
REAL-TIME ASSISTANCE IN PHOTOGRAPHY
USING SOCIAL MEDIA

YOGESH SINGH RAWAT

NATIONAL UNIVERSITY OF SINGAPORE

2017

http://www.nus.edu.sg


REAL-TIME ASSISTANCE IN PHOTOGRAPHY
USING SOCIAL MEDIA

YOGESH SINGH RAWAT
(B.Tech (Hons.), IIT(BHU), Varanasi, India)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY
DEPARTMENT OF COMPUTER SCIENCE

SCHOOL OF COMPUTING
NATIONAL UNIVERSITY OF SINGAPORE

2017

http://www.nus.edu.sg


DECLARATION

I hereby declare that this thesis is my original work and it has been written by me in its entirety. I

have duly acknowledged all the sources of information which have been used in the thesis.

This thesis has not been submitted for any degree in any university previously.

Yogesh Singh Rawat

Friday 27th January, 2017

i



Acknowledgements

I would like to express my sincere gratitude to my supervisor, Professor Mohan S Kankanhalli

whose valuable guidance, suggestions, and motivation have helped me throughout the research.

I could not have imagined having a better supervisor for my PhD research.

I would like to thank my thesis committee members, Professor Michael Brown and Professor

Roger Zimmermann, for their constructive criticisms and insightful comments. I gratefully ac-

knowledge the funding sources, Ministry of Education and the National University of Singapore

for providing the financial support during the PhD research. I would also like to acknowledge the

guidance of Professor Ramesh Chandra Jain and Professor Vivek Kumar Singh who’s insightful

comments and suggestions greatly assisted me in the research.

I would also like to thank all the colleagues: Dr. Wong Yong Kang, Dr. Christian Von Der Weth,

Dr. Prabhu Natarajan, Dr. Gan Tian, Wang Yuhui, Zhang Yehong, Chen Xiang and many more

for their help along the way. Finally, I take this opportunity to thank my family and all of my friends

for their support. I would like to express the gratitude to my beloved parents, my brother and

especially to my spouse for her continuous support and motivation.

ii



Table of Contents

Summary viii

List of Tables x

List of Figures xi

Abbreviations xiv

Symbols xvi

1 Introduction 1

1.1 Complex Nature of Photography . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Camera Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Image Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.3 Viewpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 Camera Guidance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.2 Location Recommendation . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Literature Survey 12

2.1 Photography Assistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 Post Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.2 Real-Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.3 Personalized Assistance . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.1.4 Blind Photography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 Photography Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.1 Composition Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.2 Aesthetics Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

iii



Contents

2.2.3 View Based Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 Image Aesthetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3.1 Visual Features - (Perception Based) . . . . . . . . . . . . . . . . . . . . 33

2.3.2 Rules of Photography . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.3 Social Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3.4 Image Memorability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.4 Geo-Tagged Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.4.1 Points of Interest Identification and Recommendation . . . . . . . . . . . 45

2.4.2 Travel Route Identification and Recommendation . . . . . . . . . . . . . 49

2.4.3 Image Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.5 State of the Art Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3 Context-Aware Photography Assistance 60

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2 Proposed Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3 Photography Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3.1 Context Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3.2 Aesthetic Score Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.3.3 Photographic Composition . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.3.4 Spatial Distribution Modeling . . . . . . . . . . . . . . . . . . . . . . . . 71

3.3.5 Camera Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.4 Real-time Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.4.1 Human Position Recommendation . . . . . . . . . . . . . . . . . . . . . 77

3.4.2 Camera Movement Recommendation . . . . . . . . . . . . . . . . . . . 79

3.5 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.5.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.5.2 Landmark Object Identification . . . . . . . . . . . . . . . . . . . . . . . 81

3.5.3 Composition Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.5.4 Analysis of Eigenrules and Baserules . . . . . . . . . . . . . . . . . . . 83

3.5.5 Parameter Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

iv



Contents

3.5.6 User Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.5.7 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.5.8 Running-time Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.5.9 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4 Group Photography Assistance 96

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.3 Spring-Electric Graph Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.3.1 Color Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.3.2 Energy Minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.4 Group photography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.4.1 Scene Categorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.4.2 Position and Size Modeling . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.4.3 Real-Time Recommendation . . . . . . . . . . . . . . . . . . . . . . . . 111

4.5 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.5.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.5.2 Visual Balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.5.3 Group Photography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.5.4 User Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.5.5 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.5.6 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.5.7 Computation Time Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.6 Mobile Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5 Context-Aware Viewpoint Recommendation 127

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.2 Offline Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.2.1 Landmark Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

v



Contents

5.2.2 Popularity of Landmark Objects . . . . . . . . . . . . . . . . . . . . . . 132

5.2.3 Viewpoint Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.2.4 View-Cell (Popularity vs Quality) . . . . . . . . . . . . . . . . . . . . . . 136

5.2.5 Uniqueness of a view-cell . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.3 Real-Time Recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.4 Experiments and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.4.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.4.3 Aesthetic Score Validation . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.4.4 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.4.5 User Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.4.6 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.4.7 Running-time Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6 Optimal Foraging Theory for Photography and Exploration 155

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.3 Optimal Foraging Theory for Photography . . . . . . . . . . . . . . . . . . . . . 159

6.3.1 Optimal Diet Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.3.2 Marginal Value Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.4 Graph-Based Micro-POI Modeling . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.4.1 Micro-poi Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.4.2 Micro-poi Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.4.3 Modeling Information Gain . . . . . . . . . . . . . . . . . . . . . . . . . 166

6.4.4 User Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

6.4.5 Graph Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

6.5 Path Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

6.5.1 Personalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6.6 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6.6.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

vi



Contents

6.6.2 Micro_poi Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

6.6.3 Modeling Experience Gain . . . . . . . . . . . . . . . . . . . . . . . . . 174

6.6.4 Path Recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6.6.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

6.6.6 Running-time Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

7 Conclusion and Future Work 187

7.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

7.1.1 Videography Assistance . . . . . . . . . . . . . . . . . . . . . . . . . . 188

Bibliography 189

List of Publications 205

Appendices 205

A Rules of Photography 206

B Camera Controls 210

vii



Summary

In the last decade, we have seen significant improvement in the ease and cost of capturing mul-

timedia content. However, the aesthetic quality of the content captured by an amateur user still

needs substantial improvement. Camera devices have intelligent features, such as automatic

focus, face detection, etc, to assist users in taking better photos, however, it remains a challenge

for an amateur user to capture high-quality photographs. The complex nature of photography

makes it difficult to provide real-time assistance to a user for capturing high-quality images. How-

ever, advancement in digital photography, sensor technology, wireless networks and social media

provides us an opportunity to enhance the photography experience of users.

This doctoral research aims at providing real-time photography assistance to users by leveraging

on camera sensors and social media content. The research in this thesis is focused on two

different aspects of user experience in photography. The first contribution focuses on camera

guidance and the second contribution is focused on location recommendation for photography.

In our first contribution, we developed computational models based on machine learning which

can provide real-time camera guidance to users for capturing high-quality photographs. The pro-

posed models utilize publicly available photographs along with social media cues and associated

metadata for photography learning. In the first part, we focus on landmark photography where a

feedback regarding scene composition and camera parameter settings is provided to a user while

a photograph is being captured. We propose the idea of computing the photographic composition

basis, eigenrules and baserules, to support our composition learning. As context is an important

factor from a photography perspective, we also explore the role of user-context in photography

recommendation. In the second part, we focus on group photography where we use the idea of

spring-electric graph model and augment it with the concept of color energy from the literature of



Summary

visual arts. The proposed model is applied in group photography utilizing social media images

to provide real-time feedback to the user regarding the arrangement of people, their position on

image frame and relative size.

In the second contribution, we focus on location recommendation for photography to improve the

experience of users at tourist locations. Firstly, we propose ClickSmart, a viewpoint recommen-

dation system which can provide real-time guidance based on the preview on user’s camera, cur-

rent time and user’s geo-location. It makes use of publicly available geotagged images along with

associated metadata for learning a recommendation model. We define view-cells, macro blocks

in geospace, and propose the idea of popularity, quality and uniqueness of view-cells from view-

point perspective. Finally, we propose a photography trip recommendation method which guides

a user in exploring any tourist location from the photography perspective. More specifically, a tour

is recommended to the user based on Optimal Foraging Theory and social media images which

provide a list of hot-spots to visit and corresponding stay time at each hot-spot for photography.

We have conductive extensive experiments and user studies to demonstrate the effectiveness of

the proposed methods.
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Chapter 1

Introduction

We all love to capture important moments in our life and share them with our dear ones. With the

advancement in technology, affordable mobile devices come with high-end embedded cameras

and people have started taking more photos to capture their experiences. Developments in

wireless technology also allow us to share our experiences on the move. Thus, technology has

made it easier for us to capture and share our experiences with family and friends.

However, devices with advanced features cannot always guarantee high-quality multimedia cap-

ture. Although mobile cameras have advanced facilities like auto-focus, face detection, etc., for

assisting users in capturing better photos, these are not sufficient considering the complex nature

of photography. It still remains a challenge for an amateur user to take high-quality photos. There-

fore, ease and cost of image capture have improved but the quality of capture needs substantial

improvement.

1.1 Complex Nature of Photography

With a decent digital camera and a bit of practice, anyone can take photos with the camera set

on automatic mode. We can even take average quality pictures and make them look good with

image post-processing tools. But to capture truly beautiful photographs, we need to utilize every
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possible ability of the camera and for this, we need to acquire some knowledge of photography

and learn the manual camera settings.

1.1.1 Camera Parameters

One of the most important camera settings includes exposure, in which we try to find the proper

exposure for the subject and lighting conditions [60], [83]. Exposure is the amount of light hitting

the camera’s sensor when we capture an image. Generally, we want the exposure setting so that

the image captured by the camera’s sensor closely matches with what we see with our naked

eyes. In the automatic mode, a camera tries to accomplish this, but it is not perfect, which is why

professional photographers use manual settings to produce better photographs.

Exposure Triangle

Shutter Speed1/1000 1/60

MotionFreeze

Less Light  More Light

Blur

FIGURE 1.1: Exposure Triangle for Digital Photography [152]

Camera aperture, ISO sensitivity, and shutter speed are the parameters generally used to control

the exposure (Figure 1.1). Aperture is the size of the opening in the lens when a picture is taken

and ISO is the measure of a digital camera sensor’s sensitivity to light. On the other hand, shutter
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speed controls the amount of time that the shutter is open. As we can see in figure 1.1, large

aperture (f/2.8), high ISO (6400) and slow shutter speed (1/60) leads to high exposure and on

the other hand small aperture (f/22), low ISO value (100) and high shutter speed (1/1000) will

cause low exposure. Therefore, in bright light, a fast shutter speed and small aperture are used

to control the amount of light that comes in and large aperture and lower ISO is used to get rich

detail in low light conditions.

Adjustment of the above-mentioned parameters to capture a high-quality photograph is not so

easy. Apart from controlling exposure, these settings depend on the type of photograph and they

also affect other parameters. Aperture also controls the depth of field (Appendix B) and similarly

shutter speed controls motion in the scene (Figure 1.1). For example, for portrait mode, we need

large aperture which helps to keep the background out of focus (it sets a narrow depth of field

to focus only on the main subject). Professional photographers practice and gain experience to

figure out which combinations of aperture, ISO and shutter speed are best for different kinds of

photos. Playing with ISO level and exposure can cause digital noise which degrades the image

quality. For example, longer exposure heats up the camera sensor and this heat contributes to

digital noise in the final image. Similarly, slower shutter speeds are often used to get enough light

which can make it very difficult to take a photo without some blurring. Moreover, there are other

parameters like depth of field, white balance, etc., which photographers have to decide based on

the context (Appendix B).

1.1.2 Image Composition

Apart from the camera settings, the role of photography knowledge can not be ignored in captur-

ing high-quality photographs. The composition of a photo is one of the essential factors in the art

of photography. Appendix A provides a list of some of the important rules of composition followed
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by professional photographers. A good and balanced composition can make a photograph look

more attractive even if the scene being shot is not appealing. In photography, widely accepted

principles such as rule of thirds, leading lines, repeating patterns, layering, horizon lines, rela-

tive scale are useful guidelines for creating better photos [47], [83]. Photographers follow these

photography rules and guidelines while they capture images.

(a) Rule of Thirds (b) Framing

(c) Diagonal (d) Symmetry

FIGURE 1.2: Rules of Composition [47] 1

Figure (1.2) presents some example photographs where photographers have followed some of

these composition rules. In figure 1.2a Rule of Thirds is followed. The basic principle behind

this rule is to imagine breaking an image down into thirds (both horizontally and vertically) so

that we have 9 parts. The theory [47] is that if we place points of interest in the intersections or

along the lines then the photo becomes more balanced and will enable a viewer of the image

1Image source: www.digital-photography-school.com, www.photographymad.com
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to interact with it more naturally. Similarly other example photographs also follow some rules

(Framing, Diagonal and Symmetry ), details of which can be found in appendix A.

In group photography, the complexity of image composition increases further. Apart from adjust-

ing the background scene, the photographer also needs to determine the arrangement, position,

and size of people in the photograph to achieve a balanced composition. Professional photogra-

phers use their experience and photography knowledge to determine these parameters as they

compose a scene.

Amateur photographers might learn and know these rules, but it is still difficult to apply them while

taking pictures. Some of the photography rules contradict each other, such as Rule of Thirds and

Rule of Center, and therefore cannot be applied together. The user has to decide which rule is

more appropriate for a given view, which is not trivial. It usually requires years of practice and

experience to transform the rules into real-time intuitions so that a spontaneously taken photo

can have a better quality.

1.1.3 Viewpoint

In photography, viewpoint refers to the geo-location from where a photograph is captured and is

considered as one of the essential factors in the art of photography [47]. It has a large impact on

the composition of a photograph and as a result, it also affects the aesthetic quality of a captured

image. Advanced digital cameras can provide features like auto-focus, face detection, etc., for

assisting users in capturing better photos, however, it can be challenging for an amateur user to

find a good viewpoint in any tourist location. It is a human tendency to follow others [127] and

users generally follow the crowd to find a good viewpoint which can be misleading and therefore

an amateur user may end up with bad quality photos. Although there are post-processing tools
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available to enhance photo quality, it is not an option for users who like to click and share their

images instantly.

1.2 Motivation

Most people would agree that not everyone is a professional photographer and, capturing a good

photograph is not always an easy task for amateur users. Figure 1.3 presents three different

photographs of same location and view point. We can clearly see the difference between the

average and the professional photograph. Apart from the difference in the color composition,

the professional photograph is also following the Rule of Thirds and Diagonal in a more appro-

priate manner. Professional photographers usually take relevant training and practice for years

to understand the photography knowledge. Sometimes they also use their intuitions depending

upon the context to compose and capture a scene. Fortunately, we have social media sharing

websites like Flickr, Photo.net, Picasaweb, etc., with a large collection of photographs shared by

professional and other users. With recent advances, these photographs also contain metadata

in Exif (Exchangeable image file format), which provides us useful context information like, time

of capture, geo-location, camera parameters, etc. Also, with advancement in sensor devices, it

is easy to infer the current contextual information of the user. We can leverage the social media

data for photography learning along with the user context information to assist amateur users

during photo capture.

We have many post-processing tools like Photoshop, Picasa, Inkscape, etc., which can be used

for improving already captured photo quality. However, these are not an option for mobile users

who love to click and share on the go as it delays the real-time sharing. These tools are meant for

desktop PC’s with high computational requirement thus not feasible for a real-time application.

Moreover, post-processing tools can not do much in the case of poorly captured photos and
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not all the information lost during capture is recoverable using these tools. For example, it is

always possible to use software to take certain areas of a photo out of focus, but it is very

challenging to fix anything that’s out of focus. Therefore, these photo editing tools will be of no

use if the captured photo is not clicked properly. To avoid the use of any post-processing tool for

(a) Average Photograph (b) Better composition (c) Professional photo

FIGURE 1.3: Same scene with different composition 2

enhancing the photo quality, most users try to capture as many photos as they can. Later, they

browse through all the captured photos and select the best capture to share with their family and

friends. Memory is becoming cheaper and digital photography allows us to capture as much as

we can. But this is not desirable for a person who spends all his time in clicking photos rather

than enjoying with his family or friends. Also, it is a very tedious task to look through the huge

database of captured photos to find an attractive one. In this research, we propose to provide

assistance during capture rather than post processing to avoid the unnecessarily captured data

and improve the photography experience of the users at tourist locations.

1.3 Contributions

In this thesis work we propose novel approaches for providing real-time assistance to users as

they capture photographs. We mainly focus on camera guidance and location recommendation

2Image source: www.flickr.com
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for photography. The camera guidance includes feedback regarding image composition, cam-

era parameters, and group photography. And, the location recommendation includes viewpoint

recommendation and tour recommendation from a photography perspective.

1.3.1 Camera Guidance

In camera guidance, we focus on landmark photography and group photography, which we will

discuss in more detail in the following sub-sections.

1.3.1.1 Context-Aware Photography (Landmark Photography)

In this work, we propose a comprehensive system for photography assistance using crowd-

sourced images which take into account available contextual information for image composition

and camera parameter learning. We employ machine learning to build the models for image

composition and camera parameters. The proposed framework has a real-time control feedback

system where the input is sensed from the physical world (view, geo-context, etc.) and feedback

is provided to the controller (photographer) to improve the image quality. This work has been

published in [138, 139] and [137]. In summary, our primary contributions are:

• We propose a context based composition and camera parameter learning system which

accounts for the presence of human objects in the photograph and is not limited by the

number of main objects in the scene.

• We introduce the concepts of eigenrules and baserules to support composition learning.

A detailed analysis is presented to understand their significance in image composition.

• Human position recommendation in a view is posed as an optimization problem and a run-

time efficient solution is proposed which can provide position recommendation for multiple

humans.
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• We propose a camera motion feedback system which can guide the user to control the

camera for pan, tilt and zoom motion to achieve a better composition of the scene.

1.3.1.2 Group Photography Assistance

In this work, we focus on group photography where we have multiple people standing in an image

frame with a scenic view in the background. Obtaining visual balance in group photography is

a challenging task as there are multiple parameters involved which affects the aesthetics quality

of captured image. Some of the factors include the arrangement of people, their position in the

image frame considering salient objects in the scene and distance how far they should stand

from the camera. Professional photographers use their experience and knowledge to visualize

how the visual elements in image frame could be better arranged, sized or positioned. However,

it is not trivial for amateur users to obtain a visual balance in an image frame and capture a

high-quality photograph.

We use the spring-electric model embedded with color energy to generate a real-time recommen-

dation for users so that they can capture a visually balanced group photograph. The proposed

method makes use of social media images to estimate a position and size where a group of

people should stand in a photograph. The estimated position and size of people are then further

optimized using a spring-electric model embedded with color energy which enables visual bal-

ance in the photograph. This work is currently under review [142]. We make the following novel

contributions in this work.

• We introduce the idea of color energy from the art of composition and embed it in a spring-

electric model to obtain a visual balance in an image frame.
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• We present an application of this model in group photography where we leverage on social

media images along with this model to produce real-time recommendation which can be

used to capture high-quality group photographs. To the best of our knowledge, this is the

first time the problem of group photography recommendation is being studied.

1.3.2 Location Recommendation

In location recommendation, we focus on viewpoint recommendation and trip recommendation

from a photography perspective.

1.3.2.1 Context-Aware Viewpoint Recommendation

In this work, we propose ClickSmart which provides real-time viewpoint recommendation to the

user based on the preview on the camera. It attempts to bridge the gap between view-based

and location-based recommendation and also takes into account user contexts such as time and

weather conditions. This work has been published in [140]. In summary, our primary contributions

are:

• We propose a real-time viewpoint recommendation system for photography assistance

which makes use of publicly available photographs via social media.

• We investigate the impact of context such as time and weather conditions on viewpoint

recommendation.

• The proposed recommendation system also considers the presence of people in pho-

tographs, and finally

• We propose the idea of the uniqueness of geo-pixels which is further used in recommend-

ing rare but interesting viewpoints for photography.

10



Chapter 1. Introduction

1.3.2.2 Trip Recommendation

In this work, we focus on providing user recommendation to explore a tourist attraction from the

photography perspective. We observe that each tourist attraction has multiple hots-spots (micro-

poi: micro point of interest) which are visited by the tourists. There can be multiple ways to visit

these micro-pois and searching for an optimal path is an NP-hard problem. We make use of

social media images to learn previous patterns in the environment and employ Optimal Foraging

Theory to determine an optimal path for exploring the attraction and capturing photographs. This

work is currently under review [141]. Our contributions are,

• We propose a route recommendation method based on Optimal Foraging Theory which

provides a path along with a list of micro-pois in a tourist attraction where the user should

visit. In addition, we also recommend an optimal stay time for each of the micro-poi in the

path which is determined based on the Marginal Value Theorem.

• The proposed method also takes into account personal preferences for providing a per-

sonalized recommendation.

1.4 Organization

The rest of the thesis is organized as follows. In chapter 2 we will discuss the related research

work and present the state of the art in the relevant areas. Then in chapter 3, we will discuss our

work on context-aware photography assistance. Chapter 4 will demonstrate the work on group

photography assistance. In chapter 5, we will present the work on context-aware view-point

recommendation. The work on route recommendation will be discussed in chapter 6. Finally, we

will conclude the report and introduce future research directions in chapter 7.
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Chapter 2

Literature Survey

In recent years, researchers have shown interest in photography assistance for amateur users.

Although there are few works, which target to provide the assistance in real time, most of the

studies focus on assistance provided after a photo has been captured. We will discuss the

proposed methods and their limitations in the next section. Table 2.1 provides a brief overview of

the presented literature review.

Literature 
Survey

Photography 
Assistance

Post Capture

Real-Time

Personalized 
Assistance

Blind 
Photography

Photography 
Learning

Composition 
Learning

Aesthetics 
Learning

View Based 
Learning

Image 
Aesthetics

Perception 
Based

Rules of 
Photography

Social Media

Image 
Memorability

Geo-Tagged 
Images

Points of 
Interest

Travel 
Routes

Image 
Classification

FIGURE 2.1: Literature Review Scheme
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The main objective of photography assistance is to enable amateur users to capture a high-quality

photograph without having any prior knowledge. During photography assistance, it is important

to make sure that the user finally captures a high-quality photograph from the aesthetics per-

spective. Therefore aesthetic evaluation of images is of vital importance for this research as we

may not be able to provide satisfactory assistance if we have no knowledge of image aesthetics.

There has been a lot of work in image aesthetic evaluation in the past decade. Most of the work

employs computationally expensive techniques which are not suitable for a real-time application.

We will describe some of the important work in this area and discuss why they can not be directly

used for our research.

In [4], Brett et al. proposed an integrated media creation environment for guiding amateur users

in shooting videos. The presented approach takes into account various aspects of creating pro-

fessional videos and provides a step by step guide to the user. However, the proposed method

provides guidance only for creating videos.

Recently we have seen a lot of research in location-based services due to the widespread avail-

ability of GPS (Global Positioning System) sensors. Images with geo-location information can

be utilized for a wide range of applications such as 3D model construction for a location. For

this research, we want to utilize geo-tagged images from photography perspective for real-time

photography assistance. We will discuss some of the important work in this area and then talk

about the requirements for our research.

This chapter is organized as follows. In section 2.1 we will describe the proposed methods for

photography assistance and their limitations. Thereafter we will discuss various computational

photography learning techniques in section 2.2 followed by a review of work in image quality

assessment in section 2.3. In section 2.4 we will discuss works related to geo-tagged images.
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Finally, in section 2.5 we will conclude this chapter by presenting state of the art in this research

area.

2.1 Photography Assistance

Photography assistance can be given either after capturing the image or as the image is being

captured. There has been some work in photography assistance for already captured images,

which either suggests similar scenes or do some post-processing to change the composition of

the captured image. Researchers have employed both visual features based on photography

rules and social media data. We will use the term post capture photography assistance for this

kind of work. Also, some researchers have proposed real-time systems which can guide a user

as they capture an image. They have also employed either social media data or photography

rules to generate the suggestions. Apart from these two, we will also discuss work related to

blind photography and personalized photography assistance.

2.1.1 Post Capture

Image processing and editing of captured photos to enhance aesthetics is a well-explored re-

search area. In this section, we will discuss some of the important works which consider not

only low-level visual features but also make use of the photography composition rules and social

media data. Table 2.1 presents a detailed summary of the existing works.

Aesthetics and Photography Rules: Some of the early post-processing techniques include

[123, 158, 178, 179, 201] for automatic image re-targeting, [29] image adaptation for smaller

displays, [143, 146] image or video re-targeting. Suh et al. [158] developed an automatic image

cropping method based on visual salient objects and face detection. Setlur et al. [146] employed
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segmentation and saliency to identify important regions in a photograph. The important regions

are then re-organized in a resized background of the image. Zhang et al. [201] defined 14

templates based on photography composition rules and utilized them along with face detection

for automatic photograph cropping.

Liu et al. [108] used certain photographic compositional rules such as Rule of Thirds, Balancing

Elements, Diagonal Rule, Size of Region, to study the composition of photos. The proposed

method employ a compound operator which re-targets a cropped part of the image into a target

frame having a different dimension. The cropped frame with the highest aesthetic score is defined

as the final re-targeted image. The aesthetic measurement is done on the basis of some heuristic

photography rules. In the cropped image distortion of salient objects detected and patched back

is quite possible.

In [18], the authors proposed a post-processing method in which they relocate the main object

from the scene to a more pleasing location based on photography rules. The proposed method

can also be used to crop or expand a given landscape image. The system segments main object

area in a supervised way and then rearranges it to appropriate position using surface layout re-

covery [62] based on rule-of-thirds composition and visual weight ratio. Similarly, Mai et al. [120]

presented a method to identify whether rule-of-thirds has been applied in capturing a photograph.

The proposed method employ saliency map and object analysis for object localization and make

use of power points A. However, these methods [18, 120] are based on only rule-of-thirds and

there are many other popular heuristic rules which are used by photographers.

In [96], Lee et al. proposed an automatic approach for straightening up slanted man-made struc-

tures in an input image to improve its perceptual quality. Their method uses an energy minimiza-

tion framework to compute an optimal homography that can effectively minimize the perceived
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distortion of slanted structures. All these proposed methods are computationally expensive and

rely only on compositional heuristics.

Using Social Media: Chang et al. [26] proposed a system which finds a view enclosure in

panoramic photographs with favorable compositions based on rules learned from exemplary pho-

tographs. The proposed system characterizes arrangement of structures and geometric patterns

within an image using GIST descriptor [130] and use the saliency map using spectral residual

approach [64] for the layout of salient elements. The system can suggest good view enclosure

provided a panoramic scene and an exemplary photograph to learn from. The authors used a

small set of exemplary photographs (around 100) in the learning dataset and this small dataset

cannot be a holistic representation of all the photographic composition considering the wide range

of possibilities. Their algorithm selects the initial set of exemplars randomly from the generated

graph, therefore the system can have both scalability and performance issues as the initially

selected exemplars may be totally unrelated to the input panorama.

Li et al. [100] proposed a system for photography learning using community contributed photo

collection. The user captured image and a keyword, which describes the photo, is used to search

the public image database and provides a user with similarly captured photographs along with

the camera parameters (focus length, aperture, exposure time and ISO). The user can then

explore these photos by changing the camera parameters and understand the effects of these on

photo quality. The proposed system divides the photo type into three classes, close-up, mid-view

and far-view and uses them for view-classification of photos. The system provides photographs

similar to the user captured image based on the visual features and a description given by the

user. The user has to manually provide a keyword description for each input image and will have

to learn itself from the parameter settings of the retrieved photos. It might be helpful for a user
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TABLE 2.1: Summary for Photography Assistance (Post Capture)

Approach The work Details Aesthetic Assessment Assistance Dataset Comments

Photography

Knowledge and

Perception Based

Setlur et al. 2005

[146]

Based on image segmentation and

saliency map
none

Re-targeting salient objects in

smaller frame
40

Detected salient objects

are used re-compose the

image in smaller frame

size

Zhang et al. 2005

[201]

Face detection and Region of

Interest

Photographic rules: 14

defined templates

Main object relocation and image

cropping
60 Images

Real time and also

considered more than one

person case

Bhattacharya et

al. 2010 [18]

Supervised segmentation for main

object localization

Photographic rules:

rule-of-thirds, visual

weight ratio

Main object relocation and image

cropping
632 Images

Supervised method (user

involvement) for main

object detection

Liu et al. 2010

[108]

Based on saliency and prominent

lines detection

Rule of Thirds, Balancing

Elements, Diagonal Rule,

etc.

Cropped image with best aesthetic

score
900 Images

Employing heuristic

photography rules for

image re-targeting

Mai et al. 2011

[120]
Saliency based object localization

Photographic rules:

rule-of-thirds
Rule-of-thirds detection

4140 Images,

2089 positive and

2051 negative

Only determines whether

a given photo follows

rule-of-thirds

Lee et al. 2013

[96]

Based on edge and corner point

detection

Vertical alignment of

objects

Straightening up slanted man-made

structures in an input image to

improve its perceptual quality.

[41] and [15]

Improving image

aesthetics based on only

vertical alignment of

objects

Social Media and

Data Driven

Approach

Chang et al.

2009 [26]

Structural features (GIST descriptor

[130]) and the layout of visual

saliency learned from professional

panoramic photographs

none
View enclosure in panoramic

photographs

Set of 100

exemplar

photographs

Small number of

exemplars in the dataset

(100), scalability and

performance issues

Li et al. 2011

[100]

Relevant images with metadata and

view similarity are suggested to

user from stored image database

none

Images based on view similarity

suggested along with camera

parameters

not stated

Only camera parameter

suggested, not suitable for

real-time application due

to involvement of image

search

Yao et al. 2012

[186]

Edge detection and image

segmentation along with

photography heuristics are

employed in the method

Photography heuristics

and color composition

Provide aesthetic evaluation and

list of high quality images based on

view similarity

13,302

Run time of 7-8 seconds

for processing a 256x256

image

Zhang et al. 2013

[197]

Personal photograph enhancement

using 3D models constructed

employing public photos

none

Field of view expansion and image

enhancement of person

photographs

not specified

Quality of image

enhancement will depend

upon available public

images

1
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who intends to learn photography by spending some time, but it is not very intuitive for an amateur

user who just wants to capture a good quality photo without spending much time on it. Also, the

three class categorization of images is very crude which can result in a lot of retrieved images

for a search query. Moreover, the authors have only considered the camera parameters ignoring

the image composition which is important in learning photography.

In another work [186] Yao et al. presented a framework which provides a recommendation to the

user based on composition and an aesthetic score of the captured image. Given a user captured

image, as a feedback, the system provides a ranked list of high-quality images with a similar com-

position. Making use of photography heuristics on image composition, the authors categorized

images into five groups, diagonal, horizontal, vertical, texture, and center. The proposed method

employ segmentation and edge detection along with some photography heuristics for image clas-

sification. Apart from this it also utilizes color triplet sets as a basis for aesthetics computation.

The color triplets are ranked based on the aesthetic scores of the images which are composed

of those triplets. Although the authors tried to cover many aspects of aesthetic evaluation, the

complete process is computationally expensive. In conducted experiments, the authors have

shown a run time of 7-8 seconds for processing a 256x256 (image resolution) image which is not

appropriate for a real-time application. Also, considering the fact that social image database is

growing at a fast pace, the scene categorization is not very efficient for general photographs.

In this paper [197], Zhang et al. proposed personal photograph enhancement using IPCs (Inter-

net Photo Collection). Their work leverages the 3D background models reconstructed from IPCs

of the same landmark. Given a personal image, the system provides automatic field-of-view

expansion, photometric enhancement and geo-tagging of the image.

Although we have powerful post-processing tools for improving image quality, there are some
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limitations and drawbacks. Once a photo has been-captured, it is not very easy to modify its

composition. It is very time consuming for a user to select their best-captured photos and edit

them using some post-processing. Also, it prevents the users from sharing their clicks right

after they capture it. On the other hand, assisting users at the time of capture saves the post

processing time and allows the user to share the photos as they click. Also, providing real-time

assistance will enable users to capture high-quality photographs and there will be no need of

taking multiple shots of the same view.

2.1.2 Real-Time

In this section, we will discuss the works which aim to provide photography assistance to a user

at the time of capture. We have categorized the proposed methods based on the source of

photography knowledge. First, we will discuss methods which make use of known heuristic rules

of photography followed by methods which employ social media data for photography knowledge.

A detailed summary of important works in this area is presented in table 2.2

Photography Rules and Aesthetics In one of the earliest work, Bares [14] presented an in-

teractive camera system which follows photographic composition rules. The system provides

framing suggestion to the user based on the composition objectives for balance, placement, and

emphasis as indicated by the user. Similarly Banerjee and Evans [12] proposed a framework for

in-camera automation of composition rules. The proposed method automates the placement of

the main subject according to the rule-of-thirds, and background blur to improve the composi-

tion of a photograph. It employ the method from [13] which uses segmentation for main object

detection. The proposed method is focused only on scenes with one main subject and it can

not be used for wide range of general photographs. In another related work, Bae et al. [9]
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proposed a computational rephotography system which enables users to capture a scene with

exactly same view-point and composition as compared to some existing exemplary photograph.

