79 research outputs found

    Ongoing Research Areas in Symmetric Cryptography

    Get PDF
    This report is a deliverable for the ECRYPT European network of excellence in cryptology. It gives a brief summary of some of the research trends in symmetric cryptography at the time of writing. The following aspects of symmetric cryptography are investigated in this report: • the status of work with regards to different types of symmetric algorithms, including block ciphers, stream ciphers, hash functions and MAC algorithms (Section 1); • the recently proposed algebraic attacks on symmetric primitives (Section 2); • the design criteria for symmetric ciphers (Section 3); • the provable properties of symmetric primitives (Section 4); • the major industrial needs in the area of symmetric cryptography (Section 5)

    A Complete Study of Two Classes of Boolean Functions: Direct Sums of Monomials and Threshold Functions

    Get PDF
    In this paper, we make a comprehensive study of two classes of Boolean functions whose interest originally comes from hybrid symmetric-FHE encryption (with stream ciphers like FiLIP), but which also present much interest for general stream ciphers. The functions in these two classes are cheap and easy to implement, and they allow the resistance to all classical attacks and to their guess and determine variants as well. We determine exactly all the main cryptographic parameters (algebraic degree, resiliency order, nonlinearity, algebraic immunity) for all functions in these two classes, and we give close bounds for the others (fast algebraic immunity, the dimension of the space of annihilators of minimal degree). This is the first time that this is done for all functions in large classes of cryptographic interest

    D.STVL.9 - Ongoing Research Areas in Symmetric Cryptography

    Get PDF
    This report gives a brief summary of some of the research trends in symmetric cryptography at the time of writing (2008). The following aspects of symmetric cryptography are investigated in this report: • the status of work with regards to different types of symmetric algorithms, including block ciphers, stream ciphers, hash functions and MAC algorithms (Section 1); • the algebraic attacks on symmetric primitives (Section 2); • the design criteria for symmetric ciphers (Section 3); • the provable properties of symmetric primitives (Section 4); • the major industrial needs in the area of symmetric cryptography (Section 5)

    Stream ciphers

    Get PDF

    Design and Cryptanalysis of Symmetric-Key Algorithms in Black and White-box Models

    Get PDF
    Cryptography studies secure communications. In symmetric-key cryptography, the communicating parties have a shared secret key which allows both to encrypt and decrypt messages. The encryption schemes used are very efficient but have no rigorous security proof. In order to design a symmetric-key primitive, one has to ensure that the primitive is secure at least against known attacks. During 4 years of my doctoral studies at the University of Luxembourg under the supervision of Prof. Alex Biryukov, I studied symmetric-key cryptography and contributed to several of its topics. Part I is about the structural and decomposition cryptanalysis. This type of cryptanalysis aims to exploit properties of the algorithmic structure of a cryptographic function. The first goal is to distinguish a function with a particular structure from random, structure-less functions. The second goal is to recover components of the structure in order to obtain a decomposition of the function. Decomposition attacks are also used to uncover secret structures of S-Boxes, cryptographic functions over small domains. In this part, I describe structural and decomposition cryptanalysis of the Feistel Network structure, decompositions of the S-Box used in the recent Russian cryptographic standard, and a decomposition of the only known APN permutation in even dimension. Part II is about the invariant-based cryptanalysis. This method became recently an active research topic. It happened mainly due to recent extreme cryptographic designs, which turned out to be vulnerable to this cryptanalysis method. In this part, I describe an invariant-based analysis of NORX, an authenticated cipher. Further, I show a theoretical study of linear layers that preserve low-degree invariants of a particular form used in the recent attacks on block ciphers. Part III is about the white-box cryptography. In the white-box model, an adversary has full access to the cryptographic implementation, which in particular may contain a secret key. The possibility of creating implementations of symmetric-key primitives secure in this model is a long-standing open question. Such implementations have many applications in industry; in particular, in mobile payment systems. In this part, I study the possibility of applying masking, a side-channel countermeasure, to protect white-box implementations. I describe several attacks on direct application of masking and provide a provably-secure countermeasure against a strong class of the attacks. Part IV is about the design of symmetric-key primitives. I contributed to design of the block cipher family SPARX and to the design of a suite of cryptographic algorithms, which includes the cryptographic permutation family SPARKLE, the cryptographic hash function family ESCH, and the authenticated encryption family SCHWAEMM. In this part, I describe the security analysis that I made for these designs

    Improved Filter Permutators: Combining Symmetric Encryption Design, Boolean Functions, Low Complexity Cryptography, and Homomorphic Encryption, for Private Delegation of Computations

    Get PDF
    Motivated by the application of delegating computation, we revisit the design of filter permutators as a general approach to build stream ciphers that can be efficiently evaluated in a fully homomorphic manner. We first introduce improved filter permutators that allow better security analyses, instances and implementations than the previously proposed FLIP family of stream ciphers. We also put forward the similarities between these improved constructions and a popular PRG design by Goldreich. Then, we exhibit the relevant cryptographic parameters of two families of Boolean functions, direct sums of monomials and XOR-MAJ functions, which give candidates to instantiate the improved filter permutator paradigm. We develop new Boolean functions techniques to study them, and refine Goldreich\u27s PRG locality bound for this purpose. We give an asymptotic analysis of the noise level of improved filter permutators instances using both kind of functions, and recommend them as good candidates for evaluation with a third-generation FHE scheme. Finally, we propose a methodology to evaluate the performance of such symmetric cipher designs in a FHE setting, which primarily focuses on the noise level of the symmetric ciphertexts (hence on the amount of operations on these ciphertextsthat can be homomorphically evaluated). Evaluations performed with HElib show that instances of improved filter permutators using direct sums of monomials as filter outperform all existing ciphers in the literature based on this criteria. We also discuss the (limited) overheads of these instances in terms of latency and throughput

    Large substitution boxes with efficient combinational implementations

    Get PDF
    At a fundamental level, the security of symmetric key cryptosystems ties back to Claude Shannon\u27s properties of confusion and diffusion. Confusion can be defined as the complexity of the relationship between the secret key and ciphertext, and diffusion can be defined as the degree to which the influence of a single input plaintext bit is spread throughout the resulting ciphertext. In constructions of symmetric key cryptographic primitives, confusion and diffusion are commonly realized with the application of nonlinear and linear operations, respectively. The Substitution-Permutation Network design is one such popular construction adopted by the Advanced Encryption Standard, among other block ciphers, which employs substitution boxes, or S-boxes, for nonlinear behavior. As a result, much research has been devoted to improving the cryptographic strength and implementation efficiency of S-boxes so as to prohibit cryptanalysis attacks that exploit weak constructions and enable fast and area-efficient hardware implementations on a variety of platforms. To date, most published and standardized S-boxes are bijective functions on elements of 4 or 8 bits. In this work, we explore the cryptographic properties and implementations of 8 and 16 bit S-boxes. We study the strength of these S-boxes in the context of Boolean functions and investigate area-optimized combinational hardware implementations. We then present a variety of new 8 and 16 bit S-boxes that have ideal cryptographic properties and enable low-area combinational implementations
    • …
    corecore