
Improved Filter Permutators:
Combining Symmetric Encryption Design, Boolean Functions,

Low Complexity Cryptography, and Homomorphic Encryption,
for Private Delegation of Computations

Pierrick Méaux1, Claude Carlet2, Anthony Journault1, and François-Xavier Standaert1

1 ICTEAM/ELEN/Crypto Group, Université catholique de Louvain, Belgium
firstname.lastname@uclouvain.be

2 LAGA, University of Paris 8, France and Department of Informatics, University of Bergen, Norway
claude.carlet@gmail.com

Abstract. Motivated by the application of delegating computation, we revisit the design of filter permutators
as a general approach to build stream ciphers that can be efficiently evaluated in a fully homomorphic manner.
We first introduce improved filter permutators that allow better security analyses, instances and implementations
than the previously proposed FLIP family of stream ciphers. We also put forward the similarities between these
improved constructions and a popular PRG design by Goldreich. Then, we exhibit the relevant cryptographic
parameters of two families of Boolean functions, direct sums of monomials and XOR-MAJ functions, which give
candidates to instantiate the improved filter permutator paradigm. We develop new Boolean functions techniques
to study them, and refine Goldreich’s PRG locality bound for this purpose. We give an asymptotic analysis of the
noise level of improved filter permutators instances using both kind of functions, and recommend them as good
candidates for evaluation with a third-generation FHE scheme. Finally, we propose a methodology to evaluate the
performance of such symmetric cipher designs in a FHE setting, which primarily focuses on the noise level of
the symmetric ciphertexts (hence on the amount of operations on these ciphertexts that can be homomorphically
evaluated). Evaluations performed with HElib show that instances of improved filter permutators using direct sums
of monomials as filter outperform all existing ciphers in the literature based on this criteria. We also discuss the
(limited) overheads of these instances in terms of latency and throughput.

1 Introduction.

1.1 Initial Goal: Delegating Computations.

Delegating computations has become an important and common habit in our very connected world. From its
simplest form, outsourcing data, to advanced forms such as complex computations on multi-user aggregated
data, delegating computation is widely spread in our society. One of the reason of this massive use is that,
despite the surrounding of more and more devices able to perform computations and communications, the
specifications of such machines are going in two opposite directions. On one side, many objects are now
called smart, or connected, capable of storing a limiting amount of data and send it regularly to bigger
devices. Typical examples of these devices are bracelets, watches, or even pacemakers or toothbrushes. On
the other side, some companies are acquiring more and more servers, enabling to provide huge storage
capacity or computational power, often sold as Cloud services. The boom on the data produced by each
user, together with the increasing need of processing these data cannot be handled by small devices, or even
by personal machines. Then, it is a main cause of the generalization of delegation of computation that the
recent years are witnessing.

Outsourcing computation seems to be a solved problem, nevertheless combining it with privacy is way
trickier. Giving a total control on personal data allows to perform any operation on it, however keeping
hidden some parts of the data greatly increases the difficulty of this task. One way of solving it is to use

Fully Homomorphic Encryption (FHE), which first scheme have been exhibited in 2009 by Gentry [Gen09].
The principle of this primitive is to allow to perform any operation on encrypted versions of the data which
correspond to operation on the actual data, without knowing its value. With this primitive, an user can
encrypt all its data and send it to a Cloud. Then, the cloud can store and perform some operations on the
encrypted data, and send a encrypted version of the result to the user. The Cloud does not learn the value of
the sent data, neither the result of the computation it performs. The user can decrypt the encrypted message
from the Cloud, learning a result she could not compute, from data she did not needed to keep anymore. It
answers to her needs of storage and complex computations, keeping the data privacy.

But, all magic comes with a price. Gentry proved the existence of FHE based on reasonable assumptions,
and further works developed this result e.g. [BV11, BGV12, Bra12, GSW13] but there are some drawbacks
for the concrete efficiency. Known constructions are parts of noise-based cryptography, such as Lattice-
based cryptography, where the security of the scheme generally reduces to the Learning With Error
problem [Reg05], or a variant. Informally, the principle of these encryption schemes consists in hiding the
plaintext with an error. Then, performing operations on the ciphertexts applies on the plaintexts and makes
increase the error (also called noise). When the error is to big to allow a correct decryption, a technique
called boostraping is used to decrease the noise of the ciphertext. This technique relates to homomorphically
perform the decryption of the FHE scheme on its own ciphertext, which implies important costs in terms
of time and data. This technique is the main bottleneck in FHE evaluation, generally leading to consider
contexts where few or no boostrapping are considered for concrete applications. The second drawback, is
greatly impacting asymmetric situations such as the case of outsourcing computation. Fully homomorphic
encryption has an important expansion factor, which corresponds to the size of a ciphertext required to
encrypt one bit. The expansion factor makes the storage of FHE ciphertext costly for the user, and the
encryption algorithm a quite costly algorithm. In contrast, FHE decryption has often a lighter cost in data
and in time complexity for the user.

1.2 Hybrid Homomorphic Framework.

These different drawbacks lead to neglect FHE in favor of an hybrid approach for delegating computation,
often called hybrid FHE. Firstly envisaged in [LNV11], the principle of this primitive is to consider the
combination of a Symmetric Encryption (SE) scheme with a FHE. The typical framework between the user
and the Cloud is depicted in different works (e.g. [LNV11, MJSC16, CCF+16], and can be extended to
different frameworks with more actors. The first main difference with the standard FHE protocol is for
the user, which encrypts only once homomorphically. The user encrypts the key of the symmetric scheme
and send it to the Cloud. Then, all the data is sent symmetrically encrypted to the Cloud, which uses the
encrypted symmetric key and the encrypted plaintexts to obtain homomorphic encryption of the data. The
Cloud realizes this part by homomorphically evaluating the decryption of the symmetric encryption scheme.
Finally, with the obtained homomorphic ciphertexts, the protocol can follow the one of standard FHE.

The evaluation of the decryption algorithm by the Cloud is called transciphering, and it is the most costly
part of the framework, and it is the main focus of hybrid FHE. However, in this framework, the functionality
interesting the user corresponds to all the processing performed by the Cloud after this point. Then, the
efficiency, or satisfiability, of the delegation of computations should depend on the later steps. It translates
into two main constraints regarding transciphering. First, the time cost of this step should be small relatively
to the computations, it can represent only a negligible part of the total framework. Second, transciphering
should involve a very low impact on the noise, in order not to restrict the quantity of operations performed
by the Cloud in reasonable time (i.e. with 0 or few bootstrappings). More practically, the time and error
growth depends on how efficiently the symmetric decryption algorithm can be homomorphically evaluated.

1

When 0 or few bootstrappings are allowed, it implies that the ciphertext sizes has to be big enough
to handle more operations, or more directly bigger errors. The ciphertext sizes affect the time and data
cost of all homomorphic operations, during the whole framework. Thus, the management of the noise is
the main ingredient determining the efficiency of the outsourcing computation application, leading to often
wonder: What about the noise? Hence, a SE scheme is as appropriate for Hybrid FHE as its decryption
algorithm produces a small noise, and is quickly homomorphically evaluated. The error evolution through
the operations depends on the FHE, and different families (or generations) of FHE gives different metrics
of noise. For the schemes known up to now, the basis of the computations considered are additions and
products, the second one being the most costly. The name of second generation (2G) is often used for
schemes where the noise can be approximated by levels given by the multiplicative depth, such as [BGV12].
The third generation (3G), such as GSW scheme [GSW13], benefits from an asymmetric error growth for
multiplication, leading to a quasi-additive noise for multiplicative chains.

In a first time the SE schemes that have been considered for Hybrid FHE were standard symmetric
schemes, known to have a relatively small multiplicative depth. In these cases, the performance has been
mostly evaluated in terms of speed, considering which scheme can provide homomorphic ciphertexts
quickly, based on libraries such as HElib [HS14] working on 2G FHE schemes such as [FV12, BGV12].
Most of the evaluated schemes were block ciphers such as AES [GHS12, CLT14], Simon [LN14] and
Prince [DSES14]. The stream cipher Trivium has also been considered due to is slowly increasing
multiplicative complexity [CCF+16]. These works focused on the minimal time necessary to produce
homomorphic ciphertexts, or ciphertexts allowing a small fixed number of further multiplications. Interested
in outsourcing computation, the situation is different, we care on schemes enabling most of the computations
after the transciphering, which is possible using more recent SE schemes, the ones designed for advanced
cryptographic primitives.

1.3 Symmetric Encryption for Advanced Primitives.

Block cipher designs with reduced multiplicative complexity (e.g. number of AND gates per ciphertext bit or
AND depth) have recently attracted significant attention in symmetric cryptography research. Such ciphers
are motivated by new constraints raised by emerging security applications. For example, limited multiplica-
tive complexity allows preventing side-channel attacks via masking more efficiently [PRC12, GGNS13,
GLSV14], can improve the throughput and latency of Multi-Parti Computation (MPC) protocols [ARS+15,
GRR+16], and mitigates the noise increase and the ciphertext expansion in FHE schemes [ARS+15,
ARS+16, CCF+16, MJSC16, DEG+18]. Concretely, thanks to innovative (and sometimes aggressive)
design choices, recent ciphers (e.g. LowMC [ARS+15, ARS+16]) can encrypt with as little of four ANDs
per bit, or with a multiplicative depth of four (e.g. FLIP [MJSC16]). In a recent work by Dobraunig et
al. [DEG+18], the authors even go as far as minimizing both metrics jointly for a single cipher.

The use of symmetric encryption for advanced primitives gave birth to many new schemes with the
principle of consisting in simpler algorithms to benefit to the advanced primitive. Such advanced primitives
are FHE indeed, but also MPC and Zero-Knowledge (ZK) proofs. These new SE schemes are sometimes
designed for all these applications such as LowMC [ARS+15, ARS+16] or Rasta [DEG+18] by focusing
on the number of ANDs. Some focus on the compatibility with FHE mostly, such as Kreyvium [CCF+16]
or FLIP [MJSC16]. An important line of work focuses both on MPC and ZK, going out of the binary
extensions considered for most of the SE, such examples are given by MiMC [AGR+16] or the recent
Marvellous suite [AD18]. Diverse strategies are used to build these SE schemes with simple, or low cost,
encryption and decryption algorithms, but, what about the noise?

2

The simplicity generally comes from a reduced multiplicative depth and a reduced number of logical
gates, mainly a reduction of the number of AND gates. The efficiency relatively to the MPC and ZK
application can directly be related to these values. Regarding FHE, the situation is more complex, not
only the number of gates imports, the error growth is a complex function depending also on the the order
of the computations. The 2G allows to approximate the final error by the multiplicative depth, but this
approximation can be falsified when many additions are performed, as witnesses in [CCF+16] for the
evaluation of LowMC. The 3G enables to compute long multiplicative chains when low-noise ciphertexts
are used [AP14, DM15, CGGI16], whereas multiplying few sums can result in very noisy ciphertexts. These
examples show that despite reduced multiplicative level and small number of ANDs could serve as a first
direction for hybrid FHE, they are not sufficient for efficient outsourcing delegation.

1.4 Filter Permutators and FLIP.

The approach of [MJSC16] does not focus in decreasing the number of gates or the multiplicative depth but
in reducing the noise of the decryption algorithm to the evaluation of one Boolean function only, it is the
principle of the Filter Permutator (FP) paradigm. Encryption (or decryption) for this stream cipher paradigm
consists, for each keystream bit, in applying a different public wire-cross permutation to the secret key, and
then to filter this permuted key by the (unique) filtering function. The permutation being publicly derived
(from a Pseudorandom Generator (PRG)) the error growth comes from the evaluation of the function (the
addition of the keystream bit with the plaintext or ciphertext has a negligible influence). This feature seems
optimal relatively to hybrid FHE, the efficiency of the framework relying on the homomorphic evaluation
of one function only. Finding a function with minimal noise growth relatively to a FHE scheme sufficient to
provide security is then the main goal. FLIP ciphers [MJSC16] correspond to the filter permutator paradigm
instantiated relatively to the 3G, but they also give a record of low noise for the 2G as the chosen functions
have a very small multiplicative depth.

The FP paradigm is designed for efficient hybrid FHE, but, how far can it goes in this direction rises
many questions. The very unusual design requires to investigate different topics which are generally not
jointly studied in cryptology. More precisely, this paradigm is at the crossroads of design of SE scheme,
low depth cryptographic primitive, study of Boolean functions, and homomorphic evaluation. We develop
the main questions of FP relatively to these topics in the following paragraphs, as in this article we present
results in all these directions, in order to get efficient hybrid FHE.

First, the security of Filter Permutators is difficult to assess, in [MJSC16] different usual properties
of Boolean functions are considered to estimate the complexities of the potential attacks applying on
the paradigm. A generalization of the common criteria of Boolean function used in cryptography is also
introduced, in terms of recurrent criteria, to handle the impact of guess and determine attacks, exhibited by
Duval et al. [DLR16] in this context. Then, the permutation making the input weight of the filtering function
invariant, non standard properties of the function have to be investigated, as determined in [CMR17].
Studying the security from the properties of the Boolean function in this context led to a new branch of
works on the so-called restricted criteria [CMR17, Mes17, MZD18, MMM+18]. Thus, finding modifications
enabling to increase the security of the FP paradigm, or simplifying its analysis would greatly impact its use
in hybrid FHE frameworks.

Then, the concrete instantiations of FP given by FLIP for a bit security of 80 and 128 have a
multiplicative depth of only 4, way smaller than standard SE schemes. It rises the question of how low
can be the multiplicative depth, or the degree, of a concrete SE scheme. Rewriting the filter permutator
paradigm puts forward some similarities with a popular PRG design by Goldreich [Gol00]. It highlights a
connection between FP and cryptographic primitives existing in low complexity classes such as local PRGs.

3

These constructions being the focus of many works as surveyed in [App13], investing the connection can
lead to results in both directions.

The Boolean functions used to instantiate the FP paradigm have a larger number of variables than usually
considered in cryptography. For the functions used in combiners models, investigating the parameters of
function in 20 variables was sufficient, looking for the ones reaching optimal parameters. Later on, more
recent stream ciphers often use registers of 128 bits, however FP leads to consider functions in several
hundreds of variables. General algorithms have prohibitive complexity to determine the parameters of such
functions, furthermore when the parameters of sub-functions are also needed, as expected from the concept
of recurrent criteria. It leads to consider functions in many variables but with a simple structure, as the FLIP
functions. Such families are still almost not investigated in the area of Boolean functions and could lead to
new constructions [HKM17], or new results for Boolean functions and symmetric cryptography.

Finally, the homomorphic evaluation of FPs rises two main questions. First, how to efficiently evaluate
the error-growth given by functions in many variables. FLIP functions can be expressed by a low number
of sums and products, enabling to easily compute the associated noise, but it gives access to a small
number of functions. A good alternative in this direction consists in investigating other representations of
the functions that could be compatible with homomorphic evaluation, such as branching program or finite
automata evaluations [BV14, CGGI16]. Second, most of previous works are comparing the performances of
Hybrid FHE protocol based on the latency or throughput of the transciphering part only. As the motivation
of this construction is outsourcing computation, it is interesting to investigate if other comparisons can
represent more the applicability of the SE scheme for concrete applications. These time estimations give a
first intuition on the SE schemes interesting for hybrid FHE but they suffer some limitations. As example,
the time required for transciphering, or the time to perform this operation and still allow some level
of multiplications, gives few information on the time necessary for more computations, and even less
information to compare different SE schemes in this context. Also, optimizing the timings relatively to one
level of noise and one particular library leads to over-tailor the homomorphic choices, neglecting security
issues or the application goals. These examples lead to investigate a more representative methodology for
comparing SE for hybrid FHE, and consequently to compare the previously used schemes accordingly.

1.5 Contributions.

In this article we present different results relative to the four sub-mentioned topics, jointly investigated,
in order to provide more efficient hybrid FHE. We firstly modify the FP paradigm in the Improved Filter
Permutator (IFP) paradigm. It is performed by first considering two different sizes of register, one for the
key, and a smaller one on which the permutation applies. It implies that the filtering function is applied on a
different (publicly chosen) subset of the key bits a each clock cycle. This difference modifies the Hamming
weight of the input of f during the encryption, which strongly decreases the potential impact of restricted
inputs attacks and makes the paradigm more similar to the design of Goldreich’s PRG. Then, a whitening
is xored to the input of the function, at each clock cycle. This modification greatly complexifies the task of
finding guesses leading to particularly weak sub-functions, and randomizes the input of the filtering function
f . With these two modifications, we propose a security analysis simpler than the one known on FPs, and
algorithms to evaluate it. This analysis uses well known Boolean criteria such as the algebraic immunity
on the filtering function and all its sub-functions. We give two potential instantiations of the IFP paradigm,
in terms of FiLIP stream ciphers, both considering their security and homomorphic impact. The FiLIPDSM

ciphers use the Direct Sums of Monomials (DSM) functions, which are generalization of FLIP functions,
we consider it as the main ciphers to analyze in the context of Hybrid FHE. Then, we propose and study

4

FiLIPXMAJ challenges which are inspired by functions used for local PRGs, but than could have flaws for
concrete (non asymptotic) instances.

Considering FiLIPXMAJ challenges we exhibit the similitudes between Goldreich’s PRG and the IFP
paradigm. We investigate in detail the family of XOR-MAJ functions which are considered as predicates of
local PRGs [AL16]. This study leads to partially answer a question relatively to the stretch of local PRGs,
giving a new bound on the minimum locality required for these PRGs. The answer being constructive we
exhibit two families reaching this bound for all stretch considered.

We investigate two families of Boolean functions for any number of variables, the families of direct
sum of monomials and the family of XOR-THR functions. In both cases we determine the exact resiliency,
nonlinearity, algebraic immunity and bounds on the fast algebraic immunity and dimension of annihilators
of minimal degree, which are all the relevant criteria for IFPs, in in various contexts. For the second family
of functions we begin by studying the threshold functions, a family of symmetric functions containing the
majority function. Despite the intense study of symmetric functions in the area of Boolean functions used
in cryptography we exhibit new properties on these families, potentially answering questions far from our
scope. Motivated by the security analysis of IFPs we develop new tools such as the partitioned algebraic
normal form, which enables to derive more results on the algebraic immunity, and generally on low degree
annihilators that could benefit to other studies.

Finally, we study the error growth of the two instantiations of IFPs for general 3G schemes. We do
it considering two possible representation of functions, and show that both families of functions give a
very small noise. It leads to very efficient Hybrid FHE relatively to the third generation. We then use
the FiLIPDSM instances as a basis to compare IFPs with other published ciphers aimed at efficient FHE
evaluation. We describe and use a more stable metric than latency and throughput (since it avoids the
aforementioned specialization to a given target function). It is also connected to a generally desirable
goal (since one may expect that the ability to perform as much homomorphic operations as possible is
a useful feature for practical applications). We formalize our comparison methodology, by (i) setting the
FHE security parameters at a level that is comparable to the SE ones (i.e. 80-bit or 128-bit), (ii) using
ciphertexts of comparable size for all the cipher designs to compare (so basing the comparison on the most
expensive cipher in terms of noise), and (iii) monitoring the noise (e.g. provided by the used library) not
only for the ciphertexts but also after one and two levels of additional multiplications on the ciphertexts.
Concrete estimations carried out using HElib put forward that the noise of Rasta and FiLIP is orders of
magnitudes smaller than the one of LowMC, and that new instances of FiLIP with reduced multiplicative
depth allow performing two more levels of multiplications on its ciphertexts than the recommended Rasta
designs. We further observe that even non-recommended versions of Rasta (with comparable multiplicative
depth) would not compare favorably to FiLIP due to a (much) larger key size. We complement our analyzes
with an evaluation of best-case latency and throughput (i.e. when ciphertexts can just be decrypted), as
performed previously. We believe that it remains an informative alternative metric and clarify that it has to
be understood as the best possible performances of a cipher since any concrete application (where symmetric
ciphertexts are manipulated homomorphically) will require ciphertext expansion.

1.6 Organisation.

In Section 2 we give the preliminary notions on Boolean function and FHE used in the paper. In Section 3,
and Section 4 we introduce the improved filter paradigm and study its security as a symmetric encryption
scheme. The following part, Section 5 and Section 6 is devoted to the results on Boolean functions,
proving the relevant parameters of the DSM and XOR-THR families, and diverse applications of partitioned
algebraic normal form such as the result on local PRGs. In Section 7 we study the error growth of the

5

two families of functions relatively to 3G schemes. Section 8 presents the instantiations of IFPs with DSM
functions: the FiLIPDSM ciphers, and Section 9 is dedicated to FiLIPXMAJ challenges based on XOR-THR
function. Finally, in Section 10 we develop the new methodology to compare hybrid FHE, and apply it on
the 2G library HElib.

2 Preliminaries.

In addition to classic notation we use the log to denote the logarithm in basis 2, and [n] to denote the subset
of all integers between 1 and n: {1, . . . , n}. For readability we use the notation + instead of⊕ to denote the
addition in F2.

2.1 Boolean Functions and Cryptographic Criteria.

Boolean Functions. We introduce here some core notions of Boolean functions in cryptography, restricting
our study to the following definition of Boolean function, more restrictive than a vectorial Boolean function.

Definition 1 (Boolean Function). A Boolean function f with n variables is a function from Fn2 to F2. The
set of all Boolean functions in n variables is denoted by Bn.

We call pseudo-Boolean function a function with input space Fn2 but output space different from F2.

The following representation is commonly used, and its basic properties also.

Definition 2 (Algebraic Normal Form (ANF)). We call Algebraic Normal Form of a Boolean function f
its n-variable polynomial representation over F2 (i.e. belonging to F2[x1, . . . , xn]/(x21 +x1, . . . , x

2
n+xn)):

f(x) =
∑
I⊆[n]

aI

(∏
i∈I

xi

)
=
∑
I⊆[n]

aIx
I ,

where aI ∈ F2.

– The algebraic degree of f equals the global degree max{I | aI=1} |I| of its ANF.
– Any term

∏
i∈I xi in such an ANF is called a monomial and its degree equals |I|. A function with only

one non-zero coefficient aI , |I| > 0, is called a monomial function.
– The function f is affine if and only if its algebraic degree is at most 1, the function is linear if in addition
a∅ = 0.

Boolean Criteria. In this part, we recall the main cryptographic properties of Boolean functions, mostly
taken from [Car10]: balancedness, resiliency, nonlinearity ,algebraic immunity, fast algebraic immunity, and
dimension of the space of annihilators of minimal degree.

Definition 3 (Balancedness). A Boolean function f ∈ Bn is said to be balanced if its output is uniformly
distributed over {0, 1}.

Definition 4 (Resiliency). A Boolean function f ∈ Bn is called be m-resilient if any of its restrictions
obtained by fixing at most m of its coordinates is balanced. We denote by res(f) the maximum resiliency
(also called resiliency order) m of f and set res(f) = −1 if f is unbalanced.

6

Note that resiliency is an extended notion of balancedness, a balanced function is a k-resilient function
with k ≥ 0. We also define the Hadamard transform, an important tool to study the resiliency of a Boolean
function.

Definition 5 (Hadamard Transform). The Hadamard transform is the linear mapping which maps any
pseudo-Boolean function f on Fn2 (with output space included in Z) to the function f̂ defined on Fn2 as:

f̂(a) =
∑
x∈Fn

2

f(x)(−1)a·x,

where a · x denotes the inner product in Fn2 , and the sum is performed in Z.

The Hadamard transform can be applied to a Boolean function f itself but also to the sign function
fχ(x) = (−1)f(x), giving the Walsh transform:

Definition 6 (Walsh Transform). Let f ∈ Bn a Boolean function, its Walsh transform Wf at a ∈ Fn2 is
defined as:

Wf (a) =
∑
x∈Fn

2

(−1)f(x)+a·x.

Note that the Walsh transform is strongly connected to the nonlinearity:

Definition 7 (Nonlinearity). The nonlinearity NL of a Boolean function f ∈ Bn, where n is a positive
integer, is the minimum Hamming distance between f and all the affine functions in Bn:

NL(f) = min
g, deg(g)≤1

{dH(f, g)},

with dH(f, g) = #{x ∈ Fn2 | f(x) 6= g(x)} the Hamming distance between f and g; and g(x) = a · x+ ε,
a ∈ Fn2 , ε ∈ F2 (where · is some inner product in Fn2 ; any choice of an inner product will give the same
definition).

The nonlinearity of a Boolean function can also be defined by its Walsh transform:

NL(f) = 2n−1 −
1

2
max
a∈Fn

2

|Wf (a)|.

