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Identifying Related Landmark Tags in Urban Scenes 1 

 using Spatial and Semantic Clustering 2 

 3 

 4 

 5 
Abstract 6 
There is considerable interest in developing landmark saliency models as a basis for describing urban 7 
landscapes, and in constructing wayfinding instructions, for text and spoken dialogue based systems. The 8 
challenge lies in knowing the truthfulness of such models; is what the model considers salient the same as what 9 
is perceived by the user? This paper presents a web based experiment in which users were asked to tag and label 10 
the most salient features from urban images for the purposes of navigation and exploration. In order to rank 11 
landmark popularity in each scene it was necessary to determine which tags related to the same object (e.g. tags 12 
relating to a particular café). Existing clustering techniques did not perform well for this task, and it was 13 
therefore necessary to develop a new spatial-semantic clustering method which considered the proximity of 14 
nearby tags and the similarity of their label content. The annotation similarity was initially calculated using 15 
trigrams in conjunction with a synonym list, generating a set of networks formed from the links between related 16 
tags. These networks were used to build related word lists encapsulating conceptual connections (e.g. church 17 
tower related to clock) so that during a secondary pass of the data related network segments could be merged. 18 
This approach gives interesting insight into the partonomic relationships between the constituent parts of 19 
landmarks and the range and frequency of terms used to describe them. The knowledge gained from this will be 20 
used to help calibrate a landmark saliency model, and to gain a deeper understanding of the terms typically 21 
associated with different types of landmarks.  22 
 23 
Keywords:  24 
Urban landmarks, scene tagging, trigram, tag clustering, mereology, graph clustering 25 
 26 
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1. Introduction 29 

Human Computer Interaction (HCI) continues to evolve, creating more natural interfaces that 30 

increase productivity for a wider audience across a range of use environments. In particular 31 

mobile devices, used while moving, are receiving a lot of attention in the post-desktop era 32 

(Daley, 2012). As a result of this shift, and with the increase in processing power and 33 

improved statistical language models, speech recognition has grown in popularity for 34 

interacting with mobile devices. Smartphone applications such as Siri (Apple) and Cortana 35 

(Microsoft) allow the  user to book diary events, look up information, or ask for directions, 36 

using only speech input.  37 

While automatic speech recognition has improved the interaction is not entirely natural as the 38 

application  is unaware of the user’s surroundings and unable to refer to things as people 39 

typically do in conversation, for example to comprehend a question such as “What’s that 40 

statue over there?”, or to direct the user to “the café next to the bridge”. To include such 41 

environmental references these devices need to model their surroundings and refer to features 42 

in common ways, so that the interface can become so natural and intuitive it is not even 43 

noticed (Weiser, Gold, & Brown, 1999). 44 

It has been recognised for some time that further progress in mobile HCI will include 45 

expanding the machine’s abilities to refer to objects in the user’s surroundings, and to 46 

consider the context in which the device is being used (Bartie & Mackaness, 2006; Chen & 47 

Kotz, 2000; Long, Aust, Abowd, & Atkeson, 1996; Noh, Lee, Oh, Hwang, & Cho, 2012; 48 

Zipf, 2002). A key aspect of this link between virtual and real worlds is the use of common 49 
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anchor points, or landmarks, which can be recognised and referred to by both the user and the 50 

machine. For example including a reference to a salient object when giving a navigation 51 

instruction. There are a number of challenges in doing this, which include having access to a 52 

complete dataset of objects with corresponding attribute and positional information, a method 53 

to identify landmark candidates from the dataset, and the ability to select the most suitable 54 

candidate for a particular task (e.g. the most suitable landmark for a turn instruction) (Kai-55 

Florian  Richter & Winter, 2014). 56 

As part of a wider research project looking at supplementing location based services with 57 

knowledge of the user’s environment, and thereby offering a greater interaction between  58 

machine and place, a web based experiment was undertaken to collect data on what users 59 

considered to be landmarks in urban scenes and to understand better how they describe those 60 

objects. Participants were asked to identify features by viewing urban images and tagging 61 

those items they considered useful in forming navigation instructions, adding a text 62 

annotation to each feature that they tagged. In some cases users supplied tags for single 63 

object features (e.g. a statue), while in others a label was used to represent a collection of 64 

features, such as a castle with its many outbuildings and walls.  65 

In order to determine the most salient objects in each scene the user generated tags first need 66 

