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A method for validating Rent’s rule 
for technological and biological 
networks
Fernando Alcalde Cuesta 1,2, Pablo González Sequeiros   1,3 & Álvaro Lozano Rojo   1,4,5

Rent’s rule is empirical power law introduced in an effort to describe and optimize the wiring complexity 
of computer logic graphs. It is known that brain and neuronal networks also obey Rent’s rule, which is 
consistent with the idea that wiring costs play a fundamental role in brain evolution and development. 
Here we propose a method to validate this power law for a certain range of network partitions. This 
method is based on the bifurcation phenomenon that appears when the network is subjected to 
random alterations preserving its degree distribution. It has been tested on a set of VLSI circuits and real 
networks, including biological and technological ones. We also analyzed the effect of different types of 
random alterations on the Rentian scaling in order to test the influence of the degree distribution. There 
are network architectures quite sensitive to these randomization procedures with significant increases 
in the values of the Rent exponents.

Rent’s rule was described by Landman and Russo1 in 1971 from two IBM internal memoranda by Rent in 1960. It 
relates the average number of external connections or pins on a module and the average number of blocks within 
the module for partitions of computer logic graphs2. Besides its extensive application in Circuit Design at all 
scales, from SSI to GSI passing through VLSI, Rent’s rule has been used to study the interconnection complexity 
of biological networks3–6, as well some benchmark models and technological networks7–9. At origin, given a logic 
circuit, the relationship between the average number of blocks or cells B in a module in a given partition and the 
average number of pins P connecting each module with the others is

=P kB (1)p

where k is the average number of pins per logic block (also called Rent coefficient) and p is the Rent exponent 
describing proportionality in a log-log scale. As Landman and Russo experimentally observed, there is an empir-
ical confirmation of this power law in a certain region, called Region I, but Rent’s rule overestimates the intercon-
nection complexity of the circuit in another region, called Region II, where the number of modules is small1. Usual 
approaches of calculating Rent exponents are based on partitioning of the logic (hyper)graph. Although it could 
be possible that the partitioning-based algorithm itself caused Region II to appear, it also appears for other algo-
rithms partitioning-based10, placement-based11 and spectral-based4. See refs 11 and 12 for a comparative analysis 
of Rent parameters extracted from partitioning-based and placement-based algorithms. On the other hand, it was 
also observed by Stroobandt10 that Rent’s rule underestimates the interconnection complexity of some circuits 
when the number of modules is large, leading to a new Region III. Anyway, the exact value of the Rent exponent 
and the transitions from Region I to Regions II and III depend on the partitioning method.

In this paper, we propose a method to determine Region I where experimental data fit well to Rent’s rule (1). 
Since VLSI circuits are disposed in the plane, it would be reasonable to derive Rent’s rule from placement-based 
algorithms making use of the geometrical information of the placed circuit. A similar argument could be applied 
to some networks studied in a previous paper9, namely the US Power Grid network13 and the Internet2 academic 
network. However, it does not apply to neural networks, like that of the nematode Caenorhabditis elegans5, 9, 
hierarchical modular graphs8, 9 or geometrical random graphs8, 9. Accordingly, we adopt a topological point of 
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view, which is also present in other authors’ works5, 8, 9, where Rent’s rule is directly deduced from graph parti-
tioning without distinguishing where and how it is embedded. As explained by Bassett et al.5, Rentian scaling 
is now related to the fractal dimension of the graph14, 15. Even if this approach is often illustrated with a wrong 
image representing the network embedded into the plane, the traditional recursive bipartitioning is consistent 
with this topological perspective2, 11. However, despite some limitations (caused by low diameters in the graphs 
and random choices in the partitioning processes), we preferred the box counting method by Song et al.14–16 that 
we have already used9. More precisely, we implemented the greedy coloring algorithm proposed by Song et al.16 
according to the description given by Locci et al.17. We tested our method on some technological and biological 
networks (Internet29, US Power Grid13, C. elegans connectome18–20 and Yeast interactome21) and some benchmark 
VLSI circuits (s838, s9234, s953, and c5315) from the ISCAS89 suite22, which have already been analyzed by other 
authors. We also added the VLSI circuit ibm01 from the ISPD98 suite23. The exact values of the Rent exponents 
have been compared with those obtained by these authors.