Note that the nonlinearity measures the distance to affine functions. It can be generalized to the notion
of higher-order nonlinearity where the distance is taken over all functions of degree less than or equal to a
fixed integer.

Definition 8 (Algebraic Immunity and Annihilators). The algebraic immunity of a Boolean function f ∈
Bn, denoted as AI(f), is defined as:

AI(f) = min
g 6=0
{deg(g) | fg = 0 or (f + 1)g = 0},

where deg(g) is the algebraic degree of g. The function g is called an annihilator of f (or f + 1).
We additively use the notation AN(f) for the minimum algebraic degree of non null annihilator of f :

AN(f) = min
g 6=0
{deg(g) | fg = 0}.

7

We also use the notation DAN(f) for the dimension of the vector space made of the annihilators of f
of degree AI(f) and the zero function. Note that, for every function f we have DAN(f) ≤

(
n

AI(f)

)
, because

two distinct annihilators of algebraic degree AI(f) cannot have in their ANF the same part of degree AI(f)
(their difference being itself an annihilator).

Note that this definition directly leads to the following properties for simple functions:

Corollary 1 (Algebraic Immunity Properties). Let f be a Boolean function:

– The null and the all-one functions are the only functions such that AI(f) = 0.
– All monomial (non constant) functions f are such that AI(f) = 1.
– For all non constant f it holds: AI(f) ≤ AN(f) ≤ deg(f).

Definition 9 (Fast Algebraic Immunity [ACG+06]). The fast algebraic immunity of a Boolean function
f ∈ Bn, denoted as FAI(f), is defined as:

FAI(f) = min{2AI(f), min
1≤deg(g)<AI(f)

(max[deg(g) + deg(fg), 3deg(g)])}.

Families of Boolean Functions. In this part we highlight three families of functions: direct sum of
monomials, threshold functions, and XOR-Threshold functions. We begin by introducing a secondary
construction called direct sum, enabling to construct the first family.

Definition 10 (Direct Sum). Let f be a Boolean function of n variables and g a Boolean function of m
variables, f and g depending on distinct variables, the direct sum h of f and g is defined by:

h(x, y) = f(x) + g(y), where x ∈ Fn2 and y ∈ Fm2 .

A family of functions obtained by direct sums can be of particular interest when looking for functions
simple to evaluate: functions obtained by direct sums of monomials. Informally it consists of functions
where each variable appears at most once in the ANF, and we focus on the ones where each variable appears
once and only once.

Definition 11 (Direct Sum of Monomials). Let f be a non constant Boolean function of n variables, we
call f a Direct Sum of Monomials (or DSM) if the following holds for its ANF:

∀(I, J) such that aI = aJ = 1, I ∩ J ∈ {∅, I ∪ J}.

Definition 12 (Direct Sum Vector [MJSC16]). Let f be a DSM, we define its direct sum vector:

mf = [m1,m2, . . . ,mk],

of length k = deg(f), where mi is the number of monomials of degree i, i > 0, of f :

mi = |{aI = 1, such that |I| = i}|.

When we consider a function F associated to the direct sum vector mF = [m1,m2, . . . ,mk], it
corresponds to the function with M =

∑k
i=1mi monomials, and N =

∑k
i=1 imi variables. Note that

it corresponds to a function without ineffective variable, each variable appears once and only once in the
ANF.

8

A sub-family of direct sum of monomials of particular interest is the family of triangular functions.

Definition 13 (Triangular Functions [MJSC16]). Let k be a strictly positive integer. The k-th triangular
function Tk is a direct sum of monomials of k(k + 1)/2 variables:

Tk(x1, . . . , xk(k+1)/2) =
k∑
i=1

i∏
j=1

xj+i(i−1)/2.

It can also be defined from its direct sum vector which is the all-1 vector of length k: mTk = [1, 1, . . . , 1].

We also define the family of threshold functions, and a sub-family of threshold functions of particular
interest is the family of majority functions.

Definition 14 (Threshold Function). For any positive integers d ≤ n + 1 we define the Boolean function
Td,n as:

∀x = (x1, . . . , xn) ∈ Fn2 , Td,n(x) =

{
0 if wH(x) < d,

1 otherwise.

Definition 15 (Majority Function). For any positive odd integer n we define the Boolean function MAJn
as:

∀x = (x1, . . . , xn) ∈ Fn2 , MAJn(x) =

{
0 if wH(x) ≤ bn2 c,
1 otherwise.

Note that threshold functions are symmetric functions (changing the order of the input bits does not
change the output), which have been the focus of many studies e.g. [Car04, CV05, DMS06, QLF07, SM07,
QFLW09]. Note also that MAJn = Tn+1

2
,n. These functions can be described more succinctly through the

simplified value vector.

Definition 16 (Simplified Value Vector). Let f be a symmetric function in n variables, we define its
simplified value vector:

s=[w0, w1, . . . , wn]

of length n, where for each k ∈ {0, . . . , n}, wk = f(x) where wH(x) = k, i.e. wk is the value of f on all
inputs of Hamming weight k.

Note that for a threshold function, we have wk = 0 for k < d and 1 otherwise, so the simplified value
vector of a threshold function Td,n is the n+ 1-length vector of d consecutive 0’s and n+ 1− d consecutive
1’s.

We will also be interested in functions obtained by a direct sum of a linear direct sum of monomials and
a threshold function, called XOR-THR (or XOR-MAJ when the threshold function happens to be a majority
function).

Definition 17 (XOR-THR Function). For any positive integers k, d and n such that d ≤ n + 1 we define
XORk + Td,n for all z = (x1, . . . , xk, y1, . . . , yn) ∈ Fk+n2 as:

(XORk + Td,n)(z) = x1 + · · ·+ xk + Td,n(y1, . . . , yn) = XORk(x) + Td,n(y).

9

Boolean Functions and Bit-Fixing. In this part, we give the necessary vocabulary relatively to bit-fixing
(as defined in [AL16]) on Boolean function, the action consisting in fixing the value of some variables of
a Boolean function and then considering the resulting Boolean function. These notions are important when
guess-and-determine attacks are investigated (see Section 4.1).

Definition 18 (Bit-fixing Descendant). Let f be a Boolean function in n variables (xi, for i ∈ [n]), let `
be an integer such that 0 ≤ ` < n, let I ⊂ [n] be of size ` (i.e. I = {I1, . . . , I`} with Ii < Ii+1 for all
i ∈ [`− 1]), and let b ∈ F`2, we denote as fI,b the `-bit fixing descendant of f on subset I with binary vector
b the Boolean function in n− ` variables:

fI,b(x
′) = f(x) | ∀i ∈ [`], xIi = bi,

where x′ = (xi, for i ∈ [n]\I).

Definition 19 (Bit-fixing Stability). Let F be a family of Boolean functions, F is called bit-fixing stable,
or stable relatively to guess and determine, if for all functions f ∈ F such that f is a n-variable function
with n > 1, the following holds:

– for all number of variables ` such that 0 ≤ ` < n,
– for all choice of the variables 1 ≤ I1 < I2 < · · · < I` ≤ n,
– for all value of guess (b1, . . . , b`) ∈ F`2,

at least one of these properties is fulfilled: fI,b ∈ F , or fI,b + 1 ∈ F , or deg(fI,b) ≤ 0.

Remark 1. Both DSM and XOR-THR functions are bit-fixing stable families. More precisely, for a DSM,
considering the behavior on its ANF, fixing a variable to 0 cancels a monomial, fixing a variable to 1 reduces
the degree of one of the monomials. Then, the property on the ANF coefficients defining a DSM is still
complied by the descendant function. Fixing variables recursively does not change this property, and when `
is greater than the number of monomials, it is possible to have only the constant coefficient non null, adding
the constant functions to the list of descendants.

For the family of XOR-THR functions, first note that fixing variables maintains the direct sum structure.
If a variable is fixed to 0 in the XOR part, the descendant has a XOR part with one variable less and the
threshold part is the same. If the variable is fixed to 1, the descendant has a XOR part with one variable less
and the threshold part is the complement of the initial one, therefore 1 + f ′ is a XOR-THR function. If a
variable is fixed in the threshold part, it gives a threshold function. Indeed, for n > 1 using Definition 14,
fixing a variable to 1 for Td,n gives the function Td−1,n−1, and fixing a variable to 0 gives the function
Td,n−1. Therefore these descendants are also XOR-THR functions. Then, recursively fixing variables until
` < n gives descendants which are XOR-THR functions or which complement is a XOR-THR functions
(note that the constant functions are in this family too).

2.2 Fully Homomorphic Encryption.

We recall here the definition of (fully) homomorphic encryption, a kind of encryption enabling to perform
computations on plaintexts only manipulating the ciphertexts, without requiring the ability of decrypting.
We introduce the vocabulary relative to homomorphic encryption we will use in this paper. For more details
we refer to [Gen09] for FHE, and to [LNV11, MJSC16] for hybrid homomorphic encryption.

Definition 20 (Homomorphic Encryption Scheme). LetM be the plaintext space, C the ciphertext space
and λ the security parameter. A homomorphic encryption scheme consists of four probabilistic polynomial-
time algorithms:

10

– H.KeyGen(1λ). Generates a pair (pkH , skH) the public and secret keys of the scheme.
– H.Enc(m, pkH). From the plaintext m ∈M and the public key, outputs a ciphertext c ∈ C.
– H.Dec(c, skH). From the ciphertext c ∈ C and the secret key, outputs m′ ∈M.
– H.Eval(f, c1, · · · , ck, pkH). With ci = H.Enc(mi, pk

H) for 1 ≤ i ≤ k, outputs a ciphertext cf ∈ C.

Homomorphic encryption: simple, leveled, somewhat, fully. Different notions of homomorphic
encryption exist, depending on the set over which the function f can be taken, that is, on the operations
which are possible. For all these kinds of homomorphic encryptions we assume a compactness property:
|C| is finite, and the size of a ciphertext does not depend on the number of homomorphic operations
performed to obtain it. When only one kind of operation is permitted the scheme is simply homomorphic, it
is called somewhat homomorphic when more than one operation can be performed, at least partially. Leveled
homomorphic encryption schemes correspond to f being any polynomial of bounded degree(defining the
level) and bounded coefficients. Fully Homomorphic Encryption (FHE) corresponds to f being any function
defined overM. Gentry [Gen09] proved that FHE can be constructed by combining a leveled homomorphic
encryption scheme with a bootstrapping technique.

As this technique is still a bottleneck for homomorphic evaluation, we consider a framework where no
bootstrapping (or at least less bootstrapping) are performed, and then when we refer to FHE or HE it refers
more precisely to this context.

Noise or error-growth. Any known FHE scheme is based on noise-based cryptography, so that an
homomorphic ciphertext is associated to a part of error (or noise). The more homomorphic operations are
performed, the higher is the noise (if no bootstrapping is used), this quantity of noise can be measured in
terms of standard deviation of the distribution followed by the error part. The error-growth involved in an
homomorphic evaluation is then the evolution of this parameter.

FHE generations. Since Gentry’s breakthrough [Gen09], various FHE schemes following this blueprint
appeared. We call second generation the schemes where the error of the product is symmetric in the factors,
as BGV [BGV12] which is often considered for efficiency comparisons as implemented in the HElib
library [HS14]. We call third generation the schemes where the error of the product is asymmetric in the
factors, the most recent generation of FHE, initiated with GSW [GSW13].

2.3 Filter Permutators and FLIP Instances.

The Filter Permutator or FP (by analogy with filter generators) is the general design of stream ciphers
introduced in [MJSC16], and FLIP is an instance of this design where the filtering function is taken from
a sub-family of DSM functions. The main design principle of FPs is to filter a constant key register with a
variable (public) bit permutation. More precisely, at each cycle, the key register is (bitwise) permuted with
a pseudo-randomly generated permutation, and then a non-linear filtering function is applied to the output
of this permuted key register. The general structure of FPs is depicted in Figure 2.3. It is composed of three
parts:

– A register where the key is stored,
– a (bit) permutation generator parametrized by a Pseudo Random Number Generator (PRNG) which is

initialized with a public IV,
– a filtering function which generates a key-stream.

11

. Key register K

Pi

F

plaintext

ciphertext

PRNGIV

Gen.
Perm.

Fig. 1. Filter permutator construction.

3 Improved Filter Permutators: a New Design for Better Security and Better
Performances.

Two main tweaks are performed on the Filter Permutators blueprint to increase its security and its
performances as a SE scheme in the SE-FHE framework. The first goal of these modifications is to generalize
the original design, in a way which provides more flexibility to choose the functions used, and the number
of variables involved in the computations. The second goal consists in simplifying the security analysis,
erasing some particularities of the FP which make the security difficult to evaluate.

3.1 Description.

The design of Improved Filter Permutators (IFPs) deviates from filter permutators blueprint in two ways.
First, the size of the key register and the number of variables of the filtering function is not forced to be
equal. The IFP key can be longer than the number of inputs of the filtering function (in practice we consider
a small factor between both, between 2 and 32). Second, at each clock cycle a whitening of the size of F
input’s is derived from the PRNG and bitwise XORed with the permuted sub-part of the key.

It gives a new design depicted in Figure 3.1 with the following particularities:

– N is the size of the key register,
– n ≤ N is the number of selected bits from the key register at each clock cycle,
– F is the filtering function, a n-variable Boolean function.

For a security parameter λ, to encrypt m ≤ 2λ bits under a secret key K ∈ FN2 (such that wH(K) =
N/2), the public parameters of the PRNG are chosen and then the following process is executed for each
key-stream bit si (for i ∈ [m]):

12

. Key register K

Pi

whitening

F

plaintext

ciphertext

IV PRNG

Subset

Perm.

Fig. 2. Improved filter permutator construction.

– The PRNG is updated, its output determines the subset, the permutation, and the whitening at time i,
– the subset Si is chosen, as a subset of n elements over N ,
– the permutation Pi from n to n elements is chosen,
– the whitening wi from Fn2 is chosen,
– the key-stream bit si is computed as si = F (Pi(Si(K)) + wi), where + denotes the bitwise XOR.

Note that for each clock cycle i we consider that the PRNG gives enough pseudorandom bits to
independently determine the subset (log

(
N
n

)
bits), the permutation (log(n!) bits), and the whitening (n

bits). Its effect on the performances of IFPs in a hybrid FHE framework is negligible anyway. Note that
if the number of pseudorandom bits given by the instance of the PRNG used is limited to b, it enables to
compute bb/(log

(
N
n

)
+log(n!)+n)c bits of ciphertexts only. If this quantity is smaller thanm, then another

instance of PRNG is used, and so forth until the m bits of ciphertexts are produced (an instantiation of the
whole scheme is given in Section 8). Any pseudorandom sequence not adversarially chosen could be used
instead of the PRNG’s output, the use of the PRNG is only motivated by the storage limitation [MJSC16] of
one of the participants in the hybrid FHE framework.

13

3.2 Impact on Security.

The two modifications from FPs to IFPs, i.e. the register extension and the whitening, are generalizing
the design, and strictly improving the security. The register extension has two main advantages. First,
it enables to increase the security without using more complex functions (allowing then more flexibility
in the design). Indeed, keeping invariant the filtering function, increasing N decreases the probability of
each key-bit to appear in a key-stream equation, directly increasing the complexity of all attacks known
to apply on the Filtering Permutator. Second, the Hamming weight of F ’s input is not constant anymore.
Since N ≥ 2n, F can be evaluated on any element of Fn2 , it makes the attacks based on restricted input
considerations [CMR17] even less efficient.

The main advantage of the whitening is to facilitate the analysis of security against guess-and-determine
attacks [DLR16]. When a guess-and-determine strategy is used by the attacker, some key bits (`) are
fixed and then the key-stream bits do not correspond to evaluations of F anymore, but to evaluations of
descendants of F , which are functions acting on a number of variables between n and n−`. The complexity
of these attacks depends on the properties of the descendants rather than the ones of F . In the security
analysis of [MJSC16], the descendant with the worst parameter was considered for each Boolean criterion,
giving a lower bound on the complexity of the corresponding attack. By randomizing the choice of the
descendant, the whitening enables the security of IFPs to be based on average properties rather than worst-
case ones (as the probability of getting a function with the worst parameters is not equal to 1).

Finally, note that increasing the register size makes the construction very similar to Goldreich’s
PRG [Gol00]. For more details on this PRG, we refer to the initial article of Goldreich and to the survey
of Applebaum [App13] relatively to local PRG. In the following we give the necessary explanations to
understand the connection between this PRG and IFPs. Goldreich’s PRG is an asymptotic construction with
interesting conjectured security [App12, App13, AL16], and many implications such as secure computation
with constant computational overhead [IKOS08], or indistinguishability obfuscation [LV16, LT17]. We
can define Goldreich’s PRG in the following way: let n and m be two integers, let (S1, . . . , Sm) be
a list of m subsets of [n] of size d, and let P be a Boolean function in d variables (often called
predicate), we call Goldreich’s PRG the functions G : Fn2 7→ Fm2 such that for x ∈ Fn2 , G(x) =
P (S1(x)), P (S2(x)), . . . , P (Sm(x)). The integer d is called the locality of the PRG and many works have
focused on constant d, and on polynomial-stretch local PRG. Local means that d is constant, and polynomial-
stretch means that m = ns where s is the called the stretch, so that these PRG extend a short random
seed into a polynomially longer pseudorandom string. These polynomial-stretch local PRG are conjectured
secure based on some properties of the subsets and on the function P . Considering the (n,m, d)-hypergraph
given by the subsets (S1, . . . , Sm), the PRG cannot be secure if the hypergraph is not sufficiently expending
(we refer to the survey [App13] for the notions and references). In practice, an overwhelming portion of
(n,m, d)-hypergraphs are sufficiently expanding, making the choice of a random (n,m, d)-hypergraph an
usual and adequate strategy. Relatively to the function P , the PRG cannot be secure if P is not resilient
enough [MST03] or if its algebraic degree, or more generally its algebraic immunity, is not sufficient [AL16],
both quantity being related to s. For these constructions, the security is considered asymptotically, relatively
to class of polynomial adversaries as linear distinguishers [MST03] or the Lasserre/Parrilo semidefinite
programming hierarchy for example. Regarding concrete parameters, very few is known up to now, we
are only aware of the recent work [CDM+18], which concretely studies the security of an instance of a
super-linear (but less than quadratic) stretch.

14

3.3 Impact on Homomorphic Evaluation.

The modifications from FPs to IFPs are almost free. The size of the key register does not modify the function
F so the homomorphic error-growth given by the evaluation of F is independent of N . The whitening is
given by the output of the PRNG, so considered as public, therefore each bit of the whitening is encrypted as
a zero-noise homomorphic ciphertext. Adding homomorphically these zero-noise ciphertexts to the input of
F does not increase the error-growth, giving a final noise identical to the one obtained with a FP instantiated
with the same function. Only the time of the evaluation is modified, but the search in a longer list and the
addition of zero-noise ciphertexts has a minor impact compared to the evaluation of the filtering function.

3.4 Key-size Consideration.

A general idea behind FPs and Improved FPs is to have the main part of the encryption process which
would have no cost when homomorphically evaluated. This specificity leads to consider longer keys than
the traditional λ-bits key for a bit-security of λ. We argue that in the SE-FHE context this specificity has a
very low impact. Indeed, even bounding the total key-size to 214 it is still way smaller that the size of only
one homomorphic ciphertext. Then, the encryption of each bit depending only on a subpart of fixed length
of the key, the total length of the key has no impact for the majority of the hybrid FHE framework. Since
the user can store a key of this size, and the server can store this amount of homomorphic ciphertexts, the
key size is not a bottleneck in the considered framework. Note that for the schemes with key size of λ bits,
more computations are needed for the encryption or decryption, having an important impact on the size of
the homomorphic ciphertexts required, impacting the majority of the hybrid FHE framework, and mostly
the application part.

4 Security Analysis of the Improved Filter Permutators.

Due to the similarity of (improved) filter permutators to the filter register model, we investigate the attacks
known to apply on this model. We consider that no additional weakness arises from the PRNG which is
chosen to be forward secure to avoid malleability. The subsets and the whitenings are chosen without any
bias and Knuth-shuffle is used to choose the permutations. As a consequence, on this pseudorandom system
non adversarially chosen, the attacks applying target the filtering function and they are adaptations from the
one applying on filtered registers. The security analysis is similar to the one in [MJSC16], the same kind
of attacks are explored but the complexity is computed differently, considering all descendant functions and
the probability of obtaining them. We consider the attacks in the single-key setting, in the known ciphertext
model, focusing particularly on key-recovery attacks.

4.1 Attacks Applying on Improved Filter Permutators.

We first describe algebraic-like and correlation-like attacks, then we explain how these attacks can be
generalized with a guess-and-determine strategy. Finally, we briefly comment other attacks less adapted
to IFPs.

Algebraic-like Attacks. We qualify as algebraic-like attacks the kind of attacks consisting in manipulating
the system of equations given by the key-stream to build a system of smaller degree, easier to solve.
Algebraic attacks [CM03], fast algebraic attacks [Cou03a], or approaches using Grobner bases (such
as [Fau99]) are examples of this type of attacks. To determine the security of IFP relatively to this class

15

of attacks we study more particularly the complexity of algebraic attacks and fast algebraic attacks, as their
complexity can be estimated from Boolean criteria.

The main idea of algebraic attacks as defined in [CM03] (in a context of filtered LFSR) is to build an
over-defined system of equations with the initial state of the LFSR as unknown, and to solve this system
with Gaussian elimination. The principle is to find a nonzero function g such that both g and h = gF have
low algebraic degree, enabling to get various equations of small degree d. Then, the degree-d algebraic
system is solved, by linearization if it is possible, using Grobner basis method or SAT solvers otherwise;
linearization is the only method for which evaluating the complexity is easy. In practice, the degree of g
is at least AI(F), and g is chosen to be a non null annihilator of F or F + 1 of minimal degree. Then
the adversary is able to obtain DAN(F) (respectively DAN(F + 1)) equations with monomials of degree
AI(F) in the key bits variables, for each equation. After linearization, the adversary obtains a system of
equations in D =

∑AI(F)
i=0

(
N
i

)
variables, where N is the number of original indeterminates. Therefore, the

time complexity of the algebraic attack isO(Dω) ≈ O(NωAI(F)), where ω is the exponent in the complexity
of Gaussian elimination (we assume ω = log(7) for all our security estimations). The data complexity is
O(D/DAN(F)).

Fast algebraic attacks [Cou03a] are a variation of the previous attacks. Still considering the relation
gF = h, their goal is to find and use functions g of low algebraic degree e, possibly smaller than AI(f),
and h of low but possibly larger degree d. Then, the attacker lowers the degree of the resulting equations by
an off-line elimination of the monomials of degrees larger than e (several equations being needed to obtain
each one with degree at most e). Following [ACG+06], this attack can be decomposed into four steps:

1. The search for the polynomials g and h generating a system of D + E equations in D + E unknowns,
where D =

∑d
i=0

(
N
i

)
, and E =

∑e
i=0

(
N
i

)
. This step has a time complexity in O ((D + E)ω).

2. The search for linear relations which allow the suppression of the monomials of degree more than e.
This step has a time complexity in O(D log2(D)).

3. The elimination of monomials of degree larger than e using the Berlekamp-Massey algorithm. This step
has a time complexity in O(ED log(D)).

4. The resolution of the system. This step has a time complexity in O(Eω).

Given the FAI of F , ignoring Step 1 which might be trivial for our choice of F , the time complexity of this
attack is:

O(D log2(D) + ED log(D) + Eω) ≈ O(NFAI).

This attack is very efficient on filtered LFSR ciphers as the search of linear relations between equations is
simple. For IFPs, as the subset of variables and the permutation chosen at each clock cycle are given by the
PRNG, there is no trivial linear relation between one equation and the next ones. It is always possible to
simplify some equations using the system, for example forcing collisions on the monomials of higher degree,
so other techniques of eliminations could apply. We stress that the time complexity of these techniques would
be higher than the one of Berlekamp-Massey, thus we consider the complexity of the fast algebraic attack as
an upper bound on the complexity of any attack of the algebraic kind on IFPs. More precisely we consider
the time complexity given by D and E in the precedent formula, and we consider a data complexity of D.

Correlation-like Attacks. We qualify as correlation-like attacks the kind of attacks that use the bias of the
filtering function relatively to uniform, or relatively to a low degree function. Correlation attacks, Learning
Parity with Noise solvers, correlation attacks based on the XL algorithm [Cou03b] are examples of this kind
of attacks. To determine the security of IFP relatively to this class of attacks, we study more particularly the
complexity of correlation attacks, and show how it complexity can be estimated using Boolean criteria.

