justify the assumption of independent rounds in trails,
the authors of [BVLC16] consider Speckey, a slightly modified variant of
Speck-32. The only difference is that, in Speckey, the round keys are added
to the whole state. In this way, the independence assumption is lifted from the
block cipher structure to the key schedule. In SPARX, we used Speckey in
order to have better justified provable security.

r 1 2 3 4 5 6 7 8 9 10

MEDTP −0 −1 −3 −5 −9 −13 −18 −24 −30 −34
MELTC −0 −0 −1 −3 −5 −7 −9 −12 −14 −17

Table 10.1: MEDTP and MELTC of Speck-32 / Speckey (log2 scale);
r is the number of rounds.

Consider using 1 round of Speck-32 as the keyed S-Box. Note that it has a
differential with probability 1 = 2−0. Therefore, the bound on MEDTP obtained
from the wide-trail argument will be trivial, i.e. MEDTP ≤ 1.

Now consider using 3 rounds of Speck-32 as the keyed S-Box A. Assume
that we design a block cipher E with 128-bit block, i.e. with 4 parallel Speck-
32-based S-Boxes. Assume that the linear layer is a 4 × 4 MDS matrix over
F232 , i.e. it has branching number 5. Then at least 5 S-Boxes are active every
two rounds and each S-Box has MEDTP(A) = 2−3. It follows that for the r
round block cipher Er, the wide-trail argument provides bound MEDTP(Er) ≤
(2−3)5r/2. In order to get MEDTP(Er) ≤ 2−128, we need r ≥ 128/7.5 ≈ 17.07.
Therefore, at least 18 rounds of SPN are needed, i.e. 54 rounds of Speck-32
repeated four times in parallel. Such a block cipher would be very inefficient.

Using the novel long-trail strategy, we show that it is possible to build much
more efficient block ciphers with ARX-based S-Boxes and provable security
against linear and differential trail-based cryptanalysis.
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10.2.2 The Long-Trail Argument

Observe that in the ARX-based block ciphers the MEDTP grows slower at the
first few rounds and grows faster afterwards. For example, the MEDTP of the
10 round Speck-32 is 2−34, which is much less than the MEDTP of the 5 round
Speck-32 squared: (2−9)2 = 2−18. The wide-trail strategy does not exploit this
fact and uses the worse bound. Indeed, in general, the better bound can not be
used, because the 10 rounds of Speck-32 are not always isolated inside the trail
structure. Therefore, each concrete trail structure must be analyzed separately.
We call a long trail such an isolated chain of (keyed) S-Boxes.

Definition 10.4 (Long Trail). Consider an SPN-based block cipher and a fixed
trail α. A long trail (LT) is a chain of active S-Boxes in the trail interleaved
with key additions, such that no difference comes into the chain from outside
(i.e., the linear layers do not mix in differences into the chain).

Consider a partition of active S-Boxes in the trail into long trails. The
multiset of lengths of long trails in any such partition is called a long trail
decomposition of the trail T , denoted LT(α).

Proposition 10.5 (Long-Trail Bound). Let f be round function of an SPN-
based block cipher with an S-Box S and let α be a trail over f . Then

EDTPf (α) ≤
∏

r(m)∈LT(α)

(MEDTP(Sr))m ,

ELTCf (α) ≤
∏

r(m)∈LT(α)

(MELTC(Sr))m ,

where r(m) means that element r repeats m times in the multiset LT(α), and
MEDTP(Sr) (resp. MELTC(Sr)) denote the MEDTP of r rounds of S (resp.
MELTC).

Proof. Recall that in the definition of EDTP and ELTC all rounds are considered
independent. Therefore, all S-Boxes are independent as well. Hence, EDTPf (α)
is a product of some DDT entry of each S-Box (depending on the trail α). The
proposition simply replaces a subset of these factors by the upper bound on
their product, which does not depend on the exact trail α, only on the fact that
it is a non-zero trail. The same reasoning applies to the case of linear trails.

This proposition gives an idea of improving a bound on MEDTP and MELTC
of a block cipher. Instead of enumerating all valid exact trails, we only need
to enumerate all valid truncated trails telling whether each S-Box is active or
not. For each such trail, we need to obtain a preferably optimal long-trail
decomposition, which leads to an upper bound on EDTP or ELTC of all exact
trails fitting the current truncated trail. By taking the maximum bound among
all truncated trails, we obtain an upper bound on MEDTP and MELTC of the
block cipher.

For the sake of completeness, I express the wide-trail bound in the same way
to highlight that it is a special case of the long-trail bound. Indeed, the long-
trail partition of any trail into chains of length 1 is equivalent to counting the
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number of active S-Boxes. This, in turn, requires less information about each
trail and allows to obtain a simple mathematical argument. On the contrary,
the long-trail bound requires algorithmic evaluation.

Proposition 10.6 (Wide-Trail Bound). Let f be round function of an SPN-
based block cipher with an S-Box S and let α be a trail over f . Then

EDTPf (α) ≤
∏

r(m)∈LT(α)

(MEDTP(S))rm ,

ELTCf (α) ≤
∏

r(m)∈LT(α)

(MELTC(S))rm .

10.2.3 An Algorithm for Long-Trail Decomposition

The most straightforward way to apply the long-trail argument to bound the
MEDTP and MELTC of a cipher is as follows:

1. enumerate all possible truncated trails composed of active/inactive S-
boxes;

2. find an optimal decomposition of each trail into long trails (LT);

3. bound the probability of each trail using the product of the MEDTP (resp.
MELTC) of all active long trails i.e. by applying the Long Trail Argument
(see Proposition 10.5);

4. the maximum bound over all trails is the final upper bound.

Note that this approach is feasible only for a small number of rounds, because
the number of truncated trails grows exponentially.

In this section, I sketch an algorithm for the only non-trivial step, step (2),
i.e. an algorithm for finding an optimal decomposition of a given truncated trail
into long trails.

First, note that the trail can be represented as a graph, where nodes are
active S-Boxes and an edge corresponds to a possible connection of two S-Boxes
in a long trail. Moreover, this graph is a forest. Indeed, an S-Box can’t receive
two edges from the previous round, because it contradicts a definition of long
trail - there must be a single difference coming in. For each tree in the forest,
we choose the root to be the S-Box from the earliest round, which is determined
uniquely by the same reason. Then, for any node its children may only be in
the next round.

The goal then is to cover all nodes with disjoint “vertical” paths, such that
the product of the paths’ probabilities is minimal. By the path probability
we understand the respective long trail’s probability. The simplest (and the
worst) solution is to choose paths consisting of single nodes. Note that this
solution already gives some upper bound and by finding a better decomposition
we improve this bound.

I propose an algorithm based on recursive dynamic programming approach.
For each node, we recursively solve the sub-problem for the subtree rooted at
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that node. However, we need to compute some additional information apart
from the best decomposition of the subtree. Consider the optimal decomposi-
tion of the whole forest into such paths and consider the long trail which goes
through the current subtree’s root. Clearly, if we fix this long trail, the rest
of the subtree becomes completely independent and has to be decomposed op-
timally. Therefore, from the subtree we need to know only the probability of
this decomposition and the length of the long trail’s part in the subtree. We
don’t know the optimal length beforehand, therefore we store the best probabil-
ities for all possible lengths. Another view on this is that we group all possible
subtree decompositions by length of the long trail which goes through the sub-
tree root and for each such length we greedily choose the minimum probability.
Then, when we obtain such tables for all children of some node, we can easily
compute the table for the node itself - we check all possible ways to choose a
child of the node and the length of the long trail which goes through the child
and we try to join the current node to that long trail. Then the corresponding
probability is the product of the best probabilities of the other children with
the probability corresponding to the children’s long trail and the probability
stored in the children’s table respectively for that length.

Complexity. The complexity is dominated by computing the table for each
node. One of the w children has to be selected for the continuation of the
trail, and the size of its child’s table is limited by the number of rounds r.
Therefore, each node’s contribution to the complexity is at most O(wr). The
total complexity of the algorithm then is O(w2r2), where w is the number of
S-Boxes in parallel, and r is the number of rounds. Note that wr corresponds
to the total number of S-Boxes in the cipher.

Despite the reasonable efficiency of the algorithm, the amount of all trun-
cated trails for which the algorithm has to be run adds a large factor to the
complexity of the evaluation of a block cipher. In the next section, I will describe
an algorithm which completes the whole evaluation in a much more efficient way,
under a special condition on the linear layer.

10.2.4 Efficient Algorithm for Special Linear Layers

The most complicated step in the above procedure is finding an optimal decom-
position of a given truncated trail into long trails. The difficulty arises from the
so-called branching : situation in which a long trail may be extended in more
than one way. The definition of long trail relies on the fact that there is no
linear transformation on a path between two S-Boxes in a long trail. Therefore,
branching happens only when some output word of the linear layer receives two
or more active input words without modifications.

In order to cut off the branching effect (and thus to make finding the optimal
decomposition of a long trail trivial), we can put some additional linear functions
that will modify the contribution of some of the input words. Equivalently, when
choosing a linear layer we simply do not consider layers which cause branching
of long trails. As we will show later, this restriction has many advantages.
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To simplify our study of the linear layer, we introduce a matrix represen-
tation for it. In an SPN-based block cipher operating on w words, the linear
layer may be expressed as a w × w block matrix. We will denote the zero and
the identity sub-matrices by 0 and 1 respectively and an unspecified (arbitrary)
sub-matrix by L. This information is sufficient for analyzing the high-level
structure of a cipher. Using this notation, the linear layers to which we restrict
our analysis have matrices in which each column has at most one element 1.

For the special subset of linear layers outlined above, I present an algorithm
for obtaining MEDTP and MELTC bounds, based on a dynamic programming
approach. Since there is no branching, any truncated trail consists of disjoint
sequences of active S-Boxes. We can treat each such sequence as a long trail
to obtain an optimal decomposition. More importantly, because of this simpli-
fication, we can avoid enumerating all trails by grouping them in a particular
way.

We proceed round by round and maintain a set of best truncated trails up
to an equivalence relation, which is defined as follows. For all S-Boxes at the
current last round s, we assign a number, which is equal to the length of the
long trail that covers this S-Box, or zero if the S-Box is not active. We say that
two truncated trails for s steps are equivalent if the tuples consisting of those
numbers (lengths of long trails) are the same for both truncated trails. This
equivalence captures the possibility to replace some prefix of a trail by an equiv-
alent one without breaking the validity of the trail or its LT decomposition. The
total probability, however, can change. The key observation is that from two
equivalent trails we can keep only the one with the highest current probability.
Indeed, if the optimal truncated trail for all r rounds is an extension of the
trail for s rounds with lower probability, we can take the first s rounds from
the trail with higher probability without breaking validity and obtain a better
trail, which contradicts the assumed optimality.

The pseudo-code for the algorithm is given in Algorithm 10.1. Note that in
the case of the MELTC bound, the matrix of the linear layer has to be inverted
and transposed. However, instead of inversion, we can build up the trails in the
reverse direction: from the ciphertext side to the plaintext side. In this way, it
is sufficient to only transpose the linear layer.

Complexity. The complexity of the algorithm can be upper-bounded as fol-
lows. The size of the set Si is upper-bounded by the number of all w-tuples of
integers in [0 . . . i], i.e. (i + 1)w. Generating extensions of an element s ∈ Si
requires w2w operations. Repeating this for r rounds results in complexity
O(r ·w2w · (r+ 1)w). In practice, only a small subset of all possible w-tuples is
possible. Note that this algorithm implicitly already performs the enumeration
of all truncated trails and therefore, this is the complexity of the full evaluation
of the MEDTP and MELTC of the block cipher.