General models for VLSI circuits and neural networks actually consist of hypergraphs where an edge can 
connect more than two nodes6, 24. Special versions of partitioning-based algorithms, such as those used in the 
partitioning tool hMetis25, have been developed for hypergraphs. However, even if the considerations by Partzsch 
et al.6 should be taken into account, we transformed hypergraphs into graphs in order to unify the framework. 
The scaling curves obtained via hMetis show a very different behavior of those obtained via box counting since 
Regions II and III are very small if present. They also show a very different behavior with respect to the rand-
omization process used for validating Rent’s rule (1). But both behaviors are consistent in the sense that Rentian 
scalings seem to respond to certain features in the network architecture, at least in restriction to Region I, inde-
pendently of the partitioning algorithm used. A possible link with degree distribution has been tested on three 
different types of random networks: a configuration model with the same degree distribution as each empirical 
network26, 27, a configuration model without multiple or self-connections according to Chung-Lu variant28, and a 
Erdös-Rényi model exhibiting another degree distribution. For each empirical network, our experiments proved 
that, independently of whether the degree distribution is preserved or not, all these random models have very 
similar Rent characteristics when hMetis is used. However, when the box counting method is applied, the influ-
ence of each specific network architecture is clearly visible in the transitions between Regions I and II, while some 
analogies between Rentian scalings persist in restriction to the corresponding Regions I.

Validating Rent’s rule
As we previously said, deviations from Rent’s rule (1) usually appear at high and low values of B defining Region 
II and Region III respectively. For each network, there is an empirical discrete function P = Pc(B), called Rent 
characteristic6, 7, which directly relates the average number of nodes B for a topological partition of the network 
to the average number of edges P connecting different modules of the partition. We are interested in determining 
Region I where Rent characteristic fits well to Rent’s rule.

Network data.  The US Power Grid (PG) network is the high-voltage power grid in the Western States in the 
USA13. The nodes are generators, transformers, or substations, and the edges are high-voltage transmission lines. 
Originally used by Watts and Strogatz29, this undirected network has 4,921 nodes and 6,594 edges.

The Internet2 (I2) network collects data from Internet2 community, available now through the Global 
Research Network Operations Center (GlobalNOC) at Indiana University30, but which were originally collected 
in April 2013. For more details, see Supplementary Information of ref. 9. This network has 311 nodes and 323 
edges.

The C. elegans neuronal (CE) network incorporates data from ref. 18 and updates based upon refs 19, 20. In 
the version published by Varshney et al.31, the C. elegans connectome has 279 somatic neurons, 6,393 chemical 
synapses, 890 gap junctions, and 1,410 neuromuscular junctions. We do not distinguish directionality of connec-
tions in this network that combines undirected gap junctions with directed chemical synapses. We also ignore 
neuromuscular junctions and synaptic multiplicities. Thus, all the unidirectional connections between two differ-
ent neurons will be replaced by bidirectional ones leading to a total of 279 nodes connected by 2,290 edges. Since 
neurons RIBL/R and VA08 have auto-connections, we restrict our attention to 2,287 connections, cf. refs 5, 20, 32. 
Different values for its Rent exponent has been already reported by other authors3, 5, 6.

The Yeast Protein-Protein Interaction (Y2) network has been downloaded from the Yeast Interactome Project 
at the Center for Cancer Systems Biology33. As explained by Yu et al.21, CCSB-YI1 dataset containing high-quality 
yeast two-hybrid protein-protein interactions for S. cerevisiae21 has been combined with Ito-core and Uetz-screen 
datasets to produce Y2H-union. This dataset contains 2,930 interactions among 2,018 proteins, which approx-
imately represent 20% of the whole yeast interactome, but we have limited ourselves to the largest connected 
component made of 2,518 interactions among 1,647 proteins. A former version of the yeast interactome was 
studied by Reda3.

Some benchmark VLSI circuits from the ISCAS89 suite22 have been also considered. The Rent exponents of 
the VLSI benchmarks s838 and s9234 were computed by Reda3, and that of s953 by Bassett et al.5. The Rent char-
acteristic of s953 and c5315 are described by Stroobandt10. We added the VLSI circuit ibm01 from the ISPD98 
suite23, which was included in some experiments by Verplaetse et al.34. The order N and size E of all these graphs 
are reported in Table 1.