16

The principle of correlation attacks is to distinguish the output of IFPs from random. For example if
the filtering function is not balanced an attack can consist in averaging the key-stream and observing a bias
relatively to 1/2. If the function is balanced, this strategy does not apply, but instead of doing an average
on all the key-stream, the attack can target one part of the key-stream only, depending on a sub-part of the
variables for example. As the goal of these attacks is to distinguish the key-stream from random, then for
key-recovery attacks we assume that they have at least the complexity of the distinguishing attack. Two
points influence the effectiveness of this attack: the possibility to get equations relatively to an unbalanced
function, and the bias.

Two criteria enable to study the functions relatively to these points: the resiliency and the nonlinearity.
The resiliency of a function gives the number of variables that have to be fixed to make it unbalanced, and
can be used for the first point. Then, the nonlinearity gives the distance with the closest affine function,
which determines the bias to 1/2. Note that to detect the bias to 1/2 the data complexity would be:

O(δ−2), with δ =
1

2
−

(
NL(F)

2n

)
.

For Learning Parity with Noise solvers, correlation attacks based on XL, or other attacks of this kind,
a similar bias has to be observed. The smaller is δ, the more distant is the algebraic system from a linear
one, which decreases the efficiency of these attacks. When combinations of vectors are required to observe
a bias, the higher is the resiliency, the higher is the attack complexity. In our following analyses, we adopt
a conservative approach to thwart this variety of attacks: we assume that guaranteeing both δ−2 ≥ 2λ and a
resiliency of λ− 1 avoids any attack of this kind with time or data complexity of less that 2λ operations.

Note that in the context of Goldreich’s PRG only the resiliency is studied. The underlying principle is,
as the output is bounded (polynomial) and as the subsets are well distributed, the probability of repetitively
finding subsets of the key-stream bits whose sum gives an unbalanced function is low, with enough
resilience. In this context the nonlinearity is not studied, as any bias is considered as giving a polynomial
attack.

Guess-and-determine Strategies. As shown in [DLR16] guess-and-determine attacks apply on FPs. Thus,
we consider this class of attacks relatively to IFPs. The principle of the guess-and-determine attack consists
in guessing ` key bits in order to target simpler functions, obtaining a system of equations easier to solve
or with a distribution easier to distinguish. In our context it can be less costly for an attacker to consider
the 2` possible systems given by fixing the value of ` variables than attacking the initial system of equation
given by the key-stream. Hence, both kinds of attacks presented before can be generalized with guess-and-
determine. We explain the principle relatively to the algebraic attack: the attacker selects ` variables and
gives a value of its guesses, it simplifies the algebraic system. Then, the attacker considers all equations
such that the descendant function has algebraic immunity at most k, and generates the corresponding degree
k algebraic system. Once linearized, the attacker solves the system, if it is not consistent, then another guess
is tried. As one of the 2` values of the guess is the correct one, the attack will succeed. Similarly for the
other attacks, once the value of the guess is fixed, the attack is mounted on the new system relatively to a
specific value of a parameter (the value of e and d for the fast algebraic attack, the value of δ, or the value
of the resiliency).

A bound on the complexity of these attacks can be derived from the complexity of the attack without
guess-and-determine. For the time complexity, it corresponds to multiplying by 2` the complexity of the
attack using the parameter of value k on a system with N − ` variables. For the data complexity, the
probability of getting a function with parameter k is important, the whole complexity can then be bounded

17

by the inverse of this probability multiplied by the complexity of the attack using the parameter of value
k on a system with N − ` variables. To determine this probability, it requires to determine the parameters
relatively to the Boolean criteria of all descendant functions of F up to ` ≤ λ variables. Some descendants
may have extreme parameters (called recurrent criteria in [MJSC16]), but very low probability of appearing.
Then for attacks with guess-and-determine, it is important to investigate both time and data complexities.

Other Attacks. Besides the previous attacks that will be taken into account quantitatively when selecting
concrete instances, we also investigated other cryptanalyses, so we develop some explanations on those
which are known to apply on filter permutators [MJSC16].

First, weak key attacks can be considered: if the Hamming weight of the key is extreme the input of
F is far away from the uniform distribution. The probability of this weight to be extreme is very low due
to the register extension, and as explained before the whitening avoids simple attacks using the unusual
distribution of F ’s inputs. Restricting our instances to keys of Hamming weight N/2 handles these attacks.

Second, higher-order correlation attacks [Cou03b] consist in approximating the filtering function by a
function of degree d > 1 and to solve the approximated algebraic system of degree d with a Grobner basis
algorithm such as F4 [Fau99]. The attack could be efficient if the function was very close to a degree d
function (which corresponds to a small nonlinearity of order d), and if d was low enough as one part of the
attack consists in solving a degree d system. This attack can easily be combined with guess-and-determine
techniques, but up to now for the filtering functions we tried, the complexity of this attack is always superior
to the one considered for fast algebraic attacks or for correlation-like attacks.

Eventually, restricted input attacks [CMR17] using the behavior of F on a restricted part of its input are
handled by the register size and the whitening. Since the input of F is not restricted to a subset of Fn2 , but to
the whole set, it seems unrealistic to adapt this attacks in this context. It would require to combine equations
to obtain a set of equations corresponding with high probability to a known small subset of Fn2 . Moreover
the function should also have some flaws relatively to this particular subset, which we leave as a scope for
further investigations.

4.2 Estimating the Attacks Complexity.

Based on the previous parts of this section, relatively to a Boolean function F and the register size N , we
can estimate the security of IFPs by computing the parameters of each descendant up to λ variables, and then
combining it with the probability or reaching descendants with this parameter when some guesses are made.
For sake of clarity, we focus on the example of algebraic attack, on a simplified version where an upper
bound of the DAN is considered, in this simpler case the unique parameter to determine is the algebraic
immunity.

First, we describe the principle of the algorithm used to determine the complexity of an attack relatively
to a parameter. Then, to illustrate it, we give the algorithm relatively to the attack based on the algebraic
immunity. Finally, we explain different variations of the security estimation, giving less costly algorithms at
the cost of under estimating the attack complexities.

General Principle. The principle of the complexity estimator is to compute the profile of F and all its
descendants relatively to a criterion. Then, based on this profile, the probability of getting functions with a
fixed parameter when L values are guessed can be computed. It enables to derive an upper bound on the
complexity of the attack performed on the whole system, considering the number of guesses made by the
attacker.

More precisely the principle, applied on a simplified example of algebraic attack, is the following:

18

1. From F and λ, the profile of the function relatively to algebraic immunity is computed. The profile
corresponds to the probability of getting a descendant of F with algebraic immunity less than or equal
to k (0 ≤ k ≤ AI(F)) by fixing ` bits of F inputs. The probability is taken over all choices of ` over n
variables (0 ≤ ` ≤ λ) and over the 2` possible values taken by these variables.
To compute the profile, the probability of getting each descendant is computed iteratively, from step 0 to
λ. Step 0 corresponds to the function F with probability 1, the profile for 0 guess gives a probability of 0
for k < AI(F) and 1 for k ≥ AI(F). Then, from step ` to step `+1, for each descendant of step ` and its
probability, all descendants obtained by fixing one of its variables (to 0 and to 1) are computed, together
with their probability. It gives then all descendants of step ` + 1, the algebraic immunity of each one is
computed, and the profile for ` guesses at value k is the sum of the probabilities of all these descendants
with algebraic immunity less than or equal to k.

2. From the profile and N , for each L with 0 ≤ L ≤ λ, and for each possible value k of the algebraic
immunity (0 ≤ k ≤ AI(F)), we compute the time and data complexity of the attack targeting functions
with algebraic immunity less than or equal to k:

– The time complexity is then 2L multiplied by the time complexity of an algebraic attack with
algebraic immunity equal to k on a system in N − L variables.

– The data complexity depends on the probability of obtaining an equation with such a parameter of
algebraic immunity. This probability depends on the profile and on N . It corresponds to:

P =
L∑
`=0

PL=` · P(AI≤k) |`,

where PL=` =
(L`)(

N−L
n−`)

(Nn)
is the probability that ` over the L guesses of the adversary are in the n

input’s variables of F . P(AI≤k) |` is the probability that the function has algebraic immunity less than
or equal to k conditioned on the number of variables fixed in F to get this function. This probability
is what the profile gives. The data complexity is finally P−1 multiplied by the data complexity of an
algebraic attack with algebraic immunity equal to k on a system in N − L variables.

3. For each pair (L, k), we finally determine the maximum between the time and data complexity, then the
minimum over these complexities gives the final complexity of the attack.

The principle of considering the properties of all descendants corresponds to consider average properties
of the system given by the keystream. It is justified by the generation of the system from the PRG, which
ensures that the subsets, permutations and whitenings are pseudorandomly distributed.

Algorithms for the Algebraic Attack. For completeness, we give the algorithms in pseudo-code relatively
to a simplified algebraic attack. More precisely Algorithm 1 corresponds to the first item (determination of
the algebraic profile) and Algorithm 2 corresponds to the second and third items (computation of the best
attack complexity).

Remark 2. In Algorithm 2 the auxiliary function AIdata(k,N) gives the minimal data complexity of an
algebraic attack considering an AI of k and functions inN variables. This function uses the maximal possible
value of DAN, a tighter estimation can be obtained by considering the DAN of the descendant functions,
or at least a tighter bound. Nevertheless, it requires to compute the profile of the algebraic immunity jointly
with the DAN. Instead of considering the probability of a descendant to have a fixed AI, it consists in
separating this probability among the different possible values of the DAN of these functions.

We explain more these trade-offs between the precision of the estimators and the complexity of the
algorithm in the next part.

19

Input: F , λ
Output: Algebraic immunity profile of F up to λ.
profileAI←[]; listFunctions← [F]; listProbaFunctions← [1];
listAI← [0 for i in [0, maxAI]]; //maxAI is a global parameter upper bounding the algebraic

immunity of any descendant of F .
//The algebraic immunity is computed from the function AI(), and the probabilities are updated
listAI[AI(F)]+=1;
for i in [1, maxAI] do

listAI[i]+=listAI[i-1];
end
profileAI.append(listAI);
//Computation of the profile up to λ guesses.
for ` in [1, λ] do

newListFunctions←[]; newListProbaFunctions←[];
listAI←[0 for i in [0, maxAI]];
//Computation of the new functions, probabilities and AI for each element of listFunctions.
for index in [0, listFunctions.length()-1] do

parentFunction← listFunctions[index]; parentProba← listProbaFunctions[index];
//All descendant obtained by fixing a variable of parentFunction to 0 or to 1 are considered.
for i in [1, parentFunction.nbvar()] do

for b in [0, 1] do
descendantFunction← parentFunction{i},b;
// using the notation of bit fixing descendant.
descendantProba← parentProba / (2 parentFunction.nbvar());
if descendantFunction in newListFunctions then

ind←newListFunctions.index(descendantFunction);
newListProbaFunctions[ind]+= descendantProba ;

else
newListFunctions.append(descendantFunction);

newListProbaFunctions.append(descendantProba);
end
listAI[AI(descendantFunction)]+=descendantProba;

end
end

end
listFunctions← newListFunctions;
listProbaFunctions← newListProbaFunctions;
for i in [1, maxAI] do

listAI[i]+=listAI[i-1];
end
profileAI.append(listAI);

end
return (profileAI)

Algorithm 1: Determination of the algebraic immunity profile.

20

Input: The algebraic immunity profile of F : profileAI, F ,N , λ
Output: Complexity of the best algebraic attack (ignoring the DAN).
bestCpx=maxCpx //maxCpx is a global parameter bounding the maximal complexity considered
for L in [0, λ] do

listAI[i]+=listAI[i-1];
k ← 0;
// maxAI is a global parameter upper bounding the algebraic immunity of any descendant. We
consider the auxiliary functions AItime(k,N) and AIdata(k,N) giving respectively the minimum
time and data complexity of the algebraic attack with parameter k on a system in N variables.

while k ≤ maxAI do
//Compute the time complexity
timeCpx← AItime(k,N − L);
if timeCpx ≥ bestCpx then

k ← maxAI +1;
else

//Compute the data complexity
proba← 0;
for ` in [0,L] do

probaLell←
(
L
`

)(
N−L

F.nbvar()−`
)
/
(

N
F.nbvar()−`

)
;

proba += probaLell · profileAI[`][k];
end
dataCpx← proba−1 AIdata(k,N − L);
cpx← max(timeCpx,dataCpx);
if cpx ≤ bestCpx then

bestCpx← cpx;
end

end
k += 1;

end
end
return (bestCpx)

Algorithm 2: Computation of the complexity of the best algebraic attack (simplified).

21

Potential Modifications The advantage of this methodology is to apply on any filtering function F , and
any register size N , giving a general framework to determine the security of IFPs instances. This general
algorithm being exhaustive, it has a high time and storage complexity. Indeed, note that the number of
descendants of a function is exponential. The algorithm can be modified in order to be more efficiently
evaluated, but sometimes at the cost of underestimating the cost of the attacks:

– A first modification, which does not underestimates the cost of the attacks, consists in finding the
descendants which are equivalent. That is, the ones which have exactly the same parameters for
each criterion and that give the same descendants with identical probabilities. When such equivalent
descendants are found, which can be handled through the representation of the function, the number of
descendant at step ` can be less than the initial bound of 2`

(
n
`

)
.

– A second modification, underestimating the cost of the attacks, consists in replacing each value of the
parameter (which can take in some cases numerous values) by the nearest one among those which are
more favorable to the attacker in a shorter list, and summing the probabilities corresponding to each such
approximation.

– A third modification, also underestimating the cost of the attacks, can be achieved by not considering all
descendants but only descendants which have worse parameters. It is possible when, for each number of
guesses considered, for each criterion, the profile of a function is worse than the profile of another one.
Then the probability of the function with better profiles can be added to the probability of the function
with worse profiles. In other words, a (stronger) function can be neglected and its probability added to
another one, if the probability of its descendants to reach a particular weak value of parameter is always
inferior than the corresponding probability for the descendants of the other (weaker) function.

5 Parameters of Direct Sums of Monomials and XOR-Threshold Functions.

In this section and in the following we prove the relevant parameters relatively to Boolean cryptographic
criteria of two family of functions: DSM and XOR-THRfunctions. The results relative to balancedness,
resiliency and nonlinearity and the first part of the algebraic properties are proven in this section. The second
part of the algebraic properties require new techniques based on the Partitioned Algebraic Normal Form
coefficients, then we give them in the next section where the new tool is developed.

In sub-section 5.1 we give the parameters and proofs related to the resiliency, nonlinearity, algebraic
immunity and fast algebraic immunity of DSM functions. In sub-section 5.2 we give the parameters and
proofs of threshold functions. Combining it with results on direct sums (Lemma 1) gives the resilience and
nonlinearity of XOR-THR.

5.1 Direct Sum of Monomials.

First we recall some properties on direct sums (e.g. [MJSC16]).

Lemma 1 (Direct Sum Properties ([MJSC16] Lemma 3)). Let F be the direct sum of f and g with n and
m variables respectively. Then F has the following cryptographic properties:

1. Resiliency: res(F) = res(f) + res(g) + 1.
2. Non Linearity: NL(F) = 2mNL(f) + 2nNL(g)− 2NL(f)NL(g).
3. Algebraic Immunity: max(AI(f),AI(g)) ≤ AI(F) ≤ AI(f) + AI(g).
4. Fast Algebraic Immunity: FAI(F) ≥ max(FAI(f),FAI(g)).

22

Resiliency and Nonlinearity The precedent lemma is sufficient to determine the resiliency and the
nonlinearity of any direct sums of monomials.

Lemma 2 (Resiliency of Direct Sum of Monomials). Let f ∈ Fn2 be a Boolean function obtained by direct
sums of monomials with associated direct sum vector = [m1, . . . ,mk], its resiliency is:

res(f) = m1 − 1

Proof. A monomial function of degree greater than 1 has resiliency −1 as such function is unbalanced,
a monomial function of degree 1 has resiliency 0. Then, applying the first item of Lemma 1 recursively
(adding one by one the monomial functions) gives the result.

The nonlinearity can be recursively computed from Lemma 1, but we give a simpler expression based
on the direct sum vector.

Lemma 3 (Nonlinearity of Direct Sum of Monomials). Let f ∈ Fn2 be a Boolean function obtained by
direct sums of monomials with associated direct sum vector mf = [m1, . . . ,mk], its nonlinearity is:

NL(f) = 2n−1 −
1

2

(
2(n−

∑k
i=2 imi)

k∏
i=2

(
2i − 2

)mi

)

Proof. First we use the expression of the nonlinearity using the Walsh transform recalled in Definition 7:

NL(f) = 2n−1 −
1

2
max
a∈Fn

2

|Wf (a)|.

Then, recall that the Walsh transform of a direct sum is the product of the Walsh transforms of its
components:

Let consider the Walsh transform of F , defined for all u ∈ Fn+m2 . For each element u we use the
following partition: we denote a the first n bits and b the last m bits, then a and b are uniquely defined.
Denoting u as (a, b), enables to derive the following equalities:

WF (u) =
∑

x∈Fn+m
2

(−1)F (x)+u·x =
∑

(y,z)∈Fn
2×Fm

2

(−1)h(y)+g(z)+a·y+b·z

=
∑
y∈Fn

2

∑
z∈Fm

2

(−1)h(y)+a·y+g(z)+b·z

 =
∑
y∈Fn

2

(−1)h(y)+a·y (Wg(b))

= Wh(a) Wg(b).

Therefore maxa∈Fn
2
|Wf (a)| can be determined by computing the maximum of the Walsh transform of

all monomial functions indicated by the direct sum vector. For a degree 1 function (and also 0) h in m
variables maxa∈Fm

2
|Wh(a)| = 2m. For a degree d (with d > 1) monomial function g, maxa∈Fd

2
|Wg(a)| =

2d − 2. Multiplying the maximum of the Walsh transform of all the monomial functions composing f gives
the final result.

23

Algebraic Immunity More material is necessary in order to determine the exact algebraic immunity of a
direct sum of monomials. To get this result we use two results of others works, the algebraic immunity of
a triangular function ([MJSC16] Lemma 6), and a property on the algebraic immunity of linked functions
([CMR17]).

Lemma 4 (Algebraic Immunity of Triangular Functions (adapted from [MJSC16], Lemma 6)). Let k
be a non null positive integer and let Tk be the k-th triangular function, then AI(Tk) = k.

Lemma 5 ([CMR17] Proposition 11). Let f(x1, x2, x3, . . . , xn) be a Boolean function in n variables such
that there exist two variables (x1 and x2 without loss of generality) satisfying:

∀x ∈ Fn−22 f(0, 0, x) = f(0, 1, x) = f(1, 0, x)

Let F (X,x3, . . . , xn) be the Boolean function in n− 1 variables defined by :

∀x ∈ Fn−22 F (1, x) = f(1, 1, x) and F (0, x) = f(0, 0, x)

If AI(f) ≤ d then AI(F) ≤ d.

Using these two lemmata we can determine the exact algebraic immunity of any direct sum of
monomials:

Theorem 1 (Algebraic Immunity of Direct Sums of Monomials). Let f ∈ Fn2 be a Boolean function
obtained by direct sums of monomials with associated direct sum vector mf = [m1, . . . ,mk], its algebraic
immunity is:

AI(f) = min
0≤d≤k

(
d+

k∑
i=d+1

mi

)
.

Proof. First, we prove the inequality:

AI(f) ≤ min
0≤d≤k

(
d+

k∑
i=d+1

mi

)
.

We know that the algebraic immunity of a direct sum of functions is bounded above by the sum of the
algebraic immunities of the functions, that the algebraic immunity of any function is bounded above by its
algebraic degree, and that the algebraic immunity of a monomial equals 1 (see Corollary 1). We fix d, and
express f as a direct sum of two functions f1 and f2, with direct sum vectors:

mf1 = [m1, . . . ,md], and mf2 = [0, . . . , 0,md+1, . . . ,mk].

From mf1 , we have deg(f1) ≤ d and we deduce the inequality.
Note that this inequality shows, for the case of direct sums of monomials, that the algebraic immunity is
upper bounded both by the number of monomials (case d = 0) and the degree of f (case d = k).

Then, we prove the inequality in the other sense:

AI(f) ≥ min
0≤d≤k

(
d+

k∑
i=d+1

mi

)
.

24

Let us denote by e the integer between 0 and k giving the minimal value of the sum, we take e as the smallest
element if multiple integers lead to the minimal value.

So, for all integers j such that 1 ≤ j ≤ e:

e− j +
k∑

i=e−j+1

mi ≥ e+
k∑

i=e+1

mi,

which is equivalent to:
e∑

i=e−j+1

mi ≥ j.

This inequality holds for all j such that 1 ≤ j ≤ e; for j = 1 it guarantees that me is non null, for
j = 2 it gives that me +me−1 ≥ 2, and so forth until m1 + · · ·+me ≥ e. Therefore it guarantees that we
can repetitively apply Lemma 5 on f to obtain a function with direct sum vector having all mi non null for
1 ≤ i ≤ e, which already gives AI(f) ≥ e (as this function is the direct sum of Te of algebraic immunity
e by Lemma 4 and another function). A constructive way can consist in contracting all but one monomials
of each degree less than or equal to e, beginning by the degree-e monomials. It would lead to a function F
with direct sum vector:

mF =

[(
e∑
i=1

mi

)
− e+ 1, . . . , 1,me+1, . . . ,mk

]
.

Now, let us consider the monomials of degree higher than e; for all integers j such that 1 ≤ j ≤ k − e:

e+ j +

k∑
i=e+j+1

mi ≥ e+

k∑
i=e+1

mi,

which is equivalent to:

j ≥
e+j∑
i=e+1

mi.

This inequality holds for all j such that 1 ≤ j ≤ k − e; for j = 1 it guarantees that me+1 ≤ 1, for
j = 2 it gives that me+1 + me+2 ≤ 2, so one and so forth until me+1 + · · · + mk ≤ k − e. Therefore it
guarantees that there are no more monomials than positions between e and any position of degree higher
than e. So we can repetitively apply Lemma 5 on f to obtain a function with direct sum vector containing∑k

i=e+1mi consecutive 1 from me+1 and zeros for higher positions (the zeros are then deleted for a correct
representation of the direct sum vector). A constructive way can consist in contracting each monomial to the
first empty position of the vector, from me+1 to mk. It would lead to a function F with direct sum vector of
length e+

∑k
i=e+1mi:

mF = [m1, . . . ,me, 1, . . . , 1].

Together with the reasoning on the lower positions of the vector, this result shows that the AI of f can
be linked through the repetitive use of Lemma 5 to the AI of a function F with direct sum vector of length
e+

∑k
i=e+1mi:

mF = [m1, . . . ,me, 1, . . . , 1], such that mi > 0 ∀i ∈ [1, e].

25

Note that this function can be expressed as the direct sum of Tk and another function, then using Lemma 1
and Lemma 4 AI(F) ≥ k. As AI(F) = e+

∑k
i=e+1mi, Lemma 5 gives that AI(f) > e− 1 +

∑k
i=e+1mi,

proving the second inequality, and finishing the proof.

Note that to estimate accurately the time complexity of the algebraic attack (mounted on f), it is better
to additively know the number of annihilators of f or f + 1 of degree AI(f). As determining this number
requires additional concepts on algebraic immunity and direct sums, we defer its study to Section 6.

Fast Algebraic Immunity Concerning the fast algebraic immunity criterion, its definition leads to the
bound FAI(f) ≥ AI(f) + 1 for any f . In the case of direct sum of monomials, we can show that the FAI is
reaching this bound for some functions.

Lemma 6 (Fast Algebraic Immunity of Direct Sums of Monomials). Let f ∈ Fn2 be a Boolean function
obtained by the direct sum of monomials with associated direct sum vector mf = [m1, . . . ,mk] such that
AI(f) = deg(f), and AI(f) > 1, its fast algebraic immunity is:

FAI(f) =

{
AI(f) + 1 if mk = 1,

AI(f) + 2 otherwise.

Proof. We first consider the case where mk = 1. As AI(f) = deg(f) = k by Theorem 1, we have mk−1 ≥
1. Let us denote by x1 one of the variables of the monomial of degree k, then we consider the degree of the
product of f and 1 + x1, this function has degree k (as the only monomial of degree k of f is canceled, and
the mk−1 monomials of degree k − 1 do not contain x1). Then, by definition of the FAI (see Definition 9),
and since AI(f) = k, this gives:

FAI(f) ≤ min(2AI(f),max(AI(f) + 1, 3)).

