900 research outputs found

    Computer Vision for Multimedia Geolocation in Human Trafficking Investigation: A Systematic Literature Review

    Full text link
    The task of multimedia geolocation is becoming an increasingly essential component of the digital forensics toolkit to effectively combat human trafficking, child sexual exploitation, and other illegal acts. Typically, metadata-based geolocation information is stripped when multimedia content is shared via instant messaging and social media. The intricacy of geolocating, geotagging, or finding geographical clues in this content is often overly burdensome for investigators. Recent research has shown that contemporary advancements in artificial intelligence, specifically computer vision and deep learning, show significant promise towards expediting the multimedia geolocation task. This systematic literature review thoroughly examines the state-of-the-art leveraging computer vision techniques for multimedia geolocation and assesses their potential to expedite human trafficking investigation. This includes a comprehensive overview of the application of computer vision-based approaches to multimedia geolocation, identifies their applicability in combating human trafficking, and highlights the potential implications of enhanced multimedia geolocation for prosecuting human trafficking. 123 articles inform this systematic literature review. The findings suggest numerous potential paths for future impactful research on the subject

    Repurposing a deep learning network to filter and classify volunteered photographs for land cover and land use characterization

    Get PDF
    This paper extends recent research into the usefulness of volunteered photos for land cover extraction, and investigates whether this usefulness can be automatically assessed by an easily accessible, off-the-shelf neural network pre-trained on a variety of scene characteristics. Geo-tagged photographs are sometimes presented to volunteers as part of a game which requires them to extract relevant facts about land use. The challenge is to select the most relevant photographs in order to most efficiently extract the useful information while maintaining the engagement and interests of volunteers. By repurposing an existing network which had been trained on an extensive library of potentially relevant features, we can quickly carry out initial assessments of the general value of this approach, pick out especially salient features, and identify focus areas for future neural network training and development. We compare two approaches to extract land cover information from the network: a simple post hoc weighting approach accessible to non-technical audiences and a more complex decision tree approach that involves training on domain-specific features of interest. Both approaches had reasonable success in characterizing human influence within a scene when identifying the land use types (as classified by Urban Atlas) present within a buffer around the photograph’s location. This work identifies important limitations and opportunities for using volunteered photographs as follows: (1) the false precision of a photograph’s location is less useful for identifying on-the-spot land cover than the information it can give on neighbouring combinations of land cover; (2) ground-acquired photographs, interpreted by a neural network, can supplement plan view imagery by identifying features which will never be discernible from above; (3) when dealing with contexts where there are very few exemplars of particular classes, an independent a posteriori weighting of existing scene attributes and categories can buffer against over-specificity

    Identifying related landmark tags in urban scenes using spatial and semantic clustering

    Get PDF
    There is considerable interest in developing landmark saliency models as a basis for describing urban landscapes, and in constructing wayfinding instructions, for text and spoken dialogue based systems. The challenge lies in knowing the truthfulness of such models; is what the model considers salient the same as what is perceived by the user? This paper presents a web based experiment in which users were asked to tag and label the most salient features from urban images for the purposes of navigation and exploration. In order to rank landmark popularity in each scene it was necessary to determine which tags related to the same object (e.g. tags relating to a particular café). Existing clustering techniques did not perform well for this task, and it was therefore necessary to develop a new spatial-semantic clustering method which considered the proximity of nearby tags and the similarity of their label content. The annotation similarity was initially calculated using trigrams in conjunction with a synonym list, generating a set of networks formed from the links between related tags. These networks were used to build related word lists encapsulating conceptual connections (e.g. church tower related to clock) so that during a secondary pass of the data related network segments could be merged. This approach gives interesting insight into the partonomic relationships between the constituent parts of landmarks and the range and frequency of terms used to describe them. The knowledge gained from this will be used to help calibrate a landmark saliency model, and to gain a deeper understanding of the terms typically associated with different types of landmarks

    REAL TIME ASSISTANCE IN PHOTOGRAPHY USING SOCIAL MEDIA

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Modeling and Mapping Location-Dependent Human Appearance

    Get PDF
    Human appearance is highly variable and depends on individual preferences, such as fashion, facial expression, and makeup. These preferences depend on many factors including a person\u27s sense of style, what they are doing, and the weather. These factors, in turn, are dependent upon geographic location and time. In our work, we build computational models to learn the relationship between human appearance, geographic location, and time. The primary contributions are a framework for collecting and processing geotagged imagery of people, a large dataset collected by our framework, and several generative and discriminative models that use our dataset to learn the relationship between human appearance, location, and time. Additionally, we build interactive maps that allow for inspection and demonstration of what our models have learned

    A framework for automated landmark recognition in community contributed image corpora

    Get PDF
    Any large library of information requires efficient ways to organise it and methods that allow people to access information efficiently and collections of digital images are no exception. Automatically creating high-level semantic tags based on image content is difficult, if not impossible to achieve accurately. In this thesis a framework is presented that allows for the automatic creation of rich and accurate tags for images with landmarks as the main object. This framework uses state of the art computer vision techniques fused with the wide range of contextual information that is available with community contributed imagery. Images are organised into clusters based on image content and spatial data associated with each image. Based on these clusters different types of classifiers are* trained to recognise landmarks contained within the images in each cluster. A novel hybrid approach is proposed combining these classifiers with an hierarchical matching approach to allow near real-time classification and captioning of images containing landmarks