To determine the transitions between Region I and Regions II and III, we generated some random networks 
with the same degree distribution, denoted by (SA). This was done in NetworkX35 using the Markov chain scheme 
proposed by Gkantsidis et al.36. Applying 20 × E double-edge swaps37 to each of the networks above, we select a 
sample of 50 networks with the same degree distribution. The transition between Region I and Region II is deter-
mined from some threshold limiting the dispersion in the log-average number of external edges for partitions 
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into boxes of the same size. The transition from Region III to Region I appears when the coefficient of determina-
tion of the fitting can no longer be improved above another threshold.

Experimental results.  To compute the Rent exponent, each logic circuit must be partitioned, and the 
obtained modules must be analyzed. For each partition, the average module size and the average number of 
external connections per module are calculated representing a data point in a log-log plot. A linear (OLS) regres-
sion is then applied to find the slope of the fitted line, which is precisely the Rent exponent of the circuit. For each 
empirical network, the same method is applied to compute its Rent exponent. Firstly, we implemented the greedy 
coloring algorithm proposed by Song et al.16 and described by Concas et al.17 to obtain a sequence of partitions 
into boxes of size b (i.e. finite sets of nodes of diameter ≤ b − 1) varying from 1 to the first integer b such that every 
module of size b reduces to the whole vertex set. A raw Rent exponent p is then estimated using ordinary least 
squares regression on the data gathered from the above algorithm. The main limitation of this method appears 
when applied to networks with low diameter, since they are rapidly covered by a single box. Standard errors in the 
fit of Rent’s rule (1) have been computed and included in Table 2. Naturally, these errors decrease as the diameter 
of network increase. There is another source of possible error in the estimation of p which is related to random 
choices in the construction of the partitions. However, low values of the standard deviation have been reported by 
Concas et al.38 and corroborated by our own numerical experiments.

After generating random graphs with the same degree distribution (using a swap algorithm37 according to the 
scheme proposed by Gkantsidis et al.36), each of the 50 elements in the sample was partitioned, and the whole data 
set was represented in a log-log plot. In order to state a criterion for defining Region II, we use the dispersion in 
the log-average number of external edges for partitions into boxes of the same size. To measure this dispersion, 
we use the coefficient of variation c of the corresponding distribution. Region II is now characterized by the con-
dition c ≥ β where β is a small positive number. Given a fixed value of β, the Rent characteristic of the empirical 
network split into two Regions I and II. Finally, a new regression is applied to find the slope of the fitted line for 
Region I. Rent characteristics and Rent exponents of the networks PG, I2, CE, Y2, s838, s9234, s953 and c5315 for 
β = 0.1 are exhibited in Fig. 1. See also Fig. 5a for the VLSI circuit ibm01 from the ISPD98 suite. Some values we 
reported in ref. 9 were a bit higher, obtained with β = 0.075. They are also reported in Table 1. The effectiveness 
of our method for determining Region I and validating Rent’s rule is measured by the standard error and the 

Network N E

c ≥ 0.1 c ≥ 0.075

hMetis 3 5 6 34
34 
optimizedNo Reg. III Δ > 10−3 No Reg. III Δ > 10−3

PG 4,941 6,594 0.712*** 0.743*** 0.712*** 0.743*** 0.730***

I2 311 323 0.689*** 0.689*** 0.689*** 0.689*** 0.517***

CE 279 2,287 0.750** 0.750 0.916** 0.916 0.671*** 0.781 0.740 0.827

Y2 1,647 2,518 0.918*** 0.954*** 0.918*** 0.954*** 0.759*** 0.489

s838 457 702 0.793*** 0.793*** 0.793*** 0.793*** 0.520*** 0.367

s9234 5,809 8,165 0.797*** 0.838*** 0.797*** 0.838*** 0.745*** 0.500

s953 440 772 0.833*** 0.833*** 0.860*** 0.905*** 0.722*** 0.901

c5315 2378 4242 0.806*** 0.836*** 0.806*** 0.836*** 0.644***

imb01 12,732 34.862 0.868*** 0.868*** 0.868*** 0.868*** 0.619*** 0.588 0.805

Table 1.  Rent exponents for different partitioning algorithms and different thresholds compared with 
values obtained by other authors3, 5, 6, 34. The order and size of each network is also reported. Rent exponents 
obtained using regression with the best coefficient of determination are in bold. Significance levels of 1% and 
5% are marked with (***) and (**) respectively when using box counting method. The p-values are given in 
Supplementary Information (see Table S1).