As the Lemma is restricted to the case AI(f) > 1, this gives FAI(f) ≤ AI(f) + 1, enabling to conclude
FAI(f) = AI(f) + 1.

We consider the case mk > 1. Multiplying f by a linear function g we study the degree of fg. As f is
a DSM, denoting without loss of generality by x1 a variable present in the ANF of g, x1 appears in either
zero or one of the higher degree monomials of f . If it does not appear then fg produces mk monomials of
degree k + 1 containing x1, as k > 1, all these monomials are different, so deg(fg) = k + 1. If x1 appears
in a degree k monomial, the same reasoning applies for the mk−1 others, leading to deg(fg) = k+1. This
gives:

FAI(f) ≤ min(2AI(f),max(AI(f) + 2, 3)).

And therefore FAI(f) ≤ AI + 2. Then, as for all non null function g such that deg(g) < AI(f) we have
deg(fg) ≥ AI(f) (property of the AI), any nonlinear function g leads to consider a maximum greater than
or equal to AI(f)+2 leading to an equal or higher upper bound. It enables to conclude: FAI(f) = AI(f)+2.

Note that this lemma does not consider the case AI(f) = 1 (of linear functions or monomial functions),
for this case the fast algebraic immunity is not very relevant as the algebraic attack already targets a linear
system.

26

5.2 Threshold Functions.

In order to obtain the parameters of XOR-THR functions we first need to determine the one of threshold
functions, and then to use the properties of direct sum constructions.

Threshold functions are symmetric functions, which have been much studied relatively to cryptographic
significant criteria (e.g. [CV05]). The existence of optimal symmetric function relatively to a specific
criterion has been widely investigated, here we focus on the exact parameters of the subfamily of threshold
function.

We begin by giving a basic property between Td,n and Tn−d+1,n, which will simplify the number of
cases to consider in some proofs.

Property 1. Let n ∈ N∗ and d ∈ [0, n+1], for all x ∈ Fn2 let 1+x denote the element (1+x1, . . . , 1+xn) ∈
Fn2 , then the following relation holds for Td,n and Tn−d+1,n:

∀x ∈ Fn2 , 1 + Td,n(1 + x) = Tn−d+1,n(x).

Proof. We use the simplified value vector formalization (see Definition 16) to show this result. The
simplified value vector of Td,n is a vector of length n + 1 such that wk = 0 for k ∈ [0, d − 1] and wk = 1
for k ∈ [d, n]. For all element x ∈ Fn2 , we have wH(x + 1) = wH(1) − wH(x) = n − wH(x). So denoting
w′k the coefficients of the simplified value vector of Td,n(1 + x) we get: w′k = wn−k for all k ∈ [0, n]. It
gives a vector symmetric to the first simplified value vector, i.e. with the elements from 0 to n − d being 1
and from n− d+ 1 to n being 0.

For all x ∈ Fn2 , 1+Td,n(1+x) = Td,n(1 + x), its complement to 1. Then, denotingw”k the coefficients
of the simplified value vector of 1 + Td,n(1 + x) we get: w”k = wn−k for all k ∈ [0, n]. It gives a vector
which is the complement to the all 1 vector to the precedent simplified value vector, i.e. with the elements
from 0 to n − d being 0 and from n − d + 1 to n being 1. This simplified value vector corresponds to the
definition of Tn−d+1,n.

Resiliency Now, focusing on the main criteria of threshold functions, we first give the resiliency of such
functions.

Lemma 7 (Resiliency of Threshold Functions). Let f be the threshold function Td,n,

res(Td,n) =

{
0 if n = 2d− 1,

−1 otherwise.

Proof. We first show that only the functions such that n = 2d − 1 can be balanced, using the simplified
value vector. The Hamming weight of a symmetric function is equal to

∑n
i=0wi

(
n
i

)
, for a threshold function

the d first coefficients are equal to 0 and the n+ 1− d others are equal to 1, then:

wH (Td,n) =

n∑
i=d

(
n

i

)
=

n−d∑
i=0

(
n

i

)
.

This sum needs to be equal to 2n−1 to be balanced, which imposes d = (n+ 1)/2. In all other cases Td,n is
not balanced so with resiliency order −1.

We finish by proving that these balanced function (which are the majority functions) are not 1-resilient.
As the family of XOR-MAJ functions is bit-fixing stable, fixing one variable of a majority function gives a

27

threshold function in n − 1 variables, which cannot be balanced based on the previous part. Then majority
functions are 0 resilient only (note that rigorously we cannot consider bit fixing on MAJ1, which cannot be
more than 0 resilient due to its number of variables).

Nonlinearity We follow by studying the nonlinearity of threshold functions. It would be possible to adapt
the approach presented in [DMS06] for calculating the nonlinearity of the majority functions Tn+1

2
,n (n

odd) and Tn
2
+1,n (n even). It would consist in expressing the Walsh transform by means of Krawtchouk

polynomials and using relations on these polynomials to obtain the maximal absolute value. But the resulting
proof, that we wrote, needs to consider several particular cases, and is 5 page long (preliminaries on
Krawtchouk polynomials excluded). There is a better way to obtain the nonlinearity by using a very efficient
representation of Boolean functions called the numerical normal form (see e.g. [Car10]).

Definition 21 (Numerical Normal Form). For every n-variable Boolean function f , we call Numerical
Normal Form (NNF) of f the unique polynomialNf (x) =

∑
I⊆[n] λIx

I ∈ Z[x1, . . . , xn]/(x21−x1, . . . , x2n−
xn), where xI stands for

∏
i∈I xi, such that f(x) = Nf (x) for every x ∈ Fn2 .

Note that the ANF (see Definition 2) is simply the modulo 2 version of the NNF, which coefficients give
some information more directly. First we recall some properties of the NNF, then using them we prove a
lemma linking the Walsh transform of threshold function to already studied functions, and we conclude by
giving the exact nonlinearity of all threshold function.

Proposition 1 (Properties of NNF and Walsh transform, adapted from [Car10]).

– Let f be any Boolean function in n variables and any I ⊆ [n]:

λI = (−1)|I|
∑

x∈Fn
2 ; supp(x)⊆I

(−1)wH(x)f(x),

where supp(x) denotes the support {i ∈ [n] | xi 6= 0} of vector x, this sum being calculated in Z.
– Let f be the indicator function 1En,r of the set En,r of all vectors of Hamming weight r and length n,

then for any I ⊆ [n]:

λI = (−1)|I|
∑

x∈Fn2 ; wH (x)=r

supp(x)⊆I

(−1)wH(x) = (−1)|I|−r
(
|I|
r

)
.

– Let f be a Boolean function in n variables, if u 6= 0 then:

Wf (u) = 2(−1)wH(u)+1
∑

I⊆[n]; supp(u)⊆I

2n−|I|λI .

Lemma 8. The maximum absolute value of the Walsh transform of 1En,d
equals the maximum absolute

value of the Walsh transform of Td+1,n+1 at nonzero entries.

Proof. Using the first and second items of Proposition 1, since Td,n =
∑n

k=d 1En,k
(this sum being

calculated in Z), the coefficients of xI in the NNF of Td,n(x) equals:

(−1)|I|
|I|∑
k=d

(−1)k
(
|I|
k

)
= (−1)|I|−1

d−1∑
k=0

(−1)k
(
|I|
k

)
= (−1)|I|−d

(
|I| − 1

d− 1

)
,

28

where the first equality comes from
∑|I|

k=0(−1)k
(|I|
k

)
= 0, and the last equality is obtained by induction

on d using Pascal’s identity.
According to Lucas’ theorem [MS78, page 404], the coefficient of xI in the ANF of Td,n equals 1 (i.e.

λI is odd) if and only if the binary expansion of d− 1 is covered by that of |I| − 1, and the algebraic degree
of Td,n equals then k + 1 where k is the largest number smaller than n whose binary expansion covers that
of d − 1, that is, where k − d + 1 is the largest number smaller than n − d + 1 whose binary expansion is
disjoint from that of d− 1.

Moreover, using the third item of Proposition 1, we deduce that the Walsh transform of the threshold
function satisfies (for u 6= 0):

WTd,n
(u) = 2(−1)wH(u)+1

∑
I⊆[n]

supp(u)⊆I

2n−|I|(−1)|I|−d
(
|I| − 1

d− 1

)
.

Using the second and third item of Proposition 1, we obtain for 1En,r :

W1En,r
(u) = 2(−1)wH(u)+1

∑
I⊆[n]; supp(u)⊆I

2n−|I|(−1)|I|−r
(
|I|
r

)
.

Therefore, the Walsh transform of function 1En,d
at u ∈ Fn2 equals, for every u, the opposite of the Walsh

transform of function Td+1,n+1 at (u, 1) (the concatenation of u and the length one vector (1)). Since these
two functions are symmetric, this concludes the proof.

We can finally give the exact nonlinearity of all threshold functions through the following theorem:

Theorem 2 (Nonlinearity of Threshold Functions). Let n be a non null positive integer, the threshold
function Td,n has the following nonlinearity:

NL(Td,n) =



2n−1 −
(

n−1
(n−1)/2

)
if d = n+1

2 ,
n∑
k=d

(
n

k

)
= wH(Td,n) if d > n+1

2 ,

d−1∑
k=0

(
n

k

)
= 2n − wH(Td,n) if d < n+1

2 .

Proof. The first case d = (n+ 1)/2 is possible only for odd n, it corresponds to the majority function, and
is proved in [DMS06]. For the case d > (n+ 1)/2, we have for every u 6= 0:

|W1En−1,d−1
(u)| = 2 |

∑
x∈En−1,d−1

(−1)u·x| ≤ 2wH(1En−1,d−1
) = 2

(
n− 1

d− 1

)
,

where the first inequality comes from the basic properties of Hadamard Fourier and Walsh transforms. For
the null vector:

|WTd,n
(0)| = 2n − 2

n∑
i=d

(
n

i

)
=

d−1∑
i=n−d+1

(
n

i

)
.

29

Hence, using Pascal’s identity, |WTd,n
| takes its maximum at the 0 input and this completes the proof in this

case.
Finally, in the case d < (n+ 1)/2, we can use Property 1: ∀x ∈ Fn2 , 1 +Td,n(x+ 1) = Tn−d+1,n(x).

As the application x 7→ x+1 is an affine isomorphism of Fn2 , and that adding the constant function 1 does not
change the nonlinearity, the nonlinearity criterion being affine invariant it gives: NL(Td,n) = NL(Tn−d+1,n),
with n− d+ 1 > n+1

2 , and we are brought back to the previous case. This completes the whole proof.

5.3 Algebraic Immunity, DAN, and Fast Algebraic Immunity.

We then investigate the algebraic immunity of threshold functions. Relatively to Boolean function used
for cryptography, the majority functions have been introduced as functions reaching the optimal algebraic
immunity (case of T(n+1)/2,n and Tn/2+1,n as proven in [BP05, DMS06]). As far as we know, the exact
algebraic immunity have not been investigated for all threshold functions, but it can be determined in various
ways as for the majority functions. We decide to use the following proof strategy: we consider as known
the algebraic immunity of the majority function in an odd number of variables, AI(T(n+1)/2,n) = n+1

2 , and
we use the connections between various threshold functions to get the algebraic immunity of all functions
of the family. A method for determining the algebraic immunity of threshold functions consists in using the
following result on the algebraic immunity of restrictions of functions.

Lemma 9. Fixing ` ∈ [0, n] variables of an n-variable Boolean function decreases it algebraic immunity
by at most `.

Proof. If the restriction of a function f obtained by fixing xi to ai for any i ∈ I ⊆ {1, . . . , n} has a nonzero
annihilator g of some algebraic degree r, then f has for nonzero annihilator the function equal to g when
xi = ai, ∀i ∈ I and equal to 0 otherwise, whose ANF equals g(x)(1 +

∏
i∈I(xi + ai + 1)), and whose

algebraic degree equals then r+ `, where ` = |I|. This can be applied to f and to f + 1, and this proves that
the algebraic immunity of the restriction is at least AI(f)− `.

Remark 3. Note that the result of Lemma 9 also corresponds to Proposition 1 in [DGM04] written
differently, and its principle is used in proofs dealing with recurrent algebraic immunity ([MJSC16]) or
other bit-fixing relations (see [DGM05] Proposition 1 and [AL16]).

This result can be used in conjunction with the fact that, if d ≤ n+1
2 , then Td,n can then be obtained by

fixing n−2d+1 input bits to 1 in the (2n−2d+1)-variable majority function (indeed we sen in Remark 1)
that fixing a variable to 1 in Td,n gives Td−1,n−1). But we can also give a direct proof of the algebraic
immunity of threshold functions (and also determine their annihilators of minimum algebraic degrees):

Lemma 10 (Algebraic Immunity of Threshold Functions). Let n be a non null positive integer, the
threshold function Td,n has the following algebraic immunity:

AI(Td,n) = min(d, n− d+ 1).

Proof. Applying the transformation x 7→ x+ 1n, where 1n is the all-1 vector of length n, changes Td,n into
the indicator of the set of vectors of Hamming weight at most n − d; the relations relating the expressions
of the coefficients of the ANF

∑
I⊆{1,...,n} aIx

I by means of the values of the function, namely, aI =∑
supp(x)⊆I f(x) and f(x) =

∑
I⊆supp(x) aI , show that the annihilators of this indicator are all the linear

combinations over F2 of the monomials of degrees at least n − d + 1; hence, the annihilators of Td,n are
obtained from these latter linear combinations by the transformation x 7→ x + 1n. They can have every

30

algebraic degree at least n − d + 1. And the annihilators of 1 + Td,n are similarly the linear combinations
over F2 of the monomials of degrees at least d. They can have every algebraic degree at least d. Hence
AI(Td,n) = min(d, n− d+ 1).

We finally investigate the DAN of threshold functions, and derive from it a bound on the fast algebraic
immunity. Note that the DAN can be easily deduced from the proof of the precedent lemma, we give the
following step by step proof for completeness.

Lemma 11 (DAN of Threshold Functions). Let n be a non null positive integer, the threshold function
Td,n has the following DAN:

DAN(Td,n) =

{
0 if d < n+1

2 ,(
n
d−1
)

if d ≥ n+1
2 .

Proof. First, we investigateDAN(Td,n) for d ≥ n+1
2 . According to Property 1 and using that the dimension

of the annihilators of a fixed degree is invariant under an affine transformation, this is equivalent to
considering the annihilators of degree d of 1 + Td,n with d ≤ n+1

2 . Then we show that Td,n with d < n+1
2

has no annihilator of degree d.
When d ≤ n+1

2 , the function 1 +Td,n (of algebraic immunity d, according to Lemma 10) has simplified
value vector [1, . . . , 1, 0, . . . , 0] where the first 0 corresponds to the Hamming weight d. All monomial
functions of degree d are then annihilators since they vanish on the support of 1 + Td,n. This gives

(
n
d

)
independent annihilators of degree AI(1 + Td,n) (which is the maximum value as we saw). It gives then
DAN(1 + Td,n) =

(
n
d

)
, and therefore noting d′ as n − d + 1, DAN(Td′,n) = DAN(Tn−d+1,n) =

(
n
d

)
=(

n
d′−1

)
.

For the function Td,n itself with d < n+1
2 we prove that DAN(Td,n) = 0 by showing that the unique

function of degree less than n − d + 1 annihilating Td,n is the null function. To do so, let us consider the
function f defined as:

∀x ∈ Fn2 , f(x) = Td,n(x1 + 1, x2 + 1, . . . , xn + 1).

f is affine equivalent to Td,n, and DAN(f) = DAN(Td,n). Let g be an annihilator of f of degree less than
n− d+ 1, the ANF (see Definition 2) of g is then given by:

g(x) =
∑
I⊆[n]
|I|≤n−d

aIx
I .

By construction, f has value 1 on all input of Hamming weight less than or equal to n− d (as explained in
the proof of Property 1 the simplified value vector of f is the symmetric of the one of Td,n, so with n−d+1
values 1 and then d values 0). It implies for g:

∀x ∈ Fn2 | wH(x) ≤ n− d, g(x) = 0.

Then, using the binary Mobius transform (e.g. [Car10] Proposition 1):

aI =
∑
x∈Fn2

supp(x)⊆I

g(x) =
∑
x∈Fn2

∀i∈[1,n],xi=0 if i6∈I

g(x).

31

So, for all I such that |I| ≤ n − d, aI = 0 as the sum is running on null terms only. Then, g(x) = 0 for
all x, giving that f has no non null annihilator of degree less than n − d + 1 and the result applies to Td,n.
Finally AN(Td,n) ≥ n− d+ 1 (in fact it is an equality when d 6= 0 as f can be canceled by any monomial
of degree n− d+ 1) so DAN(Td,n) = 0, concluding the proof.

Corollary 2 (Lower Bound on the Fast Algebraic immunity of Threshold Functions). Let n be a non
null positive integer, the fast algebraic immunity of the threshold function Td,n follows the following bound:

FAI(Td,n) ≥

{
min(2d, n− d+ 2) if d ≤ n+1

2 ,

min(2(n− d+ 1), d+ 1) if d > n+1
2 .

Proof. Note that, for every Boolean function f , we have:

FAI(f) ≥ min(2AI(f), 1 + AN(f + 1)).

This bound comes from the definition of FAI(f) (see Definition 9), focusing more particularly on the degree
of fg for all g such that 1 ≤ deg(g) < AI(f)). Let us denote h = fg, multiplying by 1 + f it gives:
(1 + f)h = 0. Considering f non constant (otherwise FAI(f) = 0 as AI(f) = 0), as g is taken such that
deg(g) < AI(f), h is non null, therefore h is a non null annihilator of 1 + f , and by definition deg(h) ≥
AN(f + 1).

As the fast algebraic immunity is invariant when we add 1 to f , using the same arguments we get
FAI(f) = FAI(f + 1) ≥ min(2AI(f), 1 + AN(f)), finally giving:

FAI(f) ≥ min(2AI(f), 1 + max(AN(f),AN(f + 1))).

Plugging the values of AI(Td,n) and AN(1 + Td,n) from Lemma 10 and the proof of Lemma 11 in the
precedent formula gives the result.

Remark 4. Note that this bound can be reached, as proven in [TLD16] for the majority functions T2m−1,2m

and T2m−1+1,2m+1 for all integers m ≥ 2.

5.4 Parameters of XOR-THR Functions.

The particular structure of XOR-THR functions, direct sum of a linear function and a threshold function
make their parameter easy to determine from the one of these two components. The resiliency and
nonlinearity can be directly determined by combining Lemma 1 with the parameters of the threshold
functions for these criteria (Lemma 7 and Theorem 2). For the exact algebraic immunity, the dimension
of vector space of non null annihilators of minimum degree and the bound on the fast algebraic immunity,
we need more advanced tools developed in Section 6.

Lemma 12 (Resiliency of XOR-THR Functions). Let f be the XOR-THR function XORk + Td,n, then:

res(XORk + Td,n) =

{
k if n = 2d− 1,

k − 1 otherwise.

Proof. The resiliency of XORk equals k− 1, then combining the first item of Lemma 1 and Lemma 7 gives
the result.

32

Lemma 13 (Nonlinearity of XOR-THR Functions). Let f be the XOR-THR function XORk+Td,n, then:

NL(XORk + Td,n) =



2n+k−1 − 2k
(

n−1
(n−1)/2

)
if d = n+1

2 ,

2k
n∑
i=d

(
n

i

)
if d > n+1

2 ,

2k
d−1∑
i=0

(
n

i

)
if d < n+1

2 .

Proof. The nonlinearity of XORk is null, then combining the second item of Lemma 1 and Theorem 2 gives
the result.

6 Partitioned Algebraic Normal Form Coefficients and Applications.

In this section we introduce the partitioned normal form coefficients, and we use this tool to prove different
results relatively to the algebraic properties of direct sums. In Subsection 6.1 we begin by defining the
partitioned algebraic normal form, and we exhibit conditions for a direct sum construction to exceed the
maximum algebraic immunity of its 2 components. Then, we use it in Subsection 6.2 to determine the
exact algebraic immunity of all XOR-THR functions and a lower bound on the fast algebraic immunity.
The result on the algebraic immunity is revisited in Subsection 6.3 to improve the locality bound of local
PRGs [AL16]. Another application of the partitioned normal form coefficients is given in Subsection 6.4,
enabling to determine the DAN of XOR-THR functions. Finally, in Subsection 6.5 we determine and prove
the DAN of DSM functions. It finishes to prove all relevant cryptographic criteria on the two families of
function we consider in this article.

6.1 Partitioned Algebraic Normal Form and Algebraic Immunity of Direct Sums.

We develop here some techniques to estimate better the algebraic immunity or the dimension of the space
of annihilators of minimal degree in the case of direct sums. First recall from Lemma 1 that the algebraic
immunity of a direct sum is always between the maximum of the algebraic immunities of its components
and their sum. The upper bound is reduced in [BP05] to:

min (max [deg(f1), deg(f2)],AI(f1) + AI(f2)).

This upper bound is obtained by considering specific annihilators of f1 and f2: 1 + f1 + f2 for the
maximum on the degree, and the product of a function defining the algebraic immunity of f1 by a function
defining the algebraic immunity of f2 for the sum. In the following, we determine sufficient conditions
to refine these bounds, beginning with conditions under which the lower bound cannot be achieved with
equality.

The ANF (see Definition 2) can be a useful tool to study the algebraic immunity of a function. Here,
in the particular case of direct sum, we will modify the form of this representation. Instead of considering
binary coefficients related to subsets of all variables, we represent a function in N variables as a function
in m variables with m ≤ N , but with coefficients which are functions in the N − m other variables. We
partition then the set of all variables into two sets of sizes m and (say) n = N −m. This modification of the
representation by ANF makes some concepts easier to study for functions obtained by direct sum (adapting
the variable partition to the direct sum).

33

Definition 22 (Partitioned Algebraic Normal Form). We call (n,m)-Partitioned Algebraic Normal Form
of a Boolean function f its (n + m)-variable polynomial representation over F2 (i.e. belonging to
F2[x1, . . . , xn, y1, . . . , ym]/(x21 + x1, . . . , y

2
m + ym):

f(x, y) =
∑
I⊆[m]

aI

(∏
i∈I

yi

)
=
∑
I⊆[m]

aIy
I ,

where aI ∈ F2[x1, . . . , xn]/(x21 + x1, . . . , x
2
n + xn).

We call partitioned-(n,m)-ANF coefficients the coefficients aI .

Note that when the partition into the n and m parts is clear, we shall refer to the (n,m)-partitioned ANF
coefficients as PANF coefficients. Note also that the uniqueness of the ANF representation guarantees the
uniqueness of the (n,m) partitioned algebraic form. The standard ANF corresponds to the (0, n)-partitioned
ANF. In the following we give a characterization of the annihilators of a direct sum based on the PANF
coefficients.

Lemma 14. Let f be a Boolean function in the variables x1, . . . xn and g be a Boolean function in the
variables y1, . . . ym. Let F denote the direct sum of f and g, let ε be ∈ {0, 1}, and let h be a function in
x1, . . . , xn, y1, . . . , ym with the (n,m)-partitioned algebraic normal form:

h(x, y) =
∑
I⊆[m]

hIy
I .

We denote accordingly as gI the (standard) ANF coefficients of g.
If h is an annihilator of F + ε then the following relation holds on its PANF coefficients:

∀I ⊆ [m], hI(f + ε) +
∑

J⊆[m],K⊆[m]
J∪K=I

hJgK = 0.

Proof. We first consider the case of h being an annihilator of F :

Fh = 0⇔
∑
I⊆[m]

hIy
I(f + g) = 0,

⇔

∑
I⊆[m]

hIfy
I

+

∑
I⊆[m]

hIy
I ·
∑
J⊆[m]

gJy
J

 = 0,

⇔
∑
I⊆[m]

yI

hIf +
∑

J⊆[m],K⊆[m]
J∪K=I

hJgK

 = 0,

⇔ ∀I ⊆ [m], hIf +
∑

J⊆[m],K⊆[m]
J∪K=I

hJgK = 0.

Then, for the case of f being an annihilator of 1 + F , i.e. ε = 1, we apply the same reasoning to f + 1.

Now we can show a necessary condition to obtain AI(F) > max (AI(f),AI(g)), using the difference
between the smallest degree non null annihilator (see Definition 8) of a function and its complement.

34

Lemma 15. Let F be the direct sum of two Boolean functions f and g in respectively n and m variables
such that AI(f) ≥ AI(g).

If deg(g) > 0, and AN(f) 6= AN(f + 1) then AI(F) > AI(f).