10.3 The Linear Layer of SPARX

The linear layer of SPARX had to satisfy the following criteria:
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Algorithm 10.1 Finding the best bound on the MEDTP of an SPN cipher
(for MELTC the matrix should be transposed).
Input: number of rounds r; w×w matrix M over {0, 1, L}, with at most one 1

at each column; non-decreasing bounds on EDTP (or ELTC) of the iterated
S-Box (P [1], . . . , P [r])

Output: upper bound on the MEDTP (or MELTC)
1: S0 ← {0, 1}w \ {0w} . 0 - inactive, 1 - lt of length 1
2: pr0[s] = 1.0 for all s ∈ S0, pr0[s] = 0.0 otherwise
3: for all i ∈ [0 . . . r − 1] do
4: Si+1 ← {}
5: for all s ∈ Si do
6: for all (s′, p′) ∈ Extensions(s, pri[s]) do
7: add s′ to set Si+1

8: pri+1[s
′]← max(pri+1[s

′], p′)

9: return max(prr[s] for s ∈ Sr)

10: function Extensions(s, p)
11: out_states← []
12: for all cancel ∈ {false, true}w do
13: s′ ← 0w, p′ ← p
14: for all o ∈ [0 . . . w − 1] do
15: mask ← (if si > 0 then Mo,i else 0 for i ∈ [0 . . . w − 1])
16: if mask contains single 1 then
17: i← index of 1 in mask
18: s′[o]← s[i] + 1
19: p′ ← p′ + P [s[i] + 1]− P [s[i]] . Extending an lt
20: else if mask contains single L then
21: s′[o]← 1 . An lt is broken by the linear layer
22: p′ ← p′ + P [1]
23: else if mask contains at least two nonzero elements then
24: if cancel[o] then
25: s′[o]← 0 . Differences cancelled
26: else
27: s′[o]← 1
28: p′ ← p′ + P [1] . Differences not cancelled
29: if s′ 6= 0w then
30: append (s′, p′) to out_states
31: return out_states
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1. the diffusion should be slow enough to foster long trails;

2. the diffusion should be fast enough to avoid integral attacks;

3. it should be simple and lightweight.

The first two criteria are in a trade-off with each other. Stronger diffusion
means achieving security against structural attacks in less rounds, but fewer long
trails and therefore, achieving provable security against linear and differential
attacks in more rounds.

For SPARX with 64-bit block, there are only two branches, and the linear
Feistel round was the best choice. For 128-bit SPARX instances, the choice was
not so clear. We decided to exhaustively check a large class of possible linear
layers with reasonable implementation properties and for which we could prove
MEDCP and MELCC bounds. Note that, for the specified criteria, we are
only interested in the high-level structure of the linear layer, i.e. its w × w
matrix over {0, 1, L}, as in Section 10.2.4.

The algorithm from Section 10.2.4 requires the matrix to have at most one
1 in each column and in each row (because of the linear case). We strengthened
the requirement for the matrix to have exactly one 1 in each row and column.
This should lead to better implementation properties and foster long trails at
the same time.

The matrices we look at correspond to permutations of 4 words with some
zeroes possibly replaced by special elements which we denote by L. Though
there may be several elements L in the matrix, it is not necessary that all
the corresponding small linear functions are equal. The total number of such
matrices is 4! · 212 = 98304.

For any matrix M and for any word permutation matrix P , the matrices M
and P×M×P−1 are equivalent up to reordering the S-Boxes in the whole cipher.
Only one representative from each such class is kept. Next, the matrices which
do not provide full diffusion are also dropped. In order to check the diffusion, we
replaced each L with a random small matrix (e.g. 5×5) and applied the matrix
multiple times to inputs with one active word. We assumed full diffusion if the
full diffusion was reached before 20 matrix applications. After this filtering step
we had only 3282 matrices left.

For all reasonable numbers of steps and rounds in a step, we ran Algo-
rithm 10.1 to obtain bounds on MEDTP and MELTC. We also searched for
integral characteristics using the division property in order to both ensure good
diffusion and to estimate resilience against this type of attack.

Recall that the S-Boxes in our cipher are actually 32-bit block ciphers, based
on Speck. Let ra denote the number of rounds used. The integral characteristic
search does not depend on the number of rounds per step because we analyze
only the high-level structure. However, the differential and linear bounds do
depend on this value, so we had to make the choice. 2 rounds per step com-
pletely contradict our analysis simplification about randomness of the ARX box.
Whereas for 5 or more rounds per step we have to take fewer steps and the ci-
pher may become susceptible to structural attacks. Therefore, we considered
only 3- or 4- round Speckey.
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Matrices with many “L” are hard to analyze and to implement. We con-
sidered different cases based on the number of words which are copied from
the input to the output without change. More copies results in easier and more
efficient implementation, easier identification of long trails, but weaker diffusion.

Finally, we selected the best matrices according to one of the following two
criteria.

1. Minimizing the differential/linear trail probability. We compute the num-
ber of steps when the trail probability bound derived by the algorithm is
less than 2−128 for differential trails and less than 2−64 for linear.

2. Minimizing the number of steps of the integral characteristic found with
division property.

The results are given in Table 10.2 and Table 10.3, where +S denotes an
additional S-Box layer.

#words
copied

optim. for best int.
char.

min.
rounds

(diff./linear)

matrix

0 diff./linear 4 7/7 [10L0,010L,L001,0L10]
diffusion 2+S 8/8 [10L0,01L0,LLL1,001L]

1 diff./linear 4+S 7/7 [001L,0001,10L0,L10L]
diffusion 3+S 7/8 [001L,0001,100L,L1LL]

2
diff./linear 7+S 6/6 [00L1,1000,L100,0010] (A)
diffusion 3+S 8/11 [0010,0001,1LLL,L1LL]
tradeoff 4+S 7/7 [0001,1L0L,0100,0L1L] (B)

3 diff./linear 9+S 7/7 [LL01,1000,0100,0010]
diffusion 7+S 8/9 [LLL1,1000,0100,0010]

Table 10.2: The best linear layers for ra = 3.

The results show that heavier matrices (without words copied) lead to better
diffusion, as expected, whereas for linear/differential security the matrices with
2 words copied give best results for both ra = 3 and ra = 4. Though heavy
matrices can give a good compromise between these two criteria, they are hard
to implement, to study and to implement their inverses. Thus, we decided to
stick to light matrices.

The most interesting matrices are marked by (A),(B),(C),(D) and the struc-
tures of the corresponding layers are depicted in Figure 10.1. For ra = 3 the
matrix with the best differential/linear security, (A), yields an integral char-
acteristic covering almost 8 steps. Another interesting matrix, (B), requires
7 steps which corresponds to 21 rounds. For ra = 4, we can achieve differ-
ential/linear security in 5 steps (20 rounds) using matrix (C). Notably, this
matrix is a Feistel round. Matrix (D) is similar but it adds additional mixing
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#words
copied

optim. for best int.
char.

min.
rounds

(diff./linear)

matrix

0 diff./linear 3 5/5 [L010,00L1,1L0L,01L0]
diffusion 2+S 6/5 [10L0,01L0,LLL1,001L]

1 both 3+S 5/5 [10LL,01L0,LLL1,0010]

2 diff./linear 4+S 5/5 [0010,0001,10LL,01LL] (C)
diffusion 3+S 5/6 [0010,0001,1LLL,L1LL] (D)

3 both 7+S 5/6 [LLL1,1000,0100,0010]

Table 10.3: The best linear layers for ra = 4.

L L
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L

L

L

L
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Figure 10.1: Possible linear layers.

between the two left branches, which improves diffusion but slightly weakens
differential/linear provable security.

A cipher built with ra = 4 and matrix (C) provides a good compromise be-
tween differential/linear security, diffusion, strength of the ARX-box, simplicity
and easiness/efficiency of implementation. It also generalizes elegantly the lin-
ear layer of the 64-bit version of SPARX. We thus settled for this Feistel-like
function. For convenience, we decided to use its mirrored version.
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In this chapter, I describe a suite of lightweight cryptographic algorithms. It
includes the Sparkle cryptographic permutation family, the Esch hash func-
tion family, and the Schwaemm authenticated encryption family. Together
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Type Name Internal state size Data block size Security level
(bytes) (bytes) (bits)

Hash function Esch256 48 16 128
Esch384 64 16 192

Schwaemm128-128 32 16 120
Authenticated Schwaemm256-128 48 32 120
encryption Schwaemm192-192 48 24 184

Schwaemm256-256 64 32 248

Table 11.1: Algorithms in the lightweight cryptographic suite.

with my colleagues Christof Beierle, Alex Biryukov, Luan Cardoso dos San-
tos, Johann Großschädl, Léo Perrin, Vesselin Velichkov and Qingju Wang, we
designed and analyzed this suite. It is submitted to the recent NIST call for
lightweight algorithms [NIS19]. I describe briefly the specification of the algo-
rithms, and the analysis of the suite that I performed. It includes an evaluation
of resistance against several cryptanalysis methods, and also attacks on round-
reduced versions of the Schwaemm authenticated encryption family.

11.1 Introduction
With the advent of the Internet of Things (IoT), a myriad of devices are being
connected one to another in order to exchange information. This information
has to be secured. Symmetric cryptography can ensure that the data those
devices share remains confidential, that it is properly authenticated and that it
has not been tampered with.

As such objects have little computing power—and even less so that is dedi-
cated to information security—the cost of the algorithms ensuring these prop-
erties has to be as low as possible. To answer this need, the NIST has called
for the design of authenticated ciphers and hash functions providing a sufficient
security level at as small an implementation cost as possible.

We present a suite of algorithms that answer this call. All our algorithms are
built using the same core, namely the Sparkle family of permutations. The
authenticated ciphers, Schwaemm, provide confidentiality of the plaintext as
well as both integrity and authentication for the plaintext and for additional
public associated data. The hash functions, Esch, are (second) preimage and
collision resistant. Our aim for our algorithms is to use as little CPU cycles as
possible to perform their task while retaining strong security guarantees and a
small implementation size. This speed will allow devices to use much fewer CPU
cycles than what is currently needed to ensure the protection of their data. To
give one of many very concrete applications of this gain, the energy demanded
by cryptography for a battery-powered micro-controller will be decreased.

The parameters of instances of Esch and Schwaemm are summarized in
Table 11.1.
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Permutation Sparkle

Sparkle is a family of cryptographic permutations built on the ARX paradigm.
Its name comes from the block cipher SPARX [DPU+16], which Sparkle is
closely related to, hence its name:

SPARx, but Key LEss.

We provide three versions corresponding to three block sizes, namely Sparkle256,
Sparkle384, and Sparkle512. The number of steps used varies with the use
case.

Hash Function Esch

A hash function takes a message of arbitrary length and outputs a digest with
a fixed length. It should provide the cryptographic security notions of preimage
resistance, second preimage resistance and collision resistance. The main in-
stance of Esch is Esch256 which produces a 256-bit digest, offering a security
level of 128 bits with regard to the above mentioned security goals. It is based
on the permutation family Sparkle384. We also provide the member Esch384
based on the permutation family Sparkle512, which produces a 384-bit digest
and offers a security level of 192 bits.

The name Esch stands for

Efficient, Sponge-based, and Cheap Hashing.

Authenticated Cipher Schwaemm

A scheme for authenticated encryption with associated data (AEAD) takes a
key and a nonce of fixed length, as well as a message and associated data of
arbitrary size. The encryption procedure outputs a ciphertext of the message
as well as a fixed-size authentication tag. The decryption procedure takes the
key, nonce, associated data and the ciphertext and tag as input and outputs
the decrypted message if the tag is valid, otherwise a symbolic error ⊥. An
AEAD scheme should fulfill the security notions of confidentiality and integrity.
Users are expected to not reuse nonces for processing messages in a fixed-key
instance.

The main instance of Schwaemm is Schwaemm256-128 which takes a 256-
bit nonce, a 128-bit key and outputs a 128-bit authentication tag. It achieves a
security level of 120 bits with regard to confidentiality and integrity. We further
provide three other instances, i.e., Schwaemm128-128, Schwaemm192-192,
and Schwaemm256-256 which differ in the length of key, nonce and tag and in
the achieved security level.

The name Schwaemm stands for

Sponge-based Cipher for
Hardened but Weightless Authenticated Encryption

on Many Microcontrollers
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Outline

This chapter is structured as follows. First, in Section 11.2, I briefly describe
the specification of Sparkle,Esch and Schwaemm families. In the following
sections, I describe the security analysis that I performed on this suite.

In Section 11.3, I describe attempts to linearize the S-boxes used in Sparkle,
which we call ARX-boxes, by finding all inputs that inflict no carries during the
ARX computations. The problem requires a solution of a system of quadratic
equations. I describe a simple heuristics for a guess-and-determine algorithm
that allows to solve the problems in a reasonable time. The results suggest that
ARX-boxes are resistant against such linearization.

In Section 11.4, I describe a truncated differential analysis of Sparkle. I
propose a generic method for truncated trail analysis based on the binary matrix
representation of the linear layer. The results show that Sparkle has a strong
resistance against structural truncated differential trails.

In Section 11.5, I use the division property technique to find integral char-
acteristics of Sparkle. First, the best characteristics of maximum dimension
are found using MILP-aided bit-based division property. Then, I optimize them
and prove by a pen-and-paper argument and the classical division property.

Finally, in Section 11.6, I describe several attacks on reduced-round variants
of Schwaemm. They are based on a technique that I call birthday-differential
attacks. It is a variant of known-plaintext attack where particular differences
can be found from a relatively small pool of data by the birthday paradox.