Network

raw regression c ≥ 0.1 c ≥ 0.075

std err R-squared std err R-squared std err R-squared
std err 
Δ > 10−3

R-squared 
Δ > 10−3

PG 0.058 0.580 0.016 0.993 0.016 0.993 0.009 0.998

I2 0.060 0.788 0.027 0.990 0.027 0.990 0.027 0.990

CE 0.318 0.131 0.098 0.967 0.019 1.000 0.019 1.000

Y2 0.140 0.202 0.030 0.992 0.030 0.992 0.031 0.994

s838 0.125 0.632 0.093 0.900 0.093 0.900 0.093 0.900

s9234 0.102 0.046 0.026 0.986 0.026 0.986 0.022 0.991

s953 0.225 0.017 0.026 0.993 0.025 0.995 0.012 0.999

c5315 0.094 0.544 0.023 0.993 0.023 0.993 0.023 0.995

ibm01 0.118 0.599 0.009 0.999 0.009 0.999 0.009 0.999

Table 2.  Standard error and coefficient of determination in the fit of the power law for different thresholds 
defining Regions II and III. Best results are in bold.
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coefficient of determination R2 for the new fits (see Table 2). Significance levels lower than 1% and 5% are also 
pointed out in Table 1 when using the box counting method, while the exact p-values for the different thresholds 
are reported in Table S1 of Supplementary Information. For fractal networks, like the US Power Grid network39, 

Figure 1.  The box counting method is applied to procure the Rent characteristic of each network, as well the 
whole Rent characteristic of a sample of 50 random networks with the same degree distribution. The Rent 
exponent obtained by a raw regression is compared with the Rent exponent determined after truncate Region II 
when the coefficient of variation c in the Rentian scaling of the sample is greater than or equal to 0.1. Different 
results using c ≥ 0.075 have been already reported9 (see also Table 1).

http://S1
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the renormalization procedure described in refs 14, 15 provide a well fitting of the Rent characteristic, even if the 
boundary effect related to the finiteness of the network is obviously present.

As we can see in Figs 1 and 5a, Region III proposed by Stroobandt10 is visible for some VLSI circuits and real 
networks, but in general it is small (and even absent in some cases) and there is no appreciable variability for the 
randomized networks associated to the empirical ones. To avoid Rent’s rule underestimates the average number 
of external connections for low values of B, we included in Region III those ranges of values such that the error 

Figure 2.  Recursive bipartitioning is applied to procure the Rent characteristic of each network, as well the 
whole Rent characteristic of a sample of 50 random network with the same degree distribution. Regressions and 
Rent exponents of both empirical and random networks are compared.
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for the average number of external connections (when we compare empirical data with estimated ones) is posi-
tive and the increment Δ in the coefficient of determination R2 is always greater than some number ρ > 0 when 
they are successively suppressed. Applying this criterion for ρ = 10−3, we got new Rent exponents, which are also 
reported in Table 1. See also Figure S1 in Supplementary Information. By definition, this slightly increases the 
value of the Rent exponent, as well the coefficient of determination R2. However, in the next, we will do not be 
interested in Region III.

Figure 3.  Recursive bipartitioning is applied to obtain the Rent characteristics of each empirical network and 
each random network (SA), (CM), (CLM) and (ER) with the same order and size.

http://S1
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Rent’s rule from recursive bipartitioning
For the reasons above explained (see ref. 5 for a more detailed discussion), many authors used the partitioning 
tool hMetis25 to study Rent’s rule for both VLSI circuits and biological networks3, 5, 7, 8, 11, 34, 40.

Recursive bipartitioning of randomized networks.  We also used hMetis to describe the Rent char-
acteristic of each network studied here, as well as those of the 50 random graphs in each sample with the same 
degree distribution. Rent exponents has been estimated, using the same regression method on the data gath-
ered from hMetis, and reported in Table 1. See also Figs 2 and 5b. In this case, the p-value is always lower than 

Figure 4.  The box counting method is applied to obtain the Rent characteristics of each empirical network and 
each random network (SA), (CM), (CLM) and (ER) with the same order and size.
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4.033 × 10−5 (see Supplementary Information for the exact values). As was already observed by Reda3, in many 
of these plots, Region II does not clearly exist. Additionally, it seems that there is no difference between VLSI 
circuits and other networks. We have not introduced here any criteria to determine Region II, but we analyzed 
other interesting aspects arising from the comparison of the Rent characteristics provided by both algorithms. In 
contrast with the box counting method, when recursive bipartitioning is applied to the randomized sample, we 
observed a reduced variability, and a good fit to a line in every log-log plot. We derived a power law relationship 
for the average number of external connections between randomized and empirical networks