They presented a real-time pose estimation and visualization technique for rephotography that

helps users reach the desired viewpoint during capture.

In [1] Abdullah et al. presented a camera system that automatically configures camera parame-

ters in order to satisfy photographic compositional rules. The authors define rating functions for

composition rules like the rule of thirds, diagonal dominance, visual balance, and depth of field,

and used optimization to find best possible camera configuration. Although, their method can

provide good accuracy but it is computationally expensive, hence not suitable for a real-time sys-

tem. Gadde et al. [51] make use of robots for capturing images which follow photographic rules.

The proposed method focus on the image aesthetics while capturing photos and represent an

image using the spatial domain features [117]. In the proposed system, two aesthetic guidelines

of professional photography, the rule of thirds and the golden ratio rule are used to assess the

quality of the captured image.

In this work [116] the authors proposed a real-time image quality assessment system called

PhotoGuide, for assisting users in mobile photography. The image view assessment is done on

the basis of saliency features attempting to target composition and simplicity of the image. Users

can decide based on the assessment whether to capture the current view or not. The proposed

method use some heuristics to define the placement and arrangement of visual elements which

are assumed to be pleasing for most of the users. The proposed quality assessment is merely

based on some heuristics which only consider the composition for the placement of foreground

object in the scene. The assessment is not computationally expensive for mobile devices but is

meaningful for only portrait photographs where we can easily filter out the main object from the
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background. Image quality is not only about the composition and placement of the main object

in the scene. This might be the reason why the presented results are better for portrait images

as compared to landscape images.

Mitarai et al. [126] presented a system which used pre-defined photography rules of composition

and assists a user in placing the main subject in the photo. The author defined some possible

compositions which are used by professional photographers and guide users to follow these

composition rules. The proposed method employ face and saliency detection along with the

extraction of prominent lines in the photo and then use these features in assisting the user to

compose and then capture a better photo. Although the composition is an important factor for

image quality, there are many other factors like, color, texture, context, etc, which can not be

ignored. Augmenting rule-based methods with scene understanding techniques such as, [105]

and [172], can be utilized for incorporating complex photography rules.

In a more recent work, Baek et al. [10] proposed a system that implements image editing directly

on a viewfinder even before it is captured. This provides the user a real-time interface for image

editing and a depiction of the final image. This is useful for professional photographers who are

well aware of what they want to capture but is of little value to amateur photographers as they do

not give too much thought before capturing a photo.

Social Media - In one of the earliest work in photography assistance using crowd-sourced im-

ages [171], the authors proposed a view recommendation system making use of geo-referenced

photos retrieved from the Internet. The proposed method utilize images of a particular location

and classify them as object, scene, and object in scenes and then perform an image quality as-

sessment based on the clear theme, main object and succinct composition. Finally, the current
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TABLE 2.2: Summary for Photography Assistance (Real-Time)

Approach The work Details Image Quality Assessment Assistance Dataset Comments

Photography

Knowledge and

Perception Based

William Bares

2006 [14]

Based on image composition

complying photography rules
Rule of thirds and image balance

Camera motion

to achieve best

composition

None

Based on two basic photography

rules , images with single main

object

Banerjee and

Evans, 2007 [12]

In-camera post image editing which

follows photographic composition

rules

Photographic rules: rule-of-thirds,

background blurring, merger

mitigation

None
Rule based

framework

Focused on only three mentioned

photographic rules

Wang et al. 2008

[171]

Composition of photographs based

upon salient features in

crowdsourced images

Based on clear theme; positioning

of main subject; being succinct

without distractive subjects.

Geometric

transformation for

camera to

capture best view

in a wide view

scene

Geo-Tagged

images of three

locations from

Flickr

Based only on salient point

matching between current view and

corresponding exemplar view, over

simplified image quality

assessment

Lujun et al. 2012

[116]

Used saliency map to extract

Region of Interest (ROI) and used

its (ROI) size to estimate image

aesthetics

Based on size of ROI

Provide aesthetic

score of view in

real-time

None

Based only on positioning and size

region of interest (ROI), over

simplified image quality

assessment

Mitarai et al.

2013 [126]

Guides user in capturing images

which comply with the rules of

photography

Photography rules,
Real-time

suggestions
None

Used only few photography rules for

photo quality evaluation, presented

only for indoor photography

Social Media and

Data Driven

Approach

Su et al. 2012

[156]

Used photographic rules to extract

features for mapping image

composition to aesthetic score

Social media (Image in the

database is considered either high

quality or low quality)

View enclosure

with high

aesthetic score

12000 highest-

rated/lowest-

rated

photographs

Targeted for scenic images, only

view enclosure suggestions, No

use of geo-location

Ni et al. 2013

[128]

Learning of positioning, shape and

co-existence of visual words in

highly rated images to infer photo

quality

Images with more then 10 user

likes on social media (Flickr) are

considered as high quality images

View enclosure in

a user provided

wide view scene

80,000 landscape

images from

Flickr

Targeted only landscape images,

considered co-relation between

only two visual words, geo-location

of images is not used

Lo et al. 2013

[111]

Used color, composition, contrast,

saturation and richness features for

learning image aesthetic score

mapping

Images in dataset marked either as

high or low quality

Provides

aesthetic score in

real-time

9651 high/low

quality

crowdsourced

photos

Targeted photos with single main

subjects inside the scene, provides

only aesthetic score

Xu et al. 2014

[181]

Learn from crowdsourced images,

the density distribution of position

where people stand in an image

None

Suggests position

on viewfinder,

where a person

should stand

Geo-Tagged

images of ten

landmark

locations

Only works for single person

photographs, no image quality

assessment, suggestions made

using earlier captured images

Yin et al. 2014

[190]

Composition based upon main

object positioning and learning

camera parameters using

crowdsourced images

Social media (count of user views

and likes)

View enclosure

with a high

aesthetic score in

wide view

Geo-Tagged

images of eight

hot spots from

Flickr

Targeted images with some main

object, only view enclosure

suggestions, Photo quality

evaluation based on pre-defined

iconic images

2
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view of the user is used to find a relevant high-quality image and a camera-motion is suggested to

match the current view with the selected exemplary image. However, it will not always be possible

to derive a camera transformation to match the expected exemplary view as it might have been

taken from a different geo-location. Also, a user is expected to provide the wide view scene of the

location. Otherwise, the consecutive snapshots of the user are employed to construct the wide

view scene. The system only suggests a view enclosure to the user. The proposed techniques

for mosaic generation, scene classification, and quality assessment are computationally expen-

sive for a mobile device and it will be a challenge to build real-time system using these methods.

For a geo-location, the system categorizes images into three themes, namely objects, scene and

object in the scene. This organization of photos will lead to large size for each category and for

big datasets it will not be feasible to do a real-time image search in such big dataset. Also, since

a location can offer a wide variety and type of scenes, it is not very useful to have such broad

categorization.

The authors in [32] employ community-contributed photos and trained a probabilistic model based

on localization of visual words to assess the quality of a view. The system mine the underlying

knowledge of professional photographers from massively crawled photos and learn the patch

spatial distributions and correlation distributions of pair-wise patches to guide the photo compo-

sition. The proposed method employ image segmentation [46] to extract visual words in an image

and then train Gaussian Mixture Model utilizing the positioning of individual visual words and co-

occurrence of pair-of words in a scene. The set of images is categorized into 100 groups based

on the histogram of visual words and each category is trained separately. Assuming a photo

with more than 10 favours/likes as a high-quality photo, they use the trained model to assess the

quality of the user view in a wide angle scene.
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In an extension to [32], Cheng et al. proposed a more comprehensive model for encoding both

spatial and geometric context of visual elements for mining professional photo compositional

rules [128]. In this work, they also considered the geometry of visual word patches for individual

words and geometric relationship in case of pair-of visual words. As stated by the authors, view

recommendation takes around 5 seconds, it doesn’t seem to be an optimal solution for a real-

time application where the user love to capture and share images instantly. Also, the proposed

learning method is not generic for all kind of scenes, as the position of various visual patches

in an image is not always fixed or defined by some rule. The proposed method consider only a

pair-of two patches for co-occurrence spatial learning. In general, we can have more than two

patches occurring in pairs for an image composition. Moreover, considering the variety of photos

available from social media, resizing every image into a fixed 500x333 resolution will affect the

performance as, the proposed method use patch based visual words.

In [19], Steven et al. proposed a context aware image recommendation system. The proposed

system makes use of information like current user location, time, compass direction and camera

settings to identify the current context of the user. Relevant images with similar context are

searched from an online database of images and based on their ranking they are recommended

to the user. The user is expected to select one of the images and based on the selection,

direction guidance is provided suggested to capture the desired scene. The recommendation

is based on earlier captured images and the user is not assisted for what he wants to capture.

Thus the system relies on the existence of already captured scenes at the location. The use of

contextual information along with image content differentiate these methods from other image

retrieval techniques such as, [65] and [115].

Su et al. [156] proposed a view recommendation system for scenic photos employing bag-of
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aesthetics preserving features. The proposed system utilizes personal favorite image database

for an individual to train the model to ensure that their system provides personalized results.

Employing color, texture, saliency and edge features they build a bag-of aesthetics library and use

it for image representation. Instead of using vision based segmentation, they divide the image

into pre-defined segments. Given a wide angle panoramic view, their model suggests a view

enclosure which matches the taste of user which is inferred from his or her personalized image

database. The proposed model consider only aesthetics and ignores camera parameters which

are also very important for photography. Using personal favorite database for image selection is

a wise choice for personalized results but this will lead to a smaller database size which will affect

the learning of photography model. Another limitation of the proposed system is the availability

of an appropriate personal image dataset. Also, there is no differentiation between various type

of image scenes, which is an important factor for image quality. The aesthetic model of images

will greatly vary with the scene type as different scene types show large variation in aesthetic

composition.

Yin et al. [189] presented a crowdsourced learning system to assist in photography for mobile

device users. The proposed system leverage the current scene context to search similar photos

from social media and suggest optimal view enclosure to capture a high-quality photograph by

learning the composition rule from the searched images. The system utilizes graph-based seg-

mentation [46] to extract salient patches and their position in the image as features for learning

the composition of a scene. It suggests optimal view to the user based on the aesthetic score

of the view which is derived from the learned model using crowdsourced images. The system

expects a user to capture an image with an aspect ratio of 3:2 or 2:3 with a resolution of 640x426

or 426x640 which is a very strong assumption. The system suggests only optimal view enclosure
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given wide view scene provided by the user. The proposed framework is not very efficient for real-

time assistance, as it includes image search (based on visual features), image ranking (based

on visual words), composition learning (dimensionality reduction) and generating suggestions

(finding optimal view enclosure) in real-time. All these operations are computationally expensive

and it doesn’t seem feasible to provide a real-time assistance for large image database using this

framework. For searching relevant images of a geo-location, the authors proposed a radius of 2

kilometers, which is not very intuitive as it represents a big geographical area and there can be

many possible photographic views present in this area.

In an extension to [189], Yin et. al. [190] proposed a socialized mobile photography system

which makes use of crowd-sourced images and suggests users the optimal view enclosure and

camera parameters to capture a better photo. The author selected eight famous landmark lo-

cations and form view clusters based on visual features and geo-location of the images. Based

on these clusters, photography rules are learned for image composition and camera parameters

which are further used for finding the optimal view and camera parameters. Users current view

is considered as wide view image and using the learned rules from crowd-sourced images with

a similar view, optimal view enclosure and camera parameters are obtained which are then sug-

gested to the user. Expecting to get a wide view image from the user is not very intuitive as the

user may be trying to capture a specific portion of the wide angle. It is not always possible to

construct the wide angle view using the previous clicks of the user, as is suggested by the author.

Apart from the fact that only a few selected landmark locations are considered, the assistance

is restricted to some geo-locations for which the proposed system is able to form clusters. Also,

the proposed system is suitable for only landmark photographs with some main object in it. This

limitation arises from their composition learning model which is based on object placement in the

image and spatial distribution of saliency features. This was also evident from their evaluation
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where the performance was bad for images with no foreground objects and distinguished salient

points. Moreover, the proposed system works only for landmark images and the presence of

human objects is ignored.

Fu et al. [50] presented a system which guides a photographer in capturing portraits using earlier

captured high-quality photos. The proposed system makes use of Kinect sensor for estimating

the current pose of the target model and suggest pose modifications to the photographer based

on stored portrait images. Since skeleton based representation of pose is compatible with Kinect

sensor, they modeled the stored portraits in the form of skeletons. In similar effort [119] proposed

a pose recommendation system for landscape photos. The proposed work is limited to portrait

photos where only pose is important.

Xu et al. [181] proposed a framework in which they suggest a position in the viewfinder where a

person should stand with the landmark in the background for a better quality photo. The proposed

method employ internet photo collections of some landmark locations. Using this collection a

3D model of the location [154] is constructed and probability density of positions where people

generally stand in the images is obtained. Based on the user’s current view the system suggests

a favorable location where a person should stand for a better quality capture. Although the

proposed system suggests a favorable position in a frame but the authors have ignored many

other factors which are important. First of all, the proposed system works for only single person

images. Also, the system ignores context information like time of day, weather conditions, camera

parameters, etc. Moreover, there should be some image quality assessment before making the

suggestion to a user which can ensure a better quality. In a similar attempt, the authors of [174]

proposed a method in which a position on image frame is recommended where a person should

stand. However, this method is also limited to position recommendation for a single person in the
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scene.

In another work [144], San proposed mobile photography assistance tool which relates aesthetic

visual features in an image with musical tones. The proposed system analyze current view on

the camera to assess the composition and exposure features in the scene. As a feedback, a

musical composition that maps visual features resulting from the real-time analysis of the image

is composed and played back to the photographer. The authors have used only the pitch of tone

for mapping image aesthetics to music quality, which is just a simplified heuristic assumption.

Although relating musical tones with image aesthetics is a novel idea, different people can have

different taste in music as is the case with image aesthetics. Therefore adding music as a feed-

back makes the image aesthetics evaluation more complex. Also, it is important to assess the

usefulness and effectiveness of this approach in real-time photography assistance.

2.1.3 Personalized Assistance

In [156] Su et al. presented a personalized view recommendation system which is based on

the aesthetic features of the image. The authors train their model using user favorite image

database and suggest a view enclosure in a wide angle panoramic scene. One limitation of

the proposed system is the availability of appropriate personal image dataset. Also, there is

no differentiation between various type of image scenes, which is an important factor for image

quality. The aesthetic model of images will greatly vary with the scene type as different scene

types show large variation in aesthetic composition.

Lujun et al. [116] proposes a photography assistance system which is adaptive and show per-

sonalized results according to the users preference. It takes feedback from the user at real-time

and adapts as per the user’s personal taste. The preference mainly focuses on the position

of the main object in the scene. For example, some users may prefer the target object in the
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center of the scene. Since their work performs well only for scenes with some main object, the

personalization is also restrictive within this scope.

2.1.4 Blind Photography

Visually impaired people want to take photographs and share their experiences for the same

reasons as others do. Here we discuss some of the existing work which aim at assisting visually

impaired people in capturing better quality photos.

White et al. [176] presented a real-time application that enables visually impaired users to take

high-quality photos by providing audio feedback as they point their camera on the target. The

proposed method provides feedback for three different photo types: landscape, portrait, and

documents. For landscape scenes, the system make use of gyroscope and accelerometer to

help the user aim the device. In the case of portrait photos the system ensures the target object

in the center of the image and for document style photos, the document is kept aligned with the

frame of the scene. The captured image is also checked for appropriate exposure and sharpness.

In an extension to this work, Jayant et al. [75] used face detection which can help in capturing

solo or group photos.

Marynel et al. [169] proposed an interactive system to assist users with visual impairments in

capturing street scenes. They used saliency map to find the region of interest (ROI) in the scene

and suggests camera motion to place the ROI in center of the image. The proposed method

considers only the saliency points in the image and aims to position the most important region of

the scene at center of the image.
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2.2 Photography Learning

There are many photographic rules and guidelines which are generally used by professional pho-

tographers as they capture images. These rules and guidelines are mostly context(time, weather

conditions, etc.) dependent and vary with the type of scene. Also, apart from these general

guidelines, professional photographers use their photographic knowledge and experience based

on the context and at times use their intuitions by crossing these guidelines. Therefore, explicit

rule-based suggestion systems can not possibly be holistic and capture all photography knowl-

edge. Considering this, several approaches have been developed, attempting to discover the

photography principles used by professional photographers through learning. With the availabil-

ity of community contributed images from social media along with the meta data information,

researchers have proposed different models for photography learning. These models try to cap-

ture information like, image composition, which leads to a high quality photograph. These are

based on data driven approach where certain features are extracted from the image and corre-

sponding model maps the image to a particular class or its aesthetic score. Based on the choice

of features for learning, proposed methods can be broadly categorized into three groups, com-

position learning, low-level visual features based learning and view based learning. Table 2.3

presents a detailed summary of some important works in photography learning.

2.2.1 Composition Learning

Photographic composition is described as the positional layout of salient visual elements in an

image [55]. It is believed that photographic composition is an important factor in image quality

and contributes to its aesthetics [195]. In Park et al. [131] the authors proposed a composition

learning model based on saliency. The method utilizes saliency map of professional photographs
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TABLE 2.3: Photography Learning

The work Approach Features Comments

Ni et al. 2013

[128] and Cheng

et al. 2010 [32]

Composition learning method

based on positioning and

co-occurrence of visual words in an

image using Gaussian Mixture

Model (GMM)

Pair of visual words

employing segmentation

Not scalable for considering

co-occurrence of more than 2

visual words, type of image not

considered

Park et al. 2012

[131]

Composition learning model based

on saliency employing GMM
Saliency Map

Focused on re-arrangement of

photo composition to improve

aesthetics, Only single model for all

types of images

Su et al. 2012

[156]

Aesthetic library is constructed

using bag of aesthetic preserving

features

Low level features, color,

texture, saliency and edge

Generalized model, type of scene

not considered

Yin et al. 2014

[190]

Proposed method based on the

position of main subject in the

image

SIFT points and saliency

map

Presence of human objects in the

view is ignored

and employed Gaussian Mixture Model (GMM) to represent photographic composition. The pro-

posed method mainly focus on re-arrangement of photo composition to improve aesthetics.

In [128] and [32] the authors proposed a learning method based on positioning and co-occurrence

of visual words in an image. Given an image dataset along with the aesthetic rating of the images,

a model based on visual words is trained for the corresponding aesthetic score of an image.

Using image segmentation, visual words are extracted from image and features corresponding

to their position and co-occurrence in the image are generated. These features are then used

to train a model which maps the positioning and co-occurrence of these visual words with the

aesthetic score. The learning is based on only co-occurrence of pair of visual patches, which is a

big limitation. Extending the proposed approach to more than two visual words will exponentially

increase the run-time, making it unrealistic for real-time applications. Also, other important factors

such as the presence of human objects and context information are not utilized in the proposed

model.

2.2.2 Aesthetics Learning

To overcome the computational cost of image segmentation, Su et al. [156] make use of low level

features, color, texture, saliency and edge, to derive absolute (positioning in image) and contrast
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information for an image and partition it into pre-defined segments. The image is partitioned into

2x2, 3x3 and 6x6 blocks to create segments and then using color, texture, saliency and edge

features each image is encoded into a feature vector. The proposed inter-block operations are

employed to construct the aesthetic library. The inter-block operations represent absolute and

contrast feature of the image. Using a dataset of high-quality images, a set of features called

bag of aesthetics preserving features are constructed. The extracted features of images from the

dataset are employed to train a model which can further classify user images as good or bad.

The proposed method does not consider context and also ignore possible variations in the type

of scene.

2.2.3 View Based Learning

For images with any main subject, it’s positioning in the image is a crucial factor which determines

the quality of captured scene. In [190], Yin et al. proposed a method based on the position of the

main subject in the image frame. The proposed method employs image transformation based on

detected SIFT points in the user image. The method transforms the user image to a predefined

iconic image which is selected as target composition for the corresponding cluster. Saliency map

and detected SIFT points are utilized to find an aesthetic score for the user image which is based

on a classifier trained using dataset from community contributed images. Number of user favors

and shares are used to derive the aesthetic score of a given view. The authors also proposed

a separate model for learning camera parameters like, exposure, ISO and aperture, using time

and weather conditions. The proposed aesthetic model is trained based only on the position of

main subject in the image and it is limited for scenes with some main subject. Also, presence of

human objects in the view is ignored in the proposed technique. Moreover, type of image view

and objects present in the image are ignored for camera parameter learning.
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2.3 Image Aesthetics

A photography assistance system guides a user to capture high-quality photographs. To build

such a system, we first need to understand the idea of a high-quality photograph. We should

then have the capability to assess the quality of an image. The objective of an image quality

assessment is to design methods which can predict the perceived quality of an image. The

problem of evaluating the quality of photos is considered to be quite complex due to its subjective

nature. General image quality assessment methods are computationally expensive and can not

be directly employed for real-time assessment of images in photography assistance. There has

been a lot of work in image quality assessment in past few years. We will first describe some of

the important works in this area and then discuss their limitations.

2.3.1 Visual Features - (Perception Based)

Tong et al. [166] employed low-level features derived from computer vision techniques to clas-

sify photos into those taken by professional photographers or home users. In [33], the authors

presented a method which enhances the harmony among the colors of a given photograph to

improve its aesthetics. Harmonic colors are sets of colors that are aesthetically pleasing in terms

of human visual perception.

Datta et al. [37] proposed a quality evaluation technique based on low-level visual features

such as, color intensity, texture and region composition, to infer numerical aesthetic ratings for

a given image employing linear regression. In [38], the authors extended their work from [37]

and included a weighted learning procedure to improve the photo quality prediction performance

using the same set of low-level features. In a similar approach, Wong et al. [177] proposed an
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aesthetic evaluation method where they separate the main subject from the background and use

the global set of features along with a relationship between foreground and background objects.

In [82], the authors make use of high level features such as spatial distribution of edges, color

distribution, and blur for image quality classification. The proposed method employ mathematical

formulations to calculate the features from user photographs. Using Naive Bayes, the method

exhibits that high-level features can be used for classification of professional photographs. In

another work, Luo et al. [117] focused on the main subject in the image and assess the quality

of image based on blur detection and clarity of contrast.

Sun et al. [159] employed visual attention and saliency map for assessment of photo quality.

The proposed method detect salients region in a photo and analyze the aesthetics of the photo

with the relative position of the subject region. Dhar et al. [42] proposed the use of high-level

describable image attributes with scene composition for photo quality prediction. The proposed

method tries to encode interestingness in the image using high-level features and uses them to

predict image quality. In [99], the authors employ features like color, lighting, and composition

to evaluate the aesthetic quality of images and provide cropping suggestion to improve image

quality.

In [39] the authors employ visual features to develop an aesthetic quality inference engine which

allows a user to upload their photos and rate their aesthetic quality. The rating is calculated

based on the distance from the hyperplane obtained by an earlier trained Support Vector Ma-

chine(SVM) classifier. Similarly, Yeh et al. [187] proposed an online ranking system for personal

photo collections based on aesthetic rules. In the proposed system, features are computed for

composition, color, and intensity. User provides their own images, adjust weights for the impor-

tance of different features, and can search for similar photographs. In another work, Marchesotti
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et al. [124] also proposed a photo evaluation scheme based on aesthetic quality making use of

generic image descriptors.

Su et al. [157] defined Bag of Aesthetics Preserving Feature (BoAP) based on visual features

without the use of formalized rules of photography. The proposed method employed color, tex-

ture, saliency and edges from segmented images to form feature vectors and a library is created

using a dataset of high-quality photographs. However, the composition is also important for image

aesthetics and the proposed method does not consider image composition.

The authors in [186] used color triplets to model the aesthetic quality of an image. The pro-

posed method employs histogram for dominant color triplets present in images from the database

and based on the aesthetic rating of the corresponding images it generates ratings for the color

triplets. The authors also proposed an aesthetic evaluation of black and white photographs which

was based on contrast, shape and saliency of the image. This rating was used as a feedback to

the user during photography.

Yin et al. [188] proposed a scene dependent aesthetic model to assess photo quality which

leverages both geo-context and visual content. The proposed method groups images based on

geo-location and content in the image and a separate model is built for each group to assess

the image quality. The method employs GIST descriptors and HSV color space to represent an

image and employs social media ratings for aesthetic scores. Context is not only about geo-

location and visual content. Image quality may vary with the time as well for the same view and

geo-location. Also, image quality is a subjective evaluation and may vary with person to person.

Social media meta data is noisy sometimes and using it with some other evaluation strategy can

help us produce better results. Also, the proposed method employs only low-level features (GIST

and HSV color space) for image representation which is not a comprehensive approach.

35



Chapter 2. Literature Survey

Tang et al. [160] proposed a framework which makes use of a set of the foreground, background,

and global features for assessment of photo aesthetics. The images are classified into different

categories and a different set of visual features are extracted corresponding to each scene type.

In [111], the authors proposed an efficient on-device aesthetic quality assessment method. A

rich set of low-level features with low computational overhead are defined to represent aesthetic

characteristics of an image. Color, composition, richness, contrast and saturation are modeled

employing low-level features and a SVM model is trained to assess the image quality. For color

combination, top five dominant colors are extracted in the image. The composition is represented

using edge features and HSV color channels. For contrast, the width of dominant range in color

histograms of the image are utilized. Richness is defined using variety in color composition and

for spatial richness, the image is divided into regions and difference in edge intensity maps of

adjacent segments are computed. A dataset of images with both bad and good quality is used to

train the defined features for rating an image as good or bad. As shown in experimental results,

proposed method is feasible for real-time mobile applications, but for experiments they used a

limited dataset with a low-resolution images. Also, context, view or any other information is not

utilized which makes the system too generalized and it is difficult to model all the photography

rules in one simple model using only low-level features. Moreover, the proposed method assumes

prior knowledge about the quality of images in the dataset.

In a recent study, [8] Aydin et al. proposed an aesthetic-attributes based automatic evaluation

method. The proposed method employs sharpness, colorfulness, tone, clarity, and depth as

aesthetic attributes and corresponding features are extracted to find an image aesthetics score.

The proposed approach outperforms existing methods, however, it is based on only five aesthetic

attributes defined by authors. There can be other possible attributes which can affect image
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aesthetics, like image composition and also the influence of attributes might be dependent on the

type of image.

More recently, researchers have also explored the features extracted using Deep Networks for

predicted aesthetic quality of images [81, 113, 164], and [200]. These methods utilize deep

networks to extract the aesthetic features which are difficult to design manually and improve the

predictions as compared with the other hand crafted features. However, using deep features it is

difficult to understand the aesthetics of photographs as visualization of the deep features is not

very trivial.

2.3.2 Rules of Photography

The work in [54] uses rules of thirds and fifths to enhance the compositional aesthetics of a 3D

model. The employed features tries to encode the attractiveness in image and the system finds

corresponding format(image size, shape, and orientation), viewpoint, and layout for an image of

a 3D object. Similarly, in [22] the authors used rules of third to position the main object in a

scene for an automatic robot camera system. Zhang et al. [201] defined 14 templates based on

photography composition rules and utilized them along with face detection for automatic photo-

graph cropping. The authors in [116] presented a real-time photo quality assessment method for

mobile photography. The proposed method is not computationally expensive and is suitable for

mobile devices. But the assessment methodology considers only composition of the scene and

is merely based on the position of main object in the image frame.

The authors in this work [171] use three basic principles for image quality assessment: i) having a

clear theme, ii) viewer’s attention on main subject, iii) being succinct without distractive subjects.

For clear theme they use blur estimation to identify ‘in focus’ and ‘out of focus’ patches. The

proposed method employ rule of thirds to assess the placement of main object in the scene. To
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TABLE 2.4: Image Aesthetics Evaluation

Approach The work Details
Features for Aesthetic

Assessment
Comments

Visual Features and

Perception Based

[33, 37–

39, 166, 186, 187, 204]

Image quality prediction based on

low level features

features like color intensity, color

composition, texture and region

composition

Difficult to interpret the mapping of low level

features to image quality

[82, 117]
Aesthetic quality prediction based

on defined high level features

Spatial distribution of edges, color

distribution, clarity and blur

Proposed high level features are based on

heuristics

Sun et al. 2009 [159]
Based on visual attention and

saliency map
composition based on saliency map

Can not be generalized for various types of

photographs

Dhar et al. 2011 [42]
Based on defined high level

describable image attributes

Attributes tries to encode

interestingness
Consider only defined set of attributes

Su et al. 2011 [42]
Define bag of aesthetics preserving

features

Color, texture, saliency and edge

features

Image composition and type of image is not

considered

Yin et al. 2012 [188]

Scene dependent aesthetic

evaluation which also considers

geo-context

GIST descriptors and HSV color

space

Employed only two set of features and

image categorization is only based on

geo-location and view

Lo et al. 2013 [111]
Real-time aesthetic evaluation

based on low-level features

Color, composition, richness,

contrast and saturation

Proposed system is too generalized

considering the wide variety of image

categories

Aydin et al. 2014 [8] Aesthetic attribute based evaluation
sharpness, colorfulness, tone,

clarity and depth

Image composition and type of images not

considered

Heuristic Rules of

Photography

[22, 54, 108, 116, 201]
Known heuristic rules for feature

extraction

Rule of Thirds, Balancing Elements,

Diagonal Rule, Size of Region
List of heuristic rules is not exhaustive

Wang et al. 2008 [171]

Proposed approach based on clear

theme, viewer’s attention and

image focus

Rule-of-thirds, motion blur and

focus on main subject

Computationally expensive for real-time

applications

Social Media

Yin et al. 2012 [189]

Employed social media cues

available with crowd-sourced

images

Using number of user-views and

user-favorites

Based on only two cues (number of user

views/favorites)

Yin et al. 2014 [190]

Employed image interestingness

and social media cues available

with crowd-sourced images

Image interestingness [21], number

of user-views and user-favorites

Ignored other cues like user

comments/tags/attributes

3
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ensure succinct composition it is checked whether the main object in the scene is in focus or not.

The proposed method tries to cover some of the photography principles if not all. However, it will

be computationally expensive for a mobile device to use it for a real-time application. Also, apart

from these three principles, there are many other photography rules which should be considered

to assess a photo quality.

Liu et al. [108] used certain photographic compositional rules such as Rule of Thirds, Balancing

Elements, Diagonal Rule, Size of Region, to study the composition of photos. Based on these

heuristics, aesthetic score of an image is measured and it is further utilized for image retargeting.

Segmentation is employed for detecting salient regions and prominent lines in the image. Math-

ematical expressions are formulated to determine if the extracted salient regions and prominent

lines are following the defined rules of photography. Based on these formulations numerical value

for the aesthetic score is generated for an image. Each image pixel is assigned a saliency value

based on a low-level saliency score of Itti et al. [70]. This saliency value is then propagated with

the salient features and contribute to the actual aesthetic score generation. One limitation of this

approach is that only heuristic photography guidelines are not sufficient for photo quality evalu-

ation. Some pre-defined rules can not capture the various composition possibilities of general

photography. Also, the described rules are not exhaustive and the rules are scene dependent,

so it is unwise to apply all the defined rules in a generalized fashion.

2.3.2.1 Visual Balance

Visual balance is considered an important factor in the art of image composition. This fact has

been widely studied by researchers in predicting and improving the quality of image from aes-

thetics perspective [14, 18, 82, 108, 118, 129, 151, 184]. Bares et al . [14] proposed to use the
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concept of visual weights of elements to balance frame composition in virtual camera environ-

ment. They consider factors such as size, brightness, and position of objects to compute their

visual weights and move the center of visual weights to the frame center. The proposed method

does not consider the color component and is limited to a virtual environment.

In Bhattacharya et al . [18] the authors proposed to balance the sky and ground region in a

photograph according to golden ratio for image cropping. Similarly, the authors of [108] also

propose image cropping to improve aesthetics by obtaining visual balance considering the size

and the saliency of important objects in the image. Ma et al . [118] extended this idea to find

where a person should stand in a given image. One major limitation of existing methods is that

they all ignore the involvement of color composition in attaining visual balance. They mainly rely

on automatic saliency detection of visual elements and computing visual saliency accurately in

photographs can be very challenging.

The concept of visual balance to improve aesthetics is not limited to photographs and it applies

equally to other areas of visual art where human perception is involved such as information

presentation [112], web-page layout [135], magazine covers [73], etc. Purchase et al . [135]

proposed a metric based on the area of important objects to evaluate the quality of visual balance

in the layout of a webpage. In Jahanian et al . [73], the visual balance of colors based on a scale

[89] was utilized to identify a position where text in a magazine cover should be placed. In

Lok et al . [112] the authors studied the idea of visual balance for visual layouts in information

presentation. They proposed weightmaps and make use of color histogram as the visual weight

of objects to balance the layout. The proposed method requires human intervention and the

position of one visual element is changed at a time iteratively to achieve balance. Therefore the

final layout highly depends upon the order in which the visual elements are added to the layout.
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In another interesting application of visual balance force-directed algorithms were proposed for

aesthetic drawing of planar graphs [16, 45, 49, 80]. A graph is represented as a model where

the nodes are connected by springs and force of attraction and repulsion act between the nodes.