to be grouped according to the object they referred to, so that the number of unique users 67 

could be calculated per landmark. The assumption was made that the more salient features 68 

would be tagged by a larger number of participants who considered it a suitable landmark for 69 

wayfinding. Such analysis would give a feature ranking, thus establishing the most dominant 70 

landmarks in each scene, and provide a better understanding of the importance hierarchy of 71 

features and sub-feature parts (e.g. the clock and the clock tower it is on). By establishing a 72 

landmark ranking in each scene the various input metrics for the saliency model could be 73 

adjusted so that a model’s output more closely matched human landmark identification 74 

choices. 75 

While spatial clustering methods can be used to highlight tag concentrations across the 76 

image, it did not offer adequate functionality to identify discrete objects, as tags in close 77 

proximity may relate to different real world objects which appear close merely because of the 78 

perspective view in the image. Therefore it was necessary to develop a clustering algorithm 79 

able to group tags based on both the spatial location of the tag as well as the supplied text 80 

label. The process was complicated by the range of descriptive terminology supplied in the 81 

labels. For example the same landmark may be described as a church by one participant, and 82 

as a clock tower by another referring to a subpart of the same structure. The algorithm 83 

developed used a statistical sentence matching technique to link tags with related nearby 84 

annotations, forming tag networks where nearby tags with similar content were considered to 85 

have a strong relationship.  86 

The paper begins by explaining the background and motivation for this research, followed by 87 

a description of the web experiment conducted to collect data in Section 3, and then the 88 

issues encountered with generating landmark rankings based on spatial clustering and the 89 

need to develop a spatial-semantic clustering function, which is outlined in Section 5. The 90 

paper concludes with suggestions for deriving other outputs from the tag data using this 91 

clustering technique, and highlights some of the remaining issues which require future 92 

research. 93 

 94 

 95 
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2. Background and Motivation 96 

Landmarks are one aspect of the environment frequently referenced, as they assist in forming 97 

mental representations of space (Hirtle & Heidorn, 1993; Tversky, 1993), and in wayfinding 98 

tasks (Caduff & Timpf, 2008; Duckham, Winter, & Robinson, 2010; Lovelace, Hegarty, & 99 

Montello, 1999; Werner, Krieg-Bruckner, Mallot, Schweizer, & Freksa, 1997; Winter, 100 

Tomko, Elias, & Sester, 2008). Studies show that when exploring a new urban region people 101 

build a mental model of the space by firstly recognising landmarks, then over time these are 102 

joined together into sequences to form routes, which depending on the complexities of the 103 

space may lead to a more comprehensive model of the space known as survey knowledge 104 

(Hirtle & Jonides, 1985).  105 

Landmarks are defined as identifiable features in an environment, whose saliency may be 106 

calculated by comparing scores for particular attributes (e.g. their size) and identifying those 107 

which deviate from the mean (Elias, 2003; Elias & Brenner, 2004; Raubal & Winter, 2002). 108 

These are the objects unlikely to be confused with others, as they appear different to their 109 

surroundings (e.g. churches, statues) or are well known international brands (e.g. Starbucks, 110 

McDonalds). Landmarks are particularly useful when travelling to a new destination as they 111 

can be used at decision points to help orient the navigator, along routes to confirm the 112 

location, and as distant landmarks (Lovelace et al., 1999). While it is common for people to 113 

include landmarks in conversation, current smartphone digital assistant applications, such as 114 

Apple’s Siri, Microsoft’s Cortana, and Samsung’s S-Voice, are unaware of the user’s 115 

environment and therefore unable to refer to surrounding objects. As speech based interfaces 116 

continue to develop it will be useful to include better context awareness which can establish 117 

the user’s environment and include references to visible landmarks around the user. Google’s 118 

Project Tango (Lee, 2014) shares a similar ambition to enrich the user experience by 119 

allowing software to consider the world beyond the phone’s hardware and to consider time 120 

and space at a more human scale. Such an ability would allow for the generation of more 121 

natural human computer interactions, helping to reduce the seam which exists between users 122 

and technology (Ishii, Kobayashi, & Arita, 1994). Such situational awareness will extend the 123 

range and capabilities of mobile applications, as has already been demonstrated in prototype 124 

applications (Bartie & Mackaness, 2006; Mackaness et al., 2014). 125 

There are two parts to the process of using landmarks in forming navigation instructions, or 126 

in generating referring expressions to describe the location of city objects. These are the 127 

identification of suitable candidate landmarks from all known objects, and then determining 128 

the most appropriate candidate for a given task (e.g identifying the landmark which best 129 

supports a turning instruction in a wayfinding task) (Kai-Florian  Richter & Winter, 2014). 130 