11.2 Specification of Sparkle, Esch and Schwaemm

In this section, I describe in brief the specification of the cryptographic primi-
tives that we designed. For the up-to-date specification and information about
the suite I refer to the website [BBdS+19a].

The empty bitstring is denoted ε. The algorithms assume the byte order to
be little-endian. “+” denotes the addition modulo 232.

11.2.1 The Sparkle Permutations

Our schemes for authenticated encryption and hashing employ the permuta-
tion family Sparkle which we specify in the following. In particular, the
Sparkle family consists of the permutations Sparkle256ns , Sparkle384ns
and Sparkle512ns with block sizes of 256, 384, and 512 bit, respectively. The
parameter ns refers to the number of steps and a permutation can be defined for
any ns ∈ Z+. The permutations are built using the following main components:

• An ARX-box A, a 64-bit block cipher with a 32-bit key

A : (F32
2 × F32

2 )× F32
2 → (F32

2 × F32
2 ), ((x, y), c) 7→ (u, v).

We define Ac to be the permutation (x, y) 7→ A(x, y, c) from F32
2 × F32

2 to
F32
2 × F32

2 .
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• A linear diffusion layer Lnb : (F64
2 )nb → (F64

2 )nb , where nb denotes the
number of 64-bit branches, i.e., the block size divided by 64. It is necessary
that nb is even.

The high-level structure of the permutation is given in Algorithm 11.1. It is
a classical Substitution-Permutation Network (SPN) construction except that
functions playing the role of the S-boxes are different in each branch. More
specifically, each member of the permutation family iterates a parallel applica-
tion of the ARX-box A under different, branch-dependent, constants ci ∈ F32

2 .
This small 64-bit block cipher is specified in Section 11.2.1. It is followed by an
application of Lnb , a linear permutation operating on all branches; it is specified
in Section 11.2.1. We call such a parallel application of the ARX-boxes followed
by the linear layer a step. The high-level structure of a step is represented in
Figure 11.1. Before each step, a sparse step-dependent constant is XORed to
the cipher’s state (more precisely, to y0 and y1).

In what follows, we rely on the following definition given below to simplify
our descriptions.

Definition 11.1 (Left/Right branches). We call left branches those that corre-
spond to the state inputs (x0, y0), (x1, y1), . . . , (xnb/2−1, ynb/2−1), and we call right
branches those corresponding to (xnb/2, ynb/2), . . . , (xnb−2, ynb−2), (xnb−1, ynb−1).

Algorithm 11.1 The Permutation Sparkle128nb

In/Out:
(
(x0, y0), . . . , (xnb−1, ynb−1)

)
, xi ∈ F32

2 , yi ∈ F32
2

(c0, c1)← (0xB7E15162,0xBF715880)
(c2, c3)← (0x38B4DA56,0x324E7738)
(c4, c5)← (0xBB1185EB,0x4F7C7B57)
(c6, c7)← (0xCFBFA1C8,0xC2B3293D)
for all s ∈ [0 . . . ns − 1] do

y0 ← y0 ⊕ c(s mod 8)

y1 ← y1 ⊕ (s mod 232)
for all i ∈ [0 . . . nb − 1] do

(xi, yi)← Aci(xi, yi)(
(x0, y0), . . . , (xnb−1, ynb−1)

)
← Lnb

(
(x0, y0), . . . , (xnb−1, ynb−1)

)
return

(
(x0, y0), . . . , (xnb−1, ynb−1)

)

Specific Instances. The Sparkle permutations are defined for 4,6 and 8
branches and for any number of steps. In our suite we use two versions of the
permutations which differ only by the number of steps used. More precisely, we
use a slim and a big instance of Sparkle. The slim and big versions of all
Sparkle instances are given in Table 11.2.

The ARX-Box

The ARX-box A is a 64-bit block cipher. It is specified in Algorithm 11.2 and
depicted in Figure 11.2. It can be understood as a four-round iterated block
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z0 z1 z2 ... zhb−1 zhb
zhb+1 zhb+2 ... znb−1

Ac0 Ac1 Ac2 Achb−1
Achb

Achb+1
Achb+2

Acnb−1

Mhb

⊕ ⊕ ⊕
⊕

... ...

Lnb

Figure 11.1: The overall structure of a step of Sparkle. zi denotes
the 64-bit input (xi, yi) to the corresponding ARX-box.

Name n # steps slim # steps big

Sparkle256 256 7 10
Sparkle384 384 7 11
Sparkle512 512 8 12

Table 11.2: The different versions of each Sparkle instance.

cipher for which the rounds differ in the rotation amounts. After each round,
the 32-bit constant (“the key”) is XORed to the left word. As the ARX-box has
a simple Feistel structure, the computation of the inverse is straightforward.

Its purpose is to provide non-linearity to the whole permutation and to
ensure a quick diffusion within each branch — the diffusion between the branches
being ensured by the linear layer (Section 11.2.1). Its round constants ensure
that the computations in each branch are independent from one another to break
the symmetry of the permutation structure we chose. As the rounds themselves
are different, we do not rely on the round constant to provide independence
between them.

The Diffusion Layer

The diffusion layer has a structure which draws heavily from the one used in
Sparx-128 [DPU+16]. We denote it Lnb . It is a Feistel round with a linear
Feistel functionMhb which permutes

(
F64
2

)hb , where hb = nb
2
. Formally,Mhb is

defined as follows.

Definition 11.2. Let w ∈ Z+. We denoteMw the permutation of (F32
2 )w such

that

Mw

(
(x0, y0), . . . , (xw−1, yw−1)

)
=
(
(u0, v0), . . . , (uw−1, vw−1)

)
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Algorithm 11.2 The ARX-box Ac
Input/Output: (x, y) ∈ F32

2 × F32
2

x← x+ (y≫ 31)
y ← y ⊕ (x≫ 24)
x← x⊕ c
x← x+ (y≫ 17)
y ← y ⊕ (x≫ 17)
x← x⊕ c
x← x+ (y≫ 0)
y ← y ⊕ (x≫ 31)
x← x⊕ c
x← x+ (y≫ 24)
y ← y ⊕ (x≫ 16)
x← x⊕ c
return (x, y)

x y

⋙ 31

⋙ 24

c

⋙ 17

⋙ 17

c

⋙ 0

⋙ 31

c

⋙ 24

⋙ 16

c

u v

Figure 11.2: The ARX-box structure Ac for a 32-bit constant c.
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where the branches (ui, vi) are obtained via the following equations

ty ←
w−1⊕
i=0

yi , tx ←
w−1⊕
i=0

xi ,

ui ← xi ⊕ `(ty), ∀i ∈ {0, ..., w − 1} ,
vi ← yi ⊕ `(tx), ∀i ∈ {0, ..., w − 1} ,

(11.1)

where the indices are understood modulo w, and where ` : F32
2 → F32

2 is a
permutation defined by

`(x) = (x≪ 16)⊕ (x ∧ 0000FFFF).

Note in particular that, if y and z are in F16
2 so that (y, z) ∈ F32

2 , then

`(y, z) = (z, y ⊕ z).

The diffusion layer Lnb then applies the corresponding Feistel functionMhb

and swaps the left branches with the right branches. However, before the
branches are swapped, we rotate the branches on the right side by 1 branch to
the left. This process is pictured in Figure 11.1. As an example, an algorithm
describing the linear diffusion layer of Sparkle384 is given in Algorithm 11.3

Algorithm 11.3 The Linear Layer L6

Input/Output:
(
(x0, y0), . . . , (x5, y5)

)
∈ (F32

2 × F32
2 )6

. Feistel round
(tx, ty)←

(
x0 ⊕ x1 ⊕ x2, y0 ⊕ y1 ⊕ y2)

(tx, ty)←
(
(tx ⊕ (tx � 16))≪ 16, (ty ⊕ (ty � 16))≪ 16

)
(y3, y4, y5)← (y3 ⊕ y0 ⊕ tx, y4 ⊕ y1 ⊕ tx, y5 ⊕ y2 ⊕ tx)
(x3, x4, x5)← (x3 ⊕ x0 ⊕ ty, x4 ⊕ x1 ⊕ ty, x5 ⊕ x2 ⊕ ty)

. Branch permutation
(x0, x1, x2, x3, x4, x5)← (x4, x5, x3, x0, x1, x2)
(y0, y1, y2, y3, y4, y5)← (y4, y5, y3, y0, y1, y2)
return

(
(x0, y0), . . . , (x5, y5)

)

11.2.2 The Esch Hash Function

We propose two instances for hashing, i.e., Esch256 and Esch384, which al-
low to process messages M ∈ F∗2 of arbitrary length1 and output a digest D
of bitlengths 256, and 384, respectively. They employ the well-known sponge
construction, which is instantiated with Sparkle permutations and parame-
terized by the rate r and the capacity c. The slim version is used during both
absorption and squeezing. The big version is used in between the two phases.

In both Esch256 and Esch384, the rate r is fixed to 128. This means that
the messageM has to be padded such that its length in bit becomes a multiple of

1More rigorously, all bitlengths under a given (very large) threshold are supported.
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Figure 11.3: The Hash Function Esch256 with rate r = 128 and ca-
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Figure 11.4: The Hash Function Esch384 with rate r = 128 and ca-
pacity c = 384.

128. For this, we use the simple padding rule that appends 10∗. The algorithms
are depicted in Figure 11.3 and Figure 11.4, respectively. Note that the 128
bits of message blocks are injected indirectly. They are first padded with zeros
and transformed via M3 in Esch256, respectively, M4 in Esch384, and the
resulting image is XORed to the leftmost branches of the state. We stress that
this tweak can still be expressed in the regular sponge mode. Instead of injecting
the messages throughMhb , one can use an equivalent representation in which
the message is injected as usual and the permutation is defined by prepending
Mhb and appendingM−1

hb
to Sparklenb .

A message with a length that is a multiple of r is not padded. To prevent
trivial collisions, we borrow the technique introduced in [Hir16] and add ConstM
in the capacity, where ConstM is different depending on whether the message
was padded or not.
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n r c |K| |N | |T | security data limit

Schwaemm128-128 256 128 128 128 128 128 120 268

Schwaemm256-128 384 256 128 128 256 128 120 268

Schwaemm192-192 384 192 192 192 192 192 184 268

Schwaemm256-256 512 256 256 256 256 256 248 2133

Table 11.3: The instances we provide for authenticated encryption to-
gether with their (joint) security level in bit with regard to confidentiality
and integrity and the limitation in the data (in bytes) to be processed.

11.2.3 The Schwaemm Authenticated Ciphers

We propose four instances for authenticated encryption with associated data:

Schwaemm128-128, Schwaemm192-192, Schwaemm256-256,
and Schwaemm256-128

which, for a given key K and nonce N allow to process associated data A and
messagesM of arbitrary length (up to a certain threshold) and output a cipher-
text C with |C| = |M | and an authentication tag T . For given (K,N,A,C, T ),
the decryption procedure returns the decryption M of C if the tag T is valid,
otherwise it returns the error symbol ⊥. All instances use (a slight variation
of) the Beetle mode of operation presented in [CDNY18], which is based on
the well-known duplexed sponge construction. The difference between the in-
stances is the version of the underlying Sparkle permutation (and thus the
rate and capacity is different) and the size of the authentication tag. As a
naming convention, we used Schwaemmr-c, where r refers to the size of the
rate and c to the size of the capacity in bits. Similar as for hashing, we use
the big version of Sparkle for initialization, separation between processing of
associated data and secret message, and finalization, and the slim version of
Sparkle for updating the intermediate state. Table 11.3 gives an overview of
the parameters of the Schwaemm instances. The data limits correspond to
264 blocks of r bits rounded up to the closest power of two, except for the high
security Schwaemm256-256 for which it is r × 2128 bits.

The main difference between the Beetle mode and duplexed sponge modes
is the usage of a combined feedback ρ to differentiate the ciphertext blocks and
the rate part of the states. This combined feedback is created by applying the
function FeistelSwap to the rate part of the state, which is computed as

FeistelSwap(S) = S2‖(S2 ⊕ S1) ,

where S ∈ Fr2 and S1‖S2 = S with |S1| = |S2| = r
2
. The feedback function

ρ : (Fr2 × Fr2)→ (Fr2 × Fr2) is defined as ρ(S,D) = (ρ1(S,D), ρ2(S,D)), where

ρ1 : (S,D) 7→ FeistelSwap(S)⊕D, ρ2 : (S,D) 7→ S ⊕D .
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Figure 11.5: The Authenticated Encryption Algorithm
Schwaemm192-192 with rate r = 192 and capacity c = 192.