Energy minimization is performed to bring this system of forces into an equilibrium where the

edge tend to have uniform length and the nodes that are not connected tend to be drawn apart.

The proposed methods assume all nodes and edges in the graph to be similar.

The existing methods for obtaining visual balance have the following limitations: 1) They assume

that the position of the visual elements are either fixed or known beforehand and therefore they

cannot be used for a balanced layout of dynamic visual elements. Methods which have addressed

the dynamics of visual elements considered only one visual element and placed it to balance rest

of the layout. 2) Most of the methods are focused on evaluating the quality of visual balance and

then recommend image cropping to improve the aesthetics which however does not change the

arrangement of visual elements in the layout. 3) The existing methods have only explored factors

such as area, position, and color for visual balance, however, there are many other factors such

as visual direction, contrast, etc. which have an impact on visual balance [6].

2.3.3 Social Media

In this [32] photography learning system, the authors assume a community contributed photo

with more than ten favours/likes as a high quality image and used this to train probabilistic model

which serves as a basis for user image quality evaluation. Similarly, in [189] the authors make use

of number of user views and number of favours to assess the image quality. They approximated

the aesthetic score by

S = 100× (1− exp−(υ.views+β. f avours)), (2.1)
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where views and favours are the number of user views and user likes. They used υ = 0.1 and β

= 1 for their experiments.

In this work [190] the authors proposed a photo quality assessment using social media data.

They make use of interestingness factor which is provided by Flickr API [21] and is based on

the quantity of the user-entered metadata, such as tags, comments and annotations, and similar

other factors. Apart from this, the number of user-favourites and user views are also employed.

Based on all the factors aesthetic score for each image in the database is generated. The aes-

thetic score for an image is approximated by

S = 100× (1− exp−(υ.views+β. f avours))× exp−I/N , (2.2)

where views and favours are the number of user views and user likes. I is the interestingness

factor and N is the total number of images crawled in the location scope. For constant values, υ

= 0.2 and β = 1 are used in the experiments.

The assessment is merely based on social media data and does not take into account any other

factor which can be computationally evaluated. The social media data can be noisy and a hybrid

approach based on both social media and computational methods can provide more accurate

aesthetic scores.

2.3.4 Image Memorability

Like many image properties such as image quality, aesthetics, saliency, attractiveness, and com-

position, image memorability is another criteria for image quality evaluation. Isola et al. [69]

conducted a set of experiments using visual memory game to measure memorability of images

and find out whether it depends upon the context and vary with users. Statistical results showed
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that image memorability can be context independent and persistent within a different set of users

and time. The authors also conclude that image memorability is not related to image aesthetics

and attractiveness. On the basis of results from memory game, SVR model is trained to map

from image features to memorability scores [68]. The proposed method employs GIST [130],

spatial pyramid histograms of SIFT [93], HOG [36], and SSIM [148] features to train the model.

The authors also came to a conclusion that most landscape images have low memorability.

In another related work [67], Isola et al. investigated image features which contributed to mem-

orability. The proposed method make use of conceptual attributes like spatial layout, aesthetics,

etc, and used related features to represent an image for memorability computation. The au-

thors concluded that contrary to popular belief, unusual and aesthetically pleasing images are

not predominantly the most memorable ones.

One important thing to consider is that, their proposition [68], [69] and [67] is completely based

on the crowd-sourced feedback of 665 users with a dataset of only 2222 images. The fact that

one second was given to the user per photograph, it is arguable whether this is sufficient for an

average user for analyzing the complete image. Although there has been some earlier research

in face photo memorability [11], and the memorability of facial caricatures [168], this is a first

attempt towards research in this direction for general photographic images.

In an extension to this work [69], Khosla et al. [85] proposed a probabilistic framework which

maps memorability to image regions. In this work, the authors presented two different represen-

tation of an image, external and internal. External view is the original image and internal view is

the representation in memory which accounts forgotten image regions and hallucinations. Based

on the distance between these two representations and known memorability of images they tried

to find our the contributions of different regions in image memorability. In continuation to this
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work, authors in [84] presented the idea of visual inception and image modification to change the

memorability of an image based on the memorability contribution of each region individually.

Bora et al. [24] and Mancas et al. [122] explored the role of visual attention in understanding

memorability of images. Bora et al. [24] used visual saliency map along with low-level features

(GIST [130], SIFT [93], HOG [36], and SSIM [148]) for predicting the memorability of an image.

Mancas et al. [122] also conducted an eye-tracking experiment on images from the memorability

database [69] to find out the relationship between image memorability and visual attention. The

authors find out that there is a long eye fixation time for images with higher memorability. The au-

thors also proposed two attention-related features (RARE saliency map coverage and structures

visibility) for predicting image memorability and showed that these features performed better than

earlier suggested features.

In another related work, Kim et al. [86] investigated spatial features that are correlated with the

image memorability. The authors proposed Weighted Object Area (WOA) that jointly considers

the location and size of objects and the Relative Area Rank (RAR) that captures the relative

unusualness of the size of objects. These features gave similar results as compared to earlier

works without the use of low-level features.

In the proposed methods, only low-level features (GIST, SIFT, HOG and SSIM) [69] and high-

level describable attributes related to spatial layout, aesthetics, emotions [67], and attention [24],

[122] are utilized. Context also plays an important role in memorability of an image which is

not considered in any of the earlier works. Also, we believe its not the objects, which contribute

to memorability but their composition combined with many other factors. Otherwise, all images

with faces should be memorable which is not the case in general. Although [86] studied relative

spatial features, but their approach is not holistic and only consider the size and position of
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TABLE 2.5: Memorability

The work Approach Features Conclusion

Isola et al. [68]

Used low level features to

predict memorability of

images

GIST [130], SIFT [93], HOG [36],

and SSIM [148]

They concluded image

memorability is not related to

aesthetics and attractiveness

Khosla et al. [85]

Maps memorability score

to segmented image

regions

Color, texture and gradient

They tried to find out individual

contribution of segmented image

regions to memorability of an image

Bora et al. [24],

Mancas et al.

[122]

Explored role of visual

attention in image

memorability

Saliency map along with GIST,

SIFT, HOG, SSIM

Showed positive co-relation

between saliency and memorability

Kim et al. [86]

Explored role of spatial

features in image

memorability

Location and size of objects,

relative size of salient object for

unusualness

The spatial features directly

corelates to memorability

objects. Moreover, there can be other aspects, like image composition, photographic rules, color

composition, etc, which can be explored for their role in image memorability.

2.4 Geo-Tagged Images

The sharing of geo-tagged photographs by users on social media platforms such as, Flickr,

FourSquare, etc. has increased tremendously in the last decade. This has motivated researchers

to exploit this data for various kinds of recommendations in location based services. This in-

cludes, finding location using images [79], [28], point of interest for photo capture [97], [71], [150],

[107], travel route recommendation [207], [191], [30], [106], 3D scene reconstruction [153], [101]

and event recognition using image database [43]. In this section we will discuss some of the

important work in location based recommendations and image classification which are closely

related to our research.

2.4.1 Points of Interest Identification and Recommendation

Zhang and Kosecka [202] used image retrieval to find similar images for user query and then

determined the landmark location information for the query. Hays et al. [59] adopt image-based
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matching to locate user photos on the world map. Joshi et al. [78] proposed a location identifi-

cation method which also uses user tags along with geo-tags to infer the geo-location of images

using geo-tagged images.

In another interesting work for location identification, Yu et al. [192] proposed Active Query

Sensing (AQS) framework which aims to help the mobile user take a successful second query

once the first query fails. It informs the mobile user how to sense his/her surrounding environment

so that the captured image is most distinctive and can be used to recognize the location. The

main idea behind their proposed work is that each location has a unique subset of preferred

views for recognition and it varies from location to location. Based on the view of a location, they

divided it into View-Independent Confident Location, View-Dependent Searchable Location and

Difficult Location. Once the first user query is failed, the system finds the most salient view in

the top returned results and use polling to find the next best view direction which is suggested to

the user. The performance results are based on well organized New York city street view dataset

with 0.3 million images, which comprises of 50,000 locations with six views for each location.

However, the availability of such an organized dataset for other locations can be argued.

Crandall et al. [34] proposed a classification method to identify the taken location of a photo using

its textual-tags and visual and temporal features. The authors of [66] proposed a method to find

popular viewing directions for capturing a landmark object. However, the proposed method does

not take into account the user context and also it is limited to photographs with a single landmark

object.

Point-of-interest (poi) recommendation to users is another area which has recently received a

lot of attention from the community. In [56, 98, 205], the authors employed collaborative filtering

for providing personalized location recommendation to the users. To make the recommendation

46



Chapter 2. Literature Survey

process more personalized, the authors of [90, 194] presented interactive framework where the

user can provide real-time feedback regarding his or her choices. To further improve the rele-

vance of recommendation, the authors of [103, 110, 193, 198, 199] also take into account the

geographical, temporal and sequential influence of location and user movements.

As the semantic information of the location also plays an important role in users preferences, the

authors of [77, 173] incorporate venue semantics into user recommendation. The user preference

usually changes with his or her context, therefore to take this into account authors in [57, 182]

proposed context-aware recommendation which incorporate factors such as weather and season

into account or a feedback from the user for making the recommendation.

Most of the methods discussed so far assume that the poi recommended to the user are known

beforehand which may not be always true. Therefore, to overcome this problem researchers

have proposed methods to automatically identify points of interests in a location utilizing user

contributed photographs. In [97, 107, 150, 185] the authors proposed to used clustering based

algorithms to identify the points-of-interest which helped in detecting popular locations. Ratten-

bury et al. [136] applied clustering algorithms to identify landmarks and event names by extracting

semantics from geo-tags of photos available on Flickr.

In [150], Shirai et al. proposed a method to discover multiple hotspots, where many photos have

been taken, using geo-tagging photos posted on social media sites. Additionally, the authors infer

range and shape of hotspots based on the deviation of places where photos have been taken.

Liu et al. [107] presented an approach to discover Areas of Interest (AoI) by analyzing both geo-

tagged images and check-ins. The approach exploits travelers flavors as well as the preferences

of daily-life activities of local residents to find AoI in a city. The authors devise a density-based
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clustering method to discover AoI, mainly based on the image densities but also reinforced by

the secondary densities from the images of neighboring venues.

In [97], Lee et al. segment geo-tagged photos into different categories to find categorized

poi(Point of Interest) using density-based clustering. They apply two levels of clustering to detect

global level(GPS based) and local level categorized poi. In the local level, they categorized the

images into following groups, long-term (more than 9 days) vs. short-term (1-9 days), summer

season (September to February) vs. winter season (March to August), peak period (May and

October) vs. non-peak period (all other months), day-time (6am to 6pm) vs. night-time (6pm to 6

am), weekdays (Monday to Friday) vs. weekends. In a similar effort the authors of [92] proposed

an approach to discover area-of-interests using social media images.

Zhuang et al. [209] argue that non-popular locations can also be preferred by some users and

therefore proposed a method to discover obscure sightseeing spots for recommendation. In

[161, 162] Thomee et al. proposed to find the actual location of point-of-interest which may be

different from location of the point of photo capture.

Recently, researchers have focused their interest on identifying points-of-interests which are good

from the photography perspective. Kimura et al. [88] proposed a clustering-based approach

to identify hot-spots for photography. As time also plays an important role in the photography

Ying et al. [204] also considers time dimension in discovering photo capturing locations. The

proposed method is based on learning from crowd-sourced images and Gaussian Mixture Model

is employed to find hotspots for aesthetically good images which also considers the time factor. In

a more recent study, the authors of [132] use collaborative recommendation algorithms in order

to produce personalized suggestions for photo-taking spots. The photographs captured by a user

in the past are used for making the recommendation.
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2.4.2 Travel Route Identification and Recommendation

The movement of tourists from one location to another is captured as a footprint in the geo-tags

associated with the photographs shared on social media. This has been exploited by the re-

searchers to identify various travel patterns followed by the tourists for recommendation. Zheng

et al. [206], [208] applied a statistical approach to extract tourist movement trajectories from

geo-tagged photos and analyzed corresponding travel patterns. Liu et al. [109] employed col-

laborative filtering to recommend inter-city travel packages to users based on their past travel

records. In [23, 52, 121, 134, 175], the authors identify the popular routes followed by tourist as

they travel from one attraction to another at a tourist location.

In [74], Jain et al. proposed a method which recommends a route passing through locations

with a large number of captured photographs with given starting location and travel distance.

In a similar effort, Zheng et al. [207] proposed a driving route for users which passes through

scenic locations. The proposed system adapted an attention-based approach to exploit GPS-

tagged photos for discovering scenic roadways and formulated the scenic driving route planning

as an optimization task towards the best trade-off between sightseeing experience and traveling

distance. One of the major limitations of these methods for intra-city recommendation is that they

provide generalized recommendation which is independent of user preferences.

To overcome this limitation, the authors of [30, 31, 53, 104, 114] also incorporated user prefer-

ences for making route recommendation. Lu et al. [114] proposed a method to identify tourist

locations and then generate a personalized trip route to travel between identified attractions.

Chen et al. [30] proposed a probabilistic personalized travel recommendation model which ex-

ploits the automatically mined knowledge from the travel photo logs. Chen et al. [30] proposed

to use people attributes (gender, age, and race) extracted from captured photos for personalized
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route recommendation. The proposed method identifies popular travel routes and recommends

next best location to visit based on current user location. Yamasaki et al. [183] proposed Markov

model approach for route recommendation and incorporates personalization using collaborative

filtering.

2.4.3 Image Classification

Cristani et al. [35] presented a framework for geo-located image categorization. The pro-

posed system aims at grouping together visually similar images with close geo-location. The

method also focus on visual content management and visualization of large geo-located image

databases. Snavely et al. used internet photo collections to construct a 3D model of a location

[154]. The proposed system employ structure-from-motion and image-based rendering algo-

rithms that operate on set of images to construct 3D model of a location.

In this [32] photography learning system, the authors make use of image segmentation and derive

visual word patches in a photo. Based on histogram of these visual words the complete image

dataset is classified into 100 groups using clustering. For large datasets this is computationally

expensive and inefficient. Also, there was no use of geo-location and the formed clusters does

not have any meaning in photography sense.

Ahern et al. [5] suggested context-aware tagging of photos at the time of capture before they are

uploaded to any social media. It is easy to identify the context and find meaningful tags at the

time of capture and it also saves the tagging time which is usually done at a later stage. The

authors make use of current location and user profile for tag suggestion. Annotation of images

with semantic level tags is also useful for image classification as it provides additional information

apart from geo-location.
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In [171] the authors used focus of attention to find the theme of a photo. The proposed method

defines three basic categories for a photo from a particular location: objects, scene and objects

in a scene. They used bottom-up saliency map using center-surround principle on color, intensity

and orientation feature for attention modeling and identify the theme of a photo. Considering the

fact that a particular location can have a large variety of possible views, diving photos from a

location into these three categories is not very intuitive.

In [101] the authors presented modeling of landmark sites based on large-scale contaminated

image collections gathered from the Internet. The proposed system builds an iconic scene graph

using view clusters to construct the 3D model. Li et al. [102] presented a landmark classification

system based on multi-class Support Vector Machine trained using geo-tagged Flickr Images.

Yao et al. [186] identify five different forms of compositions namely, textured images, diagonally,

vertically, horizontally and centered composed images. They employed image segmentation and

edge detection to extract features to model these compositions. These compositions are mutually

exclusive, based on photography heuristics and also not exhaustive enough to model all possible

scene types.

In [189] the authors used a 2 kilometers radius for searching relevant images from the community

contributed images. This is a very naive way to search geo-tagged images from the community

contributed database when we can get the geo-location of captured images to an accuracy of few

meters. The authors in this work [190] proposed a view based cluster formation method. For a

specific geo-location they form clusters of similar views and based on the view of user image they

find the cluster to which it belongs. In this work the authors have used it for photography learning

and assistance. Clusters are formed using the visual features (SIFT saliency feature) and geo-

location. The proposed view clustering is based on important object location and distinguished
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salient points on the image. This choice of features restricts the system to work only for images

with foreground objects. Since the geo-location is also used for clustering, similar views can

formed different clusters due to change of geo-location. Also, more than one clusters can be

form for one geo-location based on the view.

2.5 State of the Art Summary

In this section we will summarize the state of the art in photography assistance and related areas.

A detailed summary is presented in table 2.6.

Photography Assistance: There are only few methods which claim to provide a real-time

photography assistance during image capture [156], [128], [190], [171], [111], [116] and [126].

Some of the authors have also developed an application to demonstrate the real-time feasibility of

the proposed method [111], [116] and [126]. However, the proposed methods are not generalized

and are focused on only few of the aspects among many. Some of the limitations include smaller

datasets, few selected geo-locations and specific image types. Table 2.1 and 2.2 provides a more

detailed summary of the literature survey.

In [171], Wang et al. used a dataset with images from only three locations and the proposed

system is based on salient point matching between the current view and corresponding exemplar

view from the dataset. In [116] Lujun et al. used only region of interest (ROI) and the proposed

method guides the user to adjust ROI in the view to improve aesthetics. In [156], Su et al. used

a dataset with only 1020 photographs and their method was targeted for only scenic images.

Lo et al. [111] used describable features to predict the aesthetic quality of an image in real-

time, but apart from aesthetic score, the proposed system didn’t provide any other feedback for

photography assistance. In [126], Mitarai et al. used image composition in their system which
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guides a user to adopt relevant photographic rules. Similarly in [128], Ni et al. proposed a view

enclosure suggestion based on the aesthetic score which is predicted on the basis of spatial

position and co-occurrence of visual elements in an image. The proposed method is not suitable

for real-time assistance as the authors stated a run-time of 4-5 seconds. Yin et al. [190] proposed

a more comprehensive solution to photography assistance in which camera parameters are also

considered. However, the proposed method provide only view enclosure suggestions to the

user based on learning from the dataset for eight tourist locations. Moreover, they targeted only

scenic views with some main object which can be separated from the background. In a more

recent study [181], Xu et al. proposed a position recommendation system which can suggest

where a person should stand in a photograph. However, the proposed method does not evaluate

image quality and is limited to a recommendation for a single person.

The methods proposed so far make suggestions about optimal view enclosure possible in the

wide view scene provided by the user. The user cannot always provide a wide angle view using

his mobile camera and also it is not a user-friendly approach to ask him for a wide angle view to

suggest the best view enclosure. Also, it is not always possible to construct the wide angle view

using the previous clicks of the user, as is suggested by many researchers. A better image might

be lying outside the current view of the user which is another limitation of the proposed systems.

Another approach can be to build a wide angle view offline and rather than just suggesting a view

enclosure, we can have other types of suggestions like pan/tilt/zoom to the user.

Existing methods are not generalized for the different types of a photograph (landscape, scenic,

portrait, etc.) and target some specific range of image types. Like, in most of the proposed

methods it is assumed that the target view has one main object which can be separated from

the background. This is a big limitation as the users do not always capture landmark photos with
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some main objects. We can have many other categories of photographs apart from landmark

photos like portrait, scenic beauty, etc. Also, the proposed methods have not considered image

composition with human objects (single or multiple) along with the background view. Moreover,

the proposed methods are focused only on few well-known landmark locations. A more general

solution will be to provide assistance for all types of images and also for locations where no

photographs have been captured before.

As discussed earlier, camera parameters play an important role in the quality of captured image.

In [190], the authors proposed to learn camera parameters such as exposure, ISO, shutter speed

and aperture from the metadata available with crowd-sourced images. However, the proposed

method consider only environment conditions for parameter learning. These camera parameters

also depend on factors such as the type of image and its content which is ignored by the authors.

Image quality evaluation is subjective in nature and the perception of quality may vary from per-

son to person. In [156] and [116], authors presented image quality evaluation system which tries

to make personalized recommendations. The method proposed in [156] make view enclosure

suggestions based on some heuristics and [116] is merely based on size and position of region-

of-interest (ROI). Therefore, a comprehensive method which can consider other important factors

is required for providing personalized assistance to the users.

Viewpoint is another factor which can affect the quality of captured image. The proposed methods

do not make suggestions for viewpoint recommendation, which is sometimes important. Also,

none of the methods is utilizing the direction of image capture, which can be computed by making

use of inbuilt sensors. Moreover, the existing methods do not employ built-in camera sensors for

assisting in photography. A hybrid system utilizing both the camera and social sensors is needed

which can provide better results.
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Photography Learning: The existing photography learning techniques make use of social me-

dia data along with photography rules and visual features to infer aesthetic scores of images. The

proposed methods employ low-level features, visual words or salient regions for image represen-

tation based on its composition. In the learning phase, the extracted features are mapped to the

corresponding aesthetic score of the image. The aesthetic score is generally inferred from the

social media metadata (number of user likes) attached with the corresponding image and it is

considered as a ground truth [190], [128], [156]. Social media data is noisy and alone it can not

be relied upon for aesthetic quality. Also, all of the photography rules are not utilized in any of the

learning models. Photography rules are important but not sufficient for image quality evaluation.

Similarly, visual features also provide only partial low-level information which is insufficient for

aesthetic score interpretation. Therefore we need a hybrid approach which can leverage both

these aspects together for photography learning. Table 2.3 presents the summary of literature

survey for composition learning.

Most of the existing methods build a general system which tries to capture all the photography

knowledge in one model. Considering the complex nature of photography and knowing that pho-

tography rules are scene dependent, it is not possible to capture all the photography knowledge

in a single model. Different rules may apply in different locations based on the view and context,

therefore some categorization is required based the context and the type of photographs. Clas-

sification based only on geo-location will be not good for locations with sparse datasets and view

based categorization (as suggested in many works) will be difficult to scale with growing data.

Another interesting direction for research will be to transfer photography learning from locations

with dense datasets to locations with sparse datasets.
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TABLE 2.6: State of the Art Summary. This thesis is focused on the boxed items in the missing

list.

Aspect What is possible What is missing

Image Quality Evaluation

• Separate methods based on visual

features, composition, heuristics and

social media

• Offline, computationally intensive

methods

• Preliminary work on image memorability

• Generic notion of image quality

• Comprehensive model for all aspects

• Real-time online evaluation

• Real-time evaluation of memorability

• Personalization

• Context based evaluation

Photography Assistance

(In-Camera Guidance)

• Post capture image enhancement

• Heuristic rules based composition

assistance

• Real-time aesthetic evaluation based on

few heuristics

• Generalized models for composition

evaluation

• Assistance regarding placement of main

object

• Human position recommendation

(geo-based, single person, without

aesthetic evaluation)

• View recommendation based on

geo-location

• Camera parameter suggestion based on

geo-context

• Comprehensive model (photography

rules, composition, social media, etc.) for

real-time recommendation

• Context based (type of image, view, etc.)

real-time aesthetic evaluation

• Human position recommendation (sin-

gle/multiple person, with aesthetic eval-

uation)

• Personalized recommendation

• Photography knowledge transfer based

on context similarity

• Context based (objects in scene, type of

image, etc.) camera parameter sugges-

tions

• Camera motion (pan/tilt/zoom) sugges-

tions

Photography Assistance

(Location Based

Recommendation)

• Points of Interest identification

• City-scale tour recommendation

• Personalized Point of Interest

recommendation

• Personalized tour recommendation

• Viewpoint recommendation for photogra-

phy based on context

• Context-aware within attraction tour rec-

ommendation

• Personalization in within attraction tour

recommendation

• Real-time sensing for adaptive tour

recommendation
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Image Quality Evaluation: There has been a lot of work in image quality assessment in recent

years. Researchers have proposed methods for image quality assessment based on low-level

features, high-level semantic concepts, photographic principles, saliency, composition, social me-

dia data, etc. The proposed methods focus on different aspects of image quality and make use

of a different set of features, but they all share the common aim of assessing the quality of an

image. Every photographer desires to cover all the aspects to make their captured images look

good. Therefore it is required to understand the correlation between different aspects of image

quality and come up with a hybrid approach which can holistically cover all possible directions. A

summary of literature survey is presented in table 2.4 and table 2.5

Existing photo quality evaluation techniques are computationally expensive and are not suitable

for a real-time application. Also, none of the methods use visual features, photography rules,

and social media altogether for aesthetic computation. Considering the various types of images

(portrait, scenic, landmark, etc.), it is difficult to use a general model for aesthetic evaluation.

Therefore, some form of image type categorization and separate aesthetic models for each cat-

egory can be one way to improve aesthetic evaluation.

There can be many other factors involved which affect the image quality. A photo may be con-

sidered more or less appealing depending on the person in the photograph. A badly composed

photo of some celebrity might be popular and in contrast a well-composed photo of an unknown

person may be ignored by the viewers. This can be important when we are trying to learn from

social media data.

The place where a photo is captured also plays an important role in image aesthetics. A badly

composed photograph of a popular location might attract the viewer’s and a well-composed photo

of unknown location may not be appreciated by many users. Apart from these factors personal
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preferences also play a crucial role in image aesthetics. Some people might prefer a photo which

does not obey any composition rules.

More recently, there has been some work related to the memorability of images (Table 2.5).

But there is no work on photography assistance for capturing memorable images. Also, it will

be interesting research direction to understand the relation between various image qualities like

saliency, attention, composition, etc, with each other and image memorability.

Location Based Recommendation: The existing works in location recommendation relevant

to photography mainly focus on points of interest identification and city-scale tour recommenda-

tions. The proposed methods utilize social media images to identify interesting photo-shooting

locations for photography. There are methods which first identify these interesting locations and

then determine a route through these locations for a recommendation. There are some recent

works which also incorporate personal preference in providing the recommendation. The past

travel behavior or the past photography behavior is utilized to determine the personal preference

for a recommendation. However, the existing works do not focus on how a tourist location should

be explored by the users. As a tourist location may have multiple hot-spots which are interesting

from the photography perspective, it is important for the users to determine how to explore a

tourist location.

2.6 Summary

In this chapter, we discussed research work relevant to real-time photography assistance and

also pointed out some of the limitations of the existing methods. We also presented a state of the

art summary of the related work. Photography assistance is a new research area and not much
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work has been done. In the next chapter, we will present our work in photography assistance for

a real-time recommendation.
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Context-Aware Photography

Assistance

In this chapter, we will discuss a photography model based on machine learning which can assist

a user in capturing high-quality photographs. As scene composition and camera parameters play

a vital role in aesthetics of a captured image, the proposed method addresses the problem of

learning photographic composition and camera parameters. Further, we observe that context

is an important factor from a photography perspective, therefore we augment the learning with

associated contextual information. The proposed method utilizes publicly available photographs

along with social media cues and associated meta information in photography learning. We

define context features based on factors such as time, geo-location, environmental conditions

and type of image, which have an impact on photography. The metadata available with crowd-

sourced images is employed for context identification and social media cues are used for photo

quality evaluation. We also propose the idea of computing the photographic composition basis,

eigenrules and baserules, to support our composition learning. The proposed system can be

used to provide feedback to the user regarding scene composition and camera parameters while

the scene is being captured. It can also recommend a position in the frame where people should

stand for better composition. Moreover, it also provides camera motion guidance for pan, tilt,
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FIGURE 3.1: Real-time Feedback Control System

and zoom, to the user for improving scene composition. The work presented in this chapter was

published in [138, 139] and [137].

3.1 Introduction

With a high-quality camera and a bit of practice, it is possible to take average quality photos with

the camera set on the automatic mode. But in order to capture truly beautiful photographs, we

need to leverage every possible ability of the camera and for this, we need to acquire some knowl-

edge of photography and learn the manual camera settings. One of the most important camera

settings includes exposure, in which we try to find the proper exposure for the subject and light-

ing conditions [83]. The automatic mode is not perfect, which is why professional photographers

prefer manual settings to produce better photographs. They practice and gain experience to un-

derstand which combinations of aperture, ISO and shutter speed are best for different kinds of

photos.

Professional photographers use their experience and knowledge to capture high-quality images

based on the context. Motivated by this fact, we propose a comprehensive system for pho-

tography assistance using crowd-sourced images which take into account available contextual

information for composition and camera parameter learning. We employ machine learning to

build the models for image composition and camera parameters. Figure 3.1 shows an overview
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of the proposed approach. The framework shows a real-time control feedback system where the

input is sensed from the physical world (view, geo-context, etc.) and feedback is provided to the

controller (photographer) to improve the image quality.

The remaining sections are organized as follows. Section 3.2 presents an overview of the pro-

posed system. Technical details of the proposed system are presented in section 3.3 and section

3.4. Section 3.5 presents the experiments conducted for the evaluation of this work. Finally,

section 3.6 concludes the chapter with possible future research direction.

3.2 Proposed Framework

The proposed approach consists of two phases, photography learning, and real-time assistance.

The first phase is an offline process which trains the photography model. In the second step, the

learned photography knowledge is utilized to provide real-time assistance to the user.

In the photography learning phase, models for photographic composition and camera parameters

are trained using the crowd-sourced images. Figure 3.2 presents an overview of the proposed

photography learning model. The crowdsourced image database is augmented with social media

cues such as user likes, shares, views, etc., which are used for image aesthetic quality evaluation.

Each image is also associated with Exif information which provides details like, geo-location, time

of capture, camera parameters, etc. The time stamp can be used to identify the environmental

conditions of a location at the time of capture. Popular landmark objects are identified for each

location and their position in the image frame is utilized along with the context for composition

learning. Probabilistic generative models are built for landmark objects based on their position

in the image frame which are further used in the second phase for providing camera motion

recommendation to the user. As context information such as geo-location, lighting conditions,
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FIGURE 3.2: Proposed Framework for Photography Learning

etc, are important for setting camera parameters, context features are utilized for learning camera

parameter models.

In the feedback phase, assistance regarding image composition and camera parameters is pro-

vided to the user in real-time based on the current user context. The geo-location of the user

and time of capture are used to get the environment conditions and derive associated context

features. The current view on the user camera and context features are fed into the composi-

tion model and an aesthetic score is predicted for the view based on its composition. Similarly,

camera parameter values are predicted using the model for camera parameters. If there are

faces detected in the current view then the composition model is also used for recommending a

position in the frame where people should be placed. The generative models build for landmark

objects are used for recommending camera motion such as pan, tilt, and zoom to improve the

scene composition.

3.3 Photography Learning

3.3.1 Context Features

Image composition and camera parameters are the two most important factors affecting image

aesthetics. However, both these factors are context dependent and therefore context plays an
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important role in photography. We define five context features for photography, time-context, geo-

context, env-context, view-context and type-context, which have impact on image composition

and camera parameters.

Time-Context Time is an important factor for learning camera parameters as it has a direct

impact on lighting conditions. Time of image capture is used along with sunrise, sunset and

sunpeak time to define time-context. It is described as a three-dimensional vector and the values

are calculated by finding the time difference between time-of-capture and each of sunrise time,

sunset time and sunpeak time.

Geo-Context Different geo-locations may have different visual elements, therefore, geo-location

is important from a composition perspective. Geo-location also affects camera parameters as

lighting and weather conditions may also vary from location to location. To define the geo-context

we use the latitude and longitude of the location.

Env-Context Using date, time and geo-location information of captured image, we extract the

environment conditions from the weather database. We utilize factors such as temperature,

visibility, humidity, haze, rain conditions, the month of capture, dew, mist and cloud details to

define env-context. Cloud conditions are defined as no-clouds (0), scattered clouds (1), partly

cloudy (2), mostly cloudy (3) and overcast (4). Rain is defined as no-rain(0), light rain(1) and

heavy rain(2). Detailed haze and mist levels are encoded as 0 or 1 based on whether haze/mist

is present or not. All these factors are combined to form a 9-dimensional feature descriptor for

env-context.
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View-Context It is introduced to differentiate between various possible views at a particular

geo-location. It basically refers to the viewing direction at any geo-location, but compass infor-

mation is not available for the crowd-sourced images. However, at any geo-location, the viewing

direction can also be inferred from the content of the image captured at that point. Images cap-

tured at any geo-location will have varying image composition and we assume that different views

will have different color composition. Therefore, we make use of the color composition of an im-

age to infer the viewing direction and use localized color (RGB) histogram to define view-context.

The image is divided into small cells of uniform size using a grid of N x N cells. A block is formed

by grouping M x M spatially connected cells and, a color histogram is extracted for each block. To

form the descriptor for view-context, histogram from all the blocks are combined together. RGB

color space is used for the histogram with 32 bins for each color. For our experiments we used

N=4 and M=2 to form a 864 (3x3x96) dimensional feature descriptor to represent view-context.

Type-Context A photograph with and without people will have different image composition as

well as camera parameters. To differentiate between images with and without people, we define

the type-context. Feature descriptor for type-context is formed using face recognition on the

image. The number of people present in the image is used along with the size of the largest

face to form a 2-dimensional normalized feature vector. The size of a face is important because

it reflects the distance of a person from the camera and will affect the aperture setting in the

parameters.