The task should determine which landmarks are selected according to the route taken rather 131 

than using pre-set items from a static list of landmarks in the region (Nothegger, Winter, & 132 

Raubal, 2004).  Similarly when using landmarks to describe a scene or direct the user’s gaze, 133 

a selection process is required to determine the most suitable candidates from those in the 134 

current view. The ambition is to provide no more information than is necessary, according to 135 

Grice’s maxim of quantity (Grice, 1975), and therefore the selection process should ensure a 136 

minimal set of highly relevant landmarks are returned. This goes beyond measuring the path 137 

of photons from the observer to the target feature, as it is not only a question of which are 138 

physically visible, but also which are noticed by an observer at that location. For example 139 

when asked to identify statues in Figure 1a people will often notice the statue of a black 140 

horse in the foreground but many fail to spot the more distant statue, as highlighted in Figure 141 
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1b.  This may be partly because it is further away, but perhaps it is also a factor of the 142 

surrounding distractors in the scene of buildings and trees making it harder to separate 143 

visually from background objects, or perhaps it is an artefact of the position of the statues in 144 

the image frame.  145 

a) b)

 146 

Figure 1: Visible objects are not always noticeable, with many people  

failing to notice the second more distant statue in this scene 

 

 

Existing techniques to detect landmarks from photo collections using cluster-based 147 

techniques consider each image as a single object to be classified. For example Papadopoulos 148 

et al (2010) treats each image as a node in a graph, and exploits computer vision  and user 149 

tag similarity metrics to find corresponding images of landmarks or events. Other approaches 150 

for automated and semi-automated image clustering (Vonikakis, Jinda-Apiraksa, & Winkler, 151 

2014; Wang, Ji, Tian, & Hua, 2012) or the linking to location (Ahern, Naaman, Nair, & 152 

Yang, 2007) also consider the images as single objects. There are research efforts to assign 153 

tags to features in images, the Tag-to-Region Assignment Problem (Liu, Hua, & Zhang, 154 

2011), to correspond to the semantic region within an image but these are not yet robust. For 155 

this research the images were considered as a means to portray real world features to a web 156 

audience, with a goal of extracting information from the participants about the real world 157 

objects portrayed in the images.  Therefore the tag annotations were supplied at an object 158 

feature level rather than a request to more generally describe the entire image. 159 

There are arguments for imposing structured vocabularies to enable greater semantic parsing 160 

of supplied annotations (Tousch, Herbin, & Audibert, 2012), however for this research 161 

participants were permitted to enter any text without restrictions so that a wide range of 162 

descriptors would be collected for analysis. 163 

 164 

3. Web Experiment 165 

A web based experiment was conducted in which human subjects were asked to identify 166 

landmarks in a number of urban scenes. The experiment was publicised through social 167 

media, attracting 185 participants. Users were assigned images randomly from a set of 37, 168 

and able to leave the experiment at any time but encouraged to complete as many images as 169 
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possible by giving them an additional entry into a prize draw for each completed set. For 170 

each task the participant saw an image of part of Edinburgh city (Scotland), and was asked to 171 

identify what they considered to be landmark features by tagging them on the image. The 172 

user’s profile and knowledge of the city was recorded as part of this process. 173 

All images were captured on the same day in the early morning over a period of ninety 174 

minutes, in an effort to reduce object occlusion by other city occupants (e.g. buses, 175 

pedestrians) and to minimise weather and lighting variation. The ambition was to replicate as 176 

closely as possible the street experience, although it is recognised from previous landscape 177 

studies that imagery can introduce a bias in the way that it is captured and displayed (Daniel 178 