For decryption, we have to use the inverse feedback function ρ′ : (Fr2×Fr2)→
(Fr2 × Fr2) defined as ρ′(S,D) = (ρ′1(S,D), ρ′2(S,D)), where

ρ′1 : (S,D) 7→ FeistelSwap(S)⊕ S ⊕D, ρ′2 : (S,D) 7→ S ⊕D .

After each application of ρ and the additions of the domain separation con-
stants, i.e., before each call to the Sparkle permutation except the one for ini-
tialization, we prepend a rate whitening layer which XORs the value ofWc,r(SR)
to the rate, where SR denotes the internal state corresponding to the capacity
part. For the Schwaemm instances with r = c, we define Wc,r : Fc2 → Fr2
as the identity (i.e., we just XOR the capacity part to the rate part). For
Schwaemm256-128, we define W128,256(x, y) = (x, y, x, y), where x, y ∈ F64

2 .
Note that this tweak can still be described in the Beetle framework as the
prepended rate whitening can be considered to be part of the definition of the
underlying permutation.

Figure 11.5 depicts the mode for our primary member Schwaemm192-192.

11.3 Linearization of ARX-boxes
In recent attacks against Keccak instances [QSLG17, SLG17] the S-Box lin-
earization technique is used. The idea is to find a subset of inputs (often an
affine subspace), such that the S-Box acts linearly on this set. I attempted to
linearize the ARX-boxes by finding all inputs, for which all four modular addi-
tions inflict no carry bits and thus are equivalent to XOR. For the addition of
two random independent 32-bit words, the probability of having all carry bits
equal to zero is equal to (3/4)31. Indeed, for each bit position, if no carry comes
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in, then the outgoing carry will occur only if both input bits are equal to 1.
Furthermore, the carry bit from the most significant bits is ignored. Assuming
independence of the additions in an ARX-box, 264(3/4)124 ≈ 212.5 inputs are
expected to satisfy the linearization trail. In order to find all such inputs, a
quadratic equation system has to be solved.

11.3.1 Quadratic Equation System

The following proposition formalizes the linearization of addition modulo 2n.

Proposition 11.3. For any x, y ∈ Fn2 , the addition (x+ y) mod 2n is equal to
the XOR x⊕ y if and only if xiyi = 0 for all i ∈ [2 . . . n]. In particular,

Pr
x,y∈Fn2

[(x+ y) mod 2n = x⊕ y] =

(
3

4

)n−1
.

Proof. By induction for i from n to 1, xi ∧ yi = 0 implies that there are no
carries, except maybe the carry after the addition of x1 and y1. For the other
direction, observe that a single carry for any i ≥ 2 would necessarily modify at
least one bit. Furthermore, all positions are independent, since the carries are
fixed, and the probability 3/4 is simply multiplied.

In order to find all inputs satisfying the linearization in all four rounds, we
have to solve a system of quadratic equations. Indeed, for the first round with
inputs x, y ∈ F32

2 , we obtain 31 quadratic bit equations from Proposition 11.3.
Since the conditions ensures that the output of the first round is linear, similar
quadratic equations are obtained for the second round, except that x and y are
replaced by the corresponding linear functions. In total we obtain 124 quadratic
equations of the form

l(x, y) · r(x, y) = 0,

where l, r : (F32
2 )2 → F2 are affine.

The linear functions l(x, y), r(x, y) can be simplified by changing the basis
of the equation system. Let x, y ∈ F32

2 denote the branches of the state before
the second constant addition (see Figure 11.6). In order to perform computa-
tions from x, y, the first two modular additions must be replaced by modular
subtractions. The linearization of subtraction is formalized by the following
proposition.

Proposition 11.4. For any x, y ∈ Fn2 , the subtraction (x− y) mod 2n is equal
to the XOR x⊕ y if and only if (xi ⊕ 1)yi = 0 for all i ∈ [2 . . . n].

Proof. Observe that

x− y = 2n − 1− (2n − 1− x+ y) = ¬((¬x) + y).

As we want to ensure x− y = x⊕ y, we get

(¬x) + y = ¬(x⊕ y) = (¬x)⊕ y.
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Figure 11.6: The variables x, y in the middle of the ARX-box Ac.

Therefore, the subtraction constraints are equivalent to the addition constraints
for (¬x) + y. The result follows from Proposition 11.3.

The two modular subtractions and the two modular additions provide the
following 124 equations for an ARX-box Ac.

Proposition 11.5. Consider the ARX-box Ac with a constant c ∈ F32
2 . All

four its modular additions are equivalent to XORs if and only if the intermediate
values x, y ∈ F32

2 as shown in Figure 11.6 satisfy the following 124 equations:

(1⊕ c2+i ⊕ x2+i ⊕ x32+i ⊕ y17+i) · (c11+i ⊕ x11+i ⊕ x18+i ⊕ x9+i ⊕ y26+i ⊕ y3+i) = 0,

(1⊕ x2+i) · (x32+i ⊕ y17+i) = 0,

(c2+i ⊕ x2+i) · (y2+i) = 0,

(x2+i ⊕ y2+i) · (c11+i ⊕ x11+i ⊕ y10+i ⊕ y11+i) = 0,

where i ∈ [0 . . . 31].

11.3.2 Guess and Determine Algorithm

Hardness of the Equation Type

All the quadratic equations are of the form

l(x, y) · r(x, y) = 0,

which is equivalent to any of the two implications

l(x, y)⇒ r(x, y)⊕ 1, r(x, y)⇒ l(x, y)⊕ 1.

If all l, r were single variables, then the system would be equivalent to a 2-SAT
problem and would be efficiently solvable. However, due to l, r being linear
functions of the secret variables, it is NP-complete.

Proposition 11.6. The problem of finding x ∈ Fn2 such that li(x) · ri(x) = 0
for all given affine functions li, ri : Fn2 → F2 is NP-complete.
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Proof. Let us reduce a general 3-SAT instance to this problem. It is sufficient
to show en encoding of a 3-SAT clause (a ∨ b ∨ c). Let us introduce a new
variable vbc such that it should be equal to b ∨ c. This can be ensured by two
implications:

(b⇒ vbc) ∧ (vbc ⊕ c⇒ b).

Then the following encodings are equivalent:

(a ∨ b ∨ c) ⇔ (a ∨ vbc) ∧ (b⇒ vbc) ∧ (vbc ⊕ c⇒ b) ⇔
⇔ (¬a · ¬vbc = 0) ∧ (b · ¬vbc = 0) ∧ ((vbc ⊕ c) · ¬b = 0)).

Due to sparsity of the affine maps l, r in the linearization problem, the
guess-and-determine approach may work well enough.

Generating More Equations

In order to improve the efficiency, we first generate more equations of the same
form by combining the equations in the following way. For each affine map li
(or ri) used in the equations, we attempt to find an affine function α and a
subset of equations {lj(x, y) · rj(x, y) = 0}j∈J such that the function

l′i := α · li ⊕
⊕
j∈J

lj · rj

has algebraic degree 1. This can be done using a basic linear algebra. We then
obtain a new equation

l′i(x, y) · r(x, y) = α(x, y) · l(x, y) · r(x, y) = 0.

Example 5. Let c2 = 0 and consider the equations

x2 · y2 = 0, (1⊕ x2) · (x32 ⊕ y17) = 0.

Let α = x32⊕y17, and let the subset of equations consist of the second equation.
Then

α · x2⊕ (1⊕ x2) · (x32⊕ y17) = (x32⊕ y17) · x2⊕ (1⊕ x2) · (x32⊕ y17) = x32⊕ y17.

We obtain a new equation

(x32 ⊕ y17) · y2 = 0.

The number of generated equations depends on the chosen round constant
c and in our case varies from 36 to 75 for the constants used in Sparkle, and
186 generated equations for the zero constant. The exact numbers are reported
in Table 11.4.
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Guess-and-Determine Approach

Due to the implicational nature of equations, guess-and-determine method may
work reasonably well. Our approach is based on two ideas. The first idea is to
choose an order in which variables will be guessed by using a simple heuristic.
The second idea is to verify the consistency of each current guess by checking
the consistency of all linear equations that appear once some li or ri becomes
equal to one in the equation li · ri = 0. Finally, when only linear equations are
left, the solutions are easily enumerated by basic linear algebra methods. Using
these simple ideas, I managed to exhaustively find all solutions to the equation
systems for several ARX-boxes. The algorithm implementation runs in an hour
on a modern laptop, for a single ARX-box.

First, I describe the guessing order heuristic. Consider the equations li ·ri =
0 where both li, ri are non-constant. Let t1 denote the minimum number of
variables involved in such a function li or ri. Let t2 denote the second minimum
such number, t3 denote the third minimum such number, etc. Then, each
variable xj is assigned a vector Cj = (c1, c2, c3, . . .) where ck is the number
of considered functions li or ri involving tk variables including xj. Then the
variable xj with the largest such vector is selected, where the comparison is done
lexicographically. The selected variable is added to the guess order, eliminated
from equations and the process repeats until all variables are eliminated.

Example 6. Assume that we consider equations

(x1)·(x2) = 0, (x1⊕1)·(x1⊕x2) = 0, (x2)·(x2⊕x3) = 0, (x1⊕x3⊕x4⊕x5)·(x3⊕1) = 0.

Initially, we get

C1 = (2, 1, 1), C2 = (2, 2, 0), C3 = (1, 1, 1), C4 = (0, 0, 1), C5 = (0, 0, 1).

We select x2 as the first variable to guess. After elimination, we obtain that the
first and the third equations are removed, because x2 becomes constant. Next,
we get

C1 = (2, 0, 1), C3 = (1, 0, 1), C4 = (0, 0, 1), C5 = (0, 0, 1).

We select x1 as the second variable to guess. After the elimination, only the
last equation remains, and x3 is selected as the last variable to guess. We do
not need to guess x4, x5 as the system at this point will be linear.

The full approach is described in Algorithm 11.4.

11.3.3 Generalization to Arbitrary Carry Patterns

Note that an ARX-box is linearized not only in the case when all carries are
zero. In fact, it is sufficient that all carries are fixed. For an isolated modular
addition, the fraction of inputs leading to a particular carry mask depends on
the number of adjacent bits in the carry mask that are equal.
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Algorithm 11.4 Guess-and-Determine algorithm for ARX-box Linearization.
Input: a system E of equations {li(x) · ri(x) = 0} ,

where li, ri : Fn2 → F2 are affine;
Output: all solutions x ∈ Fn2 to the system.

. generate more equations:
1: for all (li, ri) ∈ E, (ri, li) ∈ E do
2: L← span(x1 · li, . . . , xn · li, li)
3: E ← E ∪ {l′ · ri = 0 | l′ ∈ L/E, deg l′ ≤ 1} . Linear algebra

. compute a guessing order heuristically:
4: order ← []
5: E ′ ← E
6: while E ′ is not linear do
7: Cj ←

(
|{(li, ri) ∈ E ′ or (ri, li) ∈ E ′ | deg li = deg ri = 2, |li| = t, xj ∈ li}|

)
t∈Z+

,
where |li| is the number of variables in li,

xj ∈ li means that xj is involved in li
8: j ← arg maxj∈[1...n],j /∈order Cj
9: E ′ ← E ′

∣∣
xj=0

. elimination of xj
10: append j to order

. enumerate solutions:
11: function GuessAndDetermine(guessed, E)
12: i← order|guessed|
13: for all v ∈ {0, 1} do
14: E ′ ← E

∣∣
xi=v

15: L← all linear equations from E ′

16: if L = E ′ then
17: yield solutions based on guessed and L
18: else if L is consistent then
19: GuessAndDetermine(guessed ∪ {xi = v} , E ′)
20: GuessAndDetermine({} , E)
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Proposition 11.7. Let e ∈ Fn2 . For any x, y ∈ Fn2 , the addition (x+y) mod 2n

is equal to the XOR x⊕ y ⊕ e if and only if en = 0 and for all i ∈ [1 . . . n− 1],

ei ⊕ ei+1 = (xi+1 ⊕ ei+1) · (yi+1 ⊕ ei+1).

In particular, for any e ∈ Fn2 with en = 0,

Pr
x,y∈Fn2

[(x+ y) mod 2n = x⊕ y ⊕ e] =
3m

4n−1
,

where m =
∑n−1

i=1 (ei ⊕ ei+1 ⊕ 1) (the sum is over integers).