Context information like time of capture and geo-location can be extracted from the Exif metadata

of the image. Using the time-stamp and geo-location of the captured photograph we can find

out environmental conditions from online weather service providers. We obtained the historical

sunrise, sunset and sunpeak time from [165] by specifying the geo-location and date for the
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FIGURE 3.3: Distribution of aesthetic scores for different locations in our dataset. First row

shows the distribution using method proposed by [190] and second row shows distribution

using our method. Please refer to table 3.1 for details of the acronyms used for locations.

crowd-sourced images. The historical hourly weather information is obtained from [180] given

the time, date, and geo-location of the crowd-sourced image.

3.3.2 Aesthetic Score Evaluation

We make use of social media cues for finding the aesthetic quality of the crowd-sourced images.

The number of user-favorites and user-views of any photographs on social media indicates its

popularity among social media users. Apart from social media cues, we also take into account

Flickr’s ‘interestingness’ score. It is based on the quantity of user-entered metadata, the number

of users who have assigned metadata to the media object and access patterns related to the

media object [21].

Using this meta-data information we assign an aesthetic score to every image in the dataset

which ranges from 0-1. Here a value close to 0 indicates a badly composed image and a value

close to 1 indicates a good photograph. We used the logistic function to compute the aesthetic

score using the number of user-views (v), number of user-favorites ( f ) and ‘interestingness’ score

(I). Earlier studies have employed exponential function for aesthetic score evaluation [190]. The

motivation behind using the logistic function is that it will well separate the good and bad pho-

tographs and the aesthetic score will not increase exponentially with the increasing number of
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user-likes and favorites. We use equation 3.1 to calculate the aesthetic score for an image,

aesthetic_score(v, f , I) =
1

1+ e−F(v, f ,I)
, (3.1)

where,

F(v, f , I) = υlog(v+1)+β f +
ι f

v+1
+ϑI −κ. (3.2)

Here, υ,β, ι,ϑ and κ are constants which are empirically determined such that photographs

with median values of v, f and I for any geo-location get an aesthetic score of 0.5. The value

of κ is set to 6 as for v = f = I = 0 aesthetic score will be close to 0 which is the desired

value. υ = 2
log(vm)

,β = 1
fm
, ι = vm

fm
,ϑ = 4 and κ = 6 where vm is the median number of user-

views and fm is the median number of user-favorites from the dataset. Figure 3.3 presents the

distribution of aesthetic scores for all the images in our dataset for different locations. The x-axis

represents aesthetic score (0-1 from left to right) and the y-axis represents number of photos with

that aesthetic score. The distribution shown in the first row is computed employing the method

proposed by [190] and the second row presents the distribution using equation 3.1. The datasets

are constructed using the ranked list (based on the interestingness score [21]) of bad and high

quality images which is why we have large number of images with low and high aesthetic scores.

However, this is not evident in the distribution shown in first row of figure 3.3 where exponential

function is used for computing the aesthetic scores.

3.3.3 Photographic Composition

Photographic composition is the organization of important objects in the image. Position, size,

texture, color and shape of the object in an image are some of the factors which define the quality

of a photograph [47]. In crowd-sourced image dataset for any geo-location, we have images with
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similar views but different aesthetic score based on user ratings. One of the reasons for varying

user-ratings of these set of images is different photographic composition. We aim to learn the

best photographic composition rules for any geo-location making use of crowdsourced images.

For composition learning, we first extract the most popular landmark objects for a given geo-

location. It is important because of the following reasons. In crowd-sourced image database,

there can be some random images clicked by users (like a self-portrait, image of some animal,

etc.) which can contribute to noise in the learning process. Also, popular landmark object detec-

tion is an offline process and it avoids saliency detection in real-time, thus reducing the run-time

overhead.

3.3.3.1 Popular Landmark Object Detection

Popular landmark objects of any geo-location will occur more often in the captured images. We

make use of image segmentation, saliency detection and clustering to identify these landmark

objects. For image segmentation we use SLIC (Simple Linear Iterative Clustering) [2] approach

for fine grain segmentation of an image into superpixels. The obtained superpixels are then

merged to form bigger segments based on color similarity. Saliency map provides information

about salient regions in an image. For saliency map, we used visual attention based saliency

proposed by Achanta et al. [3]. Image segmentation and saliency map of an image are combined

to extract salient objects from a photograph. A saliency score is assigned to each segment

computed by taking the average of saliency values of all the pixels which form the segment.

The obtained segments are termed as visual words and represented using a set of visual fea-

tures. For feature extraction we use Histogram of Oriented Gradients (HOG) [36], Speeded-Up

Robust Features (SURF) [17] and RGB color histogram. These three features are combined to

form a normalized 904-dimensional feature vector which comprises of 72 dimensions for HOG,
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FIGURE 3.4: Composition map for some sample images

64 dimensions for SURF and 768 dimensions for RGB. Image segments with low saliency are

dropped from the pool and then clustering (k-means) is performed to group the identical visual

words. Each cluster represents a popular landmark object and is represented using the mean

value (features) of visual words which belong to the same cluster.

Visual words for a geo-location are also assigned a saliency value. We compute the average

saliency for each cluster using saliency of visual words which belong to that cluster. Popular

landmark objects will occur more often in captured photographs and corresponding visual words

will usually have higher saliency value. Therefore, the popularity of a landmark object is computed

as,

popularity(Vi) = average(
Numi

Nummax

,
∑

Numi

j=1 s j

Numi

), (3.3)

where, Vi is the ith landmark object, Numi is the cluster size ,Nummax is size of the largest cluster

and s j is the saliency value for visual word j for cluster i.

3.3.3.2 Composition Learning

We define the composition of an image in the form of feature descriptor which is further used

for composition learning. For each image, visual words extracted after segmentation are clas-

sified into popular landmark objects from similar geo-context employing the Nearest Neighbor

approach. Composition map for each image is formed using detected popular landmark objects

and their corresponding pre-computed popularity value. The value of a pixel in the composition

map is the popularity score of the salient objects which is present in that pixel location. There

can be faces present in the image which may change the composition of a view. To take this
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into account we make use of face detection and all the detected faces are marked as salient and

are assigned highest saliency. The composition map is divided into fixed number of cells using

a grid (NxN). Cell size (num. of pixels per cell) will depend upon the size of an image. Spatially

connected cells (MxM) are merged to form blocks. A histogram of popularity is extracted for each

block using B bins. Blocks can have overlapping cells and composition descriptor is formed by

combining histogram of popularity for all the blocks. Thus we have a B(N −M+1)(N −M+1)

dimension feature descriptor for composition. This composition descriptor is inspired by HOG

feature descriptor [36], which has shown great success in human detection in images. Further

details of feature extraction are presented in the experiment section. Figure 3.4 shows some

sample images with corresponding composition map.

Each image is assigned an aesthetic score based on the social media cues. We consider im-

ages with aesthetic score >0.6 as good and <0.4 as bad images. Images with aesthetic scores

between 0.4 and 0.6 are ignored to omit images with ambiguous aesthetics. Viewpoint and type

of view are two factors which can bring variation in scene composition. Therefore, we use the

composition descriptor along with view-context and geo-context to train a classifier for compo-

sition learning. We employ Support Vector Machine [25] for training a classification model for

composition.

3.3.3.3 Composition Learning and Photography Rules

Different photography rules may apply for different geo-locations and views based on image com-

position. To find out popular photographic compositions for any geo-location we employ matrix

decomposition on the composition feature of images. We take images with a good aesthetic

score (>0.6) and form a matrix where columns of the matrix represent composition feature for

each image. The composition map is divided into a grid with m rows and n columns with m×n
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rectangular cells and, an average popularity score is calculated for each cell. A feature vector is

formed by combining the average popularity score of all the cells in the grid. We employ Principal

Component Analysis (PCA) to find the basis for the composition rules. The idea is inspired by

[167] where eigenfaces are used as the basis for human faces. Here we use a similar technique

for computing the basis for photographic composition rules. The components which contribute

most towards the variance in the composition are chosen as the basis vectors and are called

eigenrules.

To explore photographic composition further, we employ Non-Negative Matrix Factorization (NMF)

to find a popular position in the image where objects are placed by the photographers. NMF has

been used for learning parts of faces and semantic features of text by researchers [95]. Here we

utilize NMF factorization to learn the composition basis for images and termed them as baserules.

The motivation behind eigenrules and baserules is to visualize and support the proposed com-

position learning. Since NMF decomposition only gives the positive basis, complex compositions

can be formed by adding different combinations of baserules. On the other hand eigenrules

can have negative components as well, therefore inferring complex compositions involve addition

as well as subtraction of eigenrules. Therefore, from the users perspective, baserules are more

important and easy to visualize as they indicate positions where salient objects should be placed.

3.3.4 Spatial Distribution Modeling

Placement of popular landmark objects in the image frame at different positions may lead to

varying compositions. Some of these positions will lead to high-quality photographs based on the

composition. Also, there can be more than one position on the image frame for a landmark object

which may lead to a high-quality image. For any landmark object, if we find out the favorable

positions in the image frame which lead to high-quality photograph, then we can guide a user in
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FIGURE 3.5: Salient object detection and object position for spatial distribution modeling.

camera motion as a scene is being composed. Based on the current position of the landmark

objects in the image frame, camera motion such as pan, tilt, and zoom can be recommended

which will improve the current scene composition.

To estimate the favorable positions of a landmark object in a given image frame we associate

each object with a spatial probabilistic distribution model, which is its probability over different

possible positions. This model is used to estimate the best possible position for extracted land-

mark object in an image frame based on the current view, and camera motion is predicted for

recommendation. The spatial distribution for each landmark object over image frame is assumed

to be a Gaussian Mixture Model (GMM). For any landmark object L, we denote x(L) = (x,y)T ,

where (x,y) are the normalized center of mass coordinates for landmark object on image frame

with respect to frame size (see Figure 3.5 for details). Therefore for a given landmark object Lk,

the probabilistic distribution of x(Lk) is expressed as:

p(x(Lk)) =
Nk

∑
i=1

wk
i N (x|µk

i ,Σ
k
i ), (3.4)

where, w denotes the prior, N (x|µ,Σ) denotes a Gaussian component and Nk is the number of

Gaussian components in the mixture. We employ Bayesian information criterion (BIC) to set the

number of Gaussian components ranging from 1-20. The Gaussian mixture model parameters
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(wk,µk,Σk) can be estimated for all the extracted landmark objects ( Lk) for a given location

using expectation-maximization (EM) algorithm [40]. In the E-step we compute the expected

class probability for each of the visual word (xt ) corresponding to a landmark object Lk:

P(i|xt) =
N (xt |µ

k
i ,Σ

k
i )w

k
i

∑
Nk

l=1 N (xt |µ
k
l ,Σ

k
l )w

k
l

. (3.5)

In the M-step, mean (µ̂), covariance (Σ̂) and priors for each class (ŵ) are updated:

µ̂k
i =

∑
Tk

t=1 P(i|xt)xt

∑
Tk

t=1 P(i|xt)
, (3.6)

Σ̂k
i =

∑
Tk

t=1 P(i|xt)[xt − µ̂k
i ][xt − µ̂k

i ]
T

∑
Tk

t=1 P(i|xt)
, (3.7)

ŵk
i =

∑
Tk

t=1 P(i|xt)

Tk

, (3.8)

where, Tk is the number of samples for a given landmark object Lk. We will discuss later how this

model can be used for camera motion recommendation.

3.3.5 Camera Parameters

Along with image composition, setting camera parameters is another challenging task for ama-

teur users. ISO, aperture, and shutter speed are most important among other camera parameters

and these three also play a vital role in adjusting the exposure. These parameters can be ex-

tracted from Exif metadata for the captured images. Since these parameters highly depend upon

the scene composition and lighting conditions, we developed a system where we make use of

environmental factors along with image composition to learn the camera parameters. As differ-

ent combinations of aperture, ISO and shutter speed can lead to same exposure value [72], we

73



Chapter 3. Context-Aware Photography Assistance

propose to learn these parameters independently based on relevant context information.

3.3.5.1 Exposure Value Learning

Exposure value (EV) represents a combination of camera’s shutter speed and f-number (aper-

ture), such that all combinations that yield the same exposure have the same EV value. Although

all camera settings with the same EV give the same exposure, they do not necessarily give the

same picture. The f-number determines the depth of field, and the shutter speed (exposure

time) determines the amount of motion blur leading to the differences in captured photograph.

Exposure value is a base-2 logarithmic scale defined as [72],

EV = log2
A2

T
, (3.9)

where, A is the relative aperture, T is the exposure time (‘shutter speed’) in seconds. ISO setting

of the camera also affects the exposure value. The relation between exposure value and ISO

value is given by [72],

EVS = EV100 + log2
S

100
, (3.10)

where, S is the ISO value, EVS is the exposure value at ISO S and EV100 is the exposure value

at ISO 100. From 3.9 and 3.10 we get,

EV100 = log2
A2

T
− log2

S

100
. (3.11)

Based on the aesthetic score we select good quality photographs (score >0.6) and calculate

the exposure value (EV100). For each photograph we define a context feature vector using the

information described in section 3.3.1. Time-context, geo-context, env-context and view-context

are used to define feature vector for exposure learning. Geo-context will not have much effect
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on exposure learning as we have geo-localized datasets, but it is used to make the system

generalized. Good quality images are used for exposure learning and regression analysis is

done using the context information with calculated exposure (EV100) as target values.

3.3.5.2 Aperture Learning

The aperture value of a camera lens is used to control the amount of light reaching the image

sensor. In combination with variation of shutter speed and ISO, the aperture size regulates the

image sensor’s degree of exposure to light. Apart from controlling the amount of exposure, the

aperture is also used to control the depth of field in the photograph [83]. Smaller aperture size

will bring all foreground and background objects in focus, while a larger aperture size will isolate

the foreground from the background by making the foreground objects sharp.

As the aperture setting of a camera lens depends upon the type of photographic view and its

composition, we will make use of the image composition to learn the corresponding aperture

value from crowdsourced images. Photographs with human objects will have greater depth of

field as compare to images without human objects. Also, the size of human objects will affect

depth of field as bigger human objects will be closer to the camera leading to a larger depth

of field as compare to smaller human objects. The aperture value will depend upon the view,

presence and absence of human object and the size of human object if present. Therefore, we

use time-context, geo-context, view-context, env-context and type-context for aperture learning.

Regression analysis is performed using these features to train a model for aperture value.

3.3.5.3 Shutter Speed Learning

Shutter speed controls the exposure time of the lens and thus affects the exposure value. Shutter

speed is also controlled to capture dynamic scene content. Finding scene dynamics from already

captured image is not easy. However, for a given geo-location view-context can be used to
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differentiate between various views and we assume that scene dynamics does not vary much for

landmark locations. Therefore we utilize the view-context along with time-context, env-context

and geo-context to learn shutter speed. Regression analysis is done for training a model using

context as the feature and shutter speed as target value.

3.3.5.4 ISO Estimation

ISO controls the exposure value and has a direct affect on the quality of image. ISO is the level of

sensitivity of the camera’s sensor to available light. The lower the ISO number, the less sensitive

it is to light, while a higher ISO number increases the sensitivity of the camera. But higher

sensitivity comes at an expense and it adds grain or ‘noise’ to the photograph. After learning the

exposure, aperture and shutter speed we can estimate ISO value of the camera using equation

3.12.

ISO =
100×A2

T ×2EV100
, (3.12)

where, A,T and EV100 are the corresponding predicted values for aperture, shutter speed and

exposure respectively.

3.4 Real-time Feedback

In the feedback phase, a recommendation regarding the image composition and the camera

parameters is provided to the user. The geo-location, using GPS of the smart device, and the

time information are used to obtain the environmental conditions of the location using weather

forecasting services [180], [165]. The obtained information is further utilized to derive the context

features as described in section 3.3.1. The current view on the camera device is segmented to

find visual objects in the scene. The extracted visual objects are classified as popular landmark
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objects using a Nearest Neighbor approach and a composition map is constructed with asso-

ciated popularity score of objects. Thereafter, a composition feature descriptor is extracted for

the view as described in section 3.3.3.2. The feature descriptor is used along with the context

features to predict an aesthetic score for the current view using the trained composition model.

Similarly, camera parameters are also predicted based on the context features using trained

parameter models.

3.4.1 Human Position Recommendation

In the case of portrait or group photos, we can make suggestions about the location where a

person or group of people should be in the image. The composition learning phase takes into

account the faces occurring in the image and therefore the trained model for composition can be

used to find out a position of faces in the image frame which will lead to better photographs. The

detected faces in the scene are used to find a bounding box for all the faces. The composition

grid is searched for a position which gives the best aesthetic score based on the composition. In

our earlier work [138], the complete composition grid was searched with a step size of one cell

for an optimal solution. This approach can provide an optimal solution but it is not suitable for a

real-time system as searching the complete grid will be computationally expensive.

We propose a more efficient method to solve this problem by employing some well-known pho-

tography rules along with a Hill Climbing approach. Finding the best position for people to stand in

an image frame is posed as an optimization problem. Instead of searching the complete grid we

employ the Hill Climbing algorithm and the starting points for the algorithm are chosen based on

photography rules. The rule-of-thirds and rule-of-center are used to determine the initial points

from where the search begins. These rules are used as guidelines by photographers to place the

salient objects in a scene. Rule-of-center states that the salient object should be placed at the
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center of the image frame and rule-of-thirds define four power points and four power lines and

states that the salient objects should be placed either close to these points or along these lines

[47]. Based on this we define nine positions in the image frame, one at the center, four at power

points and four at the center of power lines, to start the search.

The position of a person can be defined as a two-dimensional point (x,y) in an image frame. A

person can also move towards or away from the photographer which will have a zoom (in/out)

effect and will change the image composition. To take this into account we introduce another di-

mension (z) to the position and it can be defined as a three-dimensional point (x, y, z). Therefore,

the search for an optimal position is performed in three-dimensional space using Hill Climbing

algorithm. The center of the bounding box for all the detected faces in the scene is set as the

initial position. The predetermined nine positions along with initial position are used as a starting

point for the search algorithm. The value of initial points in the z dimension is set to 0, which

represents no zoom factor in the initial configuration. The search space is explored in steps

of (x_step, y_step, z_step) at a time in the composition map with x_step = cell_x/10, y_step =

cell_y/10 and z_step = (cell_x+cell_y)/20 where, cell_x and cell_y are the width and height of

a cell in the composition map. The details of human position recommendation are presented in

algorithm 1. Six point connectivity is assumed as neighbors (Neighbors) of a point are analyzed

in the search process. The composition map is modified (Modi f ymap) using the bounding box

as the search space is explored. An aesthetic score is evaluated (Score) for the modified compo-

sition map and search continues as long as a better composition is found in the neighborhood.

After all the positions are explored, the position with the best aesthetic score is selected as the

final recommendation.
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ALGORITHM 1: Human Position Recommendation

Input: Composition map (CM0), bounding box for detected faces (BB), initial position of BB(pos0), list of

predefined starting positions (pos_list0)
Output: Best position for recommendation Pbest .

Pbest := pos0; best_score := 0; PosList := {pos0, pos_list0};

for each position pos in PosList do

current_pos := pos; change := 0;

CM := Modify_Map(CM0, BB, current_pos); score := Score(CM);

repeat

N := Neighbors(current_pos);

for each position p in N do

CM := Modify_Map(CM0, BB, p); sp := Score(CM);

if (sp > score) then

score := sp; current_pos := p; change := 1;

end

end

until change = 1;

if (score > best_score) then

best_score := score; Pbest := current_pos;

end

end

3.4.2 Camera Movement Recommendation

The spatial distribution model for landmark objects are trained in learning phase. The obtained

model is used to predict the most favorable position in an image frame for the landmark objects

extracted from a given scene. Each image has some set of landmark objects I(L1,L2, ...,Ln),

and each object can be represented as x(L) = (x,y)T , where (x,y) are the normalized center of

mass coordinate for landmark object on image frame with respect to frame size, where n is the

number of landmark objects in the image. For each landmark object we predict a target position

on the image frame using the probabilistic model defined earlier. Therefore, for each object we

have an initial position (ix, iy) and a target position (tx, ty). The set of initial positions in an image

I(Ix, Iy)
T can be represented using the affine motion model [87] based on set of corresponding
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target positions I(Tx,Ty)
T :
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where, Φ = (a1,a2,a3,a4,a5,a6) is the parameter vector which is estimated using least square

(LS) method. After the estimation of affine model parameters, the camera motion operations can

be obtained as follows [87]:

pan = a1, tilt = a2,zoom =
1

2
(a2 +a6). (3.14)

The obtained camera operations will transform the initial image composition to the predicted

composition. These operations can be recommended to the user for improving the scene com-

position as a photograph is being captured.

3.5 Experiments and Results

3.5.1 Dataset

We used Flickr’s API to download crowd-sourced images along with social mediadata. Each

image is associated with Exif meta data and social media cues such as user likes, user favorites

and user comments. We collected around 62K images for 12 different tourist locations including

Merlion Park (Singapore), Esplanade (Singapore), Float at Marina Bay (Singapore), Eiffel Tower

(Paris, France), Statue of Liberty (New York, USA), Taj Mahal (Agra, India), India Gate (Delhi,

India), Gateway of India (Mumbai, India), Leaning Tower of Pisa (Italy), Arc de Triomphe (Paris),

Cologne Cathedral (Germany) and St. Peter’s Basilica (Vatican City). We make use of Flickr’s

photos.search API which allows a search of geo-tagged images in order of interestingness score
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and gathered top ranked and bottom ranked images for each location. Apart from this, we also

collected popular photographs from Flickr for learning composition basis. We constructed two

independent datasets using ‘interestingness’ API with 21K (DB-1) and 51K (DB-2) images. For

the first dataset we crawled images from the year 2008-12 and for the second dataset, we crawled

images from the year 2013-14. We chose two different periods to make sure we do not have

common images in the two datasets.

3.5.2 Landmark Object Identification

Using image segmentation and saliency detection we extract salient objects from images to gen-

erate a pool of visual words for each geo-location. We chose images with an aesthetic score

above 0.80 for landmark object detection to reduce the time complexity as well to reduce noise

from images with bad aesthetic scores. Another reason for choosing only good quality images is

that the camera focus is usually on salient objects in high-quality images and therefore saliency

detection provides better results. Features are extracted for each image segment as described

in section 3.3.3.1. Similar segments are grouped together using K-means algorithm with 200

clusters. The number of clusters is heuristically chosen based on the observation that for each

image we extract around 20-50 visual words and each geo-location can have around 5-10 views.

3.5.3 Composition Learning

In composition learning, we aim to train a classification model which can differentiate between

good and bad compositions. We consider images with aesthetic score >0.6 as good and <0.4 as

bad. Composition feature descriptor is extracted for each image as discussed in section 3.3.3.2,

with N=9, M=3 and B=20. Thus we have 980 dimensional feature descriptor representing im-

age composition which is used along with view-context and geo-context to train a classification
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TABLE 3.1: Classification Results for Composition Learning

Location Dataset Size
linear Kernel rbf Kernel

Accuracy Precision Accuracy Precision

Arc de Triomphe

(AT)
5500 0.65 0.65 0.68 0.68

Cologne Cathedral

(CC)
6056 0.68 0.57 0.68 0.60

Eiffel Tower

(ET)
17093 0.64 0.63 0.69 0.69

Esplanade

(ES)
1837 0.78 0.67 0.81 0.72

Float at Marina Bay

(FM)
3862 0.68 0.60 0.72 0.69

Gateway of India

(GI)
1536 0.65 0.51 0.66 0.55

India Gate

(IG)
1498 0.73 0.57 0.76 0.70

Leaning Tower of

Pisa (LT)
5133 0.64 0.56 0.76 0.61

Merlion Park

(MP)
3385 0.70 0.44 0.72 0.71

Statue of Liberty

(SL)
5667 0.69 0.67 0.69 0.67

St. Peter’s Basilica

(SP)
4964 0.64 0.71 0.69 0.75

Taj Mahal

(TM)
6118 0.66 0.52 0.70 0.62

model. To test our method, we employ binary Support Vector Machine (SVM) [25] with both lin-

ear and rbf kernel to train separate classification model for each location. We use 5 fold cross

validation to determine the accuracy rate and precision of the classifier. Table 3.1 presents the

classification accuracy and precision score for all the locations in our dataset. The average accu-

racy for all the datasets is around 71% with 67% average precision. The probabilistic score from

classification is used to evaluate the aesthetic score of the image. For images with people, po-

sition recommendation is made to obtain a maximum aesthetic score. Figure 3.6 shows sample

images with predicted aesthetic scores along with a position recommendation which is shown in

red blocks.
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(a) 0.64 (b) 0.76 (c) 0.80

(d) 0.84 (e) 0.81 (f) 0.86

Image Aesthetic Score
Actual Values/Predicted Values

Exposure Aperture Shutter Speed ISO

a 0.64 11.96/12.37 4.0/5.05 0.0050/0.0026 80/180

b 0.76 12.26/11.75 2.8/5.70 0.0020/0.0063 80/147

c 0.80 12.26/12.43 2.8/4.06 0.0020/0.0016 80/176

d 0.84 12.26/13.0 2.8/5.18 0.0020/0.0016 80/196

e 0.81 9.61/13.44 2.8/5.99 0.0125/0.0023 80/134

f 0.86 12.26/13.40 2.8/5.6 0.0020/0.0028 80/103

FIGURE 3.6: Sample images from ‘Merlion Park’ location with predicted aesthetic scores and

camera parameters

3.5.4 Analysis of Eigenrules and Baserules

To explore composition learning we extracted the basis for photographic composition as dis-

cussed in section 3.3.3.3. For the experiments, we use m=24 and n=32, with a 3:4 aspect ratio,

and extracted a 768-dimensional feature vector for each image. We used the two datasets with

popular photographs for this experiment as these photographs are mostly captured by good pho-

tographers. We extract top Eigenrules and top Baserules for the two datasets separately. As

discussed earlier these two datasets are independent and we tried to avoid having any common

images in these datasets. The number of eigenrules are selected based on the total variance

contributed by these basis in the data and the total number of baserules are selected by mini-

mizing the reconstruction error after NMF decomposition. Based on these criteria we chose 48

eigenrules, with more than 80% variance contribution, and 24 baserules.
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FIGURE 3.7: Visualization of Eigenrules and Baserules. Row 1 - Eigenrules for dataset DB-1,

row 2 - Eigenrules for dataset DB-2, row 3 - Baserules for dataset DB-1 and row 4 - Baserules

for dataset DB-2

Figure 3.7 shows top eigenrules and baserules extracted for the two datasets (DB-1, DB-2).

Some of the eigenrules reflect popular heuristic rules of photography which are used by photog-

raphers. For example, the first eigenrule corresponds to ‘rule of center’, the second eigenrule

corresponds to ‘rule of symmetry’ and the third eigenrule corresponds to ‘rule of framing’. Simi-

larly, some of the baserules shown in figure 3.7 corresponds to popular photography rules used

by the photographers. For example, ‘rule of thirds’ is a popular and mostly utilized composition

rule which recommend four positions (power points) in the frame to place the salient objects.

All these four power points are found in top baserules for both the datasets. Also, we observed

that both the set with high quality images share most of the eigenrules and baserules. More-

over, similar eigenrules and baserules are observed for all the locations in our dataset. Based

on this observation we can infer that various photographic compositions can be expressed as

combinations of some basic rules.

Figure 3.8 illustrates how image composition can be understood using eigenrules and baserules.

The first and the sixth column shows sample images followed by baserule map, top baserule,

eigenrule map and top eigenrule. Baserule map and eigenrule map shows the contribution of

corresponding rule basis in the image composition. Each block in the baserule and eigenrule
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FIGURE 3.8: Eigenrule and Baserule Analysis. Baserule map shows the contribution of

baserules in the image composition. Each cell in the matrix represents a baserule. The main

baserule is the visualization of basis which has the maximum contribution. Similarly, eigenrule

map shows the contribution of eigenrules in the image composition and the main eigenrule is

the visualization of the eigenrule with maximum contribution.

map corresponds to a basis rule where color intensity maps to the contribution of corresponding

rule. The first image in row 1 has only one salient object, and we can see in the baserule map

that there is mainly one baserule (dark cell at location (1,3) in the matrix) contributing to the

composition. The corresponding eigenrule is visualized next to it and it indicates the position of

the salient object in the image frame. Now consider the first image in row 5 which has a complex

composition and we can see in the baserule map that multiple baserules are involved. However,

in eigenrule map, we can observe that one of the eigenrule is contributing more than the others

(dark cell at location (1,4) in the matrix). Corresponding visualization of the eigenrule is shown

next to it and indicates how salient objects are organized in the image frame. It can be seen

that images with simple composition (first two rows) can be easily categorized using baserules.

On the other hand, images with complex composition (rows 3-5) are easier to understand using

eigenrules and it can be observed that images with similar composition have similar eigenrule

maps.

In this work, we make use of the composition learning to differentiate between good and bad

images based on the context. The motivation behind exploring eigenrules and baserules is
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to understand and visualize the composition learning. However, they can be utilized for other

aspects of photography as well, like understanding the combination which leads to various known

rules of photography. Different combination of eigenrules and baserules may lead to varying

compositions which can be applied for more complex compositions.

3.5.5 Parameter Learning

We employ ε-Support Vector Regression (ε-SVR) with RBF kernel for training separate models

for the three camera parameters. For exposure learning, time-context, geo-context, env-context

and view-context are utilized to train a regression model with EV100 as target value. Similar

context features are used for shutter-speed learning with shutter-speed (in seconds) as a target

value. However, for aperture learning type-context is also employed along with these features

for the regression model with aperture value as a target. Images with aesthetic score >0.6 are

used for parameter learning. Table 3.2 shows mean squared error and R2 score (coefficient

of determination) for various locations with ten-fold cross-validation. It can be observed that the

results for exposure learning are better as compared to aperture and shutter speed learning. This

is because the various combinations of aperture, ISO and shutter speed can produce similar

exposure and thus can lead to similar image quality. However, getting the exposure correct is

more important than other parameters as the right amount of light entering the camera lens is

the major factor affecting image quality.

Sample images from ‘Merlion Park ’ location are shown in figure 3.6 with position recommendation

(red region) and corresponding actual/predicted camera parameters. Figure 3.6b and 3.6c shows

similar views with and without a person standing in the foreground. As we can see from the

predicted values of aperture, the image with face requires a larger aperture value as compared
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TABLE 3.2: Regression Results for Parameter Learning

Location

Exposure Aperture Shutter Speed

R2 Score MSE R2 Score MSE R2 Score MSE

Arc de Triomphe 0.63 0.065 0.34 0.036 0.39 0.041

Cologne Cathedral 0.58 0.092 0.41 0.018 0.41 0.018

Eiffel Tower 0.70 0.049 0.47 0.047 0.32 0.037

Esplanade 0.70 0.171 0.20 0.021 0.53 0.085

Float at Marina Bay 0.65 0.047 0.33 0.038 0.59 0.004

Gateway of India 0.45 0.090 0.43 0.033 0.59 0.016

India Gate 0.64 0.065 0.51 0.039 0.47 0.017

Leaning Tower of Pisa 0.70 0.048 0.48 0.011 0.56 0.025

Merlion Park 0.76 0.062 0.42 0.036 0.45 0.194

Statue of Liberty 0.51 0.028 0.31 0.050 0.66 0.014

St. Peter’s Basilica 0.54 0.105 0.36 0.030 0.32 0.044

to the image without a face. A sample snapshot frame is shown in Figure 3.9 to demonstrate the

feedback provided to a user in real-time.

3.5.6 User Study

To further evaluate the proposed system we conducted a user study and invited 8 skilled pho-

tographers and 38 amateur users. In the study, we evaluated the system for composition learn-

ing, position recommendation, and camera parameter prediction. Amateur users were invited to
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FIGURE 3.9: Demonstration of how a real-time feedback will be given to a user. The left

vertical bar represents a predicted quality score of the current composition and varies from 0-1

as the color changes from red (bottom position) to green (top position). Below the bar are the

predicted camera parameters (aperture, shutter-speed, and ISO values) for the current

user-context. The blue boxes are the identified faces in the frame and the green boxes are

corresponding boxes for recommended position. On the top right we have the recommendation

for a camera motion to improve the composition. The visual buttons are for horizontal motion

(left and right buttons), vertical motion (top and bottom buttons), and the center visual button is

for zooming-in and zooming-out. A recommendation will be given to a user by blinking these

visual buttons for corresponding motion. A plus sign (shown in sample snapshot) will be used

for zooming-in and a minus sign will be used for zooming-out.

evaluate image composition and position recommendation, and skilled users evaluated camera

parameter prediction as well.

For composition evaluation, users were asked two types of questions. In the first type of question,

they were asked to rate an image from 1-5 based on its aesthetics quality and assign one of

the value as 1 (Poor), 2 (Below Average), 3 (Average), 4 (Good) and 5 (Excellent). A total

of 27 images were presented to the users for evaluation. Figure 3.10a shows the bar plot of

average ratings assigned to each image by the amateur and skilled users. The point plots are

the ratings predicted by our system and we can observe in figure 3.10a that most of the times

ratings predicted by our system are close to the ratings assigned by the users. In the second type

of question, users were provided two images of the same view but with different compositions.