′ = αP KP (2)

which correspond to a linear relationship p′ = αp for the Rent exponents. For the empirical networks considered 
here, this new exponent α varies between 1.029 ± 0.002 for s953 and 1.437 ± 0.004 for ibm01. A similar phenom-
enon occurs when using the box counting method, but only in restriction to Region I where Rent characteristic 
fits to Rent’s rule. Values for both exponents α are reported in Table S2 and log-log plots in Figures S2 and S3, see 
Supplementary Information. However, there is no significant correlation between the exponents derived from 
both methods.

Anyway, this experiment raises two different issues: Firstly, how to interpret the peculiar properties of Rent 
characteristics coming from recursive bipartitioning? Secondly, to what extent does Rent characteristics (inde-
pendently of the method used to collect data) depend on the degree distribution? Next, we focus on the later.

Degree distribution.  To test the influence of the degree distribution on the Rentian scaling, we added some 
other random models to the model (SA) based on the swapping algorithm. The configuration model (CM) gener-
ates (in an equiprobable way) random networks which have a prescribed degree distribution26, 27. It can be done 
in NetworkX35 using a random graph generator41 based on the approach of Newman27. Even starting from the 
degree sequence of network without multiple or self-connections, it naturally creates networks with this kind of 
connections. We could reject those samples which have multiple or self-connections until the algorithm gives us a 
network without multiple or self-connections, but we need to be sure that we are uniformly sampling41. However, 
there is an alternative model (CLM) proposed by Chung and Lu28 having the advantage of providing networks 
without multiple or self-connections. According to this approach, which generalizes Erdös-Rényi model, we can 
generate random networks with a prescribed sequence of expected degree. To obtain this second model, we used 
another graph generator42 proposed by Miller and Hagberg43. Finally, to test the influence of the degree distri-
bution on the Rentian scaling of each network, we considered the largest connected component of the classical 
Erdös-Rényi model (ER) with the same order N and size E. We used an implementation44 based on the paper by 
Erdös and Rényi45. To a more accurate analysis of the results, all the degree distributions of the empirical graphs, 

Figure 5.  (a,b) Rent characteristics of the ISPD98 circuit ibm01 with 12,752 nodes and 50,566 edges, which are 
obtained using the box counting method and recursive bipartitioning. (c,d) Rent characteristics for randomized 
networks derived from the ISPD98 circuit ibm01.

http://S2
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as well those of the different random models (SA), (CM), (CLM) and (ER) are represented in Figure S4, as part of 
Supplementary Information.

Although the Rent exponent of each empirical graph is modified by each randomization procedure, the Rent 
exponents of the random networks (SA), (CM), (CLM) and (ER) are practically identical in mean (with variations 
smaller than 0.01 in most cases, except for I2 with a total variation of 0.054 and Y2 with 0.013) independently of 
whether they have the same distribution or not. The whole Rent characteristics are shown in Figs 3 and 5d. As 
before, when we replace hMetis with the box counting method, a similar phenomenon can be observed in Figs 4 
and 5c, although now the Rent characteristic differs for each random model. In particular, each Rent curve fits to 
a different Rent’s rule along a different Region I. However, to show the full distribution of the Rentian scaling of 
the randomized networks, we computed the Rent exponent of each random network in the families (SA), (CM), 
(CLM) and (ER) and represented the corresponding data in a violin plot (see Figures S5 and S6 in Supplementary 
Information). It allowed us to observe much more variability in the Rentian scaling computed using the box 
counting method. Moreover, the C. elegans connectome, the yeast interactome and the VLSI circuit s953 also 
seem show a different behaviour with respect to the randomization procedures.