Proof. Note that e denotes the carry vector, and the addition simply XORs
the operands and the carry vector. It is left to ensure that the carry vector is
correct. This requires only local constraints. The carry ei is computed as

ei = maj3(ei+1, xi+1, yi+1) =

xi+1yi+1 ⊕ xi+1ei+1 ⊕ yi+1ei+1 = (xi+1 ⊕ ei+1) · (yi+1 ⊕ ei+1)⊕ ei+1.

where maj3 is the majority function.
If ei ⊕ ei+1 = 0, we obtain a quadratic equation of the form xi+1 · yi+1 = 0,

which has 3 solutions. If ei ⊕ ei+1 = 0, we obtain a quadratic equation of
the form xi+1 · yi+1 = 1, which has 1 solution, and is equivalent to two linear
equations xi+1 = 1 and yi+1 = 1. For all positions the constraints on x, y are
independent.

Example 7. The all-zero carry patterns are the most probable, and the probabil-
ity is equal to (3/4)n−1. The second most probable patterns are those with one
adjacent difference, i.e. of the form e = (1, 1, . . . , 1, 0, . . . , 0). Their probability
is equal to (3/4)n−1/3.

As observed in the proof, a difference in adjacent carry bits results in lower
probability of linearization, and results in two linear equations instead of one
quadratic equation. Therefore, carry patterns with more differences in adjacent
bits should result in easier equation systems but also in a lower number of
solutions. In general, an extra adjacent difference reduces the probability by a
factor of 3.

11.3.4 Linearization Results

I implemented the algorithm in SageMath [SD19] and applied it to all 8 con-
stants used in the ARX-boxes in Sparkle. In addition, I ran the algorithm on
the all-zero and the all-one constants. The results are given in Table 11.4. For
all constants except the all-one constant, the equation generation took a couple
of minutes and the solving part took around an hour. The all-one constant had
no extra equations and, due to an unusually large number of solutions, the com-
putations have not finished even after 200 hours, yielding more than 4 millions
of inputs. The evaluation was performed on a single core of a 2.8 GHz CPU on
a laptop.
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constant hexadecimal # equations # inputs example

c0 B7E15162 199 13 (05600000, 70000225)
c1 BF715880 199 11 (2A001990, 00188000)
c2 38B4DA56 196 18 (1000C000, 144A0528)
c3 324E7738 196 3 (1000E620, 04270080)
c4 BB1185EB 193 10 (001C8181, 10808201)
c5 4F7C7B57 160 340 (08301013, 28265722)
c6 CFBFA1C8 178 105 (801D8000, 2FD10085)
c7 C2B3293D 199 76 (00220110, 20001804)
0 00000000 310 8 (00000000, 40200080)

232 − 1 FFFFFFFF 124 ≥ 222 (0B11CC51, 72770942)

Table 11.4: The number of inputs for ARX-boxes inflicting no carries
in all four rounds, for different round constants.

The first interesting observation is that the number of solutions is much
smaller than 212.5 ≈ 5900 predicted under the round independence assumption.
For 5 out of 8 used constants, the number of solutions is less than 20, and
the maximum number of solutions among constants used in Sparkle is 340.
The second observation is that, for the zero constant, the number of solutions
is also extremely low. We find it rather counter-intuitive, since in absence of
constants many low-weight vectors can be expected to pass through the ARX-
box without inflicting any carries. We suggest that this happens due to strong
choice of rotation amounts, leading to faster diffusion. Finally, it turns out that
the all-one constant leads to a huge number of solutions.

I observed similar behaviour and verified correctness of the algorithm on
8-bit words, where an exhaustive search over all ARX-box inputs is feasible.

I also applied the algorithm to a carry pattern with a single difference in
adjacent carry bits, namely when the carry pattern in the first round is

e = (1, 1, . . . , 1, 0) ∈ F32
2

and in other rounds the carry pattern is zero. I generated the equations and
ran the guess-and-determine algorithm on ARX-boxes with constants c0 and
c5. The two linear equations that appear due to the carry difference allow to
generate much more quadratic equations. Note that the algorithm for generat-
ing equations can be further improved to use linear relations in various ways.
For the ARX-box Ac0 , 301 total equations are obtained, whereas for Ac5 , the
system contains 409 equations. Though, the running time was still about 1
hour. The results for this ARX-boxes and the described carry pattern are given
in Table 11.5.

11.4 Truncated Differential Analysis of SPARKLE
We performed exhaustive search of all structural truncated trails in Sparkle,
i.e. when each branch can be either active or inactive. Our approach consists of
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constant hexadecimal # equations # inputs example

c0 B7E15162 301 41 (1F5D7FF5, B2D168B5)
c5 4F7C7B57 409 6 (7ED77B73, A3DCCEE7)

Table 11.5: The number of inputs for ARX-boxes inflicting the carry
pattern (1, . . . , 1, 0) in the first round an no carries in the other rounds,

for round constants c0 and c5.

two steps. The first step is to generate the matrix of probabilities of all truncated
transitions through the linear layer. I propose a new generic and precise method
for this step. The second step is a simple iterative search, where for each round
and for each truncated pattern at this round we keep the best truncated trail
leading tho this pattern.

11.4.1 Generating Truncated Trail Matrix of a Linear Layer

I describe a generic method to generate the matrix of probabilities of truncated
transitions from the binary matrix of the analyzed linear layer.

Definition 11.8. Let L : (Fm2 )t → (Fm2 )t be a linear bijective mapping. An exact
truncated transition over L is a pair of vectors from {0,+}t. A loose truncated
transition over L is a pair of vectors from {0, ∗}t. A truncated transition α, β

over L is denoted α L−→ β.

Definition 11.9 (Support Sets).
The support of a symbol γi ∈ {0, ∗,+} is defined as the set

p(γi) :=


{0}, if γi = 0,

Fm2 , if γi = ∗,
Fm2 \ {0}, if γi = +.

The support of a vector γ ∈ {0, ∗,+}t is defined as the set

p(γ) := p(γ0)× . . .× p(γt−1).

The support of a truncated transition α L−→ β is defined as the set

p(α
L−→ β) := {(x, L(x))| | x ∈ p(α), L(x) ∈ p(β)} ⊆ (Fmt2 )2.

Definition 11.10. The cardinality of a truncated transition α L−→ β is defined
as the cardinality of its support:

|α L−→ β| := |p(α L−→ β)| = |L(p(α)) ∩ p(β)|.

The probability of a truncated transition α L−→ β is defined as

Pr
[
α

L−→ β
]

:= Pr
x∈p(α)

[L(x) ∈ p(β)] =
|α L−→ β|
|p(α)| .
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Remark 23. The cardinality is a property of the graph of L, whereas the prob-
ability differentiates the input from the output. In particular, the problem of
computing cardinalities of truncated transitions is equivalent to the problem of
finding the number of codewords fitting the truncated mask (α, β) ∈ F2mt

2 in
the linear code with the generator matrix

[
Imt×mt | L

]
. The matrix of exact

truncated transitions also trivially allows to compute the branching number of
the matrix.

Finally, the table of truncated transition probabilities can be formally de-
fined.

Definition 11.11 (TTT). Let L : (Fm2 )t → (Fm2 )t be a linear bijective mapping.
The table of truncated transitions (TTT) of L is the 2t×2t matrix TTTL given
by

TTTL[a, b] = Pr
{
α

L−→ β
}
,

where a, b ∈ Ft2 are mapped naturally to α′, β′ ∈ {0,+}t respectively.

Since |p(α)| is easy to compute, we focus on computing the cardinalities of
loose and exact truncated transitions.

Cardinalities of Loose Transitions. The first step is to compute the car-
dinalities of all possible loose truncated transitions over L. Let α L−→ β be a
loose transition over L. Observe that p(α), p(β) are linear subspaces of Fmt2 .
The cardinality |α L−→ β| = L(p(α)) ∩ p(β) can be computed as follows.

A vector b ∈ (Fm2 )t belongs to p(β) if and only if βi = 0 implies bi = 0 for
all i. Let

πβ(b) : (Fm2 )t → p(β)⊥

be the linear map returning the part of the vector b consisting of all elements bi
for which βi = 0. The dimension of the space L(p(α)) ∩ p(β) can be computed
as the nullity of the linear map

φ : p(α)→ p(β)>, φ := πβ ◦ L.

Let L be given as a block matrix (Li,j)i,j∈[1...t] with blocks of size m × m.
The vector space L(p(α)) is spanned by bit-columns of the submatrix

(Li,j), where i, j ∈ [1 . . . t] , αj = ∗.

Furthermore, the map πβ simply truncates its input vector to positions where
βi = 0. It follows that φ := πβ ◦ L can be given by the submatrix

L
∣∣
α=∗,β=0

:= (Li,j) where i, j ∈ [1 . . . t] , βi = 0, αj = ∗.

Given the binary rank of this matrix, the nullity of φ is computed as

dim p(α)− rankL
∣∣
α=∗,β=0

.
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We conclude that |α L−→ β| can be computed as

|α L−→ β| = 2
dim p(α)−rankL

∣∣
α=∗,β=0 .

Cardinalities of Exact Transitions. The second step is to compute the
probabilities of all exact truncated transitions over L. Observe that a loose
truncated truncated trail can be seen as a union of precise truncated trails. For
example,

(∗, 0)
L−→ (0, ∗)

is equivalent to the following union of disjoint transitions:{
(0, 0)

L−→ (0, 0), (0, 0)
L−→ (0,+), (+, 0)

L−→ (0, 0), (+, 0)
L−→ (0,+)

}
,

i.e. the cardinalities are summed.

Lemma 11.12. Let α L−→ β 6= α′
L−→ β′ be exact truncated transitions. Then

their supports are disjoint.

Proof. The lemma follows from the fact that p(+) and p(0) are disjoint.

Definition 11.13. For any symbols/vectors/truncated transitions γ, γ′ let

γ � γ′ if and only if p(γ) ⊆ p(γ′).

Lemma 11.14. Let α∗
L−→ β∗ be a loose truncated transition. Then the set

P(α∗
L−→ β∗) :=

{
p(α′+

L−→ β′+) | α′+, β′+ ∈ {0,+}t , (α′+
L−→ β′+) � (α∗

L−→ β∗)
}

is a partition of p(α L−→ β).

Proof. It follows from Lemma 11.12 and the fact that p(∗) = p(+)tp(0), where
t denotes the disjoint union.

Corollary 11.15. Let α+
L−→ β+ be an exact truncated transition and let α∗

L−→
β∗ be the same transition, but with all symbols + replaced by ∗. Then

|α+
L−→ β+| = |α∗ L−→ β∗| −

∑
α′+,β

′
+∈{0,+}

t,(α′+
L−→β′+)�(α∗

L−→β∗)

|p(α′+
L−→ β′+)|.

This corollary gives an efficient way to compute cardinalities of all exact
truncated transitions. By computing the cardinalities in the lexicographic or-
der of transitions, we can ensure that all sub-transitions are processed before
processing the current transition.

Given the cardinalities of exact transitions, it is easy to compute the prob-
abilities of exact transitions, and thus, the matrix TTTL.
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Complexity. The time complexity of the naive implementation isO(4t(tm)3+
4t4t)), where the first term corresponds to the complexity of the rank compu-
tation for all block-aligned submatrices of L, and the second term corresponds
to the complexity of the summing over “subtransitions”. The latter step can be
done in one extra pass in time O(t·4t) by an algorithm similar to the well-known
algorithm for the Möbius transform. Then the complexity becomes fully domi-
nated by the rank computations: O(4t · (tm)3). The algorithm can be directly
improved if a better algorithm for computing the ranks of all block-aligned
submatrices exists.

11.4.2 Iterative Algorithm for Truncated Trail Search

The trails of truncated transitions that are the most useful for cryptanalysis,
should have probabilities significantly higher than the probability of sampling
the final truncated difference uniformly at random. Such trails may be used to
distinguish the analyzed structure from an ideal primitive.

Definition 11.16. A truncated trail α0
L−→ . . .

L−→ αr over L : (Fm2 )t → (Fm2 )t is
said to be effective if all αi 6= 0 and

Pr
[
α0

L−→ . . .
L−→ αr

]
> Pr

δ∈(Fm2 )t\{0}
[δ ∈ p(αr)] = p(αr)/(2

mt − 1).

where the trail probability is equal to the

Given the TTT a linear layer, it is easy to compute the best effective trun-
cated trails in an iterative way. The method is based on dynamic programming.
For each round r, we keep for each truncated output mask the best probability of
reaching this mask from arbitrary input mask over r rounds. Extension to r+1
rounds is done by enumerating best output masks for r rounds and extending
them using the TTT. The algorithm sketch is given in Algorithm 11.5.