We collected images with wide view angle for the locations from our dataset and used our system

to find good compositions for that view. An image frame of size 640x480 pixels is slid in the wide

angle image with a step size of 50 pixels. For each image frame, camera motion is detected using

our system and a target image is generated. The target image with the best aesthetic score is
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(a)

(b)

FIGURE 3.10: User study results for composition learning. (a) The bar plots are average rating

for each image assigned by amateur and skilled users and the point plot is the predicted rating.

(b) It shows the percentage of users who made the same choice as made by our system for

amateur and skilled users.

used for the user study. Now, two images with similar views are chosen from the dataset, one with

a low aesthetic score (<0.5) and another with a high aesthetic score (>0.7). The generated target

image is then compared with these two images separately in the user study. The order of the

images and order of the options were generated randomly. Figure 3.10b presents the bar plots

for the percentage of users who preferred the image produced by our system for both amateur

and skilled users. The overall consensus for composition evaluation between our system and the

users was around 90% for skilled users and 82% for amateur users (figure 3.11b).

For position recommendation, the users were provided images with same scene but people

standing at different positions. A total of 24 images were presented to the users and they were
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asked to choose the one with better quality. Figure 3.11a presents the plot for % of users who

chose the position same as our system. Overall, around 72% of the choices made by skilled

users and 71% of the choices made by amateur users were similar to the choices predicted by

our system. For comparison with bad quality images, the consensus between our system and the

users (comparison 2 in figure 3.11c) is around 95% for skilled users and 92% for amateur users,

on the other hand, comparison with high-quality images (comparison 1 in figure 3.11c) have the

consensus of around 71% for skilled users and 64% for amateur users. Only skilled users were

invited for the evaluation of camera parameter prediction. They were shown an image along with

(a)

(b) (c)

FIGURE 3.11: User study results for position recommendation, composition learning and

camera parameter prediction. (a) It shows the percentage of users who made the same choice

as made by our system for better position. (b) The overall consensus between users and our

system for composition, position recommendation and parameter prediction, and (c) The

overall consensus between our system and the users for different type of comparison

(comparison 1 - with high quality images and comparison 2 - with low quality images).
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(a)

(b)

(c)

(d)

FIGURE 3.12: Comparison of composition recommendation results. Row (a) and (b) shows

the wide angle view and recommended view respectively using [190]. Row (c) and (d) shows

similar wide angle view and recommended view respectively using our approach.

the camera parameters which were used to capture it. With each image, two set of camera pa-

rameter options were provided along with original parameters, one of which was suggested by

our system. The users were asked to choose the set of parameters which could have used to

capture a better image. Around 71% of the times, choices made by the skilled users were similar

to the what our system predicted (figure 3.11b).

3.5.7 Comparison

The proposed method focuses on image composition for finding the aesthetic quality of pho-

tographs. However, there are many other factors such as color composition, lighting, image

content, etc. which also affects image aesthetics. Researchers have proposed various methods

to compute image aesthetics which employ different types of low-level and high-level features.

In [124], the authors have compared a different set of features and their combinations for com-

puting image aesthetics and the highest accuracy rate of 89.9% is achieved for a combination of

features. Our proposed method for aesthetics evaluation achieves an accuracy of 71%, which is

reasonable as we are considering only composition factor. We have compared the qualitative re-

sults of our composition recommendation with state of the art method in photography assistance

91



Chapter 3. Context-Aware Photography Assistance

(a) (b) (c) (d) (e) (f) (g) (h)

FIGURE 3.13: Comparison of position recommendation. (b), (d) (f) and (h) shows position

recommendation using [181] and (a), (c), (e) and (g) shows position recommendation for

similar views using our approach.

[190]. The comparison is shown in figure 3.12 and we can observe that for a similar type of view

the recommended results for both the methods are almost similar. As the method proposed by

[190] requires a wide angle view for making a recommendation, we have also presented a wide

angle view image in our results for comparison purpose. However, it is important to note that our

proposed method does not require a wide angle view for making composition recommendation.

Another major limitation of [190] is that it does not take into account the presence of people in

photographs and also the composition recommendation is based on some preselected exem-

plar view. One the other hand, our proposed method considers the presence of people in the

photograph and also makes position recommendation.

We have compared our position recommendation results with state of the art method for human

position recommendation [181]. The comparison is shown in figure 3.13 and we can observe

that some of the results are similar. In figure 3.13d, the position recommended by [181] was not

preferred by users in the survey, which was also discussed by the authors. However, for similar

view 3.13c, the position recommendation proposed by our method was preferred by almost 95%

of the users. The method proposed by [181] does not consider overall composition of the image

and is limited to the presence of a single person. On the other hand, our method also provides

composition guidance and is not limited by the number of people in the image.
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3.5.8 Running-time Analysis

The experiments for the proposed system were performed on a 8 core Intel processor running

at 3.40 GHz and 8 GB of RAM using unoptimized python code. The average time to process a

640×480 pixel image for predicting an aesthetic score, camera parameters and camera motion

is around 1 second and position recommendation takes around 3 seconds. As the proposed

method does not impose any restriction on the input image size, we further investigated the

performance trade-off of the system for varying image size. 10% of the images from each location

are left out for testing and rest of the images are used for training the models. The testing images

are resized into different image resolutions with the longest dimension of an image ranging from

640 to 160 pixels. Figure 3.14 shows the plot of average accuracy and precision of composition

learning vs. image size (fig. 3.14a) and running-time vs image size (fig. 3.14b). The running-

time includes the overall time required for predicting an aesthetic score, camera parameters and

camera motion for an input image. The most time-consuming process in the pipeline is image

segmentation and therefore we can see a significant gain in running-time as we decrease the

image size. The average R2 score for parameter learning dropped from 0.62 to 0.56 as we

changed the maximum dimension of an image from 640 to 160, which is not very significant.
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FIGURE 3.14: Performance evaluation of the system for varying image size. x-axis refer to the

maximum image dimension in number of pixels. (a) Plot of accuracy and precision of

composition learning as we vary the image size. (b) Plot of running-time with varying image

size.
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This is because RGB histogram of an image does not change much on image rescaling and the

parameter model also depends on other factors such as type-context, geo-context, time-context

and env-context. With the increasing processing power, we believe that the proposed system

can be further optimized and efficiently implemented into portable smart devices with embedded

cameras.

3.5.9 Limitations

Since we utilize crowd-sourced data along with social media, there are some drawbacks despite

the advantages. Social media data is susceptible to noise and it can be inaccurate as peo-

ple do not always express what they actually feel. We also make the assumption that popular

photographs will have better compositions. However, there can be other possible reasons for

the popularity of crowd-sourced photographs in social media, like it can a photograph of some

celebrity. Also, we can have tourist locations with a limited number of images and the photogra-

phy model learned from a sparse dataset might not be that effective.

3.6 Summary

We have presented a context based photography learning method which utilizes crowd-sourced

images and associated social media cues. The proposed method can provide composition and

camera parameter guidance to the user based on context. It can also provide human posi-

tion and camera motion guidance to improve the image composition. We also presented the

idea of photographic composition basis, eigenrules and baserules to substantiate the proposed

composition learning. The idea of eigenrules and baserules can be further exploited to better

understand photographic composition. Using crowd-sourced images for learning photographic

rules is a promising way to capture the knowledge and intuition of professional photographers.
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The problem is that most of the places will have sparse datasets. The existing methods possibly

cannot provide similar performance for sparse locations as they do for dense locations. There-

fore, there is a need of some kind of knowledge transfer so that the knowledge acquired from

dense locations with similar context can be applied to sparse locations. In our future work, we

plan to explore these ideas further.
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Group Photography Assistance

Visual balance is considered as one of the important factors in defining the aesthetic quality of

visual arts. In this work, we propose a novel method to obtain visual balance in a layout with

dynamic visual elements. We use the idea of spring-electric graph model and augment it with

the concept of color energy from the literature of visual arts. We also present an interesting

application of the proposed model in photography assistance. We mainly focus on group photog-

raphy and utilize social media images along with proposed spring-electric model for providing a

recommendation to the user. The proposed method can provide real-time feedback to the user

regarding the arrangement of people, their position and relative size on the image frame. We

conducted qualitative experiments along with user studies to evaluate the proposed method. Ex-

perimental results and user studies show the effectiveness of the proposed model in obtaining

visual balance and group photography recommendation.

4.1 Introduction

A work of art is considered aesthetically pleasing to human eye if elements within the work are

arranged in a balanced compositional way [44]. Painters or still photographers also try to arrange

the static pictorial elements in a picture such that they look and feel inevitably balanced [7, 196].

Therefore visual balance in an image is considered as one of the important factors in the art of

composition. There are several aspects which accounts for balance such as color, size, shape,
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(a) (b) (c) (d)

FIGURE 4.1: Sample amateur (a & b) and professional (c & d) photographs. (a) size of people

too small and not balanced with the background view, (b) visually imbalanced, as viewers

attention is focused on the leftmost two people, (c) visually balanced arrangement of people,

and (d) the arrangement of people is well balanced with the background.

etc. of visual elements and they can be used individually or in a combination to obtain a balanced

composition. Color energy is one such measure which is used by artists to obtain visual balance

in a design. Color energy of a visual element indicates the relative aesthetic impact a color has

on a viewer [196].

The interplay of screen forces among visual elements in structuring a two-dimensional field is

also considered important in the art of visual design [196]. This idea of presence of virtual forces

between visual elements has been widely studied in drawing aesthetic planar graphs [16, 49, 80].

In these proposed methods, a graph is represented as a spring-electric system in which visual

balance is achieved by balancing mechanical and electric forces acting on the nodes of the graph.

These works are mainly focused on drawing aesthetic representation of graphs where all nodes

are similar and therefore factors such as color, size, shape etc. are not considered for obtaining

a visual balance. In this work, we modify and extend the spring-electric model by embedding

color energy to obtain a visual balance which can have a wide range of applications in the field

of computational media aesthetics.

We further apply this spring-electric model embedded with color energy in real-time photography

assistance. In particular we focus on group photography where we have multiple people standing

in an image frame with a scenic view in the background. In group photography, obtaining visual
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balance can be a challenging task as there are multiple parameters involved which affect the

aesthetics quality of the captured image. Some of the factors include arrangement of people,

their position and distance, i.e. how far they should stand from the camera. Professional pho-

tographers use their experience and knowledge to visualize how the visual elements in image

frame could be better arranged, sized or positioned. However, it is not trivial for amateur users

to estimate these parameters as there can be multiple possibilities. Fig. 4.1 shows some sample

group photographs captured by amateur as well as professional photographers.

We use the spring-electric model along with color energy to generate real-time recommendation

for users so that they can capture a visually balanced group photograph. The proposed method

makes use of social media images to estimate an initial position, where a group of people should

stand, and their relative size in the photograph. The estimated position and size of the people

are further optimized and their arrangement is determined using a spring-electric model which

enables visual balance in the image.

We make the following novel contributions in this work. We introduce the idea of color energy

from art of composition and embed it in a spring-electric model to obtain a visual balance in

a layout with dynamic visual elements. We present a novel application of this model in group

photography where we leverage on social media images along with this model to produce real-

time recommendation which can be used to capture high-quality group photographs. To the best

of our knowledge, this is the first time the problem of group photography recommendation is being

studied.

The rest of the chapter is organized as follows. In section 4.2 we will present an overview of the

proposed method. Section 4.3 presents the concept of spring-electric graph model and the idea
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of embedding color energy in the graph. In section 4.4, we present the application of spring-

electric graph model in group photography. The experimental results are presented in section

4.5. We have developed a mobile application for group photography recommendation which is

discussed in section 4.6. Finally, we will conclude the paper in section 4.7.

4.2 Overview

This work focuses on two different problems. In the first problem we propose a spring-electric

graph model embedded with color energy to solve the problem of visual balance in layouts with

dynamic visual elements. Each visual element is assigned a color energy based on its color,

size and surroundings which indicate its aesthetic impact on a viewer [196]. A graph is created

with visual elements as its nodes which can be static as well as dynamic. An attractive as well as

repulsive force act on the nodes which is computed using the color energy of the nodes. A energy

term is defined for the graph which is based on the forces acting on the nodes. The energy of the

graph is then minimized to obtain visual balance in the system.

In the second problem, we use this model to obtain a visual balance in a photograph with a group

of people. Here the people are considered dynamic visual elements and the objects in the scene

are treated as static visual elements. We leverage on social media images for estimating the

initial position and size for the group of people which is further optimized using the proposed

graph model. After obtaining visual balance, a recommendation is provided regarding arrange-

ment, position, and size of people in the image frame so that a user can capture a high-quality

photograph.
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4.3 Spring-Electric Graph Model

Force-directed graph drawing algorithms are a well studied class of algorithms for drawing graphs

in an aesthetically pleasing way [16, 45, 49, 80]. In this work we improve the spring-electric graph

model proposed by Fruchterman et al . [49]. In this model spring-like attractive force ( f a) based

on Hooke’s law attract connected pairs of nodes towards each other, while a repulsive force ( f r)

based on Coulomb’s law separate all pairs of nodes. The forces are defined as,

f a = d2
i j/K, (4.1)

f r =−K2/di j. (4.2)

Here, di j is the euclidean distance between nodes i and j, and K is a constant.

When this system of forces is in equilibrium, the edges tend to have a uniform length (because

of the spring forces), and nodes that are not connected tend to be drawn further apart (because

of the electrical repulsion). Equilibrium is achieved in the system by using the attractive and

repulsive forces either to simulate the motion of the nodes or to minimize the system energy.

Visual balance in a work of art depends on two major factors, visual weights, and visual direction

[6]. The visual weight of an element depends on factors such as its size, position, color, texture,

orientation, etc. and visual direction is the force exerted by the weights of neighboring elements.

We represent the visual weights with color energy and the visual direction is induced in the

system with the help of forces acting on nodes in the spring-electric model.
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4.3.1 Color Energy

Color energy is defined as the relative aesthetic impact a color has on a viewer [196]. The

energy of a color depends on (1) hue, saturation and brightness attributes of a color; (2) size of

the colored area; and (3) relative contrast between foreground and the background colors. Table

4.1 shows how these factors affect the color energy of a visual element. We compute the color

energy of a visual element as,

Ec =
w1H +w2B+w3S+w4A+w5C

∑5
i=1 wi

, (4.3)

where w1,w2,w3,w4 and w5 are mixing weights for relevant factors. H,B,S,A and C are warm-

ness of hue, brightness, saturation, area and contrast respectively corresponding to the visual

element and Ec the computed color energy. The warmness of hue is computed using hue wheel

with red (0◦/360◦) as warmest and blue (180◦) as coolest. Area of a visual element is normalized

by the area of the largest visual element present in the layout. The contrast of the visual element

is computed using Michelson formula [125].

C =
Lmax −Lmin

Lmax +Lmin

, (4.4)

where Lmax and Lmin are the maximum and minimum luminance values in the visual element and

its adjacent visual elements. We also compute hue contrast using the Michelson formula and the

average of hue and luminance contrast is utilized for color energy. Fig. 4.3 shows the variation of

color energy with hue, saturation and value on hue wheel and HSV cylinder.

The effects of the color composition can be readily integrated with aesthetic elements if the

colors are translated into color energies. One of the key principle in aesthetics says that the
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ALGORITHM 2: MIN_GE(G)

Input: Graph G(V, E) with set of nodes (V) and set of edges (E).

Output: Updated graph G(V, E) where the nodes in the graph (V) are placed to minimize the total graph

energy.

C := 1.0 // to determine relative strength of attractive and repulsive forces

K1 := 1.0 // to determine strength of spring force

K2 := 0.01 // to determine strength of electrical force

t := 0.5 // temperature to limit the node displacement

δ := 0.00001 // threshold value as stopping criteria for optimization

max_iter := 100, num_iter := 0 // maximum number of iterations, step

Eg := compute_energy(G) // using equation 4.3

repeat

// displacement due to repulsive forces acting on u

for each node u in V do

u.disp := 0 // displacement vector for u

for each node v in V do

if u 6= v then

dist := u.pos− v.pos // distance between u and v

// f r computed using equation 4.2

u.disp := u.disp+(dist/|dist|)∗ f r
uv

end

end

end

// displacement due to attractive forces acting on nodes

for each edge e in E do

dist := e.u.pos− e.v.pos // each edge has two set of nodes

// f a computed using equation 4.1

e.u.disp := e.u.disp− (dist/|dist|)∗ f a
uv

e.v.disp := e.v.disp+(dist/|dist|)∗ f a
uv

end

// update node positions

for each node u in V do

if u.fixed 6= true then

// limit the maximum displacement with temperature t

u.pos := u.pos+(u.disp/|u.disp|)∗min(u.disp, t)
end

end

update_color_energy(V )
E

g
o := compute_energy(G)

δ := |Eg −E
g
o |, Eg := E

g
o

cool(t), num_iter := num_iter+1

until δ ≥ threshold and num_iter < max_iter

various color energies should be balanced in a composition and the areas of high-energy colors

should be set-off against background areas of low-energy color [196]. Based on these principles

we define the following objectives for obtaining a visual balance,

1. High color energy visual elements should not be close to each other.
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Attribute Variable Color Energy

Hue
Warm High

Cold Low

Brightness
High High

Low Low

Saturation
High High

Low Low

Area
Large High

Small Low

Contrast
High High

Low Low

TABLE 4.1: Aesthetic Energy of Colors [196].

FIGURE 4.3: Variation of color energy with Hue, Saturation and Value shown on hue wheel and

HSV cylinder.

2. High color energy visual elements should be close to low color energy elements.

3. The overall color energy should be balanced at the center of the layout.

To achieve the above-mentioned objectives we modify the spring-electric model by embedding

color energy into graph nodes. Color energy is introduced to determine the magnitude of forces

acting on the nodes. In the resultant system, the high energy nodes repel each other with a

greater force and the nodes with a high energy attract the nodes with a low energy. The forces

acting on nodes in this updated model are defined as,

f a = d2
i j|E

c
i −Ec

j |/K, (4.5)
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FIGURE 4.4: Visualization of extracted color based edge features.

f r =−K2|Ec
i +Ec

j |/di j. (4.6)

Here, Ec
i is the color energy of the ith visual element. To balance the acting forces in this model

energy minimization is performed which is discussed in the next section. After balancing the

forces the overall color energy is balanced at the center of the layout. We will discuss this in

detail when explaining the application in section 4.4.3.3.

4.3.2 Energy Minimization

The various forces acting on the nodes of the graph can be used to estimate its energy [49]. The

energy of spring-electric graph model is defined as,

Eg =
N

∑
i=1

f 2
i , (4.7)

where, N is the total number of visual elements and,

fi =C ∑
j 6=i

f r
i j

(x j − xi)

di j

+ ∑
i↔ j

f a
i j

(x j − xi)

di j

. (4.8)

Here, C is a constant that determines the strength of the attractive and repulsive forces, f r
i j and

f a
i j are the repulsive and attractive forces between nodes i and j, and xi and x j are the position

of the nodes i and j in the layout. We minimize this energy function by the method proposed

by [49]. In this iterative approach, each node of the graph is displaced according to the effective
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FIGURE 4.5: Association of edges with nodes in image graph.

force acting on it in each iteration. The details of the optimization process are presented in

algorithm 2.

4.4 Group photography

In group photography, the main challenge for a photographer is to determine the arrangement, po-

sition, and size of the people standing in the image frame. This task can be easy for professional

photographers but it can be very challenging for an amateur user to identify these parameters. In

this work we propose the use of the principle of visual balance and estimate these parameters

as a user is trying to capture a group photograph. We leverage on social media images to first

estimate the position and size of people and then make use of an electric-graph model to find

the arrangement and optimize the position and size of people in the image frame. We collected a

dataset of high-quality group photographs from social media for our experiments (section 4.5.1).

These images are used to develop a computation model which can predict an initial configuration

for group photography. We first perform scene categorization to differentiate between different

scene types and then a probabilistic model is trained for the position and size of people in differ-

ent scene types. The next subsections discuss this in detail. The Fig. 4.2 shows the outline of

the proposed method for generating group photography recommendation.
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(a) Edge Features (b) Saliency Features

FIGURE 4.6: Spatial pyramid layers for extracting edge and saliency features for structure

learning.

FIGURE 4.7: The first row shows the visualization of saliency map for identified scene

categories. In the second row we have the visualization of distribution of position predicted for

two people with average face within each category.

4.4.1 Scene Categorization

Scene structure plays an important role in finding the position where a person or group of people

should stand in an image frame. We performed a scene categorization to distinguish between

different types of scenes based on the scene structure. Scene structure is represented using a

combination of edge-based and saliency-based features. These features are further utilized to

perform clustering and identify a set of scene categories.

We propose a graph-based approach for edge detection to extract the color based edges in an

image. We first perform segmentation on the image to find the superpixels using SLIC approach

[2]. The superpixels are then utilized to create a graph representation of the image and weighted

edges are added to the graph for neighboring superpixels based on the color similarity. If all

the superpixels are utilized for graph creation then different images will have a varying graph
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structure. Therefore we follow a grid approach which allows us to represent different images with

a consistent graph structure.

Each image is divided into a grid with size N × N and each cell in the grid is assigned the

superpixel with highest number of pixel contribution. Now each cell in the grid is used to form a

node in the graph and an edge is added between neighboring cells with color similarity as edge

weight. For each node in the graph we use eight cell connectivity and, the edge weights are

utilized to extract a feature representation for scene structure. To remove redundancy of edges

from this representation each edge is only considered once and thus eventually we have four

edges corresponding to each node in the graph.

We employ spatial pyramid approach [93] on this graph model to form a feature descriptor for

representing scene structure. We consider three levels in spatial pyramid with (1× 1),(3× 4)

and (6× 8) blocks at each level of hierarchy. For each block we aggregate the edge weights

for the cells in that block and normalize by number of cells in corresponding block. The features

extracted from each level are used to form a feature descriptor as defined by [93].

Apart from the edge information, saliency map of an image is also utilized for scene categoriza-

tion. We employ [3] for saliency map detection of an image and spatial pyramid approach similar

to edge features but with different grid size is used for feature extraction. In the spatial pyramid

we consider three levels with (3×4), (6×8) and (12×16) blocks at each level of hierarchy.

We use the face detection approach proposed in [170] to detect faces in the image. Presence

of people in photographs can change the scene structure and therefore in order to represent

the scene structure for images with people we use the method proposed by [203] to modify the

saliency map. Similarly, we also modify the edge graph of an image by removing all the edges in

the region where people are present before performing feature extraction.
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Finally, we get a 244-dimensional feature descriptor for edges and a 252-dimensional feature

descriptor for saliency. The edge and saliency feature descriptor are then combined together to

represent the scene structure of an image. We employ k-means algorithm for clustering to identify

different scene categories. Figure 4.7 shows the mean saliency map for identified categories with

10 clusters.

4.4.2 Position and Size Modeling

The position where a group of people should stand in the image frame and the size of standing

people relative to the image frame impacts the aesthetics of an image. Estimating the position

and corresponding size for given scene and the number of people in the group can be challenging

for amateur users. We leverage on the crowd-sourced images to estimate these parameters

using a generative probabilistic distribution model. The position where a group of people should

stand in an image frame will vary with the scene structure and therefore we perform separate

position modeling for different scene categories.

For each image in our dataset, we perform face detection to find the faces in the image. Then

we compute a mean position in image frame based on all the detected faces which represent the

position of the people. The mean position is computed as a weighted mean of the center of de-

tected faces where the weights are the size of the detected faces. We also compute average face

size for each of the image using the size of detected faces. We build a generative probabilistic

model to train a distribution of position, size and the number of people for each of the identified

scene category. We employ Gaussian Mixture Model (GMM) for learning the probabilistic dis-

tribution. For any scene category I, we denote x(I) = (x,y,s,n)T , where (x,y) represents the

mean position of people in the image, s represents the mean size of faces and n denotes the

number of people present in the photograph. Therefore, the probabilistic distribution of x(Ik) for
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a given scene category Ik can be expressed as,

p(x(Ik)) =
Nk

∑
i=1

wk
i N (x|µk

i ,Σ
k
i ), (4.9)

where, w denotes the prior, N (x|µ,Σ) denotes a Gaussian component and Nk is the number of

Gaussian components in the mixture. We use Bayesian information criterion [145] to estimate

the number of Gaussian mixture components. The parameters (wk,µk,Σk) of Gaussian mixture

model are estimated for all the identified scene categories (Ik) using expectation-maximization

(EM) algorithm [40]. The EM algorithm maximizes the log-likelihood of class probability for each

configuration associated with a scene category. In the E-step we compute the expected class

probability for each of the configuration (xt ) corresponding to a scene category Ik:

P(i|xt) =
N (xt |µ

k
i ,Σ

k
i )w

k
i

∑
Nk

l=1 N (xt |µ
k
l ,Σ

k
l )w

k
l

. (4.10)

In M-step the latent variables, mean (µ̂), covariance (Σ̂) and priors for each class (ŵ) are updated

as follows:

µ̂k
i =

∑
Tk

t=1 P(i|xt)xt

∑
Tk

t=1 P(i|xt)
, (4.11)

Σ̂k
i =

∑
Tk

t=1 P(i|xt)[xt − µ̂k
i ][xt − µ̂k

i ]
T

∑
Tk

t=1 P(i|xt)
, (4.12)

ŵk
i =

∑
Tk

t=1 P(i|xt)

Tk

, (4.13)

where, Tk is the number of photographs for a given scene category Ik. We term this distribution

model as PSN (position, size and number of people) and it is used to predict the initial position

and size of a group of people based on the scene category and the number of people present in

the image.
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FIGURE 4.8: A sample example of recommendation. a) Input image, b) segmented image, c)

spring-electric model, d) recommendation using color energy, e) saliency map, and f)

recommendation using both color energy and saliency.

4.4.3 Real-Time Recommendation

In the first step, we categorize the image view as one of the identified scene categories. Edge

and saliency features are extracted for the view as described in section 4.4.1. We employ the

Nearest Neighbor approach for category identification using the extracted features. Thereafter,

the user is asked to provide the number of people in the photograph and a position in the image

frame (x,y) and the size of people is predicted using the trained PSN model based on maximum

posterior probability. The recommended position and size are estimated based on learning from

social media images which are further improved with spring-electric graph model. A sample

example is shown in fig. 4.8.

4.4.3.1 Graph Modeling

In the first step, the user view is represented as a graph where the nodes represent the visual

objects in the image. We employ the method proposed by Achanta et al. [2] for fine grain

segmentation. The identified superpixels are further merged based on color similarity to obtain

visual objects in the view and small sized visual objects (<1% of image size) are discarded. The

nodes corresponding to people are also added to this graph. Their initial position and size are

determined using the PSN model. We term the nodes corresponding to people as p-nodes and

nodes corresponding to image segments as s-nodes for further discussion. In a given view, the

position of objects in the image will be fixed. However, people standing in the frame can change

their position. Therefore p-nodes are kept fixed and s-nodes are dynamic. Edges are created

111



Chapter 4. Group Photography Assistance

between p-nodes and s-nodes in the graph, however, the p-nodes are not connected with each

other so that they can move independently in the layout. We will see later in the next section

(4.4.3.2) how this is useful for estimating the arrangement of people in the photograph.

As described in section 4.3.1, color energy is computed for each node in the graph. The dress

color of the people is used for computing color energy for p-nodes. For dresses with multiple

colors, top 5 dominant colors are used and 5 (or less) p-nodes are created for each person

depending on the number of colors detected. During energy optimization, a collective force is

computed for the p-nodes corresponding to a person based on individual forces. The contrast

value of a node is computed with all the adjacent nodes in the image frame and then an average

value of contrast is assigned to the node.

In a photograph standing in front of any salient visual element may block the object and is not

recommended. Color energy is not an alternative for saliency and we came across many such

cases in our experiments. To take this into account we compute saliency of each visual element

using the method proposed by [3]. Also, the p-nodes in the graph are assigned the maximum

saliency value computed for visual elements in the view. The repulsive force in the graph model

is updated as follows,

f r =−K2|Ec
i +Ec

j ||S
s
i +Ss

j|/di j. (4.14)

Here, Ss
i is the saliency value of ith node in the graph. This repulsive force between nodes

ensures that people are not standing in front of the salient objects.

4.4.3.2 Formation Estimation

The recommendation is generated in three steps. In the first step, the group formation of people

is estimated. In the second step, a position is determined and finally, in the third step, the size
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FIGURE 4.9: Possible configurations of~cm,~ci,~cs and~cp on an image frame for obtaining visual

balance.

of people is optimized. The details of the complete process are described in algorithm 3. The p-

nodes are initially placed at the position predicted using the PSN model. Energy minimization is

performed on this initial graph configuration and an unorganized position of p-nodes is obtained.

This intermediate graph configuration is then used to obtain a group formation of people. There

can be multiple ways for a group of people to stand which we term as group formation. The

study of various group formations will be the focus of our future work where recommendation

regarding group formation will also be included. In this work, we consider only the horizontal

linear formation where the people are standing side by side in a line.

A mean position is computed using the intermediate positions of p-nodes and these nodes are

moved towards this position in small steps along the vertical axis. The motion in the horizontal

axis is determined by the spring and electrical forces on the nodes. This step is iterated until all

the p-nodes are in the same horizontal position to form a linear group formation. The motivation

behind performing this in a step-wise iterative process is to maintain the visual balance between

p-nodes.

4.4.3.3 Position and Size Optimization

The formation estimation may lead to increase in graph energy and therefore we need to further

optimize the position of people. After formation estimation, all the p-nodes are considered as a

113



Chapter 4. Group Photography Assistance

ALGORITHM 3: FPS_EST (G)

Input: Graph G(V, E) with set of nodes (V), which includes p-nodes corresponding to people, and s-nodes

corresponding to image segments, and set of edges (E) connecting p-nodes with s-nodes.

Output: Updated graph G(V, E) where the position and size of p-nodes indicates the arrangement,

position and size for recommendation.

t := 0.005 // temperature to limit the node displacement

Step 1: Formation Estimation

MIN_GE(G) // Algorithm 1: optimize the graph energy

mean_pos := f ind_mean_position() // mean position for p-nodes

step_size := f ind_step_size() // find step size for each p-node

repeat

// pos.x for horizontal axis and pos.y for vertical axis

for each node u in p-nodes do

u.pos.y := u.pos.y+ step_size(u)
// u.disp is computed as described in algorithm 1

u.pos.x := u.pos.x+(u.disp/|u.disp|)∗min(u.disp, t)

end

update_color_energy(V )

until all p-nodes are in line formation

make_dist_equal() // make p-nodes equidistant from each other

Step 2: Position Estimation

// First the p-nodes are combined together for uniform displacement

combine_pnodes() // p-nodes are combined together

MIN_GE(G) // Algorithm 1: optimize the graph energy

Step 3: Size Estimation

~cm := (0.5,0.5) // center of image frame

// compute ~cp,~cs and ~ci position using color-energy as weights

~cp := compute_weighted_mean(p-nodes) // people nodes

~cs := compute_weighted_mean(s-nodes) // image segments

~ci := compute_weighted_mean(V ) // all the nodes

enlarge_ f ace := true

// compute the angle α as defined in figure 4.9

α := angle(~cm −~ci,~cp −~ci)
if α > 90o then

enlarge_ f ace := f alse

end

δ := 0, f lag := true // face size should be further increase/decrease

Costce := compute_cost() // using equation 4.15

repeat

f lag := modi f y_ f ace_size(enlarge_ f ace)
update_color_energy(V )
Costce

o := compute_cost() // using equation 4.15

δ :=Costce −Costce
o , Costce :=Costce

o

until δ ≥ 0 and f lag == true

single node and the forces on this node is determined by aggregating the forces acting on all

the p-nodes. With this constraint the energy minimization algorithm described in section 4.3.2 is

again applied on the graph model.
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The overall color energy of the system is balanced at the center of image frame to optimize the

size of people. As size also plays a role in color energy, change in size will also change the color

energy. For balancing the color energy of the system at the center we minimize the following cost

function,

Costce = ||~cm −~ci||, (4.15)

where~cm denotes the center position of the image frame and~ci is the current position on image

frame where the color energy (both the p-nodes and s-nodes) is centered. It is defined as,

~ci =
∑N

i=1 Ec
i~xi

∑N
i=1 Ec

i

. (4.16)

Here, N is the total number of nodes in the graph, Ec
i is the color energy of ith node, and~xi is the

position of the ith node in the frame. We also define~cp and~cs which indicates the center of color

energy for p-nodes and s-nodes respectively. Figure 4.9 shows different possible configurations

for~cm,~ci,~cp and~cs on an image frame. The size of p-nodes is either increased or decreased in

small steps to minimize the cost function defined in equation 4.15. Since changing the size of a

node also changes its color energy, increasing or decreasing face sizes will move the center of

color energy (~ci) towards the center of image frame (~cm).