Proof. First we assume that h is a non null annihilator of F , and we use Lemma 14. Recall that in this
lemma, the coefficients gI , which correspond to the standard ANF coefficients of g, are binary values. Then,
we use the following equality: ∑

J⊆[m],K⊆[m]
J∪K=I

hJgK =
∑
J⊆I

hJ
∑
K⊆J

gK∪(I\J).

So, the equation corresponding to each I is equivalent to the following one:

hI

f +
∑
J⊆I

gJ

 =
∑
J(I

hJ
∑
K⊆J

gK∪(I\J). (1)

For instance, considering the set I = ∅, we get the equation:

h∅(f + g∅) = 0.

As we assumed that h is a non null annihilator of F , at least one of the hI is not null. Let I0 be such
that, for all J (I0 hJ = 0, and hI0 6= 0, then Equation (1) relatively to I0 gives that the function hI0 is
a non null annihilator of f or f + 1, giving AI(f) ≤ deg(hI0) and therefore |I0| + AI(f) ≤ deg(h). As
AI(f) ≥ AI(g), using Lemma 1 the unique possibility to get AI(F) = AI(f) implies that I0 = ∅, i.e. h∅ is
not null.

Then we consider two cases, either h∅ is the unique non-zero coefficient of h, either there is a least
another non-null coefficient. In the former case, for all I 6= ∅, Equation (1) gives: 0 = h∅gI , which is
impossible as g is not constant. In the latter case, let I1 be such that for all non-empty J (I1, we have
hJ = 0, and hI1 6= 0. Relatively to I1, Equation (1) gives then:

hI1

f +
∑
J⊆I1

gJ

 = h∅gI1 . (2)

Note that, since h∅ is non null, for all non-empty I (I1, Equation (1) gives: 0 = h∅gI , forcing gI to be 0.
Then from Equation (2) we get:

hI1 (f + g∅ + gI1) = h∅gI1 . (3)

If gI1 = 0 then hI1 is a non null annihilator of f + g∅, leading to deg(h) ≥ |I1|+ AI(f) > AI(f). Else,
gI1 = 1. Multiplying Equation (3) by (f + g∅ + 1) implies then:

(hI1 + h∅) (f + g∅ + 1) = 0.

So, hI1 +h∅ is an annihilator of f + g∅+ 1, and we already know that h∅ is a non-null annihilator of f + g∅.
If deg(hI1 + h∅) 6= deg(h∅) then deg(hI1) ≥ deg(h∅) ≥ AI(f) implying deg(h) > AI(f). Otherwise, we
have deg(hI1 + h∅) = deg(h∅), but recall that hI1 + h∅ is then a non-null annihilator of f + g∅ + 1, and
h∅ is a non-null annihilator of f + g∅; if hI1 + h∅ is not of minimum algebraic degree among all non-null

35

annihilators of f + g∅ + 1 or if h∅ is not of minimum algebraic degree among all non-null annihilators of
f + g∅, then deg(h) > AI(f); and since we assumed AN(f) 6= AN(f + 1), they cannot both have minimal
degree, leading to deg(h) > AI(f). The same reasoning applies to annihilators of F + 1, replacing g by
g + 1, as we mad no assumption on the value of g∅ in the proof.

In the following we show how to use these lemmata to determine the remaining parameters of XOR-THR
Functions and DSM, and to improve the bound on the locality of local PRGs.

6.2 Algebraic Immunity of XOR-THR Functions.

Lemma 15 enables to prove the exact algebraic immunity of some families of functions, among them is the
family of XOR-THR functions. We give the algebraic immunity of these functions in two lemmata, in order
to emphasis when the linear part enables to increase the algebraic immunity of the direct sum.

Lemma 16 (XOR-THR Functions with Improved Algebraic Immunity). Let XORk + Td,n be a
XOR-THR function with k > 0 and d 6∈ {0, n+1

2 , n+ 1} then:

AI(XORk + Td,n) = min(d+ 1, n− d+ 2).

Proof. First, using Lemma 1, decomposing XORk + Td,n as the direct sum of XORk and Td,n we get
AI(XORk + Td,n) ≤ AI(Td,n) + 1. Then, we show that this decomposition complies the requirements of
Lemma 15 and achives then this upper bound with equality. We take XORk as the function g, which does
not have null algebraic degree, as k > 0. Then, we take the threshold function as the function f , which
algebraic immunity is supposed to be more than the one of g, i.e. AI(Td,n) ≥ 1, which using Lemma 10
gives min(d, n− d+ 1) ≥ 1 which is the case as d 6∈ {0, n+ 1}. The condition AN(Td,n) 6= AN(1 +Td,n)
is verified since d 6= n − d + 1 by the proof of Lemma 11, which corresponds to d 6= n+1

2 . Finally
applying Lemma 15 gives AI(XORk + Td,n) > AI(Td,n), which enables to conclude with the first bound
and Lemma 10:

AI(XORk + Td,n) = 1 + AI(Td,n) = min(d+ 1, n− d+ 2).

Note that some values of k, d and n are not tackled by Lemma 16. For the extreme cases k = 0, d = 0
or d = n+ 1, at least one of the two components is constant, therefore the algebraic immunity of the whole
function is determined by the other one (using Lemma 10 if k = 0, or Theorem 1). For the case d = n+1

2 ,
corresponding to the majority function, the direct sum does not increase the algebraic immunity as we see
in the following lemma.

Lemma 17 (XOR-THR Functions without Improved Algebraic Immunity). Let XORk + Td,n be a
XOR-THR function with k > 0 and d = n+1

2 then:

AI(XORk + Td,n) =
n+ 1

2
.

Proof. We exhibit a function g of degree n+1
2 annihilating XORk + Td,n, with the following shape:

g = gX · XORk + gT , where deg(gX) <
n+ 1

2
, and deg(gT) =

n+ 1

2
,

36

where gX and gT only depend on the variables of Td,n.
First note that using Property 1:

∀x ∈ Fn2 , Tn+1
2
,n(x+ 1) = 1 + Tn+1

2
,n(x). (4)

The elementary symmetric function of degree n+1
2 in n variables σn+1

2
annihilates 1+Tn+1

2
,n and is non null.

Then Tn+1
2
,n(x) is annihilated by σn+1

2
(x + 1), which can be written (developing its ANF) as σn+1

2
(x) +

σ′(x) where σ′(x) is a function of degree strictly less than n+1
2 . Let us take gX = σ′ and gT = σn+1

2
+ σ′,

then by construction, deg(g) = n+1
2 . We show that g annihilates XORk +Tn+1

2
,n. According to Equation 4:

XORk + Tn+1
2
,n · g = gX · (XORk)2 + gT · XORk + Tn+1

2
,n · gX · XORk + gT · Tn+1

2
,n,

as (XORk)
2 = XORk, and gT = σn+1

2
+ σ′ is an annihilator of Tn+1

2
,n, all remaining terms are products of

XORk, giving:
XORk + Tn+1

2
,n · g = XORk ·

(
gX + gT + Tn+1

2
,n · gX

)
.

By definition, we have:

gX + gT + Tn+1
2
,n · gX = σ′ + σn+1

2
+ σ′ + Tn+1

2
,n · σ

′ = σn+1
2

+ Tn+1
2
,n · σ

′.

Then, as σn+1
2

+ σ′ is an annihilator of Tn+1
2
,n, we use that Tn+1

2
,n · σ′ = Tn+1

2
,n · σn+1

2
, finally giving:

XORk + Tn+1
2
,n · g = XORk ·

(
σn+1

2

(
1 + Tn+1

2
,n

))
= 0,

where the last equality comes from the fact that σn+1
2

is an annihilator of 1 + Tn+1
2
,n. As AI(XORk +

Tn+1
2
,n) ≥ n+1

2 using Lemma 1 and Lemma 10, it enables to conclude: AI(XORk + Tn+1
2
,n) = n+1

2 .

We can summarize these two lemmata and the previous comment to give the algebraic immunity of all
XOR-THR functions:

Corollary 3 (Algebraic Immunity of XOR Threshold Functions). Let f be the XORk + Td,n function:

AI(XORk + Td,n) =

{
n+1
2 if d = n+1

2 ,

min{k, 1}+ min{d, n− d+ 1} otherwise.

We use these results to prove exhibit a lower bound on the fast algebraic immunity of XOR-THR
functions.

Lemma 18 (Fast Algebraic Immunity of a XOR-THR Function). Let f be the XORk + Td,n function:
if k = 0, then:

FAI(XOR0 + Td,n) ≥ min(2 min(d, n− d+ 1), 1 + max(d, n− d+ 1)).

If k > 0

FAI(XORk + Td,n) ≥

{
n+3
2 if d = n+1

2 ,

2 + min(d, n− d+ 1) otherwise.

37

Proof. As seen in the proof of Corollary 2, for any function f :

FAI(f) ≥ min(2AI(f), 1 + max(AN(f),AN(f + 1))).

When k = 0, AI(f) = min(d, n − d + 1, and among AN(f) and AN(f + 1), one take the value d and
the other n− d+ 1, which concludes the first case.

When k > 1, AN(f) = AN(f + 1) then, for d = (n+ 1)/2, 2AI(f) = n+ 1 and AN(f) = (n+ 1)/2,
giving the bound of (n + 3)/2. For d 6= (n + 1)/2, AI(f) = AN(f) = 1 + min(d, n − d + 1), giving the
bound of 2 + min(d, n− d+ 1).

6.3 Improving the Locality of Local PRG.

Lemma 16 and Lemma 17 enable to partially answer the question of Applebaum and Lovett at STOC 2016
([AL16, AL18]), relatively to the locality of Goldreich’s PRGs.

Goldreich’s PRG is the main blueprint for local PRG. It has been largely investigated in the theory of
complexity community. The function often considered since [MST03] for any stretch s such that 1 < s <
1.5 is the XOR-THR function in 5 variables XOR3 + T2,2. More recently, some generalizations for any
stretch have been proposed [AL16, AL18], in term of XOR-MAJ functions, giving that for a stretch s:

– No attack is known relatively to the functions XORk+Td,2d or XORk+Td,2d−1 since k ≥ 2s and d ≥ s.
– It is proven that no attacks from the linear class neither the algebraic class (both as defined in [AL16]

rather than in a symmetric cryptographic context) applies to the functions XORk + Td,2d or XORk +
Td,2d−1 since k ≥ 5s and d ≥ 18s.

Rephrasing with the Boolean function vocabulary, the authors of [AL16, AL18] ask what is the minimum
n necessary to have a Boolean function f in Bn such that AI(f) = e and res(f) = k, and they show that
n ≤ 2e+ k. This minimum n corresponds then to the minimum locality for a given stretch. In the following
theorem we improve this bound, showing that n ≤ 2e + k − 1. The proof is constructive, we give two
families of functions satisfying this bound (for all n big enough). The new tool developed for the algebraic
immunity of XOR-THR functions enable to partially answer, giving the following theorem:

Theorem 3 (Upper Bound on Predicate’s Locality). Let k ∈ N, and e ∈ N∗, there exists Boolean function
f in n variables with n ≤ k + 2e− 1 such that AI(f) = e, and res(f) = k.

Moreover, the families of functions XORk + Te,2e−1 and XORk+1 + Te−1,2e−2 are examples of such
functions.

Proof. As XORk + Te,2e−1 and XORk+1 + Te−1,2e−2 are functions in k + 2e − 1 variables, the existence
proof is direct when the algebraic immunity and the resiliency of such functions are proven.

We begin with the functions of the form XORk + Te,2e−1. The threshold part has a resiliency of 0 using
Lemma 7, and k− 1 for the part XORk then res(XORk +Te,2e−1) = k using Lemma 1. Then, we are in the
case described by Lemma 17 so AI(XORk + Te,2e−1) = e.

Using the same lemmata for the functions of the form XORk+1 + Te−1,2e−2 we obtain res(XORk+1 +
Te−1,2e−2) = k as Te−1,2e−2 is unbalanced and AI(XORk+1 + Te−1,2e−2) = e− 1 + 1 = e.

Remark 5. In [AL16, AL18], the function reaching the bound of 2e + k is referred as the XOR of XORk
variables and the majority predicate on 2e bits, which can be defined in different ways. To fulfill the
constraints on the resiliency the majority part has to be balanced so it differs from the function Te,2e we
consider.

38

6.4 Determining the DAN of XOR-THR Functions.

Using Lemma 14 to Lemma 17, and a proposition appearing in [CDM+18] we can get the DAN of
XOR-THR functions and their complementary. We first rephrase this proposition relatively to our notation,
and then we give the DAN of XOR-THR functions.

Proposition 2 ([CDM+18] Rephrased). Let f be the direct sum of XORk with k > 0 and g, then
DAN(f) = DAN(f + 1).

Lemma 19 (DAN of XOR-THR Functions). Let XORk + Td,n be a XOR-THR function such that k > 0,
n ∈ N, and 1 ≤ d ≤ n, then:

DAN(XORk + Td,n) =



(
n
d

)
if d < n

2 ,(
n+1
d+1

)
if d = n

2 ,(
n
d

)
if d = n+1

2 ,(
n+1
d

)
if d = n

2 + 1,(
n
d−1
)

otherwise.

Furthermore DAN(XORk + Td,n) = DAN(1 + XORk + Td,n).

Proof. First, we show that consideringDAN(1+XORk+Td,n) with d ≤ (n+1)/2 is sufficient to determine
the DAN of functions tackled by the lemma. Note that using Proposition 2 we directly get DAN(XORk +
Td,n) = DAN(1 + XORk + Td,n). Then, using Property 1, the affine transformation defined as:

∀(x, y) ∈ Fk+n2 , XORh(x) + Td,n(y) = XORh(x) + Td,n(y + 1),

maps XORk + Td,n to 1 + XORk + Tn−d+1,n. As the dimension of the annihilator of fixed degree is affine
invariant DAN(XORk + Td,n) = DAN(1 + XORk + Tn−d+1,n). Regrouping these two remarks:

DAN(XORk + Td,n) = DAN(1 + XORk + Td,n) = DAN(XORk + Tn−d+1,n)

= DAN(1 + XORk + Tn−d+1,n),

which enable to determine theDAN only considering d ≤ (n+1)/2, more particularly focusing onDAN(1+
XORk + Td,n).

We proceed then in three steps: first we study the PANF coefficients of a direct sum with g being a XOR
function. Then, we focus on the XOR-THR functions where the threshold function is the majority function
(i.e. d = (n+ 1)/2), case of Lemma 17). Finally we determine the DAN of the other XOR-THR functions
for which d < (n+ 1)/2 (case of Lemma 16), also answering to the case d > (n+ 1)/2.

Direct sum with a XOR function and PANF coefficients:
First, we focus on the behavior of the PANF coefficients of an annihilator h(x, y) of any direct sum

f(x) + g(y) where g is a XOR function of m 6= 0 variables. Applying Lemma 14 gives the following
equation on the coefficients (proof given in the proof of Lemma 15):

hI

f +
∑
J⊆I

gJ

 =
∑
J(I

hJ
∑
K⊆J

gK∪(I\J).

As the gI coefficients correspond to the standard ANF coefficients of g, g being XORm it gives:

gI = 1 if |I| = 1, and gI = 0 otherwise.

39

It leads to the following equations:

∀I ⊆ [m], hI (f + (|I| mod 2)) =
∑
J(I
|I\J|=1

hJ . (5)

These equations are way more simple than in the general case, in the following we determine the
potential value of the hI coefficients for the non null annihilators of minimal degree of the XOR-THR
functions (or complementary). We rewrite the conditions on the PANF coefficient given by Equation (5) as
a system, identifying different cases based ont the cardinal of the subset I:

if , |I| = 0, then I = ∅, h∅f = 0,

if , |I| = 1, then I = {i}, h{i}(f + 1) = h∅,

if , |I| = 2, then I = {i, j}, hIf = h{i} + h{j},

if , |I| > 2, hI (f + (|I| mod 2)) =
∑

J(I
|I\J|=1

hJ .

.

Case d = (n+ 1)/2):
In this case, from Lemma 17, we know that AI(XORk + Td,n) = n+1

2 = d. Consequently it gives the
following bound on the PANF coefficients: deg(hI) ≤ d−|I|. We consider the system of PANF coefficients
described in the precedent part with f = Td,n.

Then, based on Lemma 11 we know that for d = (n+1)/2 both Td,n and its complementary have not non
null annihilators of degree less than d. So, the first equation (|I| = 0) implies that h∅ is an annihilator of Td,n
of degree d or the null function. As we saw in the proof of Lemma 15, h∅ 6= 0 otherwise AI(f + g) > AI(f)
which is not the case here, hence deg(h∅) = d.

The second equation (|I| = 1) implies:

∀i ∈ [m],

{
(h{i} + h∅)(f + 1) = 0,

h∅f = 0.
.

Considering the first equation with any pair (i, j), with i ∈ [m], j ∈ [m] gives (hi + hj)(f + 1) = 0, and
as deg(hI) ≤ d − |I|, it means that hi = hj . Hence, all PANF coefficients related to a subset of cardinal 1
are equal, and for all I ⊆ [m] such that |I| ≥ 2, hI = 0 (by induction on the cardinal of the subset, taking
|I| = 2 as initialization step).

Then, any non null annihilator of XORk +Td,n in this case has the form h∅+ h1(XORk). We finish this
part by showing that when h∅ is chosen, it fixes h1, enabling to conclude on the dimension of vector space
of non null annihilators of minimum degree. Let us write h∅ as h0,<d +h0,d, where we separate the function
h∅ (in ANF representation) in two parts, one with all monomials of degree less than d and the other part of
degree exactly d.

As h∅f = 0, deg(h∅) = d, and DAN(Td,n) =
(

n
(n−1)/2

)
by Lemma 11 we consider as h∅ any non

null element of this vector space. Then, we consider the remaining equation: (h1 + h∅)(1 + Td,n = 0).
As the product of any function with only monomials of degree d or more with 1 + Td,n gives 0, we obtain
h1 = h0,<d. Therefore, any non null annihilator of minimal degree of XORk +T(n+1)/2,n can be written as:

h∅ + h0,<d · (XORk), where h∅(Td,n) = 0, and h∅ 6= 0.

Finally, as the null function is always an annihilator, we get:

DAN
(
XORk + Tn+1

2
,n

)
= DAN

(
Tn+1

2
,n

)
=

(
n
n+1
2

)
.

40

Case d < (n+ 1)/2):
In this case (note that we do not consider the case d = 0), from Lemma 16, we know that AI(XORk +

Td,n) = d+ 1. Consequently it gives the following bound on the PANF coefficients: deg(hI) ≤ d+ 1− |I|.
We consider the system of PANF coefficients described in the first part with f = 1 + Td,n.

The first equation (|I| = 0) gives that h∅ = 0 or d ≤ deg(h∅) ≤ d+ 1. Similarly to the precedent part,
the second equation (|I| = 1) implies:

∀i ∈ [m], (h{i} + h∅)(f + 1) = 0. (6)

As deg(h∅ + h{i}) ≤ d + 1, two cases appear depending on d, indeed, from (the proof of) Lemma 19
(1 + f) = Td,n has not non null annihilator of degree less than n − d + 1, giving a different situation for
d+ 1 = n− d+ 1 i.e. d = n

2 and for d+ 1 6= n− d+ 1.
We begin with the case d 6= n

2 . Equation (6) gives that ∀i ∈ [m] we have h{i} = h∅, and by induction
hI = 0 for all I such that |I| ≥ 2. As deg(hi) ≤ d, h∅ is a degree d annihilator of 1 + Td,n or the null
function. All annihilators of XORk + Td,n are then of the form h∅ + h∅ · (XORk), and using Lemma 11 we
can conclude in this case:

DAN(1 + XORk + Td,n) = DAN(1 + Td,n) =

(
n

d

)
.

Finally, we consider the case d = n
2 . In this case, Equation (6) gives that ∀i ∈ [m], the function h{i}+h∅

of degree at most d + 1 annihilates Td,n, and as d = n
2 from Lemma 11 we know that AN(Td,n) = d + 1.

So either h∅ = h{i} as in the precedent case, either h{i}+h∅ is a degree d+ 1 annihilator of Td,n. Then, we
determine the other PANF coefficients,. From the system, the equation for the case |I| = 2 implies that for
any i ∈ [m] and j ∈ [m]\i, we get (hi + hj)Td,n = 0 whereas deg(h{i} + h{j}) ≤ d. Thereafter, hi = hj
for any i and j both taken in [m], and by induction all hI such that |I| ≥ 2 are null. Then, we choose h∅ in a
particular vectorial space and show that only one value for hi is possible, and we express it relatively to h∅,
giving the expression of all annihilator of XORk + Tn

2
d,n of degree less than or equal to d+ 1 when d = n

2 .
As AN(1+Td,n) = d, and as for all functions with all monomials (ANF representation) of degree greater

than or equal to d the product with 1 + Td,n gives the null function, the vectorial space of annihilators of
1 + Td,n of degree less than or equal to d + 1 has dimension

(
n
d

)
+
(
n
d+1

)
. Note that it corresponds to the

null function and the functions with monomials of degree d and d + 1 only, we denote this vectorial space
S. Let h∅ ∈ S, we consider the affine transformation x 7→ x + 1, transforming Td,n(x) to Td,n(x + 1) for
all x ∈ Fn2 . Using Property 1, we know that Td,n(1 +x) = 1 +Tn−d+1,n(x), then we can equivalently write
(for any i ∈ [m]):

∀x ∈ Fn2 , (h∅ + h{i})(x)Td,n(x) = 0,

⇐⇒ ∀x ∈ Fn2 , (h∅ + h{i})(1 + x)Td,n(1 + x) = 0,

⇐⇒ ∀x ∈ Fn2 , (h̃∅ + h̃1)(x)(1 + Td+1,n)(x) = 0,

where h̃∅ denotes the function such that ∀x ∈ Fn2 , h̃∅(x) = h∅(1 + x), and similarly for h̃i.
As the affine transformation x 7→ x + 1 keeps the degree, we can write h̃∅ as h̃0,<d+1 + h̃0,d+1

(similarly to what we did on h∅ in the case d = (n + 1)/2)). For all functions with all monomials (in
ANF representation) of degree greater than or equal to d + 1 the product with 1 + Td+1,n gives the null
function, then:

(h̃0,<d+1 + h̃i)(1 + Td+1,n) = 0.

As deg(h̃0,<d+1 + h̃i) ≤ d, it implies that h̃0,<d+1 = h̃i, and as the transformation x 7→ x+ 1 is a bijection,

hi is fixed by the choice of h∅. In conclusion, it gives that h∅ + h′0,<d+1 · (XORk), where h̃′0,<d+1 is the

41

result of h̃0,<d+1 through the transformation x 7→ x + 1, is an annihilator of 1 + XORk + Td,n of minimal
degree (or null) for any h∅ ∈ S. Finally it gives:

DAN(1 + XORk + Td,n) =

(
n

d

)
+

(
n

d+ 1

)
=

(
n+ 1

d+ 1

)
,

concluding the case d < (n+ 1)/2. The identity
(
n
k

)
=
(
n

n−k
)

enables to obtain the value of DAN(XORk +
Td,n) for the case d > (n+ 1)/2).

Note that this lemma does not give the DAN of XOR functions (the threshold part is constant, thus the
result is given in Lemma 2) or threshold functions which is already given in Lemma 11.

6.5 Determining the DAN of DSM.

We use Lemma 14 to compute the dimension of the annihilators of minimal degree of a DSM. First we show
the behavior of this dimension on particular functions.

Lemma 20. Let f be a degree k > 0 DSM, we consider the direct sum of f and the monomial yT such that
t = |T | ≥ k, then:

DAN(f + yT) ≤


1 if AI(f) = t,

1 + t · DAN(f) if AI(f) = t− 1,

t · DAN(f) otherwise.

Note that when f is taken such that AN(f) = AI(f) the upper bound is reached.

Proof. In order to study the annihilators of f+yT , we first use Lemma 14 on the (n, t)-partitioned algebraic
normal form of f + yT . As g is here a monomial function, for all J (T we get gJ = 0, and gT = 1.
Relatively to the PANF coefficients it gives:hJf = 0 for all J (T,

hT (f + 1) =
∑
J(T

hJ for the substet T .

As we are looking for annihilators h of minimal degree, we also use the following equation for each subset
J ⊆ T :

deg(hJ) ≤ AI(f + yT)− |J |. (7)

Then, three points are of main interest in this proof, and various cases will be derived from this points.
First, the algebraic immunity of f+yT impacts the number of annihilators, its value (ether AI(f) or AI(f)+
1) affects the cardinal of the subsets J such that hJ can be not null. Then, we analyze the degree of the PANF
coefficients, more particularly, the algebraic immunity of f and its relation with t determines the potential
degree of hT , giving different annihilators. Finally, the algebraic immunity is a criterion which considers f
and f + 1, whereas AN(f) is only related to f . Even for DSM, we can get AN(f) 6= AN(f + 1), therefore
we take care of the cases where AI(f) < AN(f) and AI(f) = AN(f) as we do not assume the value of the
constant coefficient.