& Vining, 1983; Linton, 1968; Shafer & Brush, 1977; Zube, Sell, & Taylor, 1982).  In an 179 

effort to minimise these effects the images were captured using a wide angle lens, and as 180 

computer monitors do not offer the same level of visual detail as when on the street, a 181 

magnifying region was added to the web viewer, as shown in Figure 2. This allowed the 182 

participant to see a magnified portion of the image as they moved the mouse crosshair around 183 

the main image, giving a similar level of detail to that experienced on the street, and enabling 184 

them to more easily identify and tag more distant and smaller objects. 185 

Once the participant had clicked on the image at the location of something they considered 186 

interesting, they were presented with an input box to enter free text which described the 187 

object (Figure 2b), such as a church, pub, or no entry sign. Each participant was permitted up 188 

to 12 tags per image, and asked to provide a short description for each tag. The tag limitation 189 

was imposed to encourage participants to limit their tagging to the most salient objects, and 190 

to then move on to the next image. 191 

 192 

(a) (b)

193 
 194 

Figure 2: Web based landmark tagging experiment  

(a) overview and magnified region (b) adding annotation text 

 

The breakdown of contributions by age/sex is shown for user counts (Figure 3a) with a fairly 195 

even balance of genders and wide range of ages. There were no statistically significant 196 
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difference noted between males and females in their choice of landmarks, or the number of 197 

landmarks identified per image. Figure 3b shows how well the participants thought they 198 

knew Edinburgh, with most candidates having at least some knowledge of the region. There 199 

was a trend for males with better knowledge of the city to increase annotation length 200 

marginally, and for those familiar with the city to name landmarks.  The number of tags per 201 

image ranged from 178 tags to 451 tags, with an average of 90 unique participants per image. 202 

The average number of tags generated per participant was 56, with a total of 10,350 tags 203 

created across the 37 images. 204 

 

 

a) b)
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Figure 3: Breakdown of Data by Participant Group 

 (a) count of users   (b) knowledge of the city 

 

 

4. Web Data Collection Results 205 

An example of the output is shown in Figure 4, which displays the tagged locations and the 206 

supplied tag text.  The tags for this image are shown as a word cloud in Figure 5, whereby 207 

the more frequently occurring terms are represented in a larger font. In this example the 208 

tower and clock refer to the church on the right side of Figure 4, while church was used for 209 

both churches in the scene. Without considering the tag locations it is not possible to identify 210 

these two distinct groups from the term frequency (i.e. word cloud), nor therefore identify 211 

landmark dominance in the scene at a feature level. 212 

Therefore analysis of the annotation text results alone was not suitable to identify landmark 213 

tag clusters because in each scene there may be multiple instances of a feature type (e.g. a 214 

small church and a large church with spire), and it would not be possible to rank individual 215 

object popularity based on term frequency.   216 

The spatial pattern of the supplied tag locations may be summarised using spatial clustering, 217 

such as Kernel Density Estimation (KDE), (Silverman, 1986).  The results for four example 218 

scenes are shown in Figure 6, where red shows a dense concentration of user tags. These 219 

dense spatial concentrations are clearly noticeable for the two churches and the building on 220 

the left of the scene (a public house) in Figure 6a. In particular there is a concentration of 221 
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tags around the top of the taller church tower where there is a clock face. In Figure 6b the 222 

KDE has highlighted a single cluster (Group 1) where there are in fact two distinct features, 223 

which are at different viewing distances but a similar viewing angle from the observer. 224 

Figure 7 shows this in greater detail where, due to the KDE bandwidth setting, groups (i) and 225 

(ii) have merged resulting in a dense cluster that does not depict a single landmark but is an 226 

artefact of two objects 180 metres apart having a similar viewing angle from the observer.  227 

 228 

Figure 4: Example Scene with Some (not all) Tags from All Users Displayed 

 229 

 230 

Figure 5: Word Cloud for Tags from a Single Image 
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Group 4 in Figure 6d consists of tags for ‘Scott Monument’ and ‘Calton Hill’ which have 231 

been clustered together despite being more than 670 metres apart, for the same reason of the 232 

viewing angle. Similarly three objects at different viewing distances are clustered in Group 6. 233 

In contrast Groups 2, 3 and 5, in Figure 6b, Figure 6c and Figure 6d respectively are 234 

examples of single features yet each is presented as two distinct clusters. This is interesting 235 

as it shows the participants considered the object to have multiple focal points of interest, 236 

nevertheless it is necessary to aggregate these tag clusters in order to determine the 237 

dominance of these features as single objects in the scene. 238 
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a)

b)

c)

d)

(1)

(3)

(4)
(5)

(6)

(2)

 239 

Figure 6: Kernel Density Estimation for User Tags (where red = dense clustering) 