To determine whether the face size should be increased or decreased we compute angle α

between vectors (~cm −~ci) and (~cp −~ci). It can be observed from figure 4.9 that if the angle

α > 90o (b, c, e & h) then reducing the color energy of p-nodes will move~ci towards~cm which will

reduce the cost Costce and therefore the face size should be decreased. And, if α < 90o (a, d,

f and g), then increasing the color energy of p-nodes will move~ci towards~cm and therefore face

sizes should be increased. It can also be observed from fig. 4.9 that increasing or decreasing
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the size of p-nodes will keep on reducing the cost Costce for configurations (e-f). We set an upper

as well as a lower limit on the face size based on social media images to resolve this problem.

A lower and upper limit on face size is determined for each of the scene category based on the

number of people and minimum and maximum average face sizes in each category. However, it is

important to note that the configurations from e-f were not observed in our experiments because

the image is already visually balanced using spring-electric graph model before optimizing the

face size.

4.5 Experiments and Results

Experiments were performed to evaluate three things: 1) Visual balance obtained by spring-

electric model, 2) Recommendation provided for group photography regarding the arrangement,

position and size of people, and 3) Real-time performance analysis of the proposed method.

4.5.1 Dataset

We used Flickr images to build our dataset for performing evaluation experiments. We utilized

Flickr’s photos.search API and used image-tags to find images related to group photography. We

used tags such as ‘group photography’, ‘family portrait’, and ‘group portrait’ for retrieving relevant

images. Using these tags we gathered around 24K images in order of interestingness score and

then performed a post processing to clean the dataset.

For dataset cleaning, we performed face detection and removed the images with no face or one

face from the dataset. Also, we ignore images with no scenic view present in the background. For

this, the images in which people cover most of the image frame are ignored. We keep images in

which the area covered by people is less than 30%. The method proposed by Wang et al . [174]
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FIGURE 4.10: Visual balance results obtained for different graphs using the proposed

spring-electric graph model. From left to right (row 1-3), we can observe how the layout

configuration for similar graphs changes with variation in color and size of nodes. The last

column shows the plot of energy as final configuration is obtained using algorithm 2. The y-axis

is the graph energy, the bottom x-axis is number of iterations and the top x-axis is time in

milliseconds in which the layout was obtained. (—- first column, —- second column and —-

third column.)

FIGURE 4.11: Effect of contrast on visual balance. The blue and green nodes have similar

color energy and therefore the first layout is symmetrical. However, changing the background

color changes the color energies of these nodes leading to a different layout.
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FIGURE 4.12: Recommended results. A colored silhouette is rendered at the recommended

position with corresponding size and clothing color.

is utilized to compute the area covered by people in the image frame. After this post processing,

we get a dataset of 5941 images and it is used for performing our experiments.

4.5.2 Visual Balance

We use the proposed spring-electric graph model to obtain visual balance in drawing graphs with

colored nodes. Figure 4.10 shows some of the results for graphs with varying structure, node

color and node size. The initial position of all the nodes in the graph are randomly generated. The

positions of the graph nodes are updated iteratively using algorithm 2 and, the layouts presented

in figure 4.10 are obtained after minimizing the graph energy. We can observe that the layouts are

symmetrical and, changing the node color and size affect the layout. Increasing the color energy

of a node by changing its color and size increases its distance from a high color energy node

(a) center (b) thirds (c) thirds (d) our approach

FIGURE 4.13: Comparison with known rules of photography.
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and decreasing the color energy attracts it towards a high color energy node. This is consistent

with the objectives we defined for obtaining visual balance in a layout. The last row in figure 4.10

shows the variation of graph energy with each iteration along with the time required for obtaining

visual balance in each of the graphs. The initial graph energy is different for graphs with similar

structure because the position of graph nodes are randomly initialized. It can also be observed

that time required for obtaining visual balance increases as we increase the number of nodes in

the graph.

Figure 4.11 shows the effect of contrast on visual balance. The first layout shown in figure 4.11

is symmetrical as the green and blue nodes have similar color energy. Changing the background

color changes the contrast and therefore the color energy of nodes. In the second layout, we

can observe that the green background reduces the color energy of green colored nodes and

therefore their position is closer to the red colored node. A similar change in the layout can be

observed for blue colored nodes in the third figure where we have a blue colored background.

4.5.3 Group Photography

For qualitative evaluation, we predict arrangement, size, and position recommendation for ran-

domly generated number of people and clothing color for a set of scenic images which are not

in our dataset. Fig 4.12 shows some of the results we obtained using our proposed system.

We can see how the recommendation changes to achieve visual balance as the clothing color is

changed (Fig. 4.12, last row, column 5 and 6). In the case of the arrangement of people, it can be

observed that persons with high energy clothing are never adjacent to each other which makes

them distinctly visible (Fig. 4.12, row 2, column 2, 3, and 5). Also, in fig. 4.8 we can observe

how the recommendation position changes when we incorporate saliency of visual elements into

consideration.
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FIGURE 4.14: Recommendation results with user disagreement. Our recommendations (First:

0.36% and third: 0.2% user agreement) compared with second and fourth image with different

position and size.

FIGURE 4.15: Images with non-symmetrical view and limitations of visual balance.

We also compare our approach with known rules of photography. Fig. 4.13 shows a sample

example where our approach performs better than existing photography rules. We can observe

that when rule-of-center is applied the vanishing point is obstructed and using rule-of-thirds one

of the people is not visible due to a low contrast. However, with our approach, the group is placed

at a position such that both of the above-mentioned issues are avoided.

4.5.4 User Study

To further evaluate the recommendation, we conducted a user study in which 25 users partic-

ipated including 20 amateur users and 5 skilled photographers. Users with at least 5 years of

experience in the single-lens reflex camera were considered skilled photographers. The average

age of the amateur users was around 30 years with a range of 21-58 years and for the skilled

users, the average age was around 31 years with a range of 27-34 years.

In the survey, there were four set of questions to evaluate different types of recommendation

generated by our proposed method. We evaluated our method for the position, arrangement,

size and overall aesthetics. For each question, a pair of images with a similar view with different

recommendations were shown to the user. In one of the option recommendations were generated
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FIGURE 4.16: Comparison of recommendations for single person photography with Wang et al

[174]. The first row shows results obtained using [174] and the second row shows the results

obtained with our proposed method.

using our approach and for the other option, our proposed recommendations were modified to

generate a different recommendation. For the arrangement of people, a random arrangement is

generated and in the case of position a displacement vector (dx, dy) is randomly generated to

move the position of people. Here, dx is the displacement in the horizontal direction with (0.1*w

<dx <0.2*w) and dy is the displacement in the vertical direction with (0 <dy <0.1*h), where w

and h are the width and height of the image frame respectively. Similarly, for the size of people,

it was either increased or decreased by a random amount within the range (10%-20%) of the

recommended size.

The users were asked the following question, ‘Which of two positions do you think is better from

aesthetics perspective?’. For each type, 10 set of questions were presented to the user. The

options in a question and the questions itself were randomly placed in the survey.For each set of

questions the users were asked to consider the following factors,

1. Clothing color and position of the person/group.

2. Clothing color and size of the person/group.

3. Clothing color and arrangement of the group.

4. Clothing color, size, position and arrangement of the person/group.

The overall percentage of the user agreement with our proposed recommendation was 75.6%.
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This user agreement comprised of 72.6% agreement with amateur users and 78.5% with skilled

users. Figure 4.17 shows the distribution of the percentage of the user agreement with our

proposed recommendation for the different type of recommendations. It can be observed that

agreement percentage is higher with skilled users as compared to amateur users. We also ob-

served that the user agreement level for position and size recommendation is lower as compared

to the arrangement and overall aesthetics. Fig 4.14 shows some of the cases when users were

in disagreement with our recommendation. We can see in Fig. 4.14 (first image) that the image

is symmetrical and the group is placed in the center which hides the lake view. This makes the

second image (Fig. 4.14) more attractive as the lake is visible if we move the group to another po-

sition. The reason for this failed case can be attributed to saliency detection as the lake was not

marked as salient. However, when the arrangement of people was also considered in aesthetics

evaluation the user agreement level was improved.

4.5.5 Comparison

To the best of our knowledge, this is the first attempt to study the problem of group photography

recommendation. The proposed method can also be used to generate a recommendation for

single person photography. To validate the effectiveness of our proposed method we compare

our results with one of the state-of-the-arts work in single person photography [174]. The initial

position and size are estimated using the PSN model for 2 people. For many cases, our proposed

method generated almost similar results as produced by Wang et al. [174]. Some of the sample

results for comparison are shown in fig. 4.16. However, the method proposed by Wang et

al. does not consider the color of objects and the clothing color of people for generating the

recommendations. Therefore, we observed different recommendation results generated using

their approach and our proposed method for sceneries where color plays an important role in
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FIGURE 4.17: User study results. The bar graph shows percentage of user agreement with our

proposed recommendation.

the placement of people. The difference in generated recommendations is shown in fig. 4.16

(column 4-7). We can observe that the recommendations generated using [174] may be good for

certain clothing colors but not good for the color shown in the image as the person is not distinctly

visible due to low contrast. On the other hand, since our approach also considers the clothing

color as well as the color of objects in the scene, a better position is recommended where the

person is distinctly visible.

4.5.6 Limitations

The position recommendation is generated only based on visual balance and therefore there are

some limitations of the proposed approach. For non-symmetrical views when a visual balance is

achieved, it might not always be feasible for the group to stand in the recommended position (Fig.

4.15). In the first and the third image high energy colors are used and we can observe how the

recommendation changes when we have low color energy clothes (second and fourth image).

This limitation can be overcome either by considering scene semantics or taking feedback from

the user in an interactive way.
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FIGURE 4.18: System overview of the developed mobile application for proposed group

photography recommendation method.

4.5.7 Computation Time Analysis

The algorithm used for optimizing graph energy has a time complexity of O||V |2 + |E|| for each

iteration, where |V | is the total number of nodes and |E| is the total number of edges in the

graph. Therefore, the running-time of the optimization algorithm will increase as we increase the

number of nodes in the graph. Figure 4.10 (fourth row) shows the plot of energy minimization

with the number of iterations and running-time. We can observe that the running-time increases

from around 4-12 milliseconds to 50-80 milliseconds as we increase the number of nodes in the

graph from 3 to 12. The experiments were conducted on a desktop machine with 8 GB of RAM

using an unoptimized python code.

The graph constructed for group photography recommendation for a given image has around 40-

60 nodes and it takes around 500 ms (mean for 100 images) for optimizing graph energy using

algorithm 3. We also tested the running-time of algorithm 3 on a graph with around 100 nodes

by over-segmenting the image. It took around 800 ms (average for 50 images) to optimize the

graph energy. The average time to process a 640×480 pixel image for generating the position,

size, and arrangement recommendation is around 1.5 sec. Rest of the processing time is spent

on image segmentation and saliency map detection. Image segmentation and saliency map
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FIGURE 4.19: Some sample photographs captured using the developed mobile application.

The first row shows the photographs captured without any recommendation and the second

rows shows photographs captured using the recommendation.

detection can be performed in parallel to improve the runtime. Also, the proposed method does

not impose any restriction on the size of the input image and therefore the runtime can be further

optimized by reducing the image resolution.

4.6 Mobile Application

We have developed a mobile application in Android platform for the proposed group photography

recommendation. The developed application is a cloud-based system in which the user view

and user input regarding the number of people and clothing preference is sent over a network to

the cloud server. If faces are detected in the user view, the number of people and their clothing

color is identified from the image, otherwise, the user-input is considered. A recommendation

regarding the arrangement of people, their position, and relative size is generated on the server

and a feedback is sent to the user. A system overview of the mobile application is presented

in fig. 4.18. Some sample photographs captured using the developed mobile application are

shown in fig. 4.19. We can observe that the photographs captured using the recommendation

are visually balanced and of better quality.
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4.7 Summary

In this work, we proposed a novel method to obtain visual balance in a layout with dynamic vi-

sual elements. We extended the idea of spring-electric graph model and augmented it with the

concept of color energy. We mainly focused on obtaining a visual balance in an image frame

and providing real-time assistance to users for capturing high-quality group photographs. We

leveraged on social media images and make use of proposed spring-electric model to provide

a recommendation to the user for capturing visually balanced photographs. Experimental eval-

uations showed that the proposed method can provide effective real-time feedback to the user

regarding the arrangement of people, their position on image frame and relative size. The concept

of spring-electric graph modeling can be further explored by bringing in more aesthetic principles

such as shape, texture, etc. in the model and can be used for a variety of other applications in

computational media aesthetics.
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Chapter 5

Context-Aware Viewpoint

Recommendation

In this chapter, we will discuss a novel viewpoint recommendation system which can assist a

user in capturing high-quality photographs at well-known tourist locations. The proposed system,

ClickSmart, can provide real-time viewpoint recommendation based on the preview on user’s

camera, current time and user’s geo-location. It makes use of publicly available geo-tagged

images along with associated metadata for learning a recommendation model. We define view-

cells, macro blocks in geo-space, and propose the idea of popularity, quality and uniqueness of

view-cells from viewpoint perspective. Viewpoint recommendation is generated at the granularity

of a view-cell and is based on its popularity, quality and uniqueness, which are estimated using

social media cues associated with images. We further observe that contextual information such

as time and weather conditions play an important role in photography, and therefore augment the

recommendation system with associated context. ClickSmart also takes into account presence of

people in the view for making the recommendation. It can provide two kinds of recommendations,

quality-based and uniqueness-based. Although, both were found effective in the experimental

evaluation, user study showed that uniqueness based recommendation was preferred more by
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FIGURE 5.1: Overview of the framework for ClickSmart

skilled photographers as compared to amateurs. The work presented in this chapter has been

published in [140].

5.1 Introduction

In photography, viewpoint refers to the geo-location from where a photograph is captured and is

considered as one of the essential factors in the art of photography [47]. It has a large impact on

the composition of a photograph and as a result, it also affects the aesthetic quality of a captured

image. We also observe that context (time and weather conditions) also play an important role

in viewpoint selection for landmark photography. For example, it is difficult to get a good quality

image when the camera lens is facing the sun. Now, as the sun moves during the day, viewpoints

for photography will also change with time for a view at a given location (Fig. 5.2). Similarly,

weather conditions also affect viewpoint as factors like visibility, clouds, etc., have an impact on

lighting conditions, which is known to play an important role in photography [83].

In the last decade, we have seen an increasing trend in people’s photo taking and sharing behav-

ior. There are many social media services such as Flickr, Panoramio and Photo.net, with a large

collection of photos shared by professional and other users. These photos have Exif data, which
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FIGURE 5.2: Photographs of same monument with change in viewpoint and time.

provide us context information like, time of capture and geo-location of the captured image. Using

these details we can infer the photo-taking behavior of people for popular tourist locations. Also,

the shared photos are augmented with social media cues such as the number of user views,

likes, and comments. In this work, we integrate the photo-taking behavior with social media cues

to develop a recommendation system which can provide real-time viewpoint recommendation to

the user for taking better photos. The proposed method, which we call ClickSmart, is focused

on landmark photography and aims to provide real-time guidance to the user before an image is

captured. Fig. 5.1 presents an overview of the proposed framework.

In recent years, researchers have shown interest in the field of photography assistance. They

have proposed methods which provide assistance to the user for capturing high quality images

using publicly available photographs [111, 128, 138, 139, 156, 181, 190]. The proposed methods

focus on improving the image composition based on the preview on user’s camera. However,

the recommendation provided by these methods assumes that the user is already standing in

a good viewpoint. Besides view-based photography assistance, there are methods which pro-

vide location recommendation using publicly available photographs. These methods are mainly

focused on studying the photo-taking behavior of people at well-known tourist locations and pro-

viding photo-shooting location recommendation to the user [149, 204] and [132]. However, the

recommendation provided by these methods is not generated at the time of capture and is static

irrespective of the view a user is trying to capture.
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In this work, we attempt to bridge the gap between view-based and location-based recommen-

dation. ClickSmart provides viewpoint recommendation based on the preview on user’s camera.

The rest of the chapter is organized as follows. We begin by discussing the technical details of

the proposed offline learning in section 5.2. We then delve into the real-time recommendation

phase in section 5.3. Detailed experimental evaluation and results are presented in section 5.4.

Finally, section 5.5 concludes with a summary of our work and a discussion on possible future

work.

5.2 Offline Learning

The framework of ClickSmart consists of two phases, offline learning and real-time viewpoint

recommendation. In offline phase, publicly available images are utilized along with associated

meta-data information to train a viewpoint recommendation model. The number of possible views

at any tourist location can be numerous and therefore the problem of scene based viewpoint rec-

ommendation is challenging. Bringing in the time and weather parameters into consideration

makes the problem even more difficult. To solve this problem, we follow a bottom-up approach

and instead of focusing on the complete view we focus on the landmark objects present in the

view. The photo-taking behavior of users corresponding to each landmark object is modeled us-

ing a generative (Gaussian Mixture Model) approach. An overview of the offline learning process

is outlined in figure 5.3.

5.2.1 Landmark Objects

In any tourist location, there are usually multiple landmark objects which the users capture in

their photographs. We first extract visual words from the images captured at a location using

image segmentation technique. We use SLIC (Simple Linear Iterative Clustering) [2] method
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FIGURE 5.3: Overview of the offline learning phase of ClickSmart
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for segmentation of an image which generates small superpixels. The obtained superpixels are

merged based on their color similarity to form segments termed as visual words. Thus, a pool of

visual words is created for each tourist location.

To identify landmark objects, clustering is performed on the pool to group the identical visual

words. We use Affinity Propagation [48] algorithm to perform clustering. A visual word is repre-

sented by a set of features. We employ RGB color histogram, Histogram of Oriented Gradients

(HOG) [36] and Speeded-Up Robust Features (SURF) [17] for feature extraction. Each visual

word is represented with a 896-dimensional feature vector. It comprises of 3×256 dimensions

for RGB color histogram, 64 dimensions for SURF features and another 64 dimensions for HOG

features. After performing clustering a set of clusters are formed and each cluster is represented

by an exemplar visual word denoted as a landmark object.

5.2.2 Popularity of Landmark Objects

For a tourist location, all landmark objects may not be equally important from the photography

perspective. To find the importance of a landmark object we propose a hybrid approach which

utilizes image saliency and a variant of tf-idf. We make the assumption that popular landmark

objects detected in an image will be more salient. For saliency map, we use visual attention

based saliency proposed by Achanta et al. [3]. We extract saliency map for each image and then

saliency value of each pixel is used to evaluate saliency of each visual segment obtained from

image segmentation. A normalized saliency value is evaluated for all the visual words extracted

for a tourist location. Then, average saliency value is computed for visual words which belong

to the same cluster and this average value is assigned as a saliency score to corresponding

landmark object.
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We further observe that popular landmark objects will occur more often in captured photographs.

The size of a cluster indicates the occurrence of that landmark object in the photographs. How-

ever, multiple occurrences of a visual word does not always indicate its importance. A visual

word corresponding to the sky and trees may be found multiple times in an image and may not

be important. To distinguish between popular and common landmark objects, we employ a vari-

ant of tf-idf. We use term-frequency (tf ) to represent the number of times a visual word occurs in

the same image and similarly, document-frequency (df ) represent the number of times a visual

word occurs in different images. Now, a popular landmark object will have a low tf and a high

df. Therefore, to estimate the popularity of a landmark object we compute itf-df, the product of

inverse term-frequency and document-frequency, where itf is the inverse term-frequency.

We use a weighted combination of saliency and itf-df to estimate the popularity of a landmark

object (lmo).

Pop(lmoi) = a1(Sali)+a2(it fi ×d fi). (5.1)

Here, Pop(lmoi) is the popularity, Sali is the saliency, it fi is the inverse term-frequency and

d fi represents document-frequency of ith lmo. a1 and a2 are weights for saliency and itf-df.

Substituting the values of Sali, it fi and d fi we get,

Pop(lmoi) = a1

∑
Ti

j=1 sal j

Ti

+a2
Numi

∑
Numi

j=1 num j

logNumi, (5.2)

where, Ti is the total number of occurrence of ith lmo in all images, sal j is the saliency value of

lmoi in its jth occurrence, Numi is the number of images in which ith lmo was present and num j

is the number of times lmoi was present in the jth image.
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5.2.3 Viewpoint Modeling

In viewpoint modeling, we utilize the photo-taking behavior of people and try to model the popu-

lar viewpoint locations for identified landmark objects. We associate each landmark object with

a spatial probabilistic distribution model which illustrates the popularity of different possible view-

points. After performing clustering for landmark object detection, the visual words belonging to

the same cluster represents similar landmark object. Thus, we have multiple geo-locations for

a landmark object which represents different viewpoints from where it was captured. We use

the latitude and longitude coordinates of the viewpoint location of a landmark object to build a

generative model. The spatial distribution of the viewpoints for each landmark object is assumed

to be a Gaussian Mixture Model (GMM). For any landmark object l, we denote x(l) = (lat, lon)T ,

where (lat, lon) represent the latitude and longitude coordinates of the viewpoint for a landmark

object respectively. Therefore, the probabilistic distribution of viewpoints x(lk) for a given land-

mark object lk can be expressed as,

p(x(lk)) =
Nk

∑
i=1

wk
i N (x|µk

i ,Σ
k
i ), (5.3)

where, wk
i denotes the prior, N (x|µ,Σ) denotes a Gaussian component and Nk is the number of

Gaussian components in the mixture. To estimate the number of Gaussian mixture components,

we use Bayesian information criterion (BIC) [145]. The parameters (wk,µk,Σk) of Gaussian

mixture model are estimated for all the extracted landmark objects ( lk) for a given location using

expectation-maximization (EM) algorithm [40]. The EM algorithm maximizes the log-likelihood of

class probability for each of the viewpoints associated with a landmark object. In the E-step we

compute the expected class probability for each of the viewpoint (xt ) corresponding to a landmark
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object lk:

P(i|xt) =
N (xt |µ

k
i ,Σ

k
i )w

k
i

∑
Nk

l=1 N (xt |µ
k
l ,Σ

k
l )w

k
l

. (5.4)

In the M-step latent variables, mean (µ̂), covariance (Σ̂) and priors for each class (ŵ) are updated

as follows:

µ̂k
i =

∑
Tk

t=1 P(i|xt)xt

∑
Tk

t=1 P(i|xt)
, (5.5)

Σ̂k
i =

∑
Tk

t=1 P(i|xt)[xt − µ̂k
i ][xt − µ̂k

i ]
T

∑
Tk

t=1 P(i|xt)
, (5.6)

ŵk
i =

∑
Tk

t=1 P(i|xt)

Tk

, (5.7)

where, Tk is the number of viewpoint samples associated with a given landmark object lk.

5.2.3.1 Photographs With People

We define a virtual landmark object representing a human object to model the photo-taking be-

havior of users for photographs with people. The geo-locations from all the images which have

people in them are considered as viewpoints for a virtual human object. For a virtual human ob-

ject lv, we denote x(lv) = (lat, lon,num)T , where (lat, lon) represent the latitude and longitude

of the viewpoint and num denotes the number of people present in the image. The probabilis-

tic distribution of viewpoints x(lv) for a virtual human object lv in 3 dimensional space can be

expressed using equation 5.3.

5.2.3.2 Role of Context

We add another parameter to the probabilistic distribution model of landmark objects to incorpo-

rate the effect of time on viewpoint. Now, for a landmark object l we define x(l)= (lat, lon, time)T ,

where (lat, lon) represent the latitude and longitude coordinates of the viewpoint for a landmark

object and time denotes the time of capture. This 3-dimensional spatial and time distribution for

135



Chapter 5. Context-Aware Viewpoint Recommendation

a landmark object is expressed using the equation 5.3 and the corresponding parameters are

evaluated using EM algorithm.

Apart from time, we also consider weather conditions for viewpoint recommendation. The time

and geo-location of the captured image can be used to find the weather condition at the time

of capture. We consider visibility, haze, temperature, sunrise time, sunset time, sunpeak time,

cloud conditions, rain conditions and month of capture to define a 9-dim feature vector. A discrete

feature value is used to define the cloud and rain conditions (overcast-4, mostly cloudy-3, partly

cloudy-2, scattered clouds-1, no-clouds-0, no-rain-0, light rain-1 and heavy rain-2). We make use

of weather forecast services [165, 180] to obtain the details.

Now, for each landmark object, we have three types of features, location, time and weather-

conditions. This gives us a 12-dim feature space corresponding to each visual word. Since,

the weather conditions such as visibility, haze, cloud conditions, etc, are correlated, the dimen-

sionality of weather feature space can be reduced. Therefore, we employ Principal Component

Analysis (PCA) to reduce the dimensionality of weather features. The weather feature space is

reduced from 9 to 4 which is based on the variance contribution score after performing PCA. Us-

ing equation 5.3 a probabilistic distribution is expressed for each landmark object which considers

both time and weather conditions.

5.2.4 View-Cell (Popularity vs Quality)

According to a recent study [58], the latitude and longitude coordinates of the geo-location of

Flickr images is accurate up to 10 meters for popular locations. Taking this into account, we

divide the geographical area of a tourist location into equal sized macro blocks, termed as view-

cells, and use the granularity of view-cells for viewpoint recommendation. In the previous section,

we discussed viewpoint modeling which tries to estimate the photo-taking behavior of people for
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FIGURE 5.4: Overview of ClickSmart real-time recommendation
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a landmark object at any tourist location. It represents the underlying popularity of a viewpoint

for a landmark object based on the number of photographs of that landmark object captured at

that location. However, the number of photographs of a landmark object captured at any location

does not always indicate the quality of that viewpoint. Therefore we define another metric, quality

of view-cell, which is an indication of its aesthetic quality and is evaluated based on social media

cues.

We first evaluate the aesthetic quality of captured images using social media cues to determine

the quality of a viewpoint. The aesthetic quality of an image is computed based on the number

of user-views, user-likes and interestingness score assigned by Flickr [21]. Since, an old photo-

graph on social media will tend to have more number of user-views and user-likes as compared

to a relatively new photograph, the evaluated aesthetic score is adjusted using a time factor.

score(i) =
(

1−
1

eυv+β f+ϑI

)( 1

1+ eτt−κ

)

, (5.8)

where, v and f are the number of user-views and likes respectively, I is the interestingness score

and t is the number of days between the upload date of the image and the date we crawled

the dataset. υ,β,ϑ,τ and κ are constants whose values are empirically calculated such that

photographs with median values of v, f and i get a score of 0.5. Also, equal weightage is given

to user views, likes and interestingness in computing the score. The values of θ and κ is set

such that the oldest photograph in the dataset has a deteriorating factor of 0.5 and the newest

photograph has a deteriorating factor of 1. For our experiments, we set υ = 0.003,β = 0.04,ϑ =

1,τ = 0.005 and κ = 6.

Based on the aesthetic score of an image, each visual word is also assigned an aesthetic value.

This value is propagated from the visual word to the geo-location associated with it. Thus, for
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each landmark object, we will have aesthetic scores associated with all the locations from where

that object was captured. Each geo-location is binned into a view-cell based on its latitude and

longitude coordinate values. In this work, we define the size of view-cells as 10× 10 square

meter blocks. An average score is calculated for each view-cell using the aesthetic value of the

locations which belong to this view-cell for a landmark object. This score is termed as the quality

of view-cells corresponding to each landmark object.

5.2.5 Uniqueness of a view-cell

In any tourist location, there can be some good viewpoints which are not very popular among

tourist, but they may be good from a photography perspective. We define such viewpoint locations

as rare but interesting for photography and propose a term uniqueness to quantify this aspect of

viewpoints. The uniqueness of a viewpoint depends upon the quality and number of photographs

captured at that location. High quality will make a location interesting and therefore uniqueness

is directly proportional to the quality of a location. A large number of photographs at a location

means it is very popular and easily accessible to the users. We define the term sparseness to

measure the inverse of popularity. Now, the uniqueness of a view-cell for a landmark object is

computed as the product of quality and sparseness of the view-cell. It is defined as,

U l
i = Ql

i ×Sl
i , (5.9)

where, U l
i , Ql

i , and Sl
i represents the uniqueness, quality and sparseness of a view-cell i for lmol

respectively. The quality of a view-cell i for lmol is defined as,

Ql
i =

∑
Nl

j=1 a j

Nl

, (5.10)
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where, a j is the aesthetic quality score of the jth instance of lmol captured in the view-cell i and

Nl is the total number of instances of lmol captured in the view-cell i. Sparseness of view-cell i

for lmol is defined as,

Sl
i =



















1

1+ eζNl−η
, if Nl > 0

0, otherwise

, (5.11)

where, Nl is the total number of photographs with landmark object l captured in the view-cell

i. ζ and η are constants which are empirically computed and set as ζ = 0.1 and η = 6 in the

conducted experiments.

5.3 Real-Time Recommendation

The preview on the user’s camera and the time and geo-location of the user are taken as input

for the recommendation system. An overview of the real-time recommendation is presented in

Fig. 5.4. The time and geo-location are used to get the weather condition of the user location

from the weather service providers [165, 180]. Image segmentation [2] is performed on the user

preview image and the extracted visual words are classified as one of the landmark objects from

corresponding tourist location using Nearest Neighbor approach. The input image is represented

as a set of landmark objects, I = {l1, l2, ..., lN}, where N is the number of landmark objects

detected.

As described earlier in section (5.2.4), a tourist location is divided into view-cells and a map of

view-cells is defined with size (m×n), where m is the number of view-cells along the latitude and

n is the number of view-cells along the longitude. Different tourist locations will have a different

number of view-cells which will be based on the total geographical area covered by the captured

photographs. A popularity score is estimated for the view-cells corresponding to each detected

landmark object using the trained probabilistic model. The geo-location at the center of view-cell
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is used to estimate the popularity score. If there are faces detected in the preview, the number of

faces in the preview is used along with the geo-location to estimate the popularity of the view-cell

map for human objects. Finally, we get a popularity map (PM) of size m× n for each of the

detected landmark objects along with the virtual human object.

The quality score of each view-cell in the location is evaluated for the detected landmark objects

employing equation 5.10. Thus, we obtain a quality score map (QM) of size m× n for all the

detected landmark objects. Each landmark object is also associated with a popularity score

(Pop) which is computed using equation 5.1. We generate a view-cell map (RM) of size m× n

based on the view-cell popularity (PM), view-cell quality (QM) and landmark object popularity

(Pop) to make viewpoint recommendation to the user. It is computed as,

RM =
L

∑
i=0

Popi

[

PMi ◦QMi

]

+PMh ◦QMh, (5.12)

where, L is the number of landmark objects detected in the preview, Popi, PMi and QMi are the

popularity score, popularity map and the quality map for the ith lmo respectively. (A ◦B) is the

Hadamard product of two matrices. PMh and QMh are the popularity map and quality score for

virtual human object respectively (PM is set to 0 in case of absence of people in photograph). The

view-cells with higher values in the map RM are recommended to the user as target viewpoints.

For context-aware recommendation, time and weather conditions are utilized to form feature de-

scriptors as described in section 5.2.3.2. Then a context-aware popularity map (PM) is estimated

for the detected landmark objects and virtual human objects using the trained probabilistic model

which is utilized in equation 5.12 to generate a context-aware recommendation.

In section 5.2.5, we discussed the idea of uniqueness of a view-cell for a landmark object. We
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integrate this uniqueness of view-cells along with the popularity and quality of view-cells to gen-

erate rare but interesting viewpoints. The uniqueness score of all the view-cells is evaluated for

a landmark object using equation 5.9 to generate an uniqueness map (UM) for view-cells. The

recommendation map is computed as,

RM =
L

∑
i=0

Popi

[

ΞPMi ◦QMi +νUMi

]

+
[

ΞPMh ◦QMh +νUMh

]

, (5.13)

where, (UMi) is the uniqueness map for ith lmo and UMh is the uniqueness map for virtual human

object. Ξ and ν are constants which indicates the preference for quality and uniqueness. We set

Ξ = 1 and ν = 1 in our experiments to assign equal weights to both the factors.

5.4 Experiments and Discussions

5.4.1 Dataset

We used Flickr to build our dataset for performing evaluation experiments. To evaluate our pro-

posed method we selected twelve different popular tourist locations and build a dataset of around

67K images (table 5.1). We collected images for Arc de Triomphe (Paris, France), Cologne Cathe-

dral (Germany), Eiffel Tower (Paris, France), Forbidden City (Beijing, China), Gateway of India

(Mumbai, India), India Gate (Delhi, India), Leaning Tower of Pisa (Italy), Merlion Park (Singa-

pore), Statue of Liberty (New York, USA), St. Peter’s Basilica (Vatican City), Taj Mahal (Agra,

India) and Tiananmen Square (Beijing, China). We utilized Flickr’s photos.search API which al-

lows to search geo-tagged images in order of interestingness score and gathered top ranked

images for each tourist location.
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TABLE 5.1: Details of the dataset and experimental results. Size is the total no. of images and LMO is the no. of landmark objects identified. q-rec is for

quality based, t-rec is for time-aware, w-rec is for weather based and uq-rec and ut-rec are for corresponding uniqueness based recommendation. P@2

is the average precision score based on top 2 and nDCG5 is the normalized discounted cumulative gain for top 5 recommended viewpoints. (wtc -

evaluation without time constraint, tc - with time constraint).