Algebraic immunity of f + yT :

42

As f + yT is a degree t function, its algebraic immunity is at most t, we show that if AI(f) < t then
AI(f + yT) = AI(f) + 1, and else, the case AI(f) = t implies AI(f + yT) = AI(f).

Let start with the case AI(f) < t, we use the formalization of direct sum vector, considering mf =
[m1, . . . ,mk] and mf+yT being the same vector completed with zeros and a 1 added at the position t:

mf+yT =


[m1, . . . ,mk−1,mk + 1] if t = k,

[m1, . . . ,mk, 0, . . . , 0︸ ︷︷ ︸
t−k−1

, 1] otherwise.

We deduce the algebraic immunity of f + yT using the characterization of Theorem 1 on f + yT . If
t = k, the coefficient k of mf+yT is then mk + 1, it gives:

AI(f + yT) = min

(
min

0≤d<k

[
d+

(
k∑

i=d+1

mi

)
+ 1

]
, k

)
.

As we are considering the case AI(f) < t, which corresponds to AI(f) < k here it means that:

AI(f) = min
0≤d<k

(
d+

k∑
i=d+1

mi

)
,

therefore the precedent equation can be simplified as:

AI(f + yT) = min(AI(f) + 1, k).

As AI(f) < k, if AI(f) = k − 1 then AI(f + yT) = k = AI(f) + 1. Otherwise, AI(f) < k − 1, then the
minimum is directly AI(f) + 1. It finishes the study of AI(f + yT) when AI(f) < t and t = k.

If k < t, the characterization of Theorem 1 gives:

AI(f + yT) = min

(
min

0≤d≤k

[
d+

(
k∑

i=d+1

mi

)
+ 1

]
, min
k<d<t

d+ 1, t

)
.

It can be simplified to AI(f + yT) = min (AI(f) + 1, k + 2, t). As f is a degree k function and t > k, the
minimum is always equal to AI(f) + 1. It enables to concludes on the algebraic immunity of f + yT when
AI(f) < t.

The remaining case corresponds to AI(f) = t. In this case f is already a function with algebraic
immunity t, the function f + yT cannot have an algebraic immunity higher than t as its degree is equal
to t, and as it is a direct sum we know by Lemma 1 that its algebraic immunity is at least AI(f), which is t.
In conclusion, for the case AI(f) = t we get AI(f + yT) = AI(f).

On the degree of the PANF coefficients:
Considering Equation (7) with the precedent result on AI(f + yt) gives more insight on the annihilators.

In the case AI(f) = t Equation (7) can be rewritten as:

deg(hJ) ≤ AI(f)− |J |,
≤ t− |J |.

43

Using the system given by the PANF coefficients we get:
deg(h∅) ≤ t and h∅f = 0 for the subset ∅,
hJ = 0 for all J (T such that 1 ≤ |J | < t,

deg(hT) ≤ 0 and hT (f + 1) = h∅ for the substet T .

We focus on the potential value of hT , if hT = 0 then h∅ is null, which gives that h is the null function.
Otherwise, hT = 1, then it forces h∅ to be 1 + f , which is possible as deg(f + 1) = deg(f) = t > 0. In
this case we can conclude: DAN(f + yT) = 1.

Now we consider the case AI(f) < t, it means that AI(f+yT) = AI(f)+1 and therefore we can rewrite
Equation (7) as:

deg(hJ) ≤ AI(f) + 1− |J |. (8)

Using the system given by the PANF coefficients we get:

deg(h∅) ≤ AI(f) + 1 and h∅f = 0 for the subset ∅,
deg(hJ) ≤ AI(f) and hJf = 0 for all J (T such that |J | = 1,

hJ = 0 for all J (T such that 1 < |J | < t,

deg(hT) ≤ AI(f) + 1− t and hT (f + 1) =
∑
J(T

|J|≤1

hJ for the substet T .

Focusing on the last equation, note that hT can always be null. As we are in the case AI(f) < t, the only
possibility for hT to be non null is when AI(f) = t−1. As AI(f) ≤ k and k ≤ t it occurs only in two cases:
t = k and AI(f) = k − 1, or t = k + 1 and AI(f) = k. In these two cases hT can be equal to 1, leading to
the following equation:

f + 1 =
∑
J(T

|J|≤1

hJ . (9)

It finishes our study on the potential degree of the PANF coefficients.
Determining DAN(f):
For the case AI(f) = t we already know that DAN(f + yt) = 1, in fact in corresponds to a case where

AI(f) = deg(f) so where AN(f) = AI(f). In the following we show that this difference between AN(f)
and AI(f) influences DAN(f + yt).

We consider the previous system of equations through the various values of this difference:

– Case AN(f) ≥ AI(f) + 2.
As h∅f = 0 and deg(h∅) < AN(f) with this condition, it forces h∅ to be null. By a similar argument,
all the PANF coefficients hJ such that |J | = 1 are null. Then, if we are in the case where hT can be
equal to 1, it implies that f + 1 = 0 which is impossible, therefore hT = 0, the null function is the only
annihilator of f + yT of degree less than or equal to AI(f + yT), giving DAN(f) = 0.

– Case AN(f) = AI(f) + 1.
In this case, as hJf = 0 and deg(hJ) < AN(f) for all J (T such that |J | = 1, all these PANF
coefficients are null. Then, if h∅ = 0 it corresponds to the setting of the precedent item, where h = 0
is the unique possibility. Otherwise, h∅ is a AN(f)-degree non null annihilator of f , and Equation (9)
gives hT (f + 1) = h∅. Then, hT = 0 is impossible, and when hT = 1 is possible, it forces h∅ = f + 1.
Note that for the case t = k + 1 and AI(f) = k which enables to consider hT = 1, the degree and the
algebraic immunity of f are equal, then AN(f) 6= AI(f) + 1, so we cannot consider this case here. Only

44

when t = k and AI(f) = k − 1 this possibility appears, (it is the case for example for f = 1 + x1x2),
for such cases the annihilators are 0 and 1 + f , giving DAN(f) = 1.
For all other cases of this item, 0 is the unique annihilator of degree less than or equal to AI(f + yT)
then we get DAN(f + yT) = 0.

– Case AN(f) = AI(f).
In this case many choices of annihilators can be considered. h∅ can be an annihilator of of f of degree
less than or equal to AN(f)+1. For all J (T such that |J | = 1, hJ can be an annihilator of f of degree
AN(f) or the null function. The only restriction is coming from the last equation:

hT (f + 1) =
∑
J(T

|J|≤1

hJ .

We consider the two possible cases for the value of hT , and then the annihilators of f + yT it implies.

If hT = 0, then the sum of the PANF coefficients such that J (T, |J | ≤ 1, is null. First it implies that
h∅ cannot be of degree AN(f) + 1. Then, among the t+ 1 coefficients, exactly t can be chosen freely in
the vectorial space of annihilators of f of degree less than or equal to AN(f) and the last one is equal to
the sum. By construction, it gives t · DAN(f) linearly independent annihilators of f + yT .

If hT = 1, then the sum of the PANF coefficients such that J (T, |J | ≤ 1, is equal to f + 1. We saw
below that only two cases enable hT be be equal to 1, we treat separately these two cases.

If t = k and AI(f) = k−1, then for all J (T |J | = 1 the coefficients hJ are such that deg(hT) ≤ k−1
whereas f + 1 has degree k. Therefore h∅ has to be of degree k, more precisely with all monomials of
degree k being the ones of f + 1. Then, h∅ can be taken as any function of the form f + 1 + h′ where
h′ is a function such that deg(h′) ≤ k − 1, under the restriction that h∅ annihilates f . As f + 1 is an
annihilator of f , and as the annihilators of degree lesser than or equal to a fixed value form a vectorial
space, h′ is an annihilator of f of degree AN(f) or is null.
So, building an annihilator of f + yT under these conditions consists in choosing h′ and t − 1 other
coefficients from the vectorial space of annihilators of f degree less than or equal to AN(f), the
last coefficient being equal to the sum of the others in order to fulfill Equation (9). Note that all the
annihilators of f + yT created this way are of the form f + 1 + yT + h′′, where h′′ is an annihilator of
f + yT given by the case hT = 0 (indeed, h′ and the hJ such that |J | = 1 are chosen exactly under the
same constraints as h∅ and the same hJ in the previously studied case). In conclusion, for the case t = k
and AI(f) = k − 1 we get DAN(f + yT) = 1 + t · DAN(f).

If t = k + 1 and AI(f) = k, then for all J (T |J | = 1 the coefficients hJ are such that deg(hT) ≤ k,
deg(h∅) ≤ k + 1, and deg(f + 1) = k. Then h∅ cannot be of degree k + 1, thereafter building an
annihilator of f + yT under these conditions consists in choosing t coefficients from the vectorial space
of annihilators of f of degree less than or equal to AN(f), the last one being equal to f + 1 plus this
sum. Note that summing any two such built annihilator of f + yT gives an annihilator obtained in the
case hT = 0 (indeed, it gives an annihilator such that the t + 1 PANF coefficients related to the t + 1
smallest subsets are all annihilators of f of degree less than or equal to k such that the sum is null). In
conclusion, for the case t = k + 1 and AI(f) = k we get DAN(f + yT) = 1 + t · DAN(f).
Putting all together:
Let summarize what we obtain for the different cases:

45

• If AI(f) = t then DAN(f + yT) = 1.
• Else, AI(f) < t:
∗ If AN(f) ≥ AI(f) + 2, then DAN(f + yT) = 0.
∗ If AN(f) = AI(f) + 1, then:
· If t = k and AI(f) = k − 1 then DAN(f + yT) = 1.
· Else, DAN(f + yT) = 0.

∗ Else, AN(f) = AI(f):
· If t = k and AI(f) = k − 1 then DAN(f + yT) = 1 + t · DAN(f).
· If t = k + 1 and AI(f) = k then DAN(f + yT) = 1 + t · DAN(f).
· Else, DAN(f + yT) = t · DAN(f).

Recalling that the two cases AI(f) = k and t = k + 1, and AI(f) = k − 1 and t = k correspond to the
case AI(f) = t− 1 enables to conclude.

Using Lemma 20 recursively we can compute the dimension of the annihilators of minimal degree of
any DSM, as stated in the following theorem.

Theorem 4. Let f be a DSM with associated direct sum vector mf = [m1, . . . ,mk], let consider the set
Sd(f) such that:

Sd(f) =

{
{0 ≤ d ≤ k | d+

∑
i>dmi = AI(f)} if m1 6= 1,

{0 < d ≤ k | d+
∑

i>dmi = AI(f)} if m1 = 1.

Then, we have the following relation:

DAN(f) ≤
∑

d∈Sd(f)

k+1∏
i>d

imi .

Note that when AN(f) = AI(f) the bound is reached.

Proof. Note that Lemma 20 considers functions f+yT with f non constant, here to prove the final statement
we also determine the DAN of monomial functions. To link this dimension for a DSM to its direct sum
vector we study more particularly the homogeneous DSM and the behavior of the DAN when adding a
homogeneous DSM of degree t to a DSM of degree k with k < t. Consequently we separate the proof in
four parts, first we study the DAN of monomial functions, then we focus on homogeneous DSM, thus we
establish a corollary of Lemma 20 suited for addition of homogeneous DSM, and finally we prove the upper
bound of the theorem by recursion.

On the DAN of monomial functions:
Let f be a monomial function: f = xT , with |T | ∈ N∗. As we are considering direct sums of monomials,

we neglect the null function (giving |T | = t > 0), and we also study the annihilators of 1 + xT . Throughout
the proof we denote |T | as t, and without loss of generality we assume T = {1, . . . , t}.

AN(xT) = 1 as for any i ∈ T , 1 + xi is an annihilator of xT , and the constant function 1 does not
annihilates xT . Note that t independent annihilators can be created this way (1 for each variable indexed
by T), reaching the maximal dimension (of a vectorial space generated by the degree 1 monomials in t
variables), therefore DAN(xT) = t.

For 1 + x1, (a case where m1 = 1) the constant function 1 is not an annihilator contrarily to x1. Then
AN(1+x1)=1 andDAN(1+x1) = 1. For t > 1, note than 1+xT cannot be annihilated by a non null function

46

of degree lesser than t. Indeed, let g be non null function of degree lesser than t, then g · (1 + xT) = g or
g · (1+xT) = g+xT , as each monomial xI in the ANF of g is such that I (T , implying that xI ·xT = xT ,
then none of these products is null. Therefore for t > 1 it gives AN(1 + xT) = t, and as AN(xT) = 1, it
finally gives DAN(1 + xT) = 0.

Concluding this part, when f is a DSM whose associated direct sum vector has only one non null
coefficient, which is moreover equal to one then DAN(f) ≤ t, and the upper bound is reach when the
constant coefficient of f is null.

Combining this result with Lemma 20 enables to get an upper bound of the DAN of any DSM,
by recursively adding monomials of equal or greater degree, one by one, initializing the recursion on a
monomial function (or 1 plus this function). In the following, we generalize this idea to be able to determine
theDAN when we recursively add all the monomials of a fixed degree, in order to get an upper bound on the
DAN of a DSM of degree k by considering only k functions rather than

∑k
i=1mi. Therefore we consider a

recursion with direct sum of homogeneous DSM functions, and the initialization step requires to determine
the DAN of homogeneous functions (or its complement).

On the DAN of homogeneous DSM:
Let f be a homogeneous DSM of degree k (or its complement), its associated vector is mf =

[0, . . . , 0,mk], where mk > 0. f can be constructed recursively by adding degree k monomials to xT

(or 1 + xT), where |T | = t = k.
To study the parameters of these functions used in the recursion, we denote fi the function such that

the k-th coefficient of mfi is equal to i, all other coefficients being zeros. Using Theorem 1 we obtain
AI(fi) = min{i, k}, we combine it with Lemma 20 for various values of i, (with i > 0):

– Case 1 ≤ i < k − 1:
AI(fi) = i < k − 1, it corresponds to the third item of the lemma, giving DAN(fi+1) ≤ k · DAN(fi).
As DAN(f1) ≤ t by the previous part of the proof, an immediate recursion gives:

DAN(fj) ≤ kj , for j | 1 ≤ j ≤ k − 1.

Note that the upper bound is reached when AN(fi) = AI(fi) (for example when the constant coefficient
is null).

– Case i = k − 1:
AI(fi) = k − 1, it corresponds to the second item of Lemma 20, then DAN(fi+1) ≤ 1 + k · DAN(fi),
so as i > 0:

DAN(fk) ≤ 1 + kk, for k > 1.

Note that the upper bound is reached when AN(fk) = AI(fk).
– Case i ≥ k:
AI(fi) = k, it corresponds to the first item of the lemma, then DAN(fi+1) = 1, so:

DAN(fj) = 1, for j ≥ k + 1.

Note that the special case i = 1 = k is not tackled by these cases, it corresponds to the monomial
function x1 or its complement, treated in the previous part.

This disjunction of cases gives an upper bound on the DAN of any DSM with exactly one coefficient
not null in its associated direct sum vector. It is the starting point of a recursion consisting in adding
homogeneous DSM of increasing degree to get (an upper bound on) the DAN of a DSM based on its direct
sum vector. In the following part of the proof we tweak Lemma 20 to take care of these additions, using the
same ideas as in this part.

47

Tweaking Lemma 20 for homogeneous DSM:
We prove the following:
Let f be a DSM of degree k > 0, and g be an Homogeneous DSM of degree t such that t > k with

associated vector mg = [0, . . . , 0,mt], the direct sum f + g has the following property:

DAN(f + g) ≤


1 if AI(f) +mt > t,

1 + tmt · DAN(f) if AI(f) +mt = t,

tmt · DAN(f) if AI(f) +mt < t.

Note that the upper bound is reached when AI(f) = AN(f).
Let denote gi the function such that the t-th coefficient of mgi is equal to i, all other coefficients being

zeros. Similarly to the precedent part of the proof we consider AI(f + gi) using Theorem 1:

AI(f + gi) = min{AI(f) + i, t}.

Depending on the value of i, Lemma 20 enables to determine DAN(f + gi). The reasoning for DAN(fi) in
the previous part applies to DAN(f + gi), with k replaced by t− AI(f) here.

– Case 1 ≤ i < t− 1− AI(f):
AI(f+gi) < t−1, it corresponds to the third item of the lemma, givingDAN(f+gi+1) ≤ t·DAN(f+gi).
As AI(f) < t− 1, then DAN(f + g1) ≤ t · DAN(f), an immediate recursion gives:

DAN(f + gj) ≤ tjDAN(f), for j | 1 ≤ j ≤ t− 1− AI(f).

Note that the upper bound is reached when AN(f) = AI(f) (for example when the constant coefficient
is null).

– Case i = t− 1− AI(f):
AI(f + gi) = t − 1, then it corresponds to the second item of Lemma 20, DAN(f + gi+1) ≤ 1 + t ·
DAN(f + gi), so:

DAN(f + gt−AI(f)) ≤ 1 + tt−AI(f).

Note that the upper bound is reached when AN(f) = AI(f).
– Case i ≥ t− AI(f):

AI(f + gi) = t, consequently it corresponds to the first item of the lemma, then DAN(f + gi+1) = 1,
so:

DAN(f + gj) = 1, for j > t− AI(f).

Summing up gives the condition as stated at the beginning of this part. In the following we use this result
to recursively compute theDAN of any DSM, and express it directly from the direct sum vector coefficients.

Connecting DAN(f) to mf :
First, for any DSM f with associated vector mf = [m1, . . . ,mk] we consider the following set:

Sd(f) =

{
{0 ≤ d ≤ k | d+

∑
i>dmi = AI(f)} if m1 6= 1,

{0 < d ≤ k | d+
∑

i>dmi = AI(f)} if m1 = 1.

We prove by recursion on the non null mi coefficients that:

DAN(f) ≤
∑

d∈Sd(f)

k+1∏
i>d

imi ,

48

where the upper bound is reached when AN(f) = AI(f).
We begin with the initialization. As f is a DSM, by Definition 11 it is non constant, then at least on

of the mi coefficients is not null and the basis of the recursion is therefore an homogeneous DSM or its
complement.

The casem1 = 1 corresponds to the function x1 and 1+x1 only, with mf = [1], for whichDAN(f) = 1
from the first part of the proof. In this case, AI(f) = 1 = k = mk, so Sd(f) = {1}, and:

∑
d∈Sd(f)

k+1∏
i>d

imi =
2∏
i>1

imi = 1,

which is consistent with the hypothesis.
For the case m1 6= 1, we consider homogeneous DSM of degree greater than 1 and its complement,

studied in the second part of this proof, with mf = [0, . . . , 0,mk], mk > 0. Note that for these functions
we have:

d+
∑
i>d

mi =

{
d+mk if 0 ≤ d < k,

t if d = k.

The minimum (used later to define Sd(f)) is therefore mk if d < k or k if d = k.
Then, three cases are possible forDAN(f) using the second part of the proof, depending on the value of

the non null coefficient mk relatively to k:

– Case 1 ≤ mk ≤ k − 1:
In this case DAN(f) ≤ kmk , it corresponds to AI(f) = mk 6= k which implies Sd(f) = {0}. Here:

∑
d∈Sd(f)

k+1∏
i>d

imi =

k+1∏
i>0

imi = kmk .

– Case mk = k:
This setting corresponds to DAN(f) ≤ 1 + kk (as k > 1), and AI(f) = mk = k. The condition on
the algebraic immunity gives Sd(f) = {0, k} (implicitly using Theorem 1 as each time we consider this
set). Then: ∑

d∈Sd(f)

k+1∏
i>d

imi =
k+1∏
i>0

imi +
k+1∏
i>k

imi = kk + 1.

– Case mk > k:
In this case DAN(f) = 1, it corresponds to AI(f) = k 6= mk which implies Sd(f) = {k}, and then:

∑
d∈Sd(f)

k+1∏
i>d

imi =

k+1∏
i>k

imi = 1.

These three cases are consistent with the hypothesis, which concludes the initialization of the recursion.
Then, we consider the recursion step: let f be a DSM with `+ 1 non null mi coefficients, f can always

be written as a direct sum of g and h such that:

– g is a DSM with ` ≥ 1 non null direct sum vector coefficients, with mg = [m′1, . . . ,m
′
k]

– h is an homogeneous DSM of degree t > k.

49

We denote mf = mg+h as [m1, . . . ,mt], note that by construction:

mi =


m′i for 1 ≤ i ≤ k,
0 for k < i < t,

mt > 0 for i = t.

Applying the recursion hypothesis on the non constant DSM function g we use the third part of the proof
(tweaked Lemma 20) to study DAN(f). First, let consider the potential sets Sd(f), using Theorem 1, we
get:

AI(f) = min
0≤d≤t

{
d+

t∑
i>d

mi

}
= min

{
min

0≤d≤k

(
d+

(
k∑
i>d

m′i

)
+mt

)
, t

}
= min {AI(g) +mt, t} .

The values of d giving AI(f) + mt are the one such that d +
∑k

i>dm
′
i = AI(f), which constitute Sd(g)

when m1 6= 1, and withdrawing 1 it constitute Sd(g) when m1 = 1. By construction m1 = m′1, then the
potential sets for Sd(f) are Sd(g), Sd(g)∪ {t}, or {t}, depending on the relation between AI(g) +mt and t.

We study the three cases for DAN(f) using the tweaked lemma, also depending on the relation between
AI(g) +mt and t:

– Case AI(g) +mt < t:
In this case, the tweaked version of Lemma 20 gives DAN(f) = DAN(g + h) ≤ tmtDAN(g). As in
this case AI(f) = AI(g) +mt 6= t, it implies Sd(f) = Sd(g), and then:

∑
d∈Sd(f)

t+1∏
i>d

imi =
∑

d∈Sd(g)

t+1∏
i>d

imi = tmt

 ∑
d∈Sd(f)

k+1∏
i>d

im
′
i

 .

By the recursion hypothesis, this last sum is an upper bound of DAN(g), so the hypothesis is valid at
this step.

– Case AI(g) +mt = t:
This setting corresponds toDAN(f) = DAN(g+h) ≤ 1+tmtDAN(g), and to AI(f) = AI(g)+mt = t,
then Sd(f) = Sd(g) ∪ {t}. We consider the sum indexed by Sd(f):

∑
d∈Sd(f)

t+1∏
i>d

imi =

 ∑
d∈Sd(f)\t

t+1∏
i>d

imi

+
t+1∏
i>t

imi

= tmt

 ∑
d∈Sd(f)

k+1∏
i>d

im
′
i

+ 1.

By the recursion hypothesis, the last sum is an upper bound ofDAN(g), so the hypothesis is valid at this
step.

– Case AI(g) +mt > t:
In this caseDAN(f) = DAN(g+h) = 1, it corresponds to AI(f) = t 6= AI(g)+mt, then Sd(f) = {t}.
Therefore: ∑

d∈Sd(f)

t+1∏
i>d

imi =

t+1∏
i>t

imi = 1.

50

In conclusion, for the three cases we proved that:

DAN(f) ≤
∑

d∈Sd(f)

t+1∏
i>d

imi ,

Note that the property on the upper bound being reached in all cases when AI(f) = AN(f) comes directly
from this property in Lemma 20. It finishes the recursion step and therefore concludes the proof.

This formula gives a tight upper bound on the dimension of the annihilators of a DSM, and it corresponds
to item 4 of Theorem ??. In the following remark we give some intuition on the shape of these annihilators.

Remark 6. The relation between the dimension of the annihilator space of f of degree less than or equal to
AI(f) and the set Sd(f) gives more intuition on these annihilators. We consider the case here of f being a
DSM such that the constant coefficient is null. From the proof of Theorem 1 (lower bound part) we know
that these functions are such that AN(f) = AI(f) as we can construct non null annihilators of degree AI(f).
These annihilators are built considering d ∈ Sd(f) and f as f1 +f2 where f1 consists in the monomials of
degree less than or equal to d of f , and f2 is the part with the other monomials. 1+f1 is an annihilator of f1,
and taking one variable of each monomial of f2, the product of the complement of each of these variables is
an annihilator of f2. Then,

∏k
i>d i

mi linearly independent annihilators can be created this way.
Note that in the formula of Theorem 4 the products runs until k+1 where k is the degree of the considered

function, this extra term in the product aims to get the ” + 1” term occurring only when k ∈ Sd(f).
The variation of definition for Sd(f) depending on the value of m1 can also been remarked with these
annihilators. Indeed, when m1 = 1, both 0 and 1 can fulfill the formula AI(f) = d+

∑
d>1mi, and in this

case, the same annihilators are produced, as the degree-exactly-1 component function of f is a monomial
function then annihilated by 1+x1 both for d = 0 (canceling the monomial x1 in f2) and d = 1 (annihilating
f1 with its complement). In all the other cases, by construction two different d lead to linearly independent
annihilators of f .