 240 

To improve upon this outcome a clustering technique was developed which included both 241 

spatial and semantic components, as described in Section 5. The performance of this 242 

approach is discussed in Section 6.  243 
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(i)

(ii)

(iii)

 

Figure 7: Spatial Clustering Errors due to not Modelling Distance 

Group (i) and group (ii) tag locations should be considered separately as the objects are 180 metres apart  

 

5. Spatial and Semantic Clustering 244 

The participants supplied a text annotation for each tag, consisting of any number of words. 245 

This allowed for the creation of a more natural dataset of descriptive object terms to be 246 

collected, but added complexity in the analysis and term matching. 247 

A fuzzy text matching technique based on character level trigrams was used  to group similar 248 

terms (Lin, 1998; Zamora, Pollock, & Zamora, 1981). This rated phrase similarity by 249 

calculating the number of shared three letter combinations found, while ignoring punctuation 250 

and letter case. To improve the matching process it was necessary to also ignore stop words 251 

such as ‘of’,’the’, and ’a’.  The Trigram matching results are shown for a number of 252 

examples in Table 1, with values from 0 (no match) to 1 (exact match). Trigrams perform 253 

well in matching word stems (‘church’ versus ‘churches’), and misspellings (‘monument’ vs 254 

‘momument’).  However they are not able to recognise semantic similarities, for example the 255 

connection between a tag labelled church and another labelled cathedral (score of 0.0625), or 256 

match the Scottish word kirk with church (score of 0). 257 

To improve this an enhanced matching function was developed which included access to a 258 

synonym table allowing for conceptually similar terms, such as ‘street’ and ‘road’, 259 

’cathedral’ and ‘church’, and ‘memorial’ and ‘statue’ to be treated as identical. The results 260 

are shown in Table 1, where ’church’ and ‘cathedral’ score an exact match of 1.0, and 261 

‘church tower’ and ‘cathedral spire’ also score an exact match. The synonym table was hand 262 

constructed by looking at the most commonly occurring words from all images. It would also 263 

be possible to populate such a table using an existing database of synonyms such as WordNet 264 

(Princeton University, 2010).  However this enhanced matching function lacked the ability to 265 

model partonomic relationships (i.e. relationships between an object’s parts) therefore the 266 

score for  ‘church’ and ‘clock tower’ remained low (0.0556). 267 
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To improve on this phrase pairs were collected by processing each tag in turn, searching the 268 

corresponding image for nearby tags within a defined pixel distance, equivalent to the KDE 269 

bandwidth. The content similarity score for each tag pair was calculated and those with a 270 

score greater than 0.3, the default value for the trigram module used (Bartunov, Sigaev, & 271 

Kings-Lynne, 2014), were considered to be related. All of the tags were processed resulting 272 

in a topological network of connected content for each image. 273 

 274 

Table 1: Word Similarity using Trigrams 275 

 276 

Phrase One Phrase Two Trigram Matching 
  (0 to 1) 

Enhanced Matching  
(0 to 1) 

church Churches 0.6000 0.6000 

monument momument *
1
  0.5000 0.5000 

church Cathedral 0.0625 1.0000 

church tower Clock 0.0556    0.0556 

church tower Cathedral 0.0455   0.5385 

church tower cathedral spire 0.0357 1.0000 

church kirk 0.0000 1.0000 

church of St Giles St Giles Kirk 0.3750 1.0000 

                   *1   intentional spelling error based on user supplied tag 

 

5.1. Expanding the Network of Linked Tags using a Secondary Pass 277 

In some cases running the process a single time resulted in small groups of tags being left as 278 

orphan clusters. For example in Figure 8 on the ‘First Pass’ three cluster groups were formed, 279 

relating to two objects; a no entry sign and a church with a clock tower. The two groups on 280 

the right remain distinct as no synonym entry links the church tags with clock or clock tower, 281 

and the other clock tower tag was outside the search radius. This can be addressed by 282 

increasing the search distance but that could result in separate object instances being 283 

combined (e.g. two nearby churches in Figure 4 would be grouped as a single entity). Instead 284 

the data was processed a second time using the same buffer distance but the vocabulary of 285 

related terms was increased by using the word lists generated from the first pass. By doing 286 

this the conceptual links list is automatically expanded for tag groups nearby allowing for 287 

greater conceptual links, but reducing the likelihood of separate objects being merged due to 288 

the limited spatial search parameters. This is a form of query expansion (Chum, Philbin, 289 