Location Size LMO

q-rec (wtc) t-rec (tc) w-rec (tc) uq-rec (wtc) ut-rec (tc)

P@2 nDCG5 P@2 nDCG5 P@2 nDCG5 P@2 nDCG5 P@2 nDCG5

Arc de Triomphe 5564 334 0.84 0.89 0.82 0.89 0.74 0.81 0.79 0.93 0.74 0.90

Cologne Cathedral 4294 282 0.84 0.95 0.82 0.91 0.72 0.84 0.84 0.93 0.83 0.91

Eiffel Tower 10739 242 0.86 0.87 0.85 0.87 0.68 0.78 0.86 0.89 0.86 0.89

Forbidden City 4985 284 0.77 0.97 0.75 0.95 0.43 0.77 0.75 0.74 0.74 0.76

Gateway of India 3521 270 0.74 0.79 0.71 0.82 0.59 0.84 0.89 0.88 0.89 0.90

India Gate 3872 392 0.73 0.85 0.64 0.83 0.47 0.84 0.82 0.87 0.78 0.87

Leaning Tower of Pisa 5542 279 0.89 0.78 0.86 0.78 0.51 0.81 0.89 0.78 0.88 0.81

Merlion Park 4308 232 0.63 0.79 0.59 0.84 0.56 0.87 0.73 0.89 0.72 0.89

Statue of Liberty 6358 254 0.91 0.97 0.88 0.95 0.66 0.80 0.84 0.83 0.80 0.82

St. Peter’s Basilica 6722 373 0.85 0.90 0.84 0.90 0.67 0.81 0.86 0.90 0.86 0.91

Taj Mahal 6594 373 0.83 0.91 0.72 0.91 0.72 0.84 0.86 0.93 0.87 0.94

Tiananmen Square 2460 241 0.45 0.96 0.47 0.94 0.16 0.81 0.44 0.70 0.40 0.73

1
4
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TABLE 5.2: Average precision@N and nDCGρ score. S and T are recommendations using

[204] corresponding to spatial and temporal methods as defined by the authors. (wtc -

evaluation without time constraint, all other results are with time constraint.

Method P@1 P@2 P@5 nDCG2 nDCG5

q-rec (wtc) 0.82 0.78 0.73 0.76 0.89

q-rec 0.53 0.54 0.51 0.58 0.75

t-rec 0.78 0.75 0.70 0.74 0.88

w-rec 0.57 0.57 0.56 0.62 0.83

uq-rec (wtc) 0.81 0.80 0.77 0.70 0.86

ut-rec 0.79 0.78 0.76 0.69 0.86

uw-rec 0.78 0.76 0.73 0.71 0.87

Zhang et al. S [204] 0.24 0.31 0.52 0.34 0.66

Zhang et al. T [204] 0.41 0.47 0.53 0.44 0.74

Huang et al. [66] (wtc) 0.79* -† -† -† -†

* For Arc de Triomphe where we considered only one landmark object.

† [66] recommends one viewpoint, therefore only P@1 is provided.

5.4.2 Evaluation

To evaluate ClickSmart we propose a content-based image retrieval (CBIR) technique. Each

image is representing using a hybrid set of feature descriptors. First of all, we extract a set of

low-level visual features including RGB histogram (768 dimensions), HOG features [36] (64 di-

mensions) and SURF descriptors [17] (64 dimensions) for each image. Along with these visual

features, we also make use of bag-of-visual-words as we have already extracted landmark ob-

jects for each location. Based on the presence and absence of a landmark object in any image

we obtain a D-dimensional feature descriptor (where D is the number of landmark objects for the

corresponding location). Therefore, we extract a (D+896) dimensional feature descriptor for each

image.

Now, for each recommendation, the viewpoint from where the input image was captured is de-

fined as source view-cell and the recommended viewpoint is termed target view-cell. The images

with a view similar to the input image are retrieved from both source view-cell and target view-

cell. View similarity is measured using the extracted (D+896) dimensional feature descriptor.
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FIGURE 5.5: Sample recommendation results for some of the locations. First and third row are

input views and corresponding recommendations are shown in second and fourth row. Fourth

row shows recommendations for presence of poeple in the view.

Each retrieved image has an associated aesthetic score which is evaluated using equation 5.8.

For context-aware recommendation (time and weather based), images captured within one hour

window from input image time-stamp are retrieved. The average aesthetic score is evaluated

for source view-cell and target view-cell based on the retrieved images. The recommendation

is considered positive if the average aesthetic score of the target view-cell is greater than the

source view-cell. Based on this, an average precision@N score is computed to evaluate the rec-

ommendation. We also use Normalized Discounted Cumulative Gain (nDCG) [20] to evaluate

the quality of recommendation results. Discounted cumulative gain for top ρ recommendations

(DCGρ) is computed as,

DCGρ =
ρ

∑
i=1

2reli −1

log(i+1)
, (5.14)

where, reli ∈ {0,1} is the relevance of ith recommendation which is the computed average aes-

thetic score for recommended view-cell. The DCG value is normalized for each recommendation

result by the maximum possible DCG, also known as Ideal DCG(IDCG). The nDCG values are

averaged for all recommendation queries to obtain a measure of the average performance.
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FIGURE 5.6: Time-based recommendation. First and the fourth column shows the input view

and corresponding recommendations are shown in second and fifth column. The third column

shows image from viewpoint similar to second column but at a different time.

For each tourist location, 10% of the images are kept for testing the proposed method. As de-

scribed in section 5.3, six different type of recommendations are generated for each image. We

call these, quality based (q-rec), time-aware (t-rec), weather-aware (w-rec), uniqueness-quality

based (uq-rec), uniqueness-time based (ut-rec) and uniqueness-weather based (uw-rec) recom-

mendation. For quality based recommendation, popularity model for landmark objects based on

geographical coordinates is used with quality score of view-cells in equation 5.12. In time-aware

recommendation, popularity model of landmark objects based on both geo-location and time

information is used in equation 5.12. Similarly, to generate weather-aware recommendation,

popularity model based on all the three factors, location, time and weather conditions, is em-

ployed. Uniqueness based recommendation is generated with equation 5.13 using time-based

popularity model, quality score and uniqueness score of view-cells.

146



Chapter 5. Context-Aware Viewpoint Recommendation

5.4.3 Aesthetic Score Validation

We performed a quantitative comparison of the aesthetic scores with Datta et al. [39]. We used

the method proposed by [39] to compute an aesthetic score for all the images in our dataset.

Considering this as ground truth we get a Mean Squared Error (MSE) of 0.092 with our aesthetic

scores. We further considered images with aesthetic score >0.75 as good and score <0.25 as

bad. We considered this as ground truth and get a precision of 0.76 and a recall of 0.52 for

aesthetic scores predicted using our approach. The low recall indicates that there are images

with good aesthetics but less social media popularity. It is also important to note that the aesthetic

evaluation of images using social media cues can be augmented with any other state of the art

content-based aesthetic evaluation model such as [157] and [160] to get a better estimate of the

aesthetic quality of images.

We also conducted a short user study to validate the aesthetic score computed using social

media cues in which 5 skilled photographers participated. We randomly selected 10 images,

5 with aesthetic score >0.9 and 5 with aesthetic score <0.1. In the user study, we asked the

participants to rate the images from 1-5 (1-poor and 5-Excellent). The images were presented

in a random order to the participants. The average rating score for images with aesthetic score

>0.9 was 4.56 and images with aesthetic score <0.1 was 2.4.

5.4.4 Results and Analysis

The experimental results are presented in table 5.1 and 5.2. In table 5.2 we have shown average

precision@N (for N = 1, 2 and 5) and nDCGρ (for ρ = 2 and 5) scores for the complete dataset.

We observed that precision and nDCG score for weather-based recommendation is lower as

compared to quality and time-based recommendations. Table 5.1 shows average precision@2

and nDCG5 scores for each of the location in the dataset independently. We further observed
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FIGURE 5.7: Sample images from user survey for uniqueness based recommendation

that low precision score was mostly observed for locations with smaller dataset size. One of

the reasons for this low precision can be the insufficient number of images which may lead to

over-fitting of GMM in high dimensional space. Another reason can be inaccuracy in weather

forecast services. We came across some images in the dataset with a clear sky when the weather

reports have indicated cloudy conditions. An improvement in precision and nDCG score was

observed after integrating the uniqueness factor with weather based recommendation. This is

mainly because it was integrated as an additive factor (equation 5.13) rather than multiplicative,

which minimizes the error propagation to the generated recommendation.

Figure 5.5 presents some viewpoint recommendation results generated by ClickSmart. The im-

ages in the first and third row are input images and the images in the second and fourth row

are images captured from the viewpoint recommended by ClickSmart. It can be observed that

the images from recommended viewpoints are better as compared to images from the original

viewpoint. The fourth row shows the recommendation corresponding to input views in third rows

for the presence of people.

To investigate the role of context, we evaluate the quality-based recommendation similar to

context-based by retrieving images within 1-hour window of capture time-stamp of the input im-

age. The average precision@1 was 0.53, which is quite low as compared to time-based recom-

mendation (0.78). Figure 5.6 shows some time-based recommendation results using ClickSmart.
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The first and the fourth column are the input views and the second and the fifth column are im-

ages captured from corresponding recommended viewpoints. The third column shows images

from viewpoints same as the second column but at a different time of the day. We can observe

that how the viewpoint recommendation changes for the same view in the fifth column. In the first

and second row, the recommended viewpoints in the second and fifth column are at the opposite

side of the monument. Also, if we generate a recommendation for overcast weather conditions

for the first two rows, the viewpoint in the second column is still in the recommended viewpoints

list.

To evaluate the image retrieval step we manually annotated around 1% (535 images) of complete

dataset. First we randomly sampled 10 set of images from Merlion dataset and use ClickSmart

to generate viewpoint recommendation. Then the images from the source and the recommended

view-cell are retrieved and annotated manually for relevance. The Mean Average Precision

(MAP) score for the 20 queries (2 queries for each image) was found to be 0.80 when we re-

trieve top N results (N is different and known for each of the images). When we set a threshold

value of similarity for retrieval we get an average precision of 0.77 and an average recall of 0.78.

The use of context (geo-location) can be attributed to this high precision and recall.

We also evaluated the retrieval step with Holidays [76] and ZuBuD [147] dataset which are pub-

licly available. With Holidays dataset we get a MAP score of 0.60 and on ZuBuD dataset a MAP

score of 0.49. ZuBud is a dataset of different kind of buildings whereas Holidays dataset consists

of images with natural sceneries. In these two datasets, the images are mainly annotated for

content similarity rather than view similarity.
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5.4.5 User Study

To further evaluate the recommendation of ClickSmart, we conducted a user study in which 26

users participated including 21 amateur users and 5 skilled photographers with at least 5 years of

experience in single-lens reflex camera. In the survey, there were four set of questions to evaluate

different types of recommendation generated by ClickSmart. We evaluated our model for quality

based (q-rec), time-aware (t-rec), uniqueness-based (ut-rec) and p-rec method (where people

are present in the photograph). For each question, a pair of images with similar view captured

from different viewpoints were shown to the user and asked the following question, ‘Which of the

two images is captured from a better viewpoint?’. In the pair of images, one is the input image

and the other is an image captured from the view-cell recommended by ClickSmart. For each

type 10 set of questions were presented to the user.

Figure 5.8 shows the average percentage of users who finds the recommended viewpoint bet-

ter than the original viewpoint. Overall 75% of participants liked the viewpoint recommended by

our system. The agreement percentage is higher among skilled photographers (76.5%) as com-

pared to amateur users (73.5%). It can be noticed that for uniqueness based recommendation

the agreement score is low for amateur users (56%). The uniqueness based recommendation

suggest non-popular viewpoints, however, amateur users gave preference to popular views for

images with comparable quality. For example, in figure 5.7, we have images for two different

locations (first and third image) and corresponding images from viewpoints recommended by

ClickSmart (second and fourth image). Almost 52% of the amateur users preferred the original

views, which are popular. However, the recommended viewpoints were preferred by almost 70%

of the skilled users.
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FIGURE 5.8: Average agreement values from user study. q-rec is quality based, t-rec is

time-aware, p-rec is for photographs with people and ut-rec is for uniqueness based.

FIGURE 5.9: Comparison of recommendations with [204]. The first row is the input view,

second row shows results with ClickSmart and third row using [204].

5.4.6 Comparison

We first compared the proposed method with the state of the art methods in photography assis-

tance based on their approach and problem formulation. A detailed analysis of the comparison is

presented in table 5.3. We can observe that the state of the art methods which provide location

recommendation [66, 132, 149, 204] are not interactive and ignore the presence of people and

user context for making the recommendation. It is important to note that photography assistance

methods such as [138, 190] are focused on improving image composition and not viewpoint.

Therefore, these methods are complementary to ClickSmart and can be combined with it to

provide a better photography experience to a user.

We further performed a quantitative and qualitative comparison of our proposed method with
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[204] and [66]. A quantitative comparison is given in table 5.2. For [204], a ranked list of view-

points is generated as proposed by the authors for both spatial and temporal recommendations.

We can observe that both the precision and nDCG score are lower as compared to our method.

The main reason for this low score is irrelevance of the recommended viewpoint for the input user

view. Fig 5.9 shows a comparison of recommendation results of [204] with our method. The first

row is the input view, the second row shows recommendations using our method and the third

row shows the results of [204]. It can be observed that the recommended viewpoint using [204]

are popular viewpoints but not good for capturing the given user input views.

Huang et al. [66] proposed a method which identifies popular viewing directions for a landmark

object and then recommends a viewpoint based on the quality of images in the popular viewing

direction. We used this method to generate a viewpoint recommendation for the given user

views and compared it with our approach. First, the viewing direction is identified using the

geo-location of the user and then the geo-location of the best-captured image in that viewing

direction is recommended as a target viewpoint. This method works for locations where we have

only one landmark object present and it performs similarly to our approach when the time factor

is ignored (table 5.2). We performed quantitative experiments for one of the location (Arc de

Triomphe, Paris, France), which has only one landmark object, and employed [37] for computing

the aesthetic quality of images. Figure 5.10 presents the recommendation results obtained using

[66] for some other locations. First and the second column shows the case when there are

more than one landmark objects and in the third and fourth column, we can observe the bad

recommendations as time factor is not considered. The recommended viewpoints are in fact

good viewpoints for capturing other views (first and second) and at a different time during the day

(third and fourth). Corresponding recommendations using our method are shown in figure 5.5

and 5.6.
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FIGURE 5.10: Recommendations using [66]. First row is the input view and second row is the

corresponding recommendation.

TABLE 5.3: Comparison with State of the Art methods. C(composition), L(location),

I(interactive), V(user view), T(time), W(weather)

The Work
Recommendation Type User Context

C L I V T W

[32, 111, 128, 156, 181] X X X

[139, 190] X X X X X

[132, 149] X

[66, 204] X X

Proposed Method X X X X X

5.4.7 Running-time Analysis

In the real-time recommendation, processing is required for image segmentation, object classi-

fication and generating the recommendation on the cloud. For this research, we conducted our

experiments on a 8 core processor running at 3.40 GHz with 8 GB of RAM for cloud processing.

The average time for complete recommendation phase on this machine for a 640 × 480 pixel

image is around 800 milliseconds. Therefore, ClickSmart can be used to develop a cloud-based

service which can provide a real-time viewpoint recommendation to the user.

5.5 Summary

In this work, we propose ClickSmart, a method of viewpoint recommendation which can guide

users to capture high-quality images in popular tourist locations. The proposed method leverage
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on publicly available images and social media cues to learn the photo-taking behavior of people.

We presented the idea of view-cells and defined their popularity, quality and uniqueness which

are further utilized for viewpoint recommendation. We also investigated the role of context, such

as time and weather conditions, for viewpoint recommendation in photography. The experimental

results and user study shows that the proposed method can make effective viewpoint recom-

mendation to the user. ClickSmart can be extended to a system which can provide viewpoint

recommendation for user defined compositions and it will be the focus of our future work. We

also plan to exploit the photo-taking behavior of people for making a personalized recommen-

dation which will also take into account the photography taste of a person. Also, the idea of

view-cells can be further utilized for assisting a user in capturing a high-quality videos and, other

location based recommendations.
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Chapter 6

Optimal Foraging Theory for

Photography and Exploration

Animals search for food in their environment with a decision strategy which keeps them fit. Op-

timal Foraging Theory (OFT) models this foraging behavior to determine the optimal decision

strategy followed by animals. This theory has been successfully applied to humans as they

search for information and is termed as Information Foraging. When people visit a tourist loca-

tion, they follow a similar strategy to move from one spot to another and collect information by

capturing photographs. This behavior has similarities with the foraging behavior of animals which

has been widely studied by researchers. In this work, we propose to employ OFT to help tourists

explore a location and capture photographs in an optimal way. We use this theory to determine

a decision strategy for tourists which provides a list of micro-pois to visit and the corresponding

stay time at each of the micro-poi. Finally, we solve an optimization problem to find an optimal

path which can be followed to explore a tourist location.

6.1 Introduction

There are usually multiple hot-spots in any tourist location and people follow some trajectory

which passes through these hot-spot locations. In this work, we termed these hot-spot locations

as micro-locations or micro-pois (micro point of interest). People also capture photographs at
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micro-locations which are good from the photography perspective. If people are not familiar with

the tourist location, then usually they follow their intuitions or other tourists to explore hot-spots

of the location. This strategy is not always successful for tourists, and people usually spend a lot

of time exploring the location rather than enjoying the hot-spots.

A very similar kind of problem is faced by animals while foraging where they need to search for

their food and they move from one food patch to another in search of food. Researchers have well

studied the problem of animal foraging behavior and observed that an optimal foraging behavior

is followed by the animals for their survival. OFT [155] is one such study which tries to model

the animal behavior for foraging which ensures their survival. This theory has also been adapted

successfully to model human behavior as he searches for information [133].

Inspired by this analogy, we propose a novel problem in which we attempt to identify the optimal

tourist behavior at tourist locations. More specifically, we want to find an optimal path to follow and

the amount of time to spend at each micro-location for a given user context at any given tourist

location. We leverage on social media images captured at any tourist location and associated

metadata to understand the past tourist behavior and the location environment. Thereafter, we

employ concepts from OFT to find optimal paths to follow between the micro-pois and the amount

of time to spend at each of the visited micro-locations.

The availability of a large number of geo-tagged photographs shared by users on social media

platform has motivated the research in location recommendation. This available source of infor-

mation has been widely utilized by researchers to identify Points of Interests [97, 107, 150, 185]

and recommend tourist locations to users [94, 103, 110, 193, 198, 199]. These methods are

focused on automatically detecting the points-of-interest and recommending them to the users
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based on their previous travel history. The works in [88, 132, 204] focused on photography hot-

spots and recommend points-of-interests which are good from photography perspective. How-

ever, the existing methods do not provide any particular order or strategy in which these locations

should be visited.

To overcome this limitation, the authors in [30, 31, 53, 104, 114] proposed methods to recommend

travel routes which guide users to follow a path as they visit different attractions. The most popular

traveled paths are determined based on trajectory clustering techniques and recommended to

the user. The existing methods of route recommendation generate a path from one attraction to

another and do not provide any guidance on how each particular attraction should be explored.

In this work, we focus on route recommendation within an attraction where the routes are dy-

namically created based on the user context and provide details such as which micro-pois to visit

and corresponding stay time for taking photographs. We observe that each tourist attraction has

multiple hots-spots (micro-pois) which are visited by the tourists. There can be multiple ways to

visit these micro-pois and searching for an optimal path is an NP-hard problem. We make use of

social media images to learn previous patterns in the environment and employ OFT to determine

an optimal path for exploring the attraction and capturing photographs. The recommended path

not only provides a route but also includes a list of micro-pois in the attraction where the user

should visit. In addition, the amount of time to spend at each of the micro-poi location is also

recommended.

The rest of the chapter is organized as follows. In section 6.2 we present an overview of the

proposed method. In section 6.3 we will introduce the OFT and discuss how we adapt it for

exploring tourist attractions. Section 6.4 and 6.5 will present the proposed method in detail and
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the experimental results will be discussed in section 6.6. Finally, we will conclude this chapter

along with future research direction in section 6.7.

FIGURE 6.1: Overview of the proposed method.

6.2 Overview

The proposed method is composed of two phases. The overview of the proposed method is

outlined in Figure 6.1. An offline phase where the social media images and associated metadata

is utilized to understand the environment of a tourist location. In this phase, the micro-pois

present within a tourist location and their corresponding parameters related to photography are

determined. A three-dimensional network graph is developed for each location in which the

node represents micro-pois and the edge connection determines the connectivity between these

micro-pois. The three dimensions in the network represent latitude, longitude and the visit time

for each of the micro-pois. The past photography behavior of tourists and the response from
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social media on their shared photographs is utilized to determine the various parameters such as

quality of micro-pois.

In the online phase, OFT is employed to predict a suitable path based on the user-context. User-

context indicates the time of arrival and the total time for which the tourist intend to spend at that

location. The predicted path includes a list of micro-pois along the path and a stay time at each

of the micro-pois which is computed based on OFT. More specifically, we employ the Marginal

Value Theorem for predicting optimal stay time at each of the micro-pois and the Optimal Diet

Selection Algorithm to find out a list of micro-pois to visit. Later, we pose path prediction as

Traveling Salesman Problem and employ Simulated Annealing to find an optimal path through

these micro-pois.

6.3 Optimal Foraging Theory for Photography

Optimal Foraging Theory is a model which is used to predict the foraging behavior of animals as

they search for their food [155]. The energy gain from the food depends not only on the acquired

food item but also on the foraging behavior as searching the food also require energy and time.

Therefore, animal wants to maximize the energy gain as they forage in their environment to

remain fit. OFT aims at predicting the best foraging strategy to achieve this goal.

OFT has also been successfully applied to develop Information Foraging Theory [133] which

models human behavior as they search for information. Information Foraging Theory is based on

the assumption that humans use an inbuilt foraging mechanism that evolved from animal foraging

behavior as they search for information. This theory models the human behavior where they are

in search of information and have to decide whether stay at the same location and try to find

additional information or move on to another site and which path to follow. We observe that
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capturing photographs at tourist locations and moving from one spot to another is analogous to

gathering information for capturing the experience. Inspired by this analogy, we propose to use

OFT to understand human foraging behavior as they capture photographs and most importantly

make a recommendation to users so that they follow an optimal way of capturing photographs.

Modeling of animal foraging behavior requires a currency variable, such as energy gain per unit

time, which the animals are trying to maximize under the constraints, such as travel time, in the

environment. OFT aims at predicting the best foraging strategy or an optimal decision rule for a

given currency and environmental constraints. The average rate of gain (R) is the key factor that

characterizes the efficiency of a forager. It is defined as a ratio of the net gain accumulated, G,

divided by the total time spent between and within patches,

R =
G

TB +TW

, (6.1)

here, TB is the total between patch time and TW is the total within patch time spent during foraging.

The average rate of patch encounter is defined as,

λi =
1

tBi

, (6.2)

where, tBi is average time for finding patch of type i. Now, if we have P different types of patches,

the total gain can be represented as,

G =
P

∑
i=1

λiTBgi(tWi), (6.3)
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where, gi is the expected gain function from a patch i in terms of stay time tWi. Similarly, the total

amount of time spent within patches is represented as,

TW =
P

∑
i=1

λiTBtWi. (6.4)

Now, after substituting equation 6.3 and 6.4 in equation 6.1, we get the overall average rate of

gain as,

R =
ΣP

i=1λigi(tWi)

1+ΣP
i=1λitWi

. (6.5)

This is known as Holling’s Disk Equation [63] which serves as the basis for deriving several

optimal foraging models. In this work, we consider micro-pois as patches and the net gain is

determined in terms of visual information in the captured photographs as a function of time spent

by the users in a tourist location. We employ Optimal Diet Selection [155] and Marginal Value

Theorem [27] from OFT to find the best strategy for taking photographs at a tourist location. We

will present these two models in the following section and discuss how they can be used to solve

the proposed problem.

6.3.1 Optimal Diet Model

Optimal Diet Model, also known as contingency model, helps in deciding whether a predator

should consume the prey at hand or search for a more profitable prey item. This model predicts

that the predator should ignore low-profit prey items when high-profit prey items are present in

abundant. The profitability of a prey item is defined as the rate of energy gain as a function

of time. If a prey item can provide a total energy gain g with a handling time of tW , then the

profitability is defined as,

π =
g

tW
. (6.6)
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Based on the Optimal Diet Model, a predator should consume a prey item only if its profitability is

greater than the overall profitability during foraging. We use this model to select micro-pois in a

tourist location. The act of photo capture is associated with energy gain and the goal is to predict

a strategy to maximize this gain in an optimal amount of time. We utilize the shared social media

images to determine the profitability of micro-pois and selection of micro-pois is predicted using

Optimal Diet Model.

6.3.2 Marginal Value Theorem

Marginal Value Theorem [27] is used to determine whether an organism searching for food should

stay in the current patch or search for a new patch. The model helps in predicting when it is

economically favorable to leave the current food patch to maximize the overall energy gain during

foraging. When the animal forages within a patch, finding food becomes more difficult and it

experiences the law of diminishing returns. This may happen because of the depletion in current

food patch. Finding new patch also involves cost as the animal loses foraging time as well as

energy while searching.

Marginal Value Theorem optimizes the net energy gain per unit time (Equation 6.3) in the foraging

strategy. Figure 6.2 shows a plot of diminishing returns in terms of experience gain as a user

capture photographs. If net experience gain is the currency then it can be represented as the

slope of the line which starts at the search start time and intersects the gain curve. Marginal Value

Theorem states that in order to maximize the net energy gain, one should leave the patch when

this line touches the diminishing curve. In order to determine the optimal stay time at a micro-poi,

we utilize shared social media images to compute the diminishing gain curves. The act of photo

capture measures the energy gain and if a user continues to capture photographs at the same

location, then the gain from each successive photograph will diminish due to redundancy. Based
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FIGURE 6.2: Marginal Value Theorem. The y-axis represents cumulative experience gain in

terms of captured visual concepts in the photograph and x-axis represents time. The green and

red lines corresponds to two different transit times (r1 and r2) and, s1 and s2 are the predicted

optimal stay time for r1 and r2 respectively.

on this assumption we model the diminishing gain curve for each of the micros-poi and utilize it

to determine the optimal stay time.

6.4 Graph-Based Micro-POI Modeling

There are usually multiple hot-spots for photography at any tourist location. In this work, we

term these locations as micro-pois. Tourists explore a location by visiting these micro-pois in

some order as they capture photographs along their way. Therefore to generate a path for a

recommendation we first need to identify these micro-pois.

6.4.1 Micro-poi Identification

We utilize the social media images shared by users to identify these micro-pois. We observe that

each micro-poi may not be suitable for photography throughout the day because of the changing

lighting conditions. Therefore we also incorporate the time factor as we identify these micro-

pois. The Exif meta-data associated with the shared photographs can be used to determine the
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location as well as the time of image capture. We use the geo-coordinates and the time-stamp

to develop a generative model to determine the micro-pois at a tourist location. The spatial

distribution of location and time pair is assumed to be a Gaussian Mixture Model (GMM). For

each photograph i we define x(i)= (latitude, longitude, time)T , where (latitude, longitude) and

time represents the geo-location and time of capture respectively. The probabilistic distribution

of location and time pair at an attraction can be expressed as,

P(x) =
N

∑
i=1

wiN (x|µi,Σi), (6.7)

where, N (x|µ,Σ) denotes a Gaussian component, N is the no. of Gaussian components and

wi indicates the prior for each component. We make use of Bayesian information criterion (BIC)

[145] to estimate the number of Gaussian components and the parameters (µk,Σk and wk) of

Gaussian mixture model are estimated using expectation-maximization (EM) algorithm [40].

The components of obtained generative model represent the identified micro-pois. Each micro-

poi has a geo-location and a time-stamp associated with it. We associate each of the captured

photographs at the corresponding attraction to one of the micro-poi.

6.4.2 Micro-poi Profiling

We compute a set of properties for each of the identified micro-poi which we will use later for rec-

ommendation. The total number of photographs captured at any micro-poi indicates its popularity

among the visitors. We denote this as location-popularity (LPop) and it is computed as,

LPop(i) =
Ni

Nmax

, (6.8)
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where, Ni is the total number of photos captured at ith micro-poi and Nmax is the maximum number

of photographs captured at any micro-poi.

The social media images also have associated social media cues such as, user likes and user

views, along with them which indicate their popularity among social media users. We utilize these

cues to compute the popularity of each of the image as well as the popularity of each micro-poi.

The image popularity (qi) for image i is computed as proposed by [189] which assigns a score

between 0-1 to each photograph,

qi = 1−
1

exp(υ∗ v+β∗ f + γ∗ c)
, (6.9)

where, v is the number of user-views, f is the number of user-favorites, c is the number of user

comments and υ,β and γ are constants empirically set to 0.003, 0.1 and 0.1 respectively. The

social media popularity (SPpop) for a micro-poi i is computed as an average of the quality score

assigned to the photographs captured at that micro-poi,

SPop(i) =
1

Ni

Ni

∑
j=1

q j, (6.10)

where, q j is the popularity of a photograph captured at ith micro-poi computed using equation

6.9 and Ni is the total number of photographs captured at ith micro-poi.

To determine a visual representation of micro-pois, we utilize the pixel information from the im-

ages captured at that micro-poi. First, we build a dictionary of visual words for a tourist location

based on the captured images. We perform segmentation [2] on images and collect all the visual

patches. Each patch is represented using a visual feature extracted using Convolutional Neural

Network (CNN) [91]. A network trained on the ImageNet dataset is used and visual features are
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extracted from the fully-connected layer (fc7), prior to prediction layer, in the network. Then, we

employ clustering on these patches to build a dictionary of visual words. Each photograph can

be represented as a feature vector using this dictionary to indicate the presence of visual words.

FIGURE 6.3: Overview of the LDA topic modeling performed for micro-poi profiling.

The micro-poi locations can be semantically categorized into different groups based on the pres-

ence of visual words in the photographs captured at any micro-poi. We perform topic modeling

with Latent Dirichlet Allocation (LDA) [61] to determine the latent categories of the micro-poi

(Figure 6.3). Each micro-poi is represented as a document, where the captured photographs

are considered as sentences and the visual words present in the photograph corresponds to the

words in the sentence. The topic model determines a set of latent topics for the tourist location

along with the association of each topic with the identified micro-pois.

6.4.3 Modeling Information Gain

Modeling and automatic quantification of the information gain as a tourist move from one micro-

poi to another is a very difficult task. However, taking photographs as we explore a tourist location

is a common practice followed by most of us. Therefore, we associate this information gain with

the photographs captured by the users along the exploration. As discussed in section 6.4.2, each
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photograph can be represented as a set of visual words. A micro-poi location will be associated

with a subset of these visual words which is based on the photographs which can be captured

from this micro-poi.

Now, as a user takes a photo, there will be a gain associated with it which will depend on the

visual words present in the photograph. With each consecutive photograph captured at any

micro-poi, this gain will follow a diminishing curve as some of the visual words might already be

captured in previous photographs. Finally, the gain will saturate at a certain level when all the

visual words have been captured by the user. The cumulative information gain as a user captured

ith photograph is computed as,

Gi =
T

∑
j=1

max(vi
j,g

i−1
j ), (6.11)

where, T is the total number of visual words in the dictionary, vi
j ∈ (0,1) which indicates the

presence of the visual word j in the ith photograph and gi−1
j is gain from the visual word j in the

previous photograph which is computed as max(vi−1
j ,gi−2

j ). The gain corresponding to each of

the visual words before capturing any photograph is initialized with 0.

This information gain will be different for different users based on their photo-taking behavior. To

determine the gain pattern for each micro-poi we perform regression analysis on the information

gain observe for the previously captured photographs at a micro-poi. We utilize a logarithmic

diminishing gain function as proposed by [155] for modeling information gain,

G(t) = υln(t +Γ)+ ε, (6.12)

where, G(t) is the information gain after time t, υ, and ε are constants which are determined using

regression analysis and Γ indicates the amount of time before capturing the first photograph. We
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set this to 60 seconds, however, this constant will not have any effect on computation of υ and Γ.

The constants for equation 6.12 can be determined using least-square linear regression analysis.

We also compute average gain (Ga) and average stay time (Ta) for each of the micro-poi which

will be used to compute profitability.

6.4.4 User Profiling

The previous photographs captured by a user can be used to determine the preference corre-

sponding to the semantic visual categories. To quantify user interest we represented each user

as a document and the personal image collection corresponds to sentences with the detected

visual patches as words in each sentence. The trained LDA model as described in section 6.4.2

is used to determine the preference of a user for the identified categories.

6.4.5 Graph Modeling

To determine the optimal path for a user we first represent a tourist location as a graph (V, E) in

3-dimensional space. Here, V represents a set of nodes in the graph which corresponds to the

identified micro-poi in the location, and E is the set of edges corresponding to the path connecting

these micro-pois. The 3 dimensions refer to the latitude, longitude and time.