Finally, a counting argument shows directly that for these functions all the annihilators of degree less
than or equal to AI(f) are linear combination of the annihilators described in this remark, it characterize the
annihilators of minimal degree of all DSM with null constant coefficient.

7 Error-growth with the Third Generation of FHE.

In this section we investigate the error-growth involved when DSM or XOR-MAJ functions are homo-
morphically evaluated with an homomorphic encryption scheme of the third generation. Then, it directly
determines the noise produced by an IFP instantiated with such functions in the hybrid fully homomorphic
framework.

The third generation of FHE have been introduced in [GSW13] based on the idea of approximate
eigenvector, we refer to this article and to [AP14] for formal descriptions and security proofs. As we focus
on the error-growth given by some functions, we consider a general type of GSW-like encryption scheme.
We defined this scheme only with the properties of the homomorphic addition and multiplication, in order
to be general enough to apply for all variants. It could then be more particularly applied to different cases
e.g. the initial GSW scheme, multiple bits variant [HAO15], ring versions [GSW13, KGV14].

Definition 23 (GSW-like Scheme). We call GSW-like scheme an encryption scheme such that each valid
ciphertext Ci (relatively to the secret s) has error component ei which coefficients following a subgaussian
parameter of σi, and the following applies for the homomorphic operations:

51

– H.Add(C1,C2) : C+ = C1 + C2.
– H.Mul(C1,C2) : C× = C1 ×G−1C2, where G−1 is a function such that GG−1(C) = C for all C

and the values of G−1(C) follow a subgaussian distribution with constant parameter. G corresponds
to the gadget matrix([MP12]).

– Let Cf = H.Add(Ci, for 1 ≤ i ≤ k), then ef the related error follows a subgaussian distribution with
parameter σ′ such that:

σ′ =

√√√√ k∑
i=1

σ2i or σ′ = σ
√
k if σi = σ, ∀i ∈ [k].

– Let Cf be the result of a multiplicative homomorphic chain:

Cf = H.Mul(C1, H.Mul(C2, H.Mul(· · · , H.Mul(Ck,G)))),

and ef is the corresponding error with subgaussian parameter σ′ such that:

σ′ = O

y
√√√√σ21 +

k∑
i=2

(
σiΠ

i−1
j=1Norm(mj)

)2 ,

where y is a constant depending on the ring and the norm also depends on the ring.

With these definitions and error-growth of additions and multiplication we can derive the error-growth
related to DSM and XOR-MAJ. First we study the error-growth relatively to combs (particular products) and
MUX gates. Then, we analyze the case of DSM functions. Finally we investigate the error-growth relatively
to XOR-MAJ functions.

7.1 Error-growth of Combs and MUX Gates.

Error-growth in H.Comb We use the notion of comb when we consider a sequential multiplication of
ciphertext with bounded noise. This kind of multiplication enables to maintain a low noise when nonlinear
functions with a sparse ANF are evaluated with a GSW-like scheme.

Definition 24 (Homomorphic CombH.Comb). Let C1, · · · ,Ck be k ciphertexts from a GSW-like scheme
with error coefficients from independent distributions with same subgaussian parameter σ. We define
H.Comb(y, σ, c, k) = H.Mul(C1, · · · ,Ck,G) where:

– y is a constant depending on the ring,
– c = max1≤i≤k(Norm(mi)) is a constant which depends on the plaintexts,

and Ccomb = H.Comb(y, σ, c, k) has error components following a subgaussian distribution of parameter
O(σcomb).

Lemma 21 (Comb Error-growth, σcomb Quantity). Let C1, · · · ,Ck be k ciphertexts of a GSW-like
scheme with same error parameter σ and Ccomb = H.Comb(y, σ, c, k). Then we have:

σcomb(y, σ, c, k) = yσck, where ck =

√√√√k−1∑
i=0

c2i.

52

Proof. Using the property on the homomorphic multiplication we obtain:

σcomb = y

√√√√σ2 +

k∑
i=2

(σΠ i−1
j=1Norm(mj))2 = y

√√√√σ2 +

k∑
i=2

(σci−1)2,

= σ

√√√√ k∑
i=1

(ci−1)2 = σcomb = yσck.

Note that when the value of the plaintext is kept in {−1, 0, 1}, it leads to to c = 1 and therefore ck =
√
k.

Error-growth in MUX gates MUX gates are well adapted to third generation error-growth, as observed
in the context of branching programs [BV14], or in the context of deterministic automata [CGGI16]. The
asymmetric error-growth of the third generation enables to produce low-noise ciphertexts when a MUX
gate or a combination of MUX gates are evaluated, as the final error depends only on the errors from the
ciphertext of the control bit and only one of the two other errors.

Lemma 22 (MUX Error-growth).
Let Ca,Cb,Cd be 3 GSW-like ciphertexts with error parameter σa, σb, σd, and σmax = max {σa, σb},

and y the constant from the ring. Defining the MUX ciphertext as CMUX = H.Add(H.Mul(Cd,Ca −
Cb),Cb), we have:

σMUX = O
(√

y2σ2d + σ2max

)
.

Proof.

CMUX = CdG
−1(Ca −Cb) + Cb,

s>CMUX = s>CdG
−1(Ca −Cb) + s>Cb,

= e>dG
−1(Ca −Cb) +mds

>(Ca −Cb) + e>b +mbs
>G,

= e>dG
−1(Ca −Cb) +md(e

>
a + e>b) +md(ma −mb)s

>G + e>b +mbs
>G.

We obtain two cases depending on the value of d:

– If md = 0 then: s>CMUX = e>dG
−1(Ca −Cb) + e>b +mbs

>G.
In term of errors, the first part has an error parameter of yσd from the formula of the homomorphic

multiplication, which gives a total error of σMUX = O
(√

y2σ2d + σ2b

)
.

– If md = 1 then: s>CMUX = e>dG
−1(Ca −Cb) + e>a +mas

>G.

With the same reasoning we get a total error of σMUX = O
(√

y2σ2d + σ2a

)
.

As d is a control bit, only these two cases can happen, giving the final formula.

Note that the formula in this lemma gives a final error parameter which depends on the error parameter
of the 3 ciphertexts (due to the max), and not only 2, as it relates to an upper bound to tackle worst case
scenarii rather than the exact value which depends on two of the 3 ciphertexts only.

53

7.2 Error-growth of DSM Functions.

We determine the error growth involved by the evaluation of a DSM function.

Lemma 23 (DSM Error-growth).
Let F be the DSM in n variables with associated direct sum vector mF = [m1,m2, · · · ,mk].
Assume that Ci for 1 ≤ i ≤ n are GSW-like ciphertexts with same subgaussian parameter σ and c = 1.

We define CF = H.Eval(F,Ci) the output of the homomorphic evaluation of the ciphertexts Ci’s along the
circuit F . Then the error parameter σ′ is:

σ′ = O

σ
√√√√m1 + y2

(
k∑
i=1

i ·mi

) ≈ O (σy√n) .
Proof. We first evaluate the error given by the monomials of a given degree i, that we denote σi. σ1
corresponding to the error of the linear part, using the formula relatively to homomorphic addition we obtain
σ1 = σ

√
m1. Then the monomials of degree i with 2 ≤ i ≤ d are evaluated as product of i+ 1 ciphertexts,

giving:
H.Mul(Cj , · · · ,Cj+i−1,G) = H.Comb(y, σ, 1, i),

with an error with subgaussian parameter O(yσ
√
i). Adding all the ciphertexts related to the same degree

we get:
σi = O(yσ

√
i
√
mi) = O(yσ

√
i ·mi).

Adding all these ciphertexts gives CF with error parameter:

O

σ
√√√√m1 + y2

(
k∑
i=2

i ·mi

) .

By definition of the direct sum vector:
∑k

i=1 i ·mi ≤ n (the equality corresponding to the case where all
variables appear in the ANF of F), giving the final result:

σ′ ≈ O
(
σy
√
n
)
.

7.3 Error-growth of XOR-MAJ Functions.

In this part we focus on how to evaluate the majority function without producing an important error-growth
with GSW-like ciphertexts. Threshold functions can be evaluated in various ways, which is promising
relatively to homomorphic evaluation. First, functions XORkMAJ2j+1−1 have degree 2j , which already gives
an idea of their evaluation relatively to the second generation. Having a closer look on their ANF, the number
of monomials is exponential (all monomials of degree 2j), which seems prohibitive for 3G evaluation.
Nevertheless, evaluating branching programs [BV14] or finite automata [CGGI16] has been shown to be
very promising with the 3G, then, evaluating the majority function with MUX gates (multiplexers) rather
than based on the ANF representation can still give a very low error-growth.

First we explain an evaluation ’in clear’ of the majority function, then we study the error-growth it can
generate. Finally, using the formula of homomorphic addition enable to derive the final noise of a XOR-MAJ
function.

54

First, let us consider a branching program for the function majority on n bits Td,2d−1, described in
Figure 3. Barrington’s theorem proves the existence of a width 5, polynomial length branching program for
majority; here we focus on a circuit whose homomorphic evaluation with a GSW-like FHE produces a small
error-growth. Therefore we consider a branching program of n+ 1 layers, where each transition from layer
i to i+ 1 is indexed by the variable xi, each dashed vertical arrow corresponds to the value 0 of the variable
and each diagonal arrow corresponds to the value 1. The final result is 0 if the path ends in the left half of
the last layer, 1 otherwise. The idea behind this circuit is to force a path to finish in the right half when at
least d variables are equal to 1.

· · ·

· · ·

0 0 0 0 1 1 1 1

x1

x2

xd

xd+1

x2d−1

0 1

Fig. 3. Branching program for majority.

Proposition 3 (Branching Program for Majority (informal)). Let B2n+1 be the branching program of
2n+ 2 layers and (2n+2)(2n+3)

2 nodes described in Figure 3, then B2n+1 computes the majority function in
2n+ 1 bits.

Proof. First, the circuit is well defined, for all nodes not in the terminal layer there is a transition for the
two potential values of the variable associated to the layer. Then, each variable is used once and only once:
the variable i is used between layers i and i + 1. Each transition is either leading to the same position in
the following layer, or leading to the successive (right) position in the following layer. For all layers the
transition keeps the position if and only if the variable is equal to 0. As the first layer begins at the leftmost
position, by induction, the end node of the path (in the final layer) is in the right half if and only if at
least d variables took the value 1. Finally the result of Bn on the entry (x1, · · · , xn) is 1 if and only if
wH(x1, · · · , xn) ≥ d which is the definition of Majn.

55

Evaluating this branching program in clear, the final node reached gives the result: 0 if we reached the
left part, 1 otherwise. Considering homomorphic evaluation we want to get a unique ciphertext, encrypting
this binary result. We modify this branching program to get a circuit with gates AND, MUX, XOR easy to
homomorphically evaluate, and with a unique final node. We use a standard technique using the truth table
of a function, the result can be obtained by summing the results of all the paths leading to 1 as only one path
corresponds to the n bits entry really evaluated, if the entry corresponds to one of these paths then the result
is 1 otherwise it is 0. Therefore, homomorphically at each layer a transition indexed by xi is replaced by an
homomorphic product by Ci for the value 1 and by C̄i = G−Ci for the value 0.

The branching program is modified in the following way: all the transitions leading to final value 0 are
cut, therefore all the bottom left part is deleted, and all the nodes for which all future transitions lead to
1 are merged: all the paths of the bottom right part are compressed, using additions. It gives the circuit to
homomorphically evaluate, given in Figure 4. To deal with additions we modify the representation, the nodes
in red are not computed as a MUX, but as a sum. The first summand is the product of the left parent node
by the ciphertext of this layer, the second summand is the right parent node. Black arrows, dashed or not,
symbolize the product by the ciphertext of the corresponding layer (its complementary for a dashed arrow),
and a red arrow symbolizes the addition. The color of the nodes symbolizes how they are computed, a white
node corresponds to a MUX, a red one to an addition, and a blue one to an AND or nothing.

· · ·

· · ·

+

+

+

CMAJn

C̄1 C1

Cd

Cd+1

Fig. 4. Homomorphic circuit for majority.

From this circuit we can compute the standard deviation of the ciphertext obtained by evaluating the
majority function MAJn.

Lemma 24. Let Ci for 0 ≤ i ≤ n be ciphertexts of a GSW-like scheme with same subgaussian parameter
σ and c = 1. We define CMAJn the output of the homomorphic evaluation of the ciphertexts Ci’s along the

56

circuit of Figure 4. Then the error parameter σ′ associated to CMAJn is:

σ′ = O
(
yσn
√
n
)
.

Proof. We decompose the circuit in three parts to do the proof; the part of blue nodes, white nodes and
red nodes on Figure 4. The blue nodes correspond to ciphertexts obtained by a chain of multiplications of
freshly encrypted ciphertexts i.e. homomorphic comb, the white nodes are the output of a MUX gate and the
red nodes are the output of an addition.

We first prove that the ciphertext of a blue or white node of the layer i has an error parameter ofO(y
√
i).

Let us focus on the blue nodes; the ciphertext obtained at the layer i is the product of i freshly encrypted
ciphertexts with error parameter σ, obtained from the ciphertexts C̄j (with 1 ≤ j ≤ i) for the left part of
the parallelogram or from the ciphertexts Cj (with 1 ≤ j ≤ i) for the right part of the parallelogram. From
Lemma 21 the associated error-growth is therefore:

H.Comb(y, σ, 1, i) = yσ
√
i.

Then we prove by induction that the ciphertext of a blue or white node of the layer k has the following
error parameter:

O(yσ
√
k), for layer 1 ≤ k ≤ n− 1.

– k = 1, this layer has only two nodes, both blue, corresponding to the ciphertexts C̄1 and C1. As
C̄1 = G −C1, the associated error parameter is the same as the one of C1: σ = O(yσ

√
1) validating

the initialization (Note that the constant y appears naturally if we begin the initialization at step k = 2).
– k → k + 1, the layer k + 1 has at least one white node. If the ciphertext corresponds to a blue node, the

associate error has parameter O(y
√
k + 1) as previously proved. Otherwise, a ciphertext corresponding

to a white node is obtained by a MUX gate with input two ciphertexts from the precedent layer and the
control bit encrypted by Ci. Then using Lemma 22 together with the induction hypothesis, the associated
error parameter is:

O(
√
y2σ2 + max{y2σ2k, y2σ2k}) = O(yσ

√
k + 1),

proving the induction.

Note that this property also applies for the layer 0, but as for the layer 1 it serves more for notation (and
for understanding the principle of the circuit) than for the final result.

The remaining part of the proof concerns the red nodes, which are the one adding two inputs; one of them
(left) being the product of a cipher from the precedent level by Ci, and the other (right) being a ciphertext
of the precedent level. Note that the two summands may have not independent error terms, as they have
been computed from the same ciphertexts (or minus the matrix G), and that contrarily to the MUX gates,
additions does not ensure error independence. Then we prove by induction that the ciphertext corresponding
to the red node of the layer k has the following error parameter:

O(yσ
k∑
i=d

√
i), for layer d+ 1 ≤ k ≤ n.

– k = d + 1, the parent nodes are a blue and a white node of the layer d, so corresponding to ciphertexts
with error parameterO(yσ

√
d). One of the two ciphertexts (left, white) is multiplied by Cd+1, giving an

error parameter of O(yσ
√
d+ 1). The error parameter (recall that it is a standard deviation) of the sum

is upper bounded by the sum of the two error parameters as the distributions can be correlated, giving
an error parameter of:

57

O(yσ(
√
d+
√
d+ 1)),

validating the initialization.
– k → k + 1, the parent nodes are a white node and the red node of the layer k. The ciphertext

corresponding to the white node of layer k is multiplied by Ck+1, giving an error parameter of:

O(yσ
√
k + 1).

By the induction hypothesis, the other ciphertext has associated error parameter of:

O(yσ

k∑
i=d

√
i).

As the error of these two ciphertexts may be correlated, performing the sum we obtain an error parameter
of:

O(yσ

k+1∑
i=d

√
i),

proving the induction.

The red node of the layer n corresponding to CMaj , we get that the final error is:

O(yσ
n∑
i=d

√
i),

and as
n∑
i=d

√
i ≤ d

√
n,

we obtain the final result of the lemma:

σ′ = O(yσd
√
n)

This result shows that the majority function can be used in an homomorphic framework using a GSW-
like FHE as the homomorphic error-growth involved is quite small (for a function in n variables it is
proportional to n1.5). Using a randomization technique it can be even more reduced (proportional to n0.5).
To do so, we avoid the use of additions which obliges to consider the sum of errors and we use a circuit of
bigger size but using only AND and MUX gates.

The principle is to duplicate the circuit of Figure 3 without the part leading to 0 and to add the copy at
the end of the first circuit in reverse order. This construction enables to get only one node in the final layer,
and it guarantees that every path to 1 from the top circuit is by construction completed by the symmetric
path (horizontal symmetry) to the final node on the bottom part. No path leading to 0 gets to the bottom
circuit, and every path to 1 in the first circuit is completed by a unique path to 1 in the bottom circuit due
to the symmetry. It enables to use the same technique based on the truth table of a function as for the first
circuit for the homomorphic evaluation. The main difference is that the bottom circuit obliges to have new
encryptions of the n plaintexts xi, with independent errors. The new circuit is presented in Figure 5.

58

· · ·

· · ·

· · ·

· · ·

C̄1 C1

C̄′1 C′1

CMAJn

Fig. 5. Homomorphic circuit for majority, using randomization.

59

Note that this construction preserves the result of the homomorphic evaluation. As x2i = xi in F2, re-
use variables do not change the result. Then the final value is a sum of all potential entries of the majority
function giving 1 and all corresponding paths are counted exactly once by construction (the symmetry). The
final ciphertext is an encryption of the majority over the n encrypted bits. From this circuit of length 2n+ 1
and size 3(d)2 with MUX and AND gates we can compute the standard deviation of the ciphertext obtained
by evaluating the majority function MAJn.

Lemma 25 (Majority Error-growth).
Let Ci for 0 ≤ i ≤ n be ciphertexts of a GSW-like scheme with same subgaussian parameter σ and

c = 1. Let C′i for 0 ≤ i ≤ n be ciphertexts of the same plaintext as Ci (but independent distribution)
of a GSW-like scheme with same subgaussian parameter σ and c = 1. We define CMAJn the output of
the homomorphic evaluation of the ciphertexts Ci and C′i along the circuit of Figure 5. Then the error
parameter σ′ associated to CMAJn is:

σ′ = O
(
yσ
√

2n+ 1
)
.

Proof. The proof is similar to the one of Lemma 24; the circuit containing only blue and white nodes, all
ciphertexts of the layer i > 0 is computed by a product of a ciphertext from the precedent layer with a
freshly encrypted ciphertext or by a MUX gate with input two ciphertexts from the precedent layer. Then
the proof by induction giving that the error parameter associated to a ciphertext of the layer i is O(yσ

√
i)

can here be extended to all layers, from k = 1 to k = 2n+ 1. Finally CMaj being the ciphertext of the layer
2n+ 1, it enables to conclude:

σ′ = O
(
yσ
√

2n+ 1
)
.

Combining this lemma with the error-growth of the addition gives the error-growth of XOR-MAJ
functions.

Corollary 4 (XOR-MAJ Error-growth). Let Ci,C
′
i for 0 ≤ i ≤ n, and C”i for i ∈ k be ciphertexts of

a GSW-like scheme with same subgaussian parameter σ and c = 1 such that Ci,C
′
i are ciphertexts of the

same plaintext as Ci (but independent distribution). We define CMAJn as the output of the homomorphic
evaluation of the ciphertexts Ci and C′i along the circuit of Figure 5. We define CXORkMAJn as the output
of H.Add performed on CMAJn and the C”i for i ∈ [k].Then the error parameter σXORkMAJn associated to
CXORkMAJn is:

σXORkMAJn = O
(
σ
√
k + y2(2n+ 1)

)
.

In conclusion, the branching program approach enables to homomorphically compute the majority
function with a small error-growth whereas the ANF approach leads to a different conclusion. The bigger
length and size of the second circuit enables to have an error-growth similar to the one of direct sum of
monomials, nevertheless it requires to perform more homomorphic gates and to randomize ciphertexts,
which has an additional cost in time and in data. Note that these evaluations of the majority function can be
adapted to the other threshold functions. It allows to derive the error-growth of other XOR-THR functions,
or other functions obtained by combining symmetric functions.

60

8 Instantiating the Improved Filter Permutators with DSM Functions: FiLIPDSM

Instances.

We instantiate the IFP paradigm with filtering functions being direct sums of monomials, and denote these
instances as FiLIPDSM. This choice is motivated by the functions considered in [MJSC16] under the name
of FLIP functions, which are a sub-family of DSM functions. DSM functions are very structured functions,
are easy to represent through their direct sum vector, and we can determine all their parameters relatively
to Boolean criteria. Recall that to estimate the most correctly the security given by a filtering function, it
is necessary to determine the parameters of all its descendants (up to λ variables). As DSM are bit-fixing
stable, knowing the standard properties of all the family enables to determine the bit-fixing properties of
any DSM filtering function, giving a very accurate estimation of the security against guess-and-determine
attacks. Finally, it is a good choice in terms of homomorphic error-growth as shown in Section 7 for the 3G,
and also for the 2G (FHE schemes such as BGV [BGV12]) due to their very small multiplicative depth.

We instantiate the forward secure PRNG following Bellare and Yee [BY03] construction, using the AES
as underlying block cipher. The PRNG is set with two constants C0 and C1, For each Ki the first block
AES(Ki, C0) gives the key Ki+1 of the next iteration and the second block AES(Ki, C1) gives 128 bits
being the i-th part of the PRG’s output. For each key-stream bit the PRNG outputs dlog

(
N
n

)
e bits used

to select the subset considering the variables in lexicographic order. Then, the permutation over n bits is
instantiated with the Knuth shuffle [Knu97] with the following bits output by the PRNG. Finally, n last bits
are used to generate the whitening. If the number of ciphertext bits m ≤ 2λ requires more pseudorandom
bits that the secure limitation of the PRNG, another instance is used with other constants. The number of
possible instances for the PRNG makes that for the parameters we consider the limitation comes from m.

In this section we first give in Subsection 8.1 the modifications performed on the algorithms estimating
the attack complexities. The large number of different descendants of a DSM function leads to compare the
parameters of different descendants to reduce the complexity of the algorithms. The proofs to determine the
descendant to consider are given constitute the main part of this subsection. Then, in Subsection 8.2 we give
the concrete instances chosen for a bit security of 80 or 128.

8.1 Simplifiying the Attack Complexities Algorithms for DSM Functions.

In Section 4 we give the general framework to compute the complexity of the attacks. We describe in the
following the modifications made to the algorithm in order to compute security bounds more efficiently on
DSM functions. First note that for the criteria of resiliency, nonlinearity, and algebraic immunity, the direct
sum vector is sufficient to compute the parameter of the function. For the DAN, the constant term of the
function matters, nevertheless the upper bound defined as max(DAN(f),DAN(f + 1)) can also be derived
from mf . For the and fast algebraic immunity the lower bound we use is also given by the direct sum vector.
Therefore, two functions with the same direct sum vector are considered as equivalent, and the number of
descendants to consider decreases using this property, it corresponds to the first modification mentioned in
Section 4.2.

Then, the number of descendants with different direct sum vector is still very important, and the number
of different parameters also. consequently, we use the second modification relatively to the nonlinearity, the
DAN and the fast algebraic immunity. For DSM functions, the exact value of the bias δ varies a lot, hence
we consider only the values of−b(log(δ)c. For the DAN we use an upper bound, considering the maximum
over all DSM of degree at most k. For fast algebraic attack we consider only 1 and 2 as possible values for
e and the reached algebraic immunity as possible value for d.

61

Finally, we decide to not consider all descendants, and attribute the probability of the ones with good
parameters to others (as called third modification in Section 4.2). It is the modification affecting most
the complexity of the algorithm. It is realized through proving relations between the parameters of DSM
functions and an order on their direct sum vector. In the case of DSM, the descendants obtained by fixing
zeros are always with worse parameter, and we prove it in the following.