    Depth-Assisted Semantic Segmentation, Image Enhancement and Parametric Modeling

    Get PDF
    This dissertation addresses the problem of employing 3D depth information on solving a number of traditional challenging computer vision/graphics problems. Humans have the abilities of perceiving the depth information in 3D world, which enable humans to reconstruct layouts, recognize objects and understand the geometric space and semantic meanings of the visual world. Therefore it is significant to explore how the 3D depth information can be utilized by computer vision systems to mimic such abilities of humans. This dissertation aims at employing 3D depth information to solve vision/graphics problems in the following aspects: scene understanding, image enhancements and 3D reconstruction and modeling. In addressing scene understanding problem, we present a framework for semantic segmentation and object recognition on urban video sequence only using dense depth maps recovered from the video. Five view-independent 3D features that vary with object class are extracted from dense depth maps and used for segmenting and recognizing different object classes in street scene images. We demonstrate a scene parsing algorithm that uses only dense 3D depth information to outperform using sparse 3D or 2D appearance features. In addressing image enhancement problem, we present a framework to overcome the imperfections of personal photographs of tourist sites using the rich information provided by large-scale internet photo collections (IPCs). By augmenting personal 2D images with 3D information reconstructed from IPCs, we address a number of traditionally challenging image enhancement techniques and achieve high-quality results using simple and robust algorithms. In addressing 3D reconstruction and modeling problem, we focus on parametric modeling of flower petals, the most distinctive part of a plant. The complex structure, severe occlusions and wide variations make the reconstruction of their 3D models a challenging task. We overcome these challenges by combining data driven modeling techniques with domain knowledge from botany. Taking a 3D point cloud of an input flower scanned from a single view, each segmented petal is fitted with a scale-invariant morphable petal shape model, which is constructed from individually scanned 3D exemplar petals. Novel constraints based on botany studies are incorporated into the fitting process for realistically reconstructing occluded regions and maintaining correct 3D spatial relations. The main contribution of the dissertation is in the intelligent usage of 3D depth information on solving traditional challenging vision/graphics problems. By developing some advanced algorithms either automatically or with minimum user interaction, the goal of this dissertation is to demonstrate that computed 3D depth behind the multiple images contains rich information of the visual world and therefore can be intelligently utilized to recognize/ understand semantic meanings of scenes, efficiently enhance and augment single 2D images, and reconstruct high-quality 3D models

    European Handbook of Crowdsourced Geographic Information

    Get PDF
    This book focuses on the study of the remarkable new source of geographic information that has become available in the form of user-generated content accessible over the Internet through mobile and Web applications. The exploitation, integration and application of these sources, termed volunteered geographic information (VGI) or crowdsourced geographic information (CGI), offer scientists an unprecedented opportunity to conduct research on a variety of topics at multiple scales and for diversified objectives. The Handbook is organized in five parts, addressing the fundamental questions: What motivates citizens to provide such information in the public domain, and what factors govern/predict its validity?What methods might be used to validate such information? Can VGI be framed within the larger domain of sensor networks, in which inert and static sensors are replaced or combined by intelligent and mobile humans equipped with sensing devices? What limitations are imposed on VGI by differential access to broadband Internet, mobile phones, and other communication technologies, and by concerns over privacy? How do VGI and crowdsourcing enable innovation applications to benefit human society? Chapters examine how crowdsourcing techniques and methods, and the VGI phenomenon, have motivated a multidisciplinary research community to identify both fields of applications and quality criteria depending on the use of VGI. Besides harvesting tools and storage of these data, research has paid remarkable attention to these information resources, in an age when information and participation is one of the most important drivers of development. The collection opens questions and points to new research directions in addition to the findings that each of the authors demonstrates. Despite rapid progress in VGI research, this Handbook also shows that there are technical, social, political and methodological challenges that require further studies and research

    Spatial and Temporal Sentiment Analysis of Twitter data

    Get PDF
    The public have used Twitter world wide for expressing opinions. This study focuses on spatio-temporal variation of georeferenced Tweets’ sentiment polarity, with a view to understanding how opinions evolve on Twitter over space and time and across communities of users. More specifically, the question this study tested is whether sentiment polarity on Twitter exhibits specific time-location patterns. The aim of the study is to investigate the spatial and temporal distribution of georeferenced Twitter sentiment polarity within the area of 1 km buffer around the Curtin Bentley campus boundary in Perth, Western Australia. Tweets posted in campus were assigned into six spatial zones and four time zones. A sentiment analysis was then conducted for each zone using the sentiment analyser tool in the Starlight Visual Information System software. The Feature Manipulation Engine was employed to convert non-spatial files into spatial and temporal feature class. The spatial and temporal distribution of Twitter sentiment polarity patterns over space and time was mapped using Geographic Information Systems (GIS). Some interesting results were identified. For example, the highest percentage of positive Tweets occurred in the social science area, while science and engineering and dormitory areas had the highest percentage of negative postings. The number of negative Tweets increases in the library and science and engineering areas as the end of the semester approaches, reaching a peak around an exam period, while the percentage of negative Tweets drops at the end of the semester in the entertainment and sport and dormitory area. This study will provide some insights into understanding students and staff ’s sentiment variation on Twitter, which could be useful for university teaching and learning management
    corecore