To avoid the effect of the scales in Figs 3, 4 and 5, we used the exponent of the power law (2) (see Table S2 in 
Supplementary Information) as a possible measure of the sensitivity with respect to the randomization procedure. 
Despite the differences related to the partitioning method, the C. elegans connectome behaves differently from 
the US Power Grid network or the academic backbone network Internet2. The last two networks are known to 
have a high Q-modularity46, 47 in consonance with the existence of a central core which is made up of hubs9. Thus, 
using the Louvain method48 proposed by Blondel et al.49, we estimated the modularity Q for the whole network 
set. Table 3 shows the values of Q for these networks. It should be noted that most VLSI circuits show a high 
Q-modularity, similar to that of Internet2. The sensitivity with respect to (swapping) randomization is well cor-
related with the Q-modularity when using the box counting method (with Kendall rank correlation coefficient 
τ = 0.778 and p-value 0.004 compared with the critical value τ = 0.500 for a significance level of 0.05), whereas 
it is very poorly correlated for recursive bipartioning (with Kendall’s τ = 0.167 and p-value 0.532). Finally, the 
Kendall rank correlation between Q-modularity and Rent exponent (computed using the box counting method) 
is also very poor for c ≥ 0.1, but it becomes moderately correlated (with Kendall’s τ = −0.444 and p-value 0.095) 
for c ≥ 0.075. We also notice that for the networks considered here, the Q-modularity is well correlated with the 
average path length L (with Kendall’s τ = 0.833 and p-value < 0.002).

Discussion
Here we proposed a method to determine Region I where experimental scaling data (comparing the average 
number of external connections per module with the average number of nodes in each module of a partition) fit 
well to Rent’s rule. Firstly, we observed that the data sets determined by samples of random networks with the 
same degree distribution exhibit a certain bifurcation phenomenon. We fixed the transition between Region I 
and Region II from some threshold in the bifurcation. We tested our method on a set of VLSI circuits and real 
networks.

However, the scaling curves obtained using the partitioning tool hMetis exhibit a completely different behav-
ior to those given using the box counting method. They show a very small Region II if present at all, a good fit 
to a line along this large region, and a very reduced variability within the random sample. How to justify these 
particular properties of the Rentian scaling obtained from the partitioning tool hMetis is a question that would be 
interesting to answer in the future. Nevertheless, independently of the partitioning method, we also observed that 
the relationship between the average number of external connections of random models and empirical networks 
follows a power law with scaling exponent α varying between ≈1 and 1.5.

A possible influence of degree distributions on Rent characteristics has been also tested for both box counting 
and recursive bipartitioning methods. We analyzed Rentian scalings of three different random samples having he 
same number of nodes and connections than empirical ones. Two variants of a configuration model respecting 
the degree and the expected degree of each node, together with a classical Erdös-Rényi model, have been added 
to the initial random model (based on swapping edges) in order to test this influence. We have seen that, in most 
cases, all these randomization procedures increase the Rent exponent of the randomized network on average. 
Although there is no substantial difference between the Rent exponents of the different random models when 
using recursive bipartitioning, the C. elegans connectome, the yeast interactome and the VLSI circuit s953 behave 

Network Q

PG 0.935

s9234 0.891

imb01 0.865

I2 0.859

c5315 0.835

s838 0.807

Y2 0.739

s953 0.595

CE 0.406

Table 3.  VLSI circuits and other networks listed by their modularity (in decreasing order) estimated using the 
Louvain algorithm48 for community detection.
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differently from the others networks when analyzing the full distribution of the Rentian scalings given by the box 
counting method. Moreover, there are network architectures more sensitive to the randomization procedures 
used in the paper, like those of the US Power Grid network or the academic backbone Internet2, both character-
ized by the existence of a hub core. What architectural properties affect the Rentian scaling of a network and the 
behavior against random alterations of its structure is another natural question that arises from our work. For the 
moment, we know that there are differences in the modularity and the sensitiveness of Rentian estimates for the 
technological networks, including most VLSI circuits, and the biological networks studied here. Both properties 
are also highly positively correlated (with Kendall’s tau τ = 0.778 for p = 0.004).

To dispose of an adequate notion of wiring complexity for a biological or technological network, it is essential 
to be able to correctly interpret the effect of partitioning method on the estimation of the wiring length of the net-
work. Some effort has been done in this direction by several authors in the domain of technological networks11, 12,  
but only recursive bipartitioning3, 5, 8 and spectral-based methods4, 6 have been used for the biological ones. 
Analyzing the effect of random alterations on Rent characteristics, we showed some substantial analogies and 
differences between box counting and partitioning-based methods. We also have achieved some early advances 
in the direction of detecting some relationship between structural properties and wiring complexity of biological 
and technological networks, that should be contrasted by analyzing and comparing the Rent characteristics of 
other biological networks, specifically brain networks.
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