The photographs captured at a location are first utilized to identify the tours which people have

followed in the past. A tour is defined as a set of photographs which are captured in a sequence

within a day. Each photograph in the sequence has associated geo-location and time-stamp.

Each tour will pass through a set of micro-pois and we can determine the stay time as well as

transit time between different micro-pois from each tour. Stay time at each micro-poi is computed

as a difference between the time-stamp of the first captured photograph and the last captured

photograph in that micro-poi. And, the transit time is computed as the difference between the
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time-stamp of first captured photograph at a micro-poi and the last captured photograph at the

previous micro-poi in the sequence. Finally, an average stay time for each micro-poi and an

average transit time between two micro-pois is computed using all the tours traveled in the past.

6.5 Path Prediction

The 3-dimensional network graph of the tourist location is used to find an optimal path for a given

user context. The user context indicates the current user location, visit time, trip duration and

final location, and are used to determine the start and last node in the path from the graph. The

location and time information is used to identify the graph node closest to the user. The trip

duration is added to the current time to identify the last node in the path. If destination location is

not provided by the user, a round trip is computed.

We employ Optimal Diet Algorithm to determine the micro-pois which should be included in the

path. The location popularity (LPop), social media popularity (SPop), average gain (Ga) and

average stay time Ta is utilized to compute profitability for Optimal Diet Algorithm. The profitability

of a micro-poi i (Πi) is computed as,

Πi = ∆∗
Gi

a

T i
a

+Θ∗SPopi +θ∗LPopi, (6.13)

where, Gi
a is the average information gain, T i

a is the average stay time, SPopi is the social media

popularity, LPopi is the location popularity and ∆,Θ and θ are constants to assign weights to

these parameters.
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ALGORITHM 4: OPT _PAT H

Input: Graph G(V, E), start node (ms), end node (me), trip duration (td)

Output: Recommended path {ms,m1, ...,me}, stay time {ss,s1, ...,se}

tt := 0.0 // current trip time

P := {ms,me} // initialize path

Π := sort(Π) // sort the profitability in decreasing order

for πi in Π do

P.append(mi) // add the node corresponding to πi to path

P := T SP(P) // find shortest path through these micro-pois

S := {} // initialize stay time

for mi in P do

si := MV T (mi,P) // update stay time

S.append(si) // maintain a list

end

tt := update_trip_time(P,S) // update trip time

if tt > td then
break

end

end

The stay time at each micro-pois in the path is predicted using Marginal Value Theorem. The

following function for net gain at a micro-poi is optimized to determine the optimal stay time.

topt = argmax
ts

G(ts)

tr + ts
, (6.14)

where, topt is the predicted stay time, ts is the stay time to be optimized, G(ts) is the estimated

gain at time ts and tr is the estimated reach time. Finally, an optimal path is constructed through

the selected micro-pois by solving a Traveling Salesman Problem. A path through the micro-pois

is constructed to minimize the total travel time,

ttotal = min

Nmpoi

∑
i=1

(t i
opt + t i

r), (6.15)

where, Nmpoi is the total number of micro-pois in the path, t i
opt is the predicted stay time for ith

micro-poi and t i
r is the estimated reach time for ith micro-poi. We employ Simulated Annealing to

determine the path in real-time. The complete path prediction process is presented in Algorithm

4.
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6.5.1 Personalization

Personalization in route recommendation can be incorporated by taking into account the user

preference for the visual content of each micro-poi. As discussed in section 6.4.4, we determine

the user preference based on the past captured photographs using the trained LDA model for

visual topics. We find the preference of a user for each micro-poi by computing a cosine similarity

measure between the topics present in the user preference with the topics present at micro-

poi. The similarity between user preference (T Du) and ith micro-poi’s topic distribution (T Di) is

computed as,

Sim(u, i) =

K

∑
j=1

T D
j
u ∗T D

j
i

||T Du|| · ||T Di||
, (6.16)

where, T Du is the topic distribution for user, T Di is the topic distribution for ith micro-poi and K

is the total number of topics present in the LDA model. Now, for personalized recommendation,

the profitability equation is updated as follows,

Πi = ∆∗
Gi

a

T i
a

+Θ∗SPopi +θ∗LPopi + ε∗Sim(u, i), (6.17)

where, ε is the weight given to personal preference in computing profitability.

6.6 Experiments and Results

In this section, we will discuss the evaluation of the proposed method in terms of route recom-

mendation.

6.6.1 Dataset

We use Flickr YFCC100M dataset [163] to create a dataset of around 330K images from 9 tourist

locations around the world. The details of the dataset are provided in table 6.1.
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TABLE 6.1: Details of the dataset along with the identified micro-pois, average trip durations and average R2 scores for the linear regression modeling of

gain curves at each of the tourist location.(* trip time in seconds.)

Location Total images Unique users Avg. photos per user Total trips Identified micro-pois Avg. trip time* R2 score

Botanical Gardens,

Singapore (BG)
3914 229 17 305 69 3291 0.64

Central Park,

New York, USA

(CP)

127858 6269 20 10631 265 2267 0.59

Eiffel Tower,

Paris, France (ET)
41303 4716 8 4678 90 2172 0.57

Forbidden City,

Beijing, China (FC)
3481 317 10 278 82 2384 0.68

Grand Canyon,

Arizona, USA (GC)
20310 1155 17 1491 160 3085 0.61

Leaning Tower of

Pisa,

Pisa, Italy (LP)

6854 681 10 594 128 2416 0.65

Statue of Liberty,

New York, USA

(SL)

6974 1222 5 663 116 1897 0.66

Taj Mahal,

Agra, India (TM)
6152 487 12 406 87 3649 0.64

Washington

Monument,

DC, USA (WM)

113931 3917 29 7746 271 2716 0.55

1
7
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(a) BG (b) CP (c) ET

(d) FC (e) GC (f) LP

(g) SL (h) TM (i) WM

FIGURE 6.4: Plots of average gain curves along with standard deviation learned employing

regression analysis for each of the location. The average gain pattern and standard deviation is

varying among different locations.

6.6.2 Micro_poi Identification

We employ generative model (GMM) to identify the micro-pois present in each location. The BIC

score was measured to determine the number of micro-pois and we tested it for a range of 10-400

components. Table 6.1 presents the number of micro-poi identified at each of the location in the

dataset. The dictionary of visual words was created using k-means clustering algorithm where

we set the dictionary size to 1000. A topic modeling using LDA was performed to determine the

visual content distribution of the micro-pois. We set the number of topics to 50, prior of document

topic distribution to 0.02 and prior of word topic distribution to 0.02 for topic distribution learning.
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Table 6.1 also shows the total number of trips for each tourist location. A trajectory is considered

a trip only if it passes through at least 2 micro-pois.

6.6.3 Modeling Experience Gain

The information gain curve for each of the micro-poi is determined using equation 6.11. Equation

6.11 is converted to a linear equation by setting the value of Γ and taking log of the time (t)

dimension. We employ Linear Regression to identify the parameters of the gain curve. Table

6.1 shows the average Coefficient of Determination (R2 score) for each of the micro-poi for this

regression analysis. The trained gain curves are further utilized to determine the optimal stay

time at each of micro-poi as we predict a tour for exploring a tourist location.

FIGURE 6.5: Average gain curve for locations in the dataset.

In figure 6.5 we have shown the average of all the gain curves corresponding to different micro-

pois at each location for all tourist locations in our dataset. The variation in average gain curves

corresponding to different tourist location shows different photography behavior of people at these

locations. Apart from varying average gain pattern, we also observe different variation in gain

among micro-pois from similar tourist location. Figure 6.4 shows the average gain curves along
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with standard deviation for each of the tourist locations. We can observe that each micro-poi has

a different gain pattern. In addition, the variation in this gain pattern is also different for different

tourist locations. In section 6.6.5.4, we will discuss how gain and visual diversity are correlated.

6.6.4 Path Recommendation

A tour recommendation is generated based on user visit time and trip duration. The tour includes

a list of micro-pois, which should be visited in an order, and corresponding stay time at each

micro-poi included in the path. Equation 6.13 is utilized to determine the list of micro-pois to

include in the tour and corresponding stay time for each micro-poi is computed using Marginal

Value Theorem (section 6.3.2).

(a) 1 PM, 1.5 hour (b) 10 AM, 3 hour (c) 10 AM, 4 hour (d) 1 PM, 4 hour

FIGURE 6.6: Sample tour recommendations at Taj Mahal for different visit times and varying

trip durations. The star marks are micro-pois in the predicted tour and the number indicates a

recommended stay time in minutes.

Figure 6.6 shows the recommended tours for different visit time and varying trip duration at Taj

Mahal. We can observe how the trip path changes with a change in visit time and also a larger

trip with more number of micro-pois is recommended for longer trip durations. In Figure 6.7, we

have shown the recommended tour along with sample images captured at each of the micro-poi

present in the tour (Figure 6.6b) for Taj Mahal location.
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nFIGURE 6.7: Visualization of recommended tour showing sample images captured at each of the micro-poi locations in the path for Taj Mahal location.
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In Figure 6.8, we have shown recommended tours for Forbidden City and Leaning Tower of Pisa.

We observe that the average stay time for micro-pois in the predicted tour at Leaning Tower of

Pisa is around 4 minutes which is relatively lower as compare to Forbidden City (13 minutes)

and Taj Mahal (12 minutes) locations. This information can be useful for tourists in making their

selection for visiting tourist locations.

(a) 1 PM, 1.5 hour (b) 10 AM, 3 hour

(c) 10 AM, 4 hour

FIGURE 6.8: Sample tour recommendations at Forbidden City and Leaning Tower of Pisa.

6.6.5 Evaluation

Quantitative evaluation of the recommended tours is a challenging task due to unavailability of

ground truth. In addition, obtaining ground truth for varying user context (visit time and trip
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duration) is a non-trivial task. To overcome this difficulty, we make use of social media cues to

determine the tours which are most popular among social media users.

We extract user trips at a tourist location which are popular on social media and meet certain

criteria to establish ground truth trips. The criteria include minimum trip duration, which was set

to 1 hour, and the minimum number of micro-pois in the tour, which was set to 8. To determine the

popularity of a trip, quality score is computed for each of the photographs in the trip using equation

6.9. Then, an average score is computed for the complete trip using corresponding photographs

and trips with a score >0.6 are considered popular. The photographs in these ground truth trips

are kept for testing and excluded from the training dataset.

The proposed method is used to predict tour recommendations corresponding to the extracted

ground truth trips. The user context (visit time and trip duration) of the ground truth trip is utilized

to generate the recommended tour. The generated tour is evaluated based on its similarity to

the ground truth trip. We propose three different metrics, micro-poi similarity, edge similarity and

path similarity, for the evaluation.

The micro-poi similarity is measured based on the number of overlapping micro-pois in the ground

truth trip and the recommended trip. It is computed as,

mpoi_sim =
ncommon

Nmpoi

, (6.18)

where ncommon is the number of common micro-pois in ground truth and recommended trips and

Nmpoi is the total number of micro-pois in the recommended trip. Edge similarity between the two

trips is computed as,

edge_sim =
ecommon

Empoi

, (6.19)
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where ecommon is the number of common edges in ground truth and recommended trips and

Empoi is the total number of edges in the recommended trip. An edge is defined as the path from

one micro-poi to another in the trip. We compute the coefficient of determination (R2 score) to

measure path similarity. For each micro-poi (poii) in the recommended trip, its closest micro-poi

(poi
g
i ) from the ground truth trip is determined. Then, the path similarity is computed as,

path_sim = 1−

Nmpoi

∑
i

(poi
g
i − poii)

2

Nmpoi

∑
i

(poi
g
i − poi

g
)2

, (6.20)

where (poi
g
i − poii) represents the distance between corresponding micro-pois in the 3-dimensional

space of latitude, longitude and time and (poi
g
) is the mean position of the identified micro-pois

in the ground truth trip. Finally, the average of these three similarity measures is computed for

the evaluation.

6.6.5.1 Baseline

We propose three baseline methods to compare the generated recommendation results. The

recommendation is generated using algorithm 4 for all the baselines with variation in the selection

of micro-poi and prediction of stay time at each micro-poi. The first method (BL1) performs a

random selection of micro-pois for path generation. In the second baseline (BL2), the social

media popularity score SPop is used for micro-poi selection and finally, in the third baseline

(BL3), the micro-pois are selected based on the location-popularity score (LPop). The parameter

configuration in equation 6.13 will be (∆ = 0,Θ = 1 and θ = 0) for BL2 and (∆ = 0,Θ = 0 and

θ= 1) for BL3. For all the baselines, average stay time of each micro-pois is considered instead of

predicting the stay time using the proposed method which is based on Marginal Value Theorem.
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TABLE 6.2: Quantitative comparison of the results for proposed and baseline methods. BL1,

BL2, and BL3 are described in section 6.6.5.1. PR1 is the proposed method without using

social and location popularity, PR2 is the proposed method which also makes use of social and

location popularity and PR3 is the proposed personalized recommendation. (ST ratio is the

stay time and travel time ratio for a trip.)

Method Similarity score net-gain ST ratio

BL1 0.13 0.03 0.44

BL2 0.25 0.04 0.52

BL3 0.26 0.05 2.94

PR1 0.21 0.12 0.64

PR2 0.26 0.12 0.69

PR3 0.27 0.13 0.70

6.6.5.2 Comparison

The comparison results for the proposed and baseline methods is shown in table 6.2. We gen-

erate two different types of recommendation for the evaluation. The first method (PR1) is based

only on the gain of micro-pois and uses the parameter settings of (∆ = 1,Θ = 0 and θ = 0) for

selecting micro-pois in equation 6.13. The second method (PR2) is based on gain, social media

popularity and location popularity with a parameter setting of (∆ = 1,Θ = 1 and θ = 1). We ob-

serve that the method based on social and location similarity performs better than PR1 in terms

of path similarity. As we make use of social media popularity in selecting our ground truth, it may

have some influence on the similarity measure. However, after integrating the social and location

popularity in the proposed recommendation (PR2) we observe a higher similarity score.

To further investigate the quality of recommended path, we compute net-gain for each of the

predicted trips and compare with the baseline methods. We observe that the proposed methods

(PR1 and PR2) outperform the other baselines in terms of net-gain in the trip. In addition, we

also measure the ratio of stay time and travel time. Although this ratio will be location dependent,

a more favorable tour should have a balanced travel and stay time for a user to better enjoy the

trip. The results are shown in column 3 and 4 of Table 6.2. In addition, we also observe that
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the method based on location popularity has a slightly higher stay/travel ratio as compared to

other methods. The reason is that the location-popularity is computed based on the number

of photographs captured at any micro-poi and hence the corresponding micro-poi may have a

larger spatial area leading to a higher stay time. To validate this further we compute Spearman’s

rank correlation coefficient between stay time and location popularity (SPop). We found a weak

positive correlation of 0.37 between the stay time and location popularity.

6.6.5.3 Personalization

We generate personalized recommended trips for each of the ground truth trips to evaluate per-

sonalized recommendation which employs equation 6.17 for selecting micro-poi locations. The

personal preference of a user is determined by considering the photographs captured by the user

as discussed in section 6.4.4 and section 6.5.1. The evaluation results are shown in table 6.2

(PR3). We can observe that adding personalization improves the performance in terms of path

similarity with the ground truth trips while maintaining a higher net-gain and stay/travel ratio.

6.6.5.4 Gain and Stay Time Analysis

To validate the experience gain modeling at each of the micro-poi, we compare the actual gain

observed in ground truth trips with the gain predicted using the models learned from social media

images. We use the trained model to predict estimated gain at each micro-poi location in a ground

truth trip based on the observed stay time. The quality of prediction is validated by computing a

Mean Squared Error (MSE) using the actual net-gain (total-gain/trip-time) and predicted net-gain.

We observe an average MSE score of 0.002 for the predicted net-gain as compared to the actual

net-gain in the ground truth trips of all the locations.

We further analyze the recommended stay time at each of the micro-poi location included in the

predicted path. An optimal stay time is predicted for each of the micro-poi in the ground truth
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FIGURE 6.9: Comparison of net-gain observed using proposed method (PR2) with ground

truth (GT) and employing mean values (ME) for different locations.

trips using the proposed method (PR2). Then, a net-gain is computed for the trip based on

predicted stay time at each micro-poi location. We compare this net-gain with the actual net-gain

in the ground truth trip and observed that the predicted stay time leads to a better net-gain. We

also computed net-gain estimated when average stay time is used and found that it performs

somewhat similar and sometimes worse than the ground truth gain. The comparison is shown in

Figure 6.9 for all the nine locations in our dataset.

Figure 6.10 shows the variation of net-gain estimated for some predicted tours corresponding

to a ground truth trips from different locations as we vary the stay time at each of the micro-poi

location in the trip. The stay time estimated using MVT for each of the micro-poi in the predicted

tour is varied as follows,

st∗ =
st0 ∗Λ

100
, (6.21)

where, st0 is the estimated stay time using MVT, st∗ is the updated stay time and Λ is varied

from -90 to +90. We can observe that the net-gain reduces as we move away from the optimal

predicted stay time using MVT.
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(a) Central Park (b) Statue of Liberty

(c) Taj Mahal (d) Washington Monument

FIGURE 6.10: Variation of net-gain from the recommended trip, as we change the stay time at

micro-pois in the trip, corresponding to sample ground truth trips for different locations.

We observed varying gain patterns at different micro-pois. Since each micro-poi has different

visual topic distribution, it can be one of the reasons for this variation in gain pattern. Therefore,

we investigate the relation between gain and diversity of topic distribution at a micro-poi to un-

derstand the variation in gain patterns across different micro-pois in a location. To quantify the

diversity of topic distribution at a micro-poi we employ Shanon’s diversity index which is computed

as,

Hs =−
Nt

∑
i

piln(pi), (6.22)

where Ni is the total number topics present in the model (50 for our experiments) and pi is the

distribution of ith topic at a micro-poi. We compute Spearman’s rank correlation coefficient to find
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the correlation between gain and diversity of a micro-poi. We observe a positive weak correlation

of 0.37 between the gain and diversity which indicates that visual diversity of a location has some

impact on the observed gain. We also observe a moderate positive correlation of 0.56 between

the stay time and observed gain which was expected as the gain at any location increases as we

increase the stay time.

6.6.6 Running-time Analysis

The experiments for the proposed system were performed on a 8 core Intel processor running

at 3.40 GHz and 8 GB of RAM using unoptimized python code. Solving Traveling Salesman

Problem is the most time-consuming step in the recommendation process. The time required

to determine an optimal path through a set of micro-pois also depend on the total number of

micro-pois in the path. The average running-time to generate a path recommendation for a 2-

hour tour for Taj Mahal location takes around 1.5 seconds. The running-time for path generation

also varies for different locations as different locations will have a different number of micro-pois

in the recommended path for a similar trip time.

We have shown the variation of running-time to generate a path with varying number of micro-pois

in the tour in Figure 6.11a. We can observe that the running time increases exponentially with

increase in the number of micro-pois in the path. This long running-time was mainly observed for

Leaning Tower of Pisa location where the stay time at each micro-poi is smaller as compared to

other locations. This leads to a relatively larger number of micro-pois in the recommended path.

To overcome this problem, we analyze the running time of TSP algorithm for single iteration as

we vary the number of micro-pois in the path (Figure 6.11b). A running time of 2 seconds was

observed for a path with around 20 micro-pois.

184



Chapter 6. Optimal Foraging Theory for Photography and Exploration

(a) TSP in each iteration.

(b) Single TSP iteration.

(c) Minimizing TSP invocation.

FIGURE 6.11: Running time analysis.
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We modify Algorithm 4 to reduce the running-time for path recommendation. The TSP invocation

was not performed during each iteration of the algorithm and the average reach time of each

micro-poi was utilized to update the trip time. We invoke TSP only when the total trip time is

closer to the required trip time. This brings down the total running time for path recommendation

to around 5 seconds even for a tour with 20 micro-pois.

6.7 Summary

In this work, we propose a trip recommendation method for photography and exploration of

tourist locations based on OFT. The recommended trip includes a list of micro-poi locations a

user should visit and corresponding stay time to spend at each micro-poi locations for capturing

photographs. The recommendation can also be personalized based on the past photography

behavior of a user. We evaluated the proposed method on a dataset drawn from YFCC100M

[163] for 9 different tourist locations. The experimental results demonstrated the effectiveness of

proposed method. The current work focuses on providing a recommendation based on optimal

foraging behavior. However, different users may have different foraging behavior for photogra-

phy and exploration and understanding individual user behavior is also important. Therefore,

understanding the photography and exploration foraging behavior of users and employing it for

personalized recommendations can be a future direction in this research.
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Chapter 7

Conclusion and Future Work

In this thesis, we looked at the problem of providing real-time photography assistance to a user.

We mainly focused on camera guidance for improving image quality and location recommenda-

tion for improving photography experience of users at tourist locations. We leveraged on social

media content for generating relevant feedback for the user.

In chapter 3, we presented a context based photography learning method which can provide

composition and camera parameter guidance to the user based on context. It can also provide

human position and camera motion guidance to improve the image composition. We also pre-

sented the idea of photographic composition basis, eigenrules and baserules to substantiate the

proposed composition learning. The idea of eigenrules and baserules can be further exploited

to better understand photographic composition.

In chapter 4, we focused on obtaining a visual balance in an image frame and providing real-

time assistance to users for capturing high-quality group photographs. We extended the idea of

spring-electric graph model and augmented it with the concept of color energy to obtain visual

balance in a system with elements of art. The proposed model for visual balance can have a

wide range of applications in visual arts.

In chapter 4, we proposed ClickSmart, a method of viewpoint recommendation which leverage

on publicly available images and social media cues to learn the photo-taking behavior of people.
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We presented the idea of geo-pixels and defined their popularity, quality and uniqueness which

are further utilized for viewpoint recommendation. We also investigated the role of contexts, such

as time and weather conditions, for viewpoint recommendation in photography.

In chapter 6, we propose a trip recommendation method for photography and exploration of

tourist locations based on OFT. The recommended trip includes a list of micro-poi locations a

user should visit and corresponding stay time to spend at each micro-poi locations for capturing

photographs. This work is focused on providing a recommendation based on optimal foraging

behavior. However, different users may have different foraging behavior for photography and

exploration. Therefore, understanding this behavior of users is also important which can be

utilized further for personalized recommendations.

7.1 Future Work

In our future work, we plan to extend the current research to real-time videography assistance.

To this end, we have identified the following set of problems for the future research.

7.1.1 Videography Assistance

The additional dimension of time and involvement of camera and user motion makes the prob-

lem of videography assistance more challenging as compared to photography assistance. We

have factored videography assistance problem into three subproblems, which includes, under-

standing video aesthetics, computational characterizing of various cinematography shots used

by professionals and further applying this knowledge to provide real-time assistance to a user.

7.1.1.1 Video Aesthetics

Understanding what makes a video professional and aesthetically pleasing is important for guid-

ing a user to capture high-quality videos. Therefore, we first want to explore the factors which
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are responsible for the aesthetic quality of videos. We plan to employ Deep Learning framework

along with the art of cinematography to better understand video aesthetics.

7.1.1.2 Cinematic Shot Characterization

The video shots in professional videos and movies are carefully captured by cinematographers

which follow some rules and guidelines. Professional cinematographers make use of their ex-

perience and knowledge in cinematography to capture such cinematic shots. In this research

problem, we aim to automatically identify and characterize various cinematographic shots based

on some visual categories. This will allow us to understand video aesthetics on a higher level as

compared to low-level features.

7.1.1.3 Real-time Assistance

The understanding of video aesthetics and computational knowledge of cinematic shots can be

used to provide videography assistance to a user for taking high-quality videos. One of the

challenges towards this goal is to find out which cinematography rules should be applied to user

video. Application of video aesthetics to provide guidance in real-time is another issue as the too

much computational processing in real-time will not be feasible. We plan to solve this problem by

abstract classification of different video shots which will help us to infer the target cinematographic

rule to be applied in a given user context.
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Appendix A

Rules of Photography

There are no fixed rules in photography, but there are guidelines which can often help us to

enhance the impact of photographs. There are number of established composition guidelines

which can be applied in almost any situation, to enhance the impact of a scene [47], [60]. Here

we list some of the important composition rules of photography which are generally used as a

guideline in capturing photographs.

FIGURE A.1: Rule of

Thirds 1

The Rule of Thirds According to this rule an image should be imag-

ined as divided into nine equal parts by two equally-spaced horizontal

lines and two equally spaced vertical lines. With this grid in mind the

Rule of Thirds now identifies four important parts of the image that we

should consider placing points of interest as we frame the image. It

also gives us four ‘lines’ that are also useful positions for elements in

the photograph. Aligning a subject with these points creates more ten-

sion, energy and interest in the composition than simply centering the subject. If we place points

of interest in the intersections or along the lines then the photo becomes more balanced and will

enable a viewer of the image to interact with it more naturally. In figure A.1, the house is placed

at one of the destined points and the lighthouse is aligned with one of the line.

The Golden Ratio Rule Similar to the Rule of Thirds, it is a way of dividing the image frame

into rectangular segments. These ‘golden rectangles’ have proportions that the ancient Greeks

thought to be especially harmonious and pleasing to the eye [47]. Placing compositional ele-

ments of importance either inside of or at the intersection of these rectangles can give them

greater prominence and create a well-balanced image. This rule requires the ratio between ar-

eas of rectangles formed because of the horizon line be equal to the golden mean, 1.618, to

1Image source: www.photographymad.com
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be more pleasing to the eye. In figure A.2a, the head of the person is placed on one of the

intersection point of lines following golden ratio.

(a) Golden Ratio Rule 2 (b) Rule of Diagonal 3 (c) Balancing Elements 4

FIGURE A.2

Diagonal Rule One side of the picture is divided into two, and then each half is divided into

three parts. The adjacent side is divided so that the lines connecting the resulting points form

a diagonal frame. According to the Diagonal Rule, important elements of the picture should be

placed along these diagonals. Linear elements, such as roads, waterways, and fences placed

diagonally, are generally perceived as more dynamic than horizontally placed ones. In figure

A.2b, the beach line is placed diagonally to make the photograph more pleasing.

Balancing Elements When we place the main subject off-centre, following the rule of thirds, it

will create a more interesting photo, but it can leave a void in the scene which can make it feel

empty. The scene should be balanced by the “weight" of the subject by including another object

of lesser importance to fill the space. As we can see in figure A.2c, the photographer has placed

the bigger object according to Rule of Thirds and then tried to balance it using a smaller object

on the other side of the image.

FIGURE A.3: Rule of

Leading Lines 5

Leading Lines When we look at a photo our eye is naturally drawn

along lines. By thinking about how we place lines in your composition,

we can affect the way we view the image, pulling us into the picture,

towards the subject, or on a journey “through" the scene. There are

many different types of line - straight, diagonal, curvy, zigzag, radial etc

- and each can be used to enhance our photo’s composition. In figure

2Image source : http://dasawhartonphotography.wordpress.com
3Image source : www.wikipedia.org
4Image source: www.photographymad.com
5Image source : www.charlesphotoplace.com
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A.3, the photographer has used Rule of thirds, Diagonal and leading

lines to make the photograph more attractive.

Symmetry and Patterns We are surrounded by symmetry and patterns, both natural and man-

made. They can make for very eye-catching compositions, particularly in situations where they

are not expected. Another great way to use them is to break the symmetry or pattern in some

way, introducing tension and a focal point to the scene. In figure A.4a and A.4b, we can see how

the photographers have used symmetry in their captured images.

(a) Symmetry 5 (b) Symmetry 5 (c) View Point Selection6

FIGURE A.4: Rule of Symmetry and View Point Selection

Viewpoint Viewpoint has a massive impact on the composition of our photo, and as a result it

can greatly affect the message that the shot conveys. Rather than just shooting from eye level,

we can consider photographing from high above, down at ground level, from the side, from the

back, from a long way away, from very close up, and so on. In figure A.4c, the photographer has

captured the image from near ground level to produce a special effect.

FIGURE A.5:

Photograph with proper

depth of field 7

Depth of Field Photography is a two-dimensional medium and we

have to choose our composition carefully to convey the sense of depth

which is present in the actual scene. We can create depth in a photo

by including objects in the foreground, middle ground and background.

Another useful composition technique is overlapping, where we deliber-

ately partially obscure one object with another. The human eye naturally

recognizes these layers and mentally separates them out, creating an

image with more depth. In figure A.5, the photographer has used rock, waves, clouds and ocean,

which are at different depth in the scene.

6Image source : www.wikipedia.org
7Image source : www.dpshots.com
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FIGURE A.6:

Photograph with frame

boundary 8

Framing While focusing on the main subject of the scene we can also

utilize surrounding objects to form a kind of frame for the main subject.

By placing these objects around the edge of the composition we can

help to isolate the main subject from the rest of the scene. The result is

a more focused image which draws our eye naturally to the main point

of interest. In figure A.6, the photographer has used the surrounding

trees to create a frame for the house which is the main object in the

scene.

FIGURE A.7:

Photograph with

cropped focus 9

Cropping Focus Most often a photo lacks impact because the main

subject is so small it becomes lost among the clutter of its surround-

ings. By cropping tight around the subject we eliminate the background

“noise", ensuring the subject gets the viewer’s undivided attention. This

can be done using smaller field of view and focusing only on the main

subject of the scene. In figure A.7, the photographer has used a smaller

field of view and focused only on the main subject to make it distinctly

visible to the viewer.

8Image source: digital-photography-school.com
9Image source: jr-worldwi.de
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Appendix B

Camera Controls

In this section we present some basic photographic terms which we used in this report. They

are useful for adjusting various available controls in modern cameras for capturing good quality

photographs [60], [83].

Aperture Aperture is the size of the opening in the lens when a picture is captures. It is

measured in f-stops, for example f2.8, f8, f22.

TABLE B.1: Common Full Stop Aperture sizes

1 1.4 2 2.8 4 5.6 8 11 16 22

Since f-stops are actually fractions, the smaller the number the bigger the opening. 1/2 is greater

than 1/2.8. Aperture f5.6 requires 16 times more light to expose correctly than f1.4. Aperture

controls depth of field which is the area in the image which remain in focus, while the rest of

the image gets blurry. A large aperture opening will produce a very shallow depth of field only

keeping the subject in sharp focus, while blurring everything else. A small aperture opening(f22)

will produce a very long depth of field showing most of the image in sharp focus.

Shutter speed Shutter speed is the amount of time the sensor is exposed to the light coming

through the aperture.

TABLE B.2: Common Full Stop Shutter Speed

2 4 8 15 30 60 125 250 500 1000

Just like aperture, the values are fractions. 1/2 is greater than 1/4 which. Shutter speed 1/2 will

let 16 times more light through, than 1/32. Shutter speed controls motion. When we set a very

fast shutter speed, we will freeze that moment, but when we choose a much slower shutter speed
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and allow the subject to get a little bit blurry, even in a single frame we can simulate motion. We

can show object being in motion when we choose the right shutter speed.

ISO ISO defines the sensor’s light sensitivity rating. ISO-100 is the less sensitive and requires

the most amount of light to expose correctly. ISO-1600 requires 16 times less light to expose

correctly.

TABLE B.3: Common Full Stop ISO settings

100 200 400 800 1600 3200 6400

ISO controls the sensitivity rating of the sensor. When we increase the ISO from 200 to 400 we

double the sensitivity of the sensor, which means that at 400 we only require half the light to

properly expose as we did at 200. When we go from 200 to 800, we only need a quarter of the

light to still achieve correct exposure.

F-stop F-Stop is the unit of measure for the aperture size. Increasing the aperture by 1 stop

means opening it wider to allow twice as much light in. Decreasing the f-stop by 1 means making

the aperture opening smaller to half the amount of light getting through.

Depth Of Field Depth of field is the area of the frame that is in focus. More precisely, its a the

distance between the nearest and farthest objects in a scene that appear acceptably sharp in an

image. In portrait photography people would be photographed with their faces being sharp, but

the background blurry, which leads to shallow focus. In landscape on the other hand, most of the

frame will be sharp causing deep focus.

Exposure Triangle Exposure triangle is a term used to describe a relationship between Aper-

ture, Shutter Speed and ISO. These three factors are adjusted when composing a scene in

different light conditions. Each factor is directly related to the other two, so changes to one of

those three will have to be compensated with a change to one of the other two if we were to

maintain the same exposure level.
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White Balance White balance controls the colors in the images as accurate as possible. Some-

times images can come out with an orange, blue, yellow, etc, despite the fact that to the naked

eye the scene looked quite normal. The reason for this is that, different sources of light have a

different color for images. Fluorescent lighting adds a bluish cast to photos whereas tungsten

(incandescent/bulbs) lights add a yellowish tinge to photos.

The way a digital camera produces image is that it reads raw data from the sensor, applies the

setting of the camera to the raw data and produces the final image. Among other things, the

digital camera needs to know the color of light before it can produce the final image. The WB

(White Balance) setting on the digital camera is used to convey the color of light.
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