250 research outputs found

    Construction and Random Generation of Hypergraphs with Prescribed Degree and Dimension Sequences

    Full text link
    We propose algorithms for construction and random generation of hypergraphs without loops and with prescribed degree and dimension sequences. The objective is to provide a starting point for as well as an alternative to Markov chain Monte Carlo approaches. Our algorithms leverage the transposition of properties and algorithms devised for matrices constituted of zeros and ones with prescribed row- and column-sums to hypergraphs. The construction algorithm extends the applicability of Markov chain Monte Carlo approaches when the initial hypergraph is not provided. The random generation algorithm allows the development of a self-normalised importance sampling estimator for hypergraph properties such as the average clustering coefficient.We prove the correctness of the proposed algorithms. We also prove that the random generation algorithm generates any hypergraph following the prescribed degree and dimension sequences with a non-zero probability. We empirically and comparatively evaluate the effectiveness and efficiency of the random generation algorithm. Experiments show that the random generation algorithm provides stable and accurate estimates of average clustering coefficient, and also demonstrates a better effective sample size in comparison with the Markov chain Monte Carlo approaches.Comment: 21 pages, 3 figure

    Sampling Hypergraphs with Given Degrees

    Get PDF
    There is a well-known connection between hypergraphs and bipartite graphs, obtained by treating the incidence matrix of the hypergraph as the biadjacency matrix of a bipartite graph. We use this connection to describe and analyse a rejection sampling algorithm for sampling simple uniform hypergraphs with a given degree sequence. Our algorithm uses, as a black box, an algorithm A\mathcal{A} for sampling bipartite graphs with given degrees, uniformly or nearly uniformly, in (expected) polynomial time. The expected runtime of the hypergraph sampling algorithm depends on the (expected) runtime of the bipartite graph sampling algorithm A\mathcal{A}, and the probability that a uniformly random bipartite graph with given degrees corresponds to a simple hypergraph. We give some conditions on the hypergraph degree sequence which guarantee that this probability is bounded below by a constant

    A method for validating Rent's rule for technological and biological networks

    Get PDF
    Rent’s rule is empirical power law introduced in an effort to describe and optimize the wiring complexity of computer logic graphs. It is known that brain and neuronal networks also obey Rent’s rule, which is consistent with the idea that wiring costs play a fundamental role in brain evolution and development. Here we propose a method to validate this power law for a certain range of network partitions. This method is based on the bifurcation phenomenon that appears when the network is subjected to random alterations preserving its degree distribution. It has been tested on a set of VLSI circuits and real networks, including biological and technological ones. We also analyzed the effect of different types of random alterations on the Rentian scaling in order to test the influence of the degree distribution. There are network architectures quite sensitive to these randomization procedures with significant increases in the values of the Rent exponents

    Improved image analysis by maximised statistical use of geometry-shape constraints

    Get PDF
    Identifying the underlying models in a set of data points contaminated by noise and outliers, leads to a highly complex multi-model fitting problem. This problem can be posed as a clustering problem by the construction of higher order affinities between data points into a hypergraph, which can then be partitioned using spectral clustering. Calculating the weights of all hyperedges is computationally expensive. Hence an approximation is required. In this thesis, the aim is to find an efficient and effective approximation that produces an excellent segmentation outcome. Firstly, the effect of hyperedge sizes on the speed and accuracy of the clustering is investigated. Almost all previous work on hypergraph clustering in computer vision, has considered the smallest possible hyperedge size, due to the lack of research into the potential benefits of large hyperedges and effective algorithms to generate them. In this thesis, it is shown that large hyperedges are better from both theoretical and empirical standpoints. The efficiency of this technique on various higher-order grouping problems is investigated. In particular, we show that our approach improves the accuracy and efficiency of motion segmentation from dense, long-term, trajectories. A shortcoming of the above approach is that the probability of a generated sample being impure increases as the size of the sample increases. To address this issue, a novel guided sampling strategy for large hyperedges, based on the concept of minimizing the largest residual, is also included. It is proposed to guide each sample by optimizing over a kk\textsuperscript{th} order statistics based cost function. Samples are generated using a greedy algorithm coupled with a data sub-sampling strategy. The experimental analysis shows that this proposed step is both accurate and computationally efficient compared to state-of-the-art robust multi-model fitting techniques. However, the optimization method for guiding samples involves hard-to-tune parameters. Thus a sampling method is eventually developed that significantly facilitates solving the segmentation problem using a new form of the Markov-Chain-Monte-Carlo (MCMC) method to efficiently sample from hyperedge distribution. To sample from the above distribution effectively, the proposed Markov Chain includes new types of long and short jumps to perform exploration and exploitation of all structures. Unlike common sampling methods, this method does not require any specific prior knowledge about the distribution of models. The output set of samples leads to a clustering solution by which the final model parameters for each segment are obtained. The overall method competes favorably with the state-of-the-art both in terms of computation power and segmentation accuracy
    • 

    corecore