Note that a DSM function f with mf = [m1,m2, . . . ,mk] has at most M =
∏k
i=1(mi + 1) different

descendants obtained by fixing ` zeros (as fixing a variable to 0 decreases one of the mi by 1). To compute
the profiles of a DSM, we use the following representation, as only the descendants obtained by fixing
zeros are considered, we store a vector of length M and each index represent one descendant. The number
of descendants at each step being the most expensive part of the algorithm in term of storage and time,
the algorithm is better suited for function with relatively small M . It justifies why in the next subsection
instances with sparse direct sum vectors are more considered than sums of triangular functions.

Second Modification, Bounding FAI and DAN First we define and give a lower bound on the FAI of a
DSM.

Proposition 4. Let define for any DSM function h the lower bound on the FAI, bFAI(h) such that:

bFAI(h) =

{
AI(h) + 2 if AI(h) = deg(h),AI(h) > 1, and mk > 1

AI(h) + 1 otherwise.

Proof. From Lemma 6 we know that FAI(h) = AI(h) + 2 if AI(h) = deg(h), AI(h) > 1, and mk > 1, and
that for any non constant function its FAI is at least its AI plus one, justifying the lower bound.

Then we define and give an upper bound on the DAN of a DSM. The next proposition gives an upper
bound on the DAN of a DSM which is compatible with the covering order of direct sums vectors (detailed
in the next subsection), whereas the DAN itself is not. For example, we can take the direct sum vectors
[1, 1], [1, 2], and [1, 1, 1]. We have [1, 1] � [1, 2] and [1, 1] � [1, 1, 1] but (considering the functions
represented by these direct sum vectors) DAN([1, 2]) < DAN([1, 1]) < DAN([1, 1]).

Proposition 5. For any DSM function h of degree k:

DAN(h) ≤

{
kk + 1 if m1 = 0

kk−1 + 1 if m1 > 0.

We define the following upper bound on the DAN, bDAN(h) as bDAN(h) = kk + 1.

Proof. First we prove the upper bound of DAN(h) depending on the value of m1 for any DSM h of degree
k. Then, bDAN(h) is trivially an upper bound of this one, and as replacing the value of k by a greater integer
keeps this property, we prove that the bound is coherent with the covering order.

In order to prove the first upper bound on DAN(h) for any DSM h of degree k we need to recall
some results and definitions, in order to use properties of the set Sd(h) defined in Theorem 4. A direct sum
of monomials h of degree k is associated to its direct sum vector mh = [m1, . . . ,mk] where mk 6= 0
(Definition 12). From Theorem 1 we know that:

AI(h) = min
0≤d≤k

d+

k∑
i>d

mi.

62

From Theorem 4 we know that:

DAN(h) ≤
∑

d∈Sd(h)

k+1∏
i>d

imi ,

where:

Sd(h) =

{
{0 ≤ d ≤ k | d+

∑
i>dmi = AI(h)} if m1 6= 1,

{0 < d ≤ k | d+
∑

i>dmi = AI(h)} if m1 = 1.

As explained in Remark 6 we can also notice the impact of m1 on Sd(h):

– Ifm1 = 0 then 0+
∑k

i>0 < 1+
∑k

i>0, so 0 can be in Sd(h) but 1 cannot, giving Sd(h) ⊆ {0, 2, 3, . . . , k},
– if m1 = 1 then 0 +

∑k
i>0 = 1 +

∑k
i>0, as 0 cannot be in Sd(h) by definition, in this case it gives

Sd(h) ⊆ {1, . . . , k},
– if m1 > 1 then 0 +

∑k
i>0 > 1 +

∑k
i>0, so 0 cannot be in Sd, giving Sd(h) ⊆ {1, . . . , k}.

Then we highlight the link between the membership of d in Sd(h) and the values mi, and the influence
on the DAN. First, the membership of d in Sd(h) gives a relation on the successive mi, as developed in the
proof of Theorem 1:

d′ ∈ Sd(h)⇐⇒ d′ +
k∑

i>d′

mi = min
0≤d≤k

d+
k∑
i>d

mi.

It implies the following relation on the mi:

– For all e < d′, e ≥ 0:

d′ +
k∑

i>d′

mi ≤ e+
k∑
i>e

mi ⇐⇒
d′∑
i>e

mi ≥ d′ − e, (10)

– for all e > d′, e ≤ k:

d′ +
k∑

i>d′

mi ≤ e+
k∑
i>e

mi ⇐⇒
e∑

i>d′

mi ≤ e− d′. (11)

Then, we focus on the maximal contribution of each d ∈ Sd(h) to DAN(h). Based on the formula
of DAN(h) from Theorem 4 the contribution of d ∈ Sd(h) is equal to

∏k+1
i>d i

mi . In the following we
denote this quantity Pd for readability and consider Pd = 0 when d 6∈ Sd(h). Using Equation 11 on the
mi for d′ ∈ Sd(h) (note that by definition Sd(h) cannot be empty) and k (k ≥ d′ by definition) it gives∑k

i>d′mi ≤ k − d′. It leads to the following upper bound on Pd′ we will use:

Pd′ ≤ kk−d
′
.

Now we bound DAN(h) based on this upper bound and the value of m1.

– Case m1 = 0:
In this case, we saw that Sd(h) ⊆ {0, 2, 3, . . . , k}. Let first consider the sub-case where 0 6∈ Sd(h), then:

DAN(h) ≤
∑

d∈Sd(h)

Pd ≤
k∑
j=2

Pj ≤
k∑
j=2

kk−j =
kk−1 − 1

k − 1
≤ kk + 1,

where the equality is obtained as k > 1 (as mk is the non null coefficient mi such that i is maximal).

63

Then we consider the other sub-case i.e. where 0 ∈ Sd(h), using Equation 11 it implies
∑k

i=1mi ≤ k
then we denote t the integer such that t = k −mk, as mk 6= 0 by definition we get 0 ≤ t < k.
Rewriting Equation 11 with e = k, for all d′ in Sd(h) we obtain:

k∑
i>d′

mi ≤ k − d′ ⇐⇒
k−1∑
i>d′

mi ≤ t− d′.

Therefore Sd(h) does not contain any integer in {t + 1, . . . , k − 1} (note that k can be in Sd(h)). We
denote u the maximal integer in Sd(h)\{k}, (properly defined as we assumed 0 ∈ Sd(h)). The precedent
equation relatively to u gives

∑k−1
i>u mi ≤ t−u, combining it with Equation 11 for the elements inferior

to u we get:
∀j ≤ u, j ∈ Sd(h), Pj ≤ uu−jPu ≤ uu−j(k − 1)t−ukk−t.

Summing the upper bounds of all contributions:

DAN(h) ≤
∑

d∈Sd(h)

Pd ≤ Pk +
u∑
j=0

Pj ≤ 1 +
u∑
j=0

uu−j(k − 1)t−ukk−t,

≤ 1 +

 u∑
j=0

uj

 kk−u ≤ 1 + kk.

– Case m1 ≥ 1: In this case, we saw that Sd(h) ⊆ {1, 2, 3, . . . , k}, we can use the same strategy proof
as in the precedent item, the main difference is that 0 has no contribution in the DAN in this case. Note
that k = 1 is possible, the case of degree 1 DSM is already taken in Theorem 4, giving in this case
DAN(h) ≤ 1 < 1 + kk, thereafter we consider k > 1. As in the case m1 = 0 we consider two sub-
cases based on the membership of the minimal element possible in Sd(h). We begin with the sub-case
1 6∈ Sd(h), it gives:

DAN(h) ≤
∑

d∈Sd(h)

Pd ≤
k∑
j=2

Pj ≤
k∑
j=2

kk−j =
kk−1 − 1

k − 1
≤ kk−1 + 1.

Then, for the other sub-case, 1 ∈ Sd(h), Equation 11 on 1 relatively to k it gives:
∑k

i=2 ≤ k − 1. As
before we denote t the integer such that t = k −mk, and u the maximal integer in Sd(h)\{k}. In the
precedent part we prove that u ≤ t and for j ≤ u such that j ∈ Sd(h) we have Pj ≤ uu−j(k−1)t−ukk−t.
Summing the upper bounds of all contributions we obtain:

DAN(h) ≤
∑

d∈Sd(h)

Pd ≤ Pk +

u∑
j=1

Pj ≤ 1 +

u∑
j=1

uu−j(k − 1)t−ukk−t,

≤ 1 +

u−1∑
j=0

uj

 kk−u ≤ 1 + kk−1.

64

It concludes the proof on the first upper bound of DAN(h) for any DSM h of degree k. As for all strictly
positive integer k kk−1 + 1 ≤ kk + 1, bDAN(h) is an upper bound of DAN(h). Then, considering any
integer k′ greater than k > 0 still gives an upper bound as k′k

′
+ 1 > kk + 1.

Remark 7. Note that the first upper bound of Proposition 5 is reached by some functions. For all functions
h of degree k > 1 such that mk = k and all others mi are null are such that DAN(h) = kk + 1. It comes
from the fact that Sd(h) is reduced to {0, k} and the associated contributions reach their upper bound. For
all functions h of degree k > 1 such that mk = k, m1 > 0 and all others mi are null are such that
DAN(h) = kk−1 + 1 (in this case Sd(h) is reduced to {1, k}).

Note that the direct sum vector of the function of degree k > 1 of the second family covers the direct
sum vector of the function of same degree of the first family. It is sufficient to show that this upper bound is
not compatible with the covering order defined in the next subsection, explaining the choice of bDAN(h).

Third Modification, Determining DSM Descendant with Wosrse Properties First we show a relation
between the direct sum vector of various descendants of the same function. Then, we use this relation to
bound the parameters relatively to the standard criteria of all descendant functions on a same subset by the
parameters of only one of these descendant. The purpose of these results is to be able to upper bound the
number of descendants of a function which parameter is equal to a targeted value.

Definition 25 (Covering Vector). Let x ∈ Fn2 , and y ∈ Fn2 , we say that y ”covers” x, denoted x � y if and
only if ∀i ∈ [n], xi ≤ yi, where xi and yi are considered as natural numbers and ”≤” refers to the natural
order of N.

Similarly, let f and g be DSM variables in n variables, we say that mg ”covers” mg, denoted mf �mg

if and only if ∀i ∈ [|mf |], mf (i) ≤mg(i).

The next property shows that the order on the binary vector of descendants with the same subset is
conserved for the direct sum vector.

Property 2 (Covering and Direct Sum Vector). Let f be a DSM function in n variables, for any ` such that
1 ≤ ` < n, and any subset I ⊆ [n] such that |I| = `, for any v ∈ Fn2 and w ∈ Fn2 :

If v � w then mfI,v �mfI,w .

Note that when the descendant is a constant function, its associated direct sum vector is the null vector.

Proof. The two functions are descendants relatively to the same subset, so dealing with the same variables.
Let us consider each monomial of f separately, when at least one variable is fixed to 0 the monomial is
canceled (giving a degree 0 monomial), otherwise the degree of the monomial is reduced by the number of
variables fixed to 1. The condition v � w means that for each i ∈ [n] vi ≤ wi, so for each monomial of f
the remaining monomial of fI,v has a degree inferior than or equal to the degree of the same monomial of
fI,w. It finally gives mfI,v(i) ≤mfI,w(i) for all i ∈ |mf |.

As for all b ∈ F`2, (0, . . . , 0) � b � (1, . . . , 1), the parameters of all descendant functions relatively to
the same subset can be bound using the direct sum vectors of the all 0 or all 1 descendant. We show it it the
following propositions.

65

Proposition 6. Let f and g be DSM in n variables, if mf �mg then:

– res(f) ≤ res(g),
– NL(f) ≤ NL(g),
– AI(f) ≤ AI(g),
– bFAI(f) ≤ bFAI(g),
– bDAN(f) ≤ bDAN(g).

Proof. Resiliency. Using Lemma 2 the resiliency of a DSM h is mh(1) − 1, then as mf � mg, it implies
mf (1) ≤mg(1), so res(f) ≤ res(g).

Nonlinearity. Using Lemma 2, the nonlinearity of a DSM h in n variables is:

NL(h) = 2n−1 −
1

2

(
2(n−

∑k
i=2 imi)

k∏
i=2

(
2i − 2

)mi

)
.

From the proof of the lemma we know that the contribution of each monomial of h to the nonlinearity
depends on its degree. Each variable not appearing in the ANF (i.e. associated with null ANF coefficients
only) or appearing in a degree 1 monomial gives a term equal to 2 in the product, whereas a monomial of
degree d ≥ 2 gives a term equal to 2d−2 in this product. It gives that relatively, having variables in a degree
greater than 2 monomials gives a smaller contribution in the product than having them not appearing in the
ANF or in degree 1 monomials.

In the case we consider here, f and g are Boolean function in the same number of variables, and mf ≤
mg. Then, for each i ∈ [|mg|] such that mf (i) < mg(i), the number of variables of these monomials in g
corresponds to the same number of variables of f not appearing in its ANF. So, for each monomial of j ≥ 2
variables relatively to mg not in mf , it gives a contribution of 2j − 2 relatively to the nonlinearity of g and
2j relatively to the one of f . Applying it to each monomials its gives:

∀i ≥ 2, (2i − 2)mf (i)(2i)mg(i)−mf (i) ≥ (2i − 2)mg(i),

⇒
|mg |∏
2

(2i − 2)mf (i)(2i)mg(i)−mf (i) ≥
|mg |∏
2

(2i − 2)mg(i),

⇒2

n−
|mg |∑
i=1

img(i)

 |mg |∏
2

(2i − 2)mf (i)A ≥ 2

n−
|mg |∑
i=1

img(i)

 |mg |∏
2

(2i − 2)mg(i),

⇒2

n−
|mf |∑
i=1

imf (i)

 |mf |∏
2

(2i − 2)mf (i) ≥ 2

n−
|mg |∑
i=1

img(i)

 |mg |∏
2

(2i − 2)mg(i),

⇒NL(f) ≤ NL(g),

where A = (2i)mg(i)−mf (i).

66

Algebraic Immunity. Using Theorem 1, we get for a DSM h: AI(h) = min0≤d≤k

(
d+

∑k
i=d+1mi

)
.

As for i ≥ 1 we have mf (i) ≤mg(i):

∀d ∈ [|mg|], d+

|mg |∑
i=d+1

mf (i) ≤ d+

|mg |∑
i=d+1

mg(i),

∀d ∈ [|mg|], d+

|mf |∑
i=d+1

mf (i) ≤ d+

|mg |∑
i=d+1

mg(i),

AI(f) ≤ AI(g).

Fast Algebraic Immunity. we need to distinguish the cases where f and g are in the case AI = deg > 1
and mk > 1, or not.

If one of the conditions is not fulfilled by f , then bFAI(f) = AI(f) + 1, and as from the precedent item
AI(g) ≥ AI(f), it gives bFAI(f) ≤ bFAI(g).

If f fulfills the three conditions, and so does g, AI(f) ≤ AI(g) implies bFAI(f) ≤ bFAI(g).
If f fulfills the three conditions, and not g, then at least one of the two conditions AI(g) = deg(g) or

mg(|mg|) > 1 is false. If the first condition is false, then deg(g) > AI(g), so using the relation between mf

and mg together with Theorem 1 (on f and g) gives:

AI(g) = min
0≤d≤|mg |

d+

|mg |∑
i=d+1

mg(i) = min
0≤d≤|mg |

d+

|mf |∑
i=d+1

mg(i) +

|mg |∑
i=|mf |+1

mg(i),

> min

 min
0≤d≤|mf |

d+

|mf |∑
i=d+1

mg(i), |mf |

 ,

> min

 min
0≤d≤|mf |

d+

|mf |∑
i=d+1

mf (i), |mf |

 ,

> AI(f).

Therefore bFAI(g) = AI(g) + 1 ≥ AI(f) + 2, so bFAI(f) ≤ bFAI(g).
If the second condition is false, then mg(|mg|) = 1. As f fulfills the condition mf (|mf |) > 1 and

mf �mg it implies that |mg| > |mf |. Noticing that AI(f) = deg(f), using Theorem 1 it gives that:

AI(g) > min

 min
0≤d≤|mf |

d+

|mf |∑
i=d+1

mf (i), |mf |

 ,

as previously. Then, the right hand side term being equal to AI(f) in this case, we get AI(f) < AI(g), and
we can conclude as in the previous case.
DAN. Finally, mf �mg so |mf | ≤ |mg|, enabling to conclude:

bDAN(f) = |mf ||mf | + 1 ≤ |mg||mg | + 1 = bDAN(g).

67

Combining Property 2 with Proposition 6, we get:

Corollary 5. Let f be a DSM function in n variables, for any ` such that 1 ≤ ` < n, and any subset I ⊆ [n]
such that |I| = `, and for any b ∈ Fn2 :

– res(fI , b) ≥ res(fI,(0,...,0)),
– NL(fI , b) ≥ NL(fI,(0,...,0)),
– AI(fI , b) ≥ AI(fI,(0,...,0)),
– bFAI(fI , b) ≥ bFAI(fI,(0,...,0)),
– bDAN(fI , b) ≤ bDAN(fI,(1,...,1)),

where (0, . . . , 0) and (1, . . . , 1) denote the all 0 and the all 1 vectors of F`2.

Corollary 5 justifies the consideration of the descendants obtained by fixing zeros only (and ones only)
in the algorithm estimating the complexity of the attacks.

8.2 Concrete Instances with DSM Functions.

Some instances of FiLIPDSM are given in Table 1, λ is the conjectured security parameter, mF is the
direct sum vector notation of F , n is the number of variables of F , N is the size of the key register and d is
the multiplicative depth of the function.

mF n N d Name

λ = 80

[89, 67, 47, 37] 512 16384 2 FiLIP-512

[80, 40, 0, 472] 2048 16384 2

[80, 40, 15, 15, 15, 15] 430 1792 3 FiLIP-430

[80, 40, 0, 20, 0, 0, 0, 10] 320 1800 3 FiLIP-320

[86, 43, 0, 23, 0, 0, 0, 17] 400 1024 3

[80, 40, 0, 0, 0, 0, 0, 32] 416 1024 3

[80, 40, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16] 416 1024 4

λ = 128

[128, 64, 0, 80, 0, 0, 0, 80] 1216 16384 3 FiLIP-1216

[146, 149, 0, 139, 0, 0, 0, 131] 2048 16384 3

[128, 64, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 64] 1280 4096 4 FiLIP-1280

Table 1. FiLIPDSM Instances.

9 Improved Filter Permutators and XOR-THR Family of Functions.

The XOR-THR functions are good candidates to consider for the filtering function of IFPs: we call such
instances FiLIPXMAJ. First, this family of function is bit-fixing stable, and both XOR functions and majority

68

functions are symmetric functions which have received a lot of attention (e.g. [Car04, CV05, DMS06,
QLF07, SM07, QFLW09]). Second, this family corresponds to the main choice of function made in the
context of Goldreich’s PRG [MST03, AL16]. We show in Section 6 that these functions reach the best
known locality bound of local PRG. Finally, threshold functions are known to be evaluable with different
types of circuits, and we show how it can benefit to homomorphic evaluation as shown in Section 7.

9.1 Simplifying the Attack Complexities Algorithm for XOR-THR Functions.

In Section 4.2 we give the general framework to compute the complexity of the attacks. We describe in
the following the modifications made to the algorithm in order to compute security bounds on XOR-THR
functions.

First, note that in order to study the parameters of a XOR-THR function, the values of k, d and n
are sufficient, then in comparison with DSM functions way less descendants have to be considered. When
the profile relatively to one criterion is computed, only two parameters are needed to be stored for each
descendant at order `, as denoting XORk′ + Td′,n′ the descendant and XORk + Td,n the filtering function,
the following equations always hold: 0 ≤ k′ ≤ k, 0 ≤ d′ ≤ d, 0 ≤ n′ ≤ n, and k′ + n′ = n− `.

Then, at most (n+1)∗(d+1) have to be considered at each step, which makes the data complexity of the
algorithm computing the profile way smaller than for DSM functions. With this quantity of descendants to
consider, we do not modify the algorithm to neglect some descendants as in the DSM case, then the security
estimates of the attacks are closer for these functions.

Then, the nonlinearity of XOR-THR functions is too low to consider values of δ close to 2−λ. Hence,
we deviate from the analysis of Section 4 and consider the following functions as challenges rather than
instances. In order to estimate the security of challenges with XOR-THR functions relatively to correlation-
like attacks we estimate the costs of an XL attack based on linear approximation and simple correlation
attacks. The first attack, introduced in [Cou03b], exploits the so-called XL algorithm. The principle is to
look for good correlations between F a function in N variables, and an approximation g of degree d, in
order to solve a linearized system based on the values of this approximation. The value ε is defined such that
g is equal to F with probability greater than 1− ε. Such attacks have a (very conservative) time complexity
estimate:

O
((

N

D

)ω
(1− ε)−m

)
, where D ≥ d and m ≥

(
N
D

)(
N
D−d

).
For the challenges based on XOR-THR functions, we consider only degree one approximation (higher
degree give higher value of the binomial coefficient which is generally the dominant term), with D = 1
and m = N . More precisely, in our algorithm we consider as time complexity estimation the previous
bound times 2` at step `, and the profile of nonlinearity stores the value of log(1 − ε) = 1 − NL

2n−` with a
precision of 10−3. For the data complexity, the estimation is P−1(N − `), where P is the probability of
having descendants with a value of log(1− ε) of at most k.

The other attacks we consider, simple correlation attacks, try to distinguish the key-stream from a
random binary stream. We assume that a variant of these attacks aiming at recovering the seed have similar
or greater data and time complexity. These attack consist in fixing some of the variables and distinguish
the remaining part from the uniform distribution on F2. Consequently, (relatively to a function F) we
consider 2res(F)δ(F)−2 as a lower bound on the data complexity and δ(F)−2 as a lower bound on the time
complexity. For the complexities of the general algorithm using the profile, as usual the time complexity
considers an additional factor of 2` for the guesses and the data complexity a factor P−1 where the
probability is computed fromN and the profile. Note that here, this probability could require to consider the

69

nonlinearity (or δ) and resiliency of each descendant, but we consider a profile easier to handle in practice,
considering separately resiliency and nonlinearity, and leading to under estimated costs. More precisely we
consider the data complexity based on the nonlinearity profile with a fixed value of the resiliency: the worst
parameter obtained at fixed `. Alternatively we consider the data complexity based on the resiliency profile
with a fixed value of the nonlinearity: the worst parameter obtained at fixed `. The maximum of these two
numbers is the estimation we use for this kind these attacks.

Finally, we focus on a particular sub-family of XOR-MAJ functions based on consideration relatively
to the homomorphic evaluation and the representation of the filtering function. As the multiplicative depth
of the decryption algorithm have been enhanced in precedent works, we focus on functions with a degree
being a power of two, and with maximum possible algebraic immunity relatively to this degree. The degree
of functions of the form T2r,2r+1−1 is given in [CV05]. It explains why we choose the threshold part as
T2r,2r+1−1, but other choices are also valid, and it should be taken in adequation with the homomorphic
evaluation.

9.2 Concrete Challenges with XOR-MAJ Functions.

We give potential instances with XOR-THR functions, in terms of FiLIPXMAJ. The motivation of these
instances is to instantiate IFPs as close as possible to considered instantiations of Goldreich’s PRG, then
they should more be seen as an initial challenge to understand the concrete security of such constructions
(as investigated in [CDM+18]) rather than instances to implement. The main reason is that the nonlinearity
of such functions is extremely low, it does not seem to give security issues asymptotically, but for fixed
instances with relatively small n the system of equation may be too close to a linear system to avoid
correlation-like attacks. To illustrate this claim, note that using Stirling approximation (and Theorem 2),
the bias δ of a majority function is δ(Tn+1

2
,n) ≈ 1

2
√
π(n−1)/2

. Also, majority functions are known to have

relatively small nonlinearity, in [Lob09] Lobanov shows that they correspond to the functions with optimal
algebraic immunity with worst possible nonlinearity. Furthermore, considering δ as small as in the security
analysis of Section 4 corresponds to functions with too many variables to be considered in our context.

In terms of security, two modifications of these functions will be preferred for the context of IFPs. A
rather natural construction to increase the nonlinearity is to consider the direct sum of a XOR-THR function
with the quadratic bent function with direct sum vector [0, λ/2]. On the homomorphic side, the error-growth
mostly depends on the evaluation of the threshold function, and as it adds only λ/2 products, the time of the
evaluation has the same order. On the Boolean function side, the properties on direct sum constructions
enable to derive the resiliency and nonlinearity, and lower bounds on the algebraic immunity and fast
algebraic immunity, showing that these functions