Sivic, Isard, & Zisserman, 2007; Xu & Croft, 1996), limited by the spatial location of the 290 

supplied tags. For example a church node may be joined to a clock tower node, even though 291 

they do not share any similar terminology based on a church tower node elsewhere being 292 

linked to a clock tower through the common term tower. Figure 8 shows an example of this 293 

process, where initially links are made between tags forming 3 networks based on common 294 

terminology. These network phrases are used during a second pass of the data, whereby a 295 
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greater number of linkages may be added between groups as a result of the expanded 296 

semantic connections learned from the initial pass. The result is an expansion of the network 297 

topology through the linking of network groups, a reduction in the number of object groups, 298 

and an increase in linkages made between object parts thereby improving the partonmic 299 

modelling capability. 300 

 301 

church tower

church
big church 

clock tower

clock tower

no entry sign

sign

no entry

clock

Second Pass clock

church tower

church
big church 

clock tower

clock tower

no entry sign

sign

no entry

clock

First Pass clock

302 
Figure 8: Expanding the Linked Network with Secondary Pass 303 

 304 

 305 

6. Tag Clustering Results 306 

An example of the output from this process is shown in Figure 9, where colours are assigned 307 

randomly based on Cluster Group ID. There are many improvements compared to the spatial 308 

only clustering (Figure 6), as now two groups are identifiable in Figure 9b (group 1) where 309 

before there was a single cluster, and a single group identified as group 2. Figure 9d (group 310 

6) also now shows three distinct object definitions, rather than a single cluster. 311 

Figure 9b (group2),  Figure 9c (group 3), and Figure 9d (group 5) are now shown as single 312 

objects rather than before where the variety of focal points selected to tag the object by the 313 

participants had resulted in multiple cluster centres on these objects. The previously single 314 

group at d (group 4) is now separated into two groups, however there is also an overlap 315 

occurring (orange group connects to red group) which is due to a common use of 316 

terminology (’tower’). 317 
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a)

b)

c)

d)

(1)

(3)

(4) (5)

(2)

(6)

 318 

Figure 9: Spatial-Semantic Clusters (random cluster colouring) 
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Tag groups were identified for each image making it possible to automatically generate 319 

related word lists. For example church is linked to church spire, which is linked to church 320 

tower, which is linked to clock tower, which is linked to clock. Tags define objects spatially 321 

and conceptually, and the frequency of each tagged phrase gives an indication of the most 322 

common term used for that object and its parts. Once tags have been linked in this way it is 323 

possible to calculate tag group centroids relating to the concept centres, for example the clock 324 

on the clock tower, which is part of the church. It is also possible to generate a list of the 325 

most frequent terms used per object, rather than per image, as shown in Figure 10. 326 

 327 

clock tower
church
clock
tower
church spire
church tower
spire
clocktower
church clock

church
small church
small church building

pub
shop
st vincent
st vincent pub
st vincent shop

Spatial – Semantic Tag 
Group Centroids

Few Participants 
Tagged Object

Many Participants 
Tagged Object

 328 

Figure 10: Phrase Ranking per Identified Object 

 329 

Comparing the spatial clusters against the spatial-semantic clusters gives an insight into 330 

objects which are interesting and easy to define versus those of interest which are hard to 331 

define.  332 

  333 
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The strength of links between all tags in an image can be calculated as a function of phrase 334 

similarity and the inverse tag distance, such that similar phrases near each other receive a 335 

high value. Figure 11 visualises this for the example scenes, where very strong relationships 336 

are shown in black, strong links in blue, and weak links in purple. A low threshold was 337 

specified to remove links between very unrelated tags. This visualises the conceptual 338 

connections between features. 339 

The object concept centres, as introduced in Figure 10, are displayed as yellow dots to 340 

indicate the main identified features in each example (Figure 11, right column). The weak 341 

links, shown in purple, can be considered as mapping objects which might be confused from 342 

having similar annotations. For example the link between the two churches in (a) and (c) 343 

shows their conceptual similarity and highlights the risk of a misunderstanding occurring if 344 

attempting to identify the object from the annotation alone. Also in (b) the “spire”, “gallery”, 345 

and “park” labels indicate objects which could be confused unless further details are included 346 

in a referring expression.  347 

Very 
Strong Weak

LINK

a)

b)

c)