Algorithm 11.5 Search for best truncated trails.
Input: a binary matrix of L : (Fm2 )t → (Fm2 )t, TTTL : Ft2 × Ft2 → Q;
Output: the map αr 7→ q for the best effective truncated trails α0

L−→ . . .
L−→ αr

1: d0 ←
{
α 7→ 1 | α ∈ {0,+}t \ (0, . . . , 0)

}
2: for all r ∈ [1 . . .] do
3: dr ←

{
α 7→ 0 | α ∈ {0,+}t

}
4: effective← false

5: for all α L−→ β ∈ TTTL do
6: dr(β)← max

(
dr(β), dr−1(α) · Pr

[
α

L−→ β
])

7: if dr(β) > p(β)/(2mt − 1) then . p(β) is the support of β
8: effective← true

9: if not effective then
10: return dr . Trail recovery can be added

Using precise arithmetics over rationals, the precise TTT can be computed.
For example, consider the AES MixColumn matrix L : (F8

2)
4 → (F8

2)
4. The
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algorithm finds the following two-round effective trail:

(+, 0, 0, 0)
L−→ (+,+,+,+)

L−→ (+, 0, 0, 0),

which has probability
1/16581375 ≈ 2−23.983

which is greater than the probability of sampling the difference fitting (+, 0, 0, 0)
uniformly at random from all non-zero differences, which is equal to

(28 − 1)/(232 − 1) = 1/16843009 ≈ 2−24.006.

The position of active word in the initial and output masks does not matter.
The first transition has probability one due to the fact that L has branching
number 5 (note that the algorithm was given only the binary matrix of L). The
second transition is possible due to uneven distribution of weights of differences
in the image of p((+,+,+,+)) under L. This is an interesting observation,
though the difference between the probabilities is too small for exploiting it for
the cryptanalysis purpose.

11.4.3 Truncated Trails in Sparkle

For most linear layers used in practice, the probabilities of truncated transitions
over the linear layer are usually close to powers of 2 raised to the word size. The
error term is ignored as insignificant. Indeed, since the S-Boxes are fixed, the
assumed independence between sequential truncated transitions does not hold.

Consider the linear layer of Sparkle as a mapping of (F64
2 )nb to itself.

For the analysis of Sparkle, we also utilize the assumption, as all the transi-
tion probabilities over the linear layer are very close to 2−64k for some k. We
strengthen the definition of an effective trail by requiring that the trail proba-
bility is higher than 2−64k+0.01, where k is the number of inactive words in the
output mask.

For Sparkle256, the longest effective truncated differential trail covers two
steps and has probability 1. It can be described as follows, where + indicates
an active branch and 0 indicates an inactive branch:

input : 0 0 0 +
step 1 : + 0 0 0
step 2 : + + + 0

.

Another similar one can be obtained using the input 00+0. When restricting
the input difference to be only in the left branches (i.e., for the setting in
Schwaemm128-128), the longest effective truncated differential trail covers only
one step (and probability 1):

input : + 0 0 0
step 1 : + + + 0

.
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For Sparkle384, the longest effective truncated differential trail also covers
two steps and has probability 1:

input : 0 0 0 + 0 0
step 1 : 0 0 + 0 0 0
step 2 : + + + 0 0 +

.

Two similar ones can be obtained using inputs 0000 + 0 and 00000+.
For Sparkle512, the longest effective truncated differential trail covers

three steps and has probability close to 2−64:

input : 0 0 0 0 0 + 0 +
step 1 : + 0 + 0 0 0 0 0
step 2 : 0 + 0 + + 0 + 0
step 3 : + + + + 0 + 0 +

,

where we associate a probability of 2−64 for the transition between step 1 and
step 2.

11.5 Division Property Analysis

11.5.1 Division Property of the ARX-box Structure

I performed MILP-aided bit-based division property analysis [Tod15,TM16] on
the ARX-box structure. The MILP encoding is rather straightforward. For the
modular addition operation I used the following method.

Addition modulo 232. Let us encode the modular addition by encoding the
carry propagation. For any a, b, c ∈ F2, let c′ = maj3(a, b, c) ∈ F2 and y =
a⊕b ∈ F2, wheremaj3 is the majority function. Then, all possible such 5-tuples
(a, b, c, c′, y) ∈ F5

2 can be characterized by the two following integer inequalities:

1. −a− b− c+ 2c′ + y ≥ 0,

2. a+ b+ c− 2c′ − 2y ≥ 1.

For any bit position, summing the input bits a, b with the input carry c results
in the output bit y and the new carry c′. In my experiments, these two in-
equalities applied per each bit position generated precisely the correct division
property table of addition modulo 2n for n up to 7. There were some redundant
transitions though, which do not affect the result.

First, I evaluated the general algebraic degree of the ARX-box structure
based on the division property. The 5th and 6th rounds rotation constants were
chosen as the 1st and 2nd rounds rotation constants respectively, as this will
happen when two ARX-boxes will be chained. The inverse ARX-box structure
starts with 4th round rotation constants, then 3rd, 2nd, 1st, 4th, etc. The mini-
mum and maximum degree among coordinates of the ARX-box structure and
its inverse are given in Table 11.6. Even though these are just upper bounds,
I expect that they are close to the actual values, as the division property was
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ARX-Box
rounds 1 2 3 4

ARX-Box
inverse
rounds

1 2 3 4

min 1 10 42 63 min 1 2 32 46
max 32 62 63 63 max 32 62 63 63

Table 11.6: The upper bounds on the minimum and maximum degree
of the coordinates of the ARX-box and its inverse.

shown to be rather precise [TM16]. Thus, the ARX-box structure may have full
degree in all its coordinates, but the inverse of the ARX-box has a coordinate
of degree 46.

The block-size level division property of the ARX-box is such that, for any
1 ≤ k ≤ 62, D64

k maps to D64
1 after two rounds, and D64

63 maps to D64
2 after two

rounds and to D64
1 after three rounds. The same holds for the inverse of the

ARX-box.
The longest integral characteristic found with bit-based division property is

for 6-round ARX-box, where the input has 63 active bits and the inactive bit
is at the index 44 (i.e., there are 44 active bits from the left and 19 active bits
from the right), and in the output 16 bits are balanced:

input active bits:
11111111111111111111111111111111,11111111111101111111111111111111,
balanced bits after 6-round ARX-box:
????????????????????????BBBBBBBB,?????????BBBBBBBB???????????????.

The inactive bit can be moved to indexes 45, 46, 47, 48 as well, the balanced
property after 6 round stays the same. For the 7-round ARX-box we did not
find any integral distinguishers.

For the inverse ARX-box, the longest integral characteristic is for 5 rounds:

input active bits:
11111111111111111111111111101111,11111111111111111111111111111111,
balanced bits after 5-round ARX-box inverse:
???????????????????????????????B,???????BBBBBBBBB????????????????.

For ARX-box inverse with 6-rounds we did not find any integral characteristic.
As a conclusion, even though a single ARX-box has integral characteristics,

for two chained ARX-boxes there are no integral characteristics that can be
found using the state-of-the-art division property method.

11.5.2 Division Property of the SPARKLE Permutations

I performed MILP-aided bit-based division property analysis [Tod15,SWW16]
on the Sparkle permutation family.
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For the MILP encoding of the linear layer, I used the original simple method
from [SWW16]. Note that in [ZR17] it was shown that this method is imprecise
and may result in extra trails and weaker distinguisher. The linear layer of
Sparkle can be viewed as 16 independent linear layers of dimensions from
16 × 16 in Sparkle256 to 32 × 32 in Sparkle512. For these dimensions it
may be possible to apply the precise encoding method from [ZR17]. However,
due to the large state size, I found it to be still infeasible.

I performed bit-based division property evaluation of the reduced-round
Sparkle permutations. Let there be b − 1 active bits with the inactive bit
at index 44 or 44 + b/2, as offset 44 results in the best bit-based integral char-
acteristic for the ARX-box structure. Furthermore, the branch choice for the
inactive bit does not affect the result, due to the rotational branch symmetry
(inside each half of the state). The best integral characteristic I found is for
4 steps and an extra ARX-box layer, for all three Sparkle versions. Let us
encrypt the half of the codebook, such that one bit in the left half of the input
is constant and all other bits are taking all possible values. Then, after 4 steps
and the ARX-box layer from the 5-th step, the right half of the state is balanced
(i.e. sums to zero). I state and prove this characteristic using structural division
property and show that, in fact, fewer active input bits are required. Namely,
64 · nb + 65 active bits instead of 2 · 64 · nb.

Proposition 11.17. Consider a Sparkle-like permutation of F2h
2 , with arbi-

trary bijective ARX-Boxes permuting Fm2 , arbitrary linear Feistel function and
at least 4 branches, i.e. nb = 2h/m ≥ 4. Then, the following division property
transition is satisfied over 4 steps and an extra ARX-box layer:

D(m,...,m),(m,...,m)
(0,...,0,1,m),(m,...,m)

A◦(L◦A)4−−−−−−→ D(h),(h)
(1),(0) ∪ D

(h),(h)
(0),(2) ,

where A denotes the ARX-box layer and L denotes the linear layer. In other
words, the right half of the output sums to zero.

Proof. Without loss of generality, we assume that there is no rotation of branches.
Indeed, any permutation of branches inside a half is equivalent to reordering
ARX-boxes inside halves and to modifying the Feistel linear layer, which is not
constrained in this proposition.

Step 1. The properties Dm1 and Dmm are retained through the ARX-boxes. The
right half is fully active, therefore the linear layer does not have mixing
effect yet. The following division trail is unique:

D(m,...,m),(m,...,m)
(0,...,0,1,m),(m,...,m)

A−−→ D(m,...,m),(m,...,m)
(0,...,0,1,m),(m,...,m)

L−−→ D(m,...,m),(m,...,m)
(m,...,m),(0,...,0,1,m).

Step 2. The ARX-box layer does not change anything again. The linear layer
allows multiple division trails. Note that at most (nb−1)m−1 active bits
can be transferred through the Feistel linear function until the right half
is saturated to fully active. Therefore, at least m + 1 bits remain active
in the left half. In particular, at least two branches remain active. As
we will show, this is the only requirement to show the proposed balanced
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property. We reduce active bits to these two in order to cover all possible
trails and simplify the proof. Up to permutation of branches inside the
state halves,

D(m,...,m),(m,...,m)
(m,...,m),(0,...,0,1,m)

A−−→ D(m,...,m),(m,...,m)
(m,...,m),(0,...,0,1,m)

L−−→ D(m,...,m),(m,...,m)
(0,...,0),(1,1,0,...,0).

Step 3. The two active branches remain active through the third step, since there
is no mixing between them:

D(m,...,m),(m,...,m)
(0,...,0),(1,1,0,...,0)

A−−→ D(m,...,m),(m,...,m)
(0,...,0),(1,1,0,...,0)

L−−→ D(m,...,m),(m,...,m)
(1,1,0,...,0),(0,...,0).

Step 4 + A. Similarly, the two active branches stay active after the ARX-box layer of
the fourth step:

D(m,...,m),(m,...,m)
(1,1,0...,0),(0,...,0)

A−−→ D(m,...,m),(m,...,m)
(1,1,0...,0),(0,...,0) .

In the linear layer, there are several possibilities. The two active bits from
the left half can be transferred to a single branch in the right half by the
Feistel function. Then D(h),(h)

(2),(0) is obtained that is mapped through the
final ARX-box layer to D(h),(h)

(1),(0) , i.e., the left half is possibly not balanced.
If one of the active bits is transferred by the linear layer, then D(h),(h)

(1),(1) is
obtained, which is covered by the previous case. Otherwise, two active
branches remain after the linear layer and after the final ARX-box layer.
The output division property in this case is D(h),(h)

(0),(2) . The following trails
cover all possible trails up to branch permutations in each half:

D(m,...,m),(m,...,m)
(1,1,0...,0),(0,...,0)

L−−→ D(m,...,m),(m,...,m)
(2,0,...,0),(0,0,...,0),

A−−→ D(m,...,m),(m,...,m)
(1,0,...,0),(0,0,...,0) =⇒ D(h),(h)

(1),(0) ,

D(m,...,m),(m,...,m)
(1,1,0,...,0),(0,...,0)

L−−→ D(m,...,m),(m,...,m)
(0,...,0),(1,1,0,...,0),

A−−→ D(m,...,m),(m,...,m)
(0,...,0),(1,1,0,...,0) =⇒ D(h),(h)

(0),(2) .

It follows that the following division trail is impossible:

D(m,...,m),(m,...,m)
(0,...,0,1,m),(m,...,m)

A◦(L◦A)4−−−−−−→ D(h),(h)
(0),(1)

Therefore, the right output half is balanced.

Note that in the proof, a lot of active bits were omitted for simplicity, in
order to cover all possible trails by a single one. However, as the bit-based
division property analysis suggests, a more careful analysis does not yield any
longer integral characteristic.

I evaluated also the inverses of the Sparkle permutations. Similarly, the
bit-based division property with only one inactive bit (at offset 27 in the left or
in the right half) suggested only a general structural distinguisher, similar to
the one from Proposition 11.17.

Proposition 11.18. Consider a Sparkle-like permutation as in Proposition 11.17.
The following division property transition is satisfied over 4 steps in the reverse
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direction:
D(m,...,m),(m,...,m)

(m,...,m),(0,...,0,1,m)

(A−1◦L−1)4−−−−−−−→ D(h),(h)
(2),(0) ∪ D

(h),(h)
(0),(1) .

Proof. In a similar way to the Proposition 11.17, the following division trail
covers all division trails:

D(m,...,m),(m,...,m)
(m,...,m),(0,...,0,1,m)

L−1

−−→ D(m,...,m),(m,...,m)
(0,...,0,1,m),(m,...,m)

A−1

−−→ D(m,...,m),(m,...,m)
(0,...,0,1,m),(m,...,m)

L−1

−−→ D(m,...,m),(m,...,m)
(1,1,0,...,0),(0,...,0,1,m)

A−1

−−→ D(m,...,m),(m,...,m)
(1,1,0,...,0),(0,...,0,1,m)

L−1

−−→ D(m,...,m),(m,...,m)
(0,...,0),(1,1,0...,0)

A−1

−−→ D(m,...,m),(m,...,m)
(0,...,0),(1,1,0...,0) ,

And in the last step the same cases take place as in Proposition 11.17.

D(m,...,m),(m,...,m)
(0,...,0),(1,1,0...,0)

L−1

−−→ D(m,...,m),(m,...,m)
(0,...,0),(2,0,...,0) ,

A−1

−−→ D(m,...,m),(m,...,m)
(0,...,0),(1,0,...,0) =⇒ D(h),(h)

(0),(1) ,

D(m,...,m),(m,...,m)
(0,...,0),(1,1,0...,0)

L−1

−−→ D(m,...,m),(m,...,m)
(1,1,0,...,0),(0,...,0),

A−1

−−→ D(m,...,m),(m,...,m)
(1,1,0,...,0),(0,...,0) =⇒ D(h),(h)

(2),(0) .

The following trail is impossible:

D(m,...,m),(m,...,m)
(m,...,m),(0,...,0,1,m)

(A−1◦L−1)4−−−−−−−→ D(h),(h)
(1),(0)

Therefore, the left output half is balanced.

11.6 Cryptanalysis of Schwaemm

Diffusion is relatively fast in Sparkle and we expect guess-and-determine at-
tack to be infeasible. This section shows several attacks on round-reduced
variants of Schwaemm. The attacks are summarized in Table 11.7.

Instance Steps Whitening Method Time Data

Schwaemm128-128 3.5 no data trade-off 264 264

Schwaemm192-192 3.5 no data trade-off 2128 264

Schwaemm256-256 3.5 no data trade-off 2192 264

Schwaemm256-256 3.5 no guess and det. 2192 1

Schwaemm128-128 4.5 no birthday diff. 296+ε 296−ε

Schwaemm192-192 4.5 no birthday diff. 2128+ε 2128−ε

Schwaemm256-256 4.5 no birthday diff. 2192 + 2160+ε 2160−ε

Schwaemm256-256 3.5 yes birthday diff. 2224+ε 2224−ε

Table 11.7: Guess and determine attacks on Schwaemm instances. ε
is an arbitrary positive parameter. 0.5 step denotes an extra layer of

ARX-boxes.
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Notation used in the Attacks

Consider an instance of Schwaemm. Let Ai
j denote j-th ARX-box at the left

half of the state at step i together with the step constant addition:

Ai
j(x) =


Ac0(x⊕ ci), if j = 0,

Ac1(x⊕ i), if j = 1,

Acj(x), if 2 ≤ j < hb.

Let Bi
j denote the j-th ARX-box at the right half of the state at step i: Bi

j =
Achb+j . Let Ai denote the parallel application of Ai

0, . . . ,A
i
hb−1; B

i denote the
parallel application of Bi

0, . . . ,B
i
hb−1.

Let X [a] denote the map x 7→ (x⊕ a). Let M denote the linear Feistel map
Mhb and let `′ denote the linear feed-forward function used in M:

`′((x1||x2), (y1||y2)) = (y2||y1 ⊕ y2), (x2||x1 ⊕ x2), where x1, x2, y1, y2 ∈ F16
2 .

Let R denote the rotation of hb branches to the left by one position:

R(x0, . . . , xhb−1) = (x1, . . . , xhb−1, x0).

A high-level structure of a 4-round Sparkle in a Schwaemm instance using
the described notations is depicted in Figure 11.7.

Consider a known-plaintext scenario. The rate part of the state becomes
known before and after a call to a (round-reduced) Sparkle permutation. Let
min be the initial rate part and mout be the final rate part. We call the ARX-
box layer a half-step. Note that in the considered scenario, any attack on t full
steps can be trivially extended to t + 1/2 steps, since the final ARX-boxes in
the rate part can be easily inverted.

Differential Assumptions on the ARX-boxes

A single isolated ARX-box does not have a strong resistance against differen-
tial attacks. Indeed, there is a differential trail with probability 2−6. In our
attacks, we assume that particular problems about differential transitions in-
volving random differences can be solved efficiently, even though we do not
propose concrete algorithms. For example, consider the problem of checking
whether a random differential transition over an ARX-box is possible. A naive
approach would require 264 evaluations. However, we can expect that with a
meet-in-the-middle method it can be done much more efficiently. Indeed, an
ARX-box has only 4 rounds. We further assume that the difference distribution
table (DDT) of an ARX-box is very sparse and such problems about differential
transitions have few solutions on average.

The problems we consider are about finding all solutions of the following
differential transition types:

Problem 1. a A−→ b, where a, b ∈ F64
2 are known random differences, A is an ARX-box

or the inverse of an ARX-box,
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min

A0 B0

M

R

A1 B1

M

R

A2 B2

M

R

A3 B3

M

R

mout

Figure 11.7: The High-level structure of Sparkle with 4 steps.

Problem 2. a A−→ α, b
B−→ α, where a, b ∈ F64

2 are known random differences, A,B are
ARX-boxes or their inverses, α ∈ F64

2 is an unknown difference.

Problem 3. α A−→ β, α
B−→ β + a, where a ∈ F64

2 is a known random difference, A,B are
ARX-boxes or their inverses, α, β ∈ F64

2 are unknown differences.

We denote the average ratio of solutions to a problem by ν, and the average
time to enumerate all solutions by τf .

11.6.1 Birthday-Differential Attacks

Encryptions with unique nonces can be expected to be completely independent.
Therefore, a nonce-respecting adversary can not easily inject differences in the
state in the encryption queries. Indeed, the difference between two encryptions
in any part of the state can be expected to be random, and independent of
the message due to the state randomization by the initialization with unique
nonces. However, any fixed difference in n-bit part of the state may be obtained
randomly among approximately 2n/2 random states. Therefore, with 2n/2 data,
we can expect to have a pair satisfying an n-bit differential constraint. However,
the procedure of finding this pair in the pool of encryptions has to be efficient.

The most useful differentials for this attack method are zero differences on
full branches. They propagate to zero difference through ARX-boxes. It is
also desirable that this differences imply the zero difference of some function of
observable parts of the state (i.e. min,mout). Then a hash table can be used to
filter pairs from the data pool efficiently.

Proposition 11.19. Assume that 64η bits in the encryption process are chosen
such that for a pair of encryptions having zero difference in those 64η bits,
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1. 64µ bits can be efficiently computed from min,mout (denote the function
by π), such that they also have zero difference;

2. pairs of encryptions that satisfying the zero difference can be further fil-
tered in time τf , keeping a fraction of most νη−µ pairs (denote the function
by filter

3. given such a pair, the full state can be recovered in time τr (denote the
function by recover).

Then, the full state can be recovered using 264η/2+1/2 data and 264(η−µ)(τf +
νη−µτr) time. The general attack procedure is given in Algorithm 11.6.

Proof. There are 264η pairs in the encryption pool and we can expect to have a
pair having the required zero difference with a high probability. The complexity
of the initial filtering by π can be neglected. Therefore, we assume that all
264(η−µ) pair candidates (on average) can be enumerated efficiently. For each
candidate, the verification and, in case of verification success, the state recovery
take time τf + νtτr.

Algorithm 11.6 Birthday-Differential attack procedure.
collect 264η/2+1/2 known-plaintext encryptions
compute corresponding rate parts min,mout

store π(min,mout) for each encryption in a hash table
for all (min,mout), (m

′
in,m

′
out) such that π(min,mout) = π(m′in,m

′
out) do

if filter((min,mout), (m
′
in,m

′
out)) then

s← recover((min,mout), (m
′
in,m

′
out))

return s

Attacks of this type typically have quite large data complexity, violating the
data limit set in the specification. However, it should be noted, that the actual
key used does not matter as each state is always expected to be random and
independent. Therefore, re-keying does not prevent the attack. If the required
difference is achieved by a pair of encryptions under different keys, then both
states are recovered by the attack.

An adversary can further exploit this fact. The data complexity may be
reduced by performing a precomputation. The adversary encrypts 264t data (t
may be fractional), and forms a pool in the same way as in the normal attack.
Then, 264(η−t) data is collected from encryptions under the unknown secret key.
Among too pools, there are 264η pairs and at least one pair will satisfy the zero
difference with a high probability. Note that the data reduction starts only with
t > η/2 and is costly in the time and memory complexity.

11.6.2 Attack on 3.5-step Schwaemm Instances without
Rate Whitening

Consider an instance of Schwaemm with the rate equal to the capacity (i.e.
one of Schwaemm128-128, Schwaemm192-192, Schwaemm256-256), which
uses the Sparkle permutation reduced to 3 steps and has no rate whitening.
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Figure 11.8: Attack on 3.5-step Sparkle without whitening. The
green dots show known values, the purple crosses show zero differences in
the birthday-differential attack. The red dashed area highlights the part
being attacked, the purple dashed area shows the part with the target

differential transition in the birthday-differential attack.

Let y denote the output of the linear Feistel function M in second step (as
shown in Figure 11.8). It lies on the following cyclic structure (marked with
dashed red rectangle):

y = M ◦ (B2)−1 ◦X
[
R−1(mout)

]
◦M ◦A2 ◦R ◦X

[
B1(A0(min))

]
◦ (y).

Let

m′in = B1(A0(min)),

m′out = M−1(R−1(mout)).

Then

y =
(
M ◦ (B2)−1 ◦M

)
◦
(
X [m′out] ◦A2 ◦R ◦X [m′in]

)
(y), and (11.2)

M−1 ◦B2 ◦M−1(y) = X [m′out] ◦A2 ◦R ◦X [m′in] (y). (11.3)

Note that Equation 11.2 shows that the unknown part of the state y is a
fixed point of a particular bijective structure using the constantsm′in,m′out. This
is an interesting formulation of the constraint on the unknown part of the state.

Precomputation/data trade-off attack. Note that the left part of Equa-
tion 11.3 is independent of m′in,m′out. Moreover, the right part consists of in-
dependent ARX-boxes. Therefore, guessing one 64-bit branch of y leads to
knowledge of an input and an output 64-bit branches of the function from the
left-hand side. A data trade-off attack follows. The trade-off parameterized by
an integer r, 0 < r ≤ 64.
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We start by the precomputation phase. Let z = M−1 ◦ B2 ◦M−1(y). We
iterate over all y1 ∈ F64−r

2 and all yi ∈ F64
2 for i 6= 1, and generate the table

mapping (y1, z0) to all values y satisfying the constraint. On average, we expect
264hb−r/264 = 264(hb−1)−r candidates per each (y1, z0) in the table. This step
requires 264hb−r time and memory blocks.

In the online phase, we collect 2r known plaintexts-ciphertext pairs and
compute the corresponding m′in,m′out for each pair. Then, for each y1 ∈ F64−r

2

we compute
z0 = (m′out)0 ⊕A2

0((m
′
in)1 ⊕ y1).

For each preimage candidate of (y1, z0) in the precomputed table, we recover
the full state in the middle of the second step. We then check if the correspond-
ing state correctly connects min,mout and possibly recover the secret key by
inverting the sponge operation.