Identified Centroid
 for Main Features

church

park

gallery

church

spire spire

Princes
 street

Strong

 348 

Figure 11: The Strength of the Linkages between Tags 
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The “Princes Street” link shown in Figure 11b has arisen from a mistake made by a number 349 

of participants who believed the foreground grassy region to be “Princes Street Gardens”, 350 

and therefore the clustering method has calculated a weak link from these tags to “Princes 351 

Street” in the distance. While it is not possible to automatically discount these incorrect tags, 352 

it is possible to validate the strength of their linkage through the annotation matching, and 353 

distance calculations. As this example shows the link strength is considered to be weak, and 354 

effectively removes these tags from the calculation of object concept centres.  355 

 356 

7. Outstanding Issues and Future Work 357 

Overall the clustering technique performed well in reducing the supplied tags to related 358 

groups representing single objects in the scene, but there were cases that raised some 359 

outstanding issues. These fell into two categories: cases where two nearby objects were 360 

described in a similar way but were in fact unrelated, and where an object was described in 361 

two very different ways resulting in their being no semantic overlap.  362 

Figure 12(a) shows an example of the first category, where three object clusters are 363 

identifiable but an incorrect link has been made between objects (i) and (ii). This occurred 364 

because some participants described the first object (i) as a tower, while others described 365 

object (ii) as a steeple. These words were linked together via an entry in the synonym table, 366 

and could be highlighted for checking, but to automate this disambiguation will require 367 

further work.  368 

Another issue was that it was difficult to associate the proper noun with a landmark 369 

description. For example in Figure 12(b), some familiar with the city labelled “Scott 370 

Monument” while others labelled it as “Steeple”. These two concepts do not have a semantic 371 

link and therefore the output shows two overlapping groups, where there should be a single 372 

entity. These can be automatically highlighted by using spatial containment functions to 373 

produce a list of such co-occurrences to be examined in more detail and resolved by adding 374 

an entry into the synonym table to link the groups. 375 

 376 

(i)

(ii)

Very 
Strong Weak

LINK STRENGTH

Strong

(iii)

a) b)

 377 

Figure 12: Examples of Outstanding Issues 

 (a) Linkage Strengths between Tags (b) Cluster Group Centroids 
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 378 

 379 

8. Conclusions 380 

The paper outlines a method to identify clusters of tags supplied for urban scenes. A web 381 

based experiment was conducted whereby people tagged objects they considered to be 382 

interesting in the urban scene, adding free text annotations. The dataset was analysed to 383 

identify the interesting city objects in each image. Spatial clustering alone was shown to be 384 

flawed in certain cases where two objects are at a similar viewing angle, but different 385 

distances away from the observer. Instead a new method was developed which combined 386 

spatial and semantic clustering techniques. 387 

The method collects nearby tags which show a correlation using trigram fuzzy matching. 388 

Synonyms and stop words were used to improve the matching, and a network graph of 389 

connected tags was generated for each image. This was expanded in a secondary pass by 390 

using the linkages discovered on the first pass to join up orphaned tag groups. The results 391 

show that it was possible to automatically identify objects of interest from the user supplied 392 

tags, and that term frequencies could be discovered at an object level. The network graph 393 

visualises the relationships which exist between tags, enabling the strength of the relations to 394 

be inferred from the density and centrality of the graph edges.  395 

This research has relevance in the context of intuitive dialogue driven systems in which rich 396 

descriptions of landmarks are required to support the generation of way finding instructions 397 

(Kai-Florian Richter, Tomko, & Winter, 2008) since the graph is able to provide both a 398 

generic description ('the church') for the observer in the far distance, and a detailed 399 

description ('the church tower with the clock') when the observer is closer. The next phase of 400 

this research is to compare the results of this user experiment against a model of landmark 401 

saliency, whereby the relative dominance of landmarks selected from this study will be 402 

compared at an object level with the saliency model output. Where differences are noted the 403 

input weightings of saliency model parameters (e.g. visible area, on the skyline, viewing 404 

distance, object type) will be adjusted to more closely match these findings from this 405 

experiment. Term frequencies and variations by object type and viewing distance will be 406 

conducted, giving a greater understanding of how people refer to features of interest in urban 407 

scenes which could then be incorporated into the natural language generation component. 408 

 409 
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