If a considered plaintext-ciphertext pair is such that the leftmost r bits of
y1 are equal to zero, then the attack succeeds. Indeed, then, for one of the
guesses of y1, the pair (y1, z0) corresponds to the correct preimage. For each
of 2r plaintext-ciphertext pairs we guess 264−r values of (y1, z0). Correct y1
identifies a table mapping the z0 to all possible y. Therefore, on average, there
will be 264−r ·264(hb−1)−r = 264hb−2r total candidates. The time required to check
a candidate and to recover the secret key is negligible.

The online phase requires 2r different 2-block plaintext-ciphertext pairs,
264hb−2r time and negligible amount of extra memory.

The following attacks on Schwaemm instances follow:

1. Schwaemm128-128: with r = 64, the full attack requires 264 time, mem-
ory and data; with r = 32, the full attack requires 296 time and memory,
and 232 data.

2. Schwaemm192-192: with r = 64, the full attack requires 2128 time, mem-
ory and 264 data.

3. Schwaemm256-256: with r = 64, the full attack requires 2192 time, mem-
ory and 264 data.

Low-data variant of the attack on Schwaemm256-256. Due to the
high branching number of M, it is hard to exploit the structure of the function
M−1 ◦B2 ◦M−1 by guessing several branches. However, for the largest instance
Schwaemm256-256, a simple attack requiring one known-plaintext and 2192

time is possible.
The key observation is that when `′(x) is fixed, M(x) splits into hb indepen-

dent xors with `′(x). In the attack, we simply guess the corresponding `′ for the
two calls to M. Precisely, let `′y = `′(M−1(y)) and `′z = `′(M−1 ◦B2 ◦M−1(y)).
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The computations from Equation 11.2 then split into one large cycle:

y0 = X
[
`′y
]
◦ (B2

0)
−1 ◦X [`′z] ◦X [(m′out)0] ◦A2

0 ◦X [(m′in)1] (y1),

y1 = X
[
`′y
]
◦ (B2

1)
−1 ◦X [`′z] ◦X [(m′out)1] ◦A2

1 ◦X [(m′in)2] (y2),

y2 = X
[
`′y
]
◦ (B2

2)
−1 ◦X [`′z] ◦X [(m′out)2] ◦A2

2 ◦X [(m′in)3] (y3),

y3 = X
[
`′y
]
◦ (B2

3)
−1 ◦X [`′z] ◦X [(m′out)3] ◦A2

3 ◦X [(m′in)0] (y0).

Let us guess y0 and compute the whole cycle. If the result matches guessed y0,
then we obtain a candidate for the full y = (y0, y1, y2, y3). On average, we can
expect to find one false-positive candidate.

The attack requires 1 known plaintext-ciphertext pair, negligible amount of
memory, and 2192 time.

Birthday-differential attack. A birthday-differential attack can be mounted
too. We are looking for a pair having zero difference in y. Then the expression

X [m′out] ◦A2 ◦R ◦X [m′in] (y) (11.4)

has zero difference in the input y and zero difference in the output. Therefore,
the difference in m′in is transformed into the difference in R(m′out) by an ARX-
box layer. This is the first problem we noted in Section 11.6.

Note that the amount of pairs of encryptions in the pool has to be greater
than 264hb in order for a pair with zero difference in y to exist. Therefore,
enumeration of all pairs and checking the possibility of the differential transition
m′in

A2◦R−−−→ m′out results in an ineffective attack.
As described in the birthday-differential attack framework, we further strengthen

the constraints in order to obtain an efficient initial filtering. We require that
t branches of m′in starting from the second branch have zero difference too,
0 < t < hb. Then, m′out must have zero difference in the first t branches.
This allows us to obtain initial filtering with µ = 2t, i.e. with the probability
2−64·2t. In total we need zero difference in hb + t branches. Therefore, we need
264(hb+t)/2+1/2 data and we expect to keep 264(hb+t) · 2−64·2t = 264(hb−t) pairs on
average after the initial filtering procedure.

The second filtering step is based on filtering possible differential transitions.
In the correct pair, the differences ∆m′in and ∆m′out of the values m′in and m′out
respectively are related by the layer A2 of ARX-boxes. More precisely, for all
i, 0 ≤ i < hb, the following differential transition holds:

(∆m′in)i+1

A2
i−−→ (∆m′out)i.

Verifying a pair requires checking whether a differential transition over an ARX-
box is possible or not (see Problem 1 in Section 11.6). We assume that there
only a fraction ν of all differential transitions over an ARX-box is possible, and
that for any differential transitions all solutions can be found in time τf on
average.
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The branch values corresponding to zero difference transitions can be found
exhaustively in time τr ≤ 264t or more efficiently by exploiting the structure
further.

We estimate the final complexity of the attack by 264(hb+t)/2+1/2 data and
264(hb−t)(τf + νhb−tτr) time. Assuming low values of ν, τf and τr, we estimate
the following attack complexities for different instances of Schwaemm:

1. Schwaemm128-128: with t = 1, the attack requires 296.5 data, and
slightly more than 264 time. By the precomputation cost of 296+ε time and
memory, the data requirement can be reduced to 296−ε for any ε < 32.

2. Schwaemm192-192: with t = 1, the attack requires 2128.5 data, and
slightly more than 2128 time. By the precomputation cost of 2128+ε time
and memory, the data requirement can be reduced to 2128−ε for any ε < 64.

3. Schwaemm256-256: with t = 1, the attack requires 2160.5 data, and
slightly more than 2192 time. By the precomputation cost of 2160+ε time
and memory, the data requirement can be reduced to 2160−ε for any ε < 96.

11.6.3 Attack on 4.5-step Schwaemm without RateWhiten-
ing

Consider an instance of Schwaemm with the rate equal to the capacity (i.e.
one of Schwaemm128-128, Schwaemm192-192, Schwaemm256-256), which
uses the Sparkle permutation reduced to 4 steps and has no rate whitening.

Let y be the input to the linear Feistel layer M in the third step (see Fig-
ure 11.9). We aim to mount a birthday-differential attack with zero-difference
in y. The parts of the structure with zero difference are marked with purple
crosses in the figure. It follows that differences of the observed rate parts can
be propagated and connected by independent branches. More formally, let

m′in = M−1(B1(A0(min))),

m′out = M−1(R(mout)).

Denote the difference in m′in by ∆m′in, and the difference in m′out by ∆m′out. It
follows that the difference ∆m′in propagates through B2 into the same difference
as the difference ∆m′out propagates through R−1 ◦ (A3)−1. Note that they are
connected by hb independent 64-bit branches:

(∆m′in)i
B2
i−−→ αi

(A3
i−1)

−1

←−−−−− (∆m′out)i−1, (11.5)

where α is the unknown intermediate difference.
In order to make the birthday-differential attack, we further strengthen the

zero-difference constraint in order to perform an efficient initial filtering. We
require that (∆m′in)i = αi = (∆m′out)i−1 = 0 for all i < t for an integer t,
0 < t < hb. This constraints allows us to filter the pairs efficiently by the
zero-difference parts of m′in and m′out.

The second filtering step is based on checking the possibility of the differen-
tial transitions from Equation 11.5. This is Problem 2 mentioned in Section 11.6.
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Figure 11.9: Attack on 4.5-step Sparkle without whitening. The
green dots show known values, the purple crosses show zero differences.
The red dashed area highlights the part being attacked, the purple dashed

area shows the part with the target differential transition.

Similarly to the previous attack, we the final complexity of the attack is
estimated by 264(hb+t)/2+1/2 data and 264(hb−t)(τf + νhb−tτr) time. Under the
assumption of low values of ν, τf and τr, the following attacks are derived:

1. Schwaemm128-128: with t = 1, the attack requires 296.5 data, and more
than 264 time. By the precomputation cost of 296+ε time and memory, the
data requirement can be reduced to 296−ε for any ε < 32.

2. Schwaemm192-192: with t = 1, the attack requires 2128.5 data, and more
than 2128 time. By the precomputation cost of 2128+ε time and memory,
the data requirement can be reduced to 2128−ε for any ε < 64.

3. Schwaemm256-256: with t = 1, the attack requires 2160.5 data, and more
than 2192 time. By the precomputation cost of 2160+ε time and memory,
the data requirement can be reduced to 2160−ε for any ε < 96.

11.6.4 Attack on 3.5-step Schwaemm256-256

Consider Schwaemm256-256, which uses the Sparkle permutation reduced
to 3 steps and has the rate whitening.

Let y be the input to the linear Feistel functionM in the second step (see Fig-
ure 11.10). We aim to find a pair of encryptions with zero difference in y. We
further restrict the input and the output difference of M in the first round to
have form α = (α, α, 0, 0 for any α ∈ F64

2 . Note that this happens in the fraction
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Figure 11.10: Attack on 3.5-step Sparkle with whitening. The green
dots show known values, the purple crosses show zero differences. The
purple dashed areas shows the parts with the target differential transi-

tions.

2−3·64 of all inputs to M , because (α, α, 0, 0) is always mapped to (α, α, 0, 0) by
M . In total, we require 7 independent branches to have zero difference.

First, observe that for some β ∈ (F64
2 )4 = (β0, β1, 0, 0), the following differ-

ential transitions hold (see the topmost purple area in Figure 11.10):

α
A0

−→ β ⊕∆min,

α
B0

−→ β,

where ∆min is the difference in min. It follows that (∆min)2 = (∆min)3 = 0,
because α2 = α3 = 0. For i = 0 and i = 1 we obtain an instance of Problem 3
from Section 11.6:

α
A0
i−→ βi ⊕ (min)i,

α
B0
i−→ βi.

Note that here the same unknown α ∈ F64
2 appears in two instances of the

problem, thus adding more constraints on α. Consider the leftmost purple area
in Figure 11.10. It describes another differential transition:

α
B1

−→ γ
A2◦R−−−→ ∆m′out,

where γ ∈ (F64
2 )4 = (γ0, γ1, 0, 0) and ∆m′out is the difference ofm′out = M−1(R−1(mout)).

It follows that (∆m′out)1 = (∆m′out)2 = 0 and for i = 0 and i = 1, the following
differential transition holds:

α
B1
i−→ γi

A2
i−1−−−→ (∆m′out)i−1.
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In total, η = 7 branches are constrained to have zero difference and µ = 4
branches with zero differences can be observed from min,mout, providing strong
initial filter. Using 264η/2+1/2 data, we expect to get 264(η−µ) = 264·3 encryption
pairs after the initial filtering. Furthermore, we assume that the constraints on
the unknown difference α ∈ F64

2 are very strong and are enough to significantly
reduce the number of possible encryption pairs. We assume it can be done
efficiently, since a precomputation time of 264 · 3 is available. After values of
branches involved in differential transitions with α are recovered, the rest of the
state can be recovered in negligible time.

Therefore, we estimate the data complexity of the attack by 2224.5 and same
time complexity (the heavy filtering step has to filter 2192 pairs). By precom-
putations costing 2224+ε time and memory, the data complexity may be reduced
to 2224−ε, for any ε < 32.

This attack does not directly apply to Schwaemm128-128, Schwaemm192-
192 since the constraint on the linear map M in the first step is too costly. For
Schwaemm192− 192 with α = (α, α, 0) we would obtain η = 5, µ = 2 leaving
with 2192 pair candidates, which is too much to filter in time 2192. Therefore, a
stronger initial filter is required.
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Jean-René Reinhard. Cryptanalysis of NORX v2.0. IACR Trans.
Symmetric Cryptol., 2017(1):156–174, 2017.

[CMR17] Brent Carmer, Alex J. Malozemoff, and Mariana Raykova. 5Gen-
C: Multi-input Functional Encryption and Program Obfuscation
for Arithmetic Circuits. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’17,
pages 747–764, New York, NY, USA, 2017. ACM.

[Com19] The CAESAR Committee. Competition for Authenticated En-
cryption: Security, Applicability, and Robustness, 2014–2019.
http://competitions.cr.yp.to/caesar-submissions.html.

[Cop94] Don Coppersmith. The Data Encryption Standard (DES) and its
strength against attacks. IBM Journal of Research and Develop-
ment, 38(3):243–250, 1994.

[Cou04] Nicolas Courtois. Feistel Schemes and Bi-linear Cryptanalysis. In
Matthew K. Franklin, editor, Advances in Cryptology - CRYPTO
2004, 24th Annual International CryptologyConference, Santa
Barbara, California, USA, August 15-19, 2004, Proceedings, vol-
ume 3152 of Lecture Notes in Computer Science, pages 23–40.
Springer, 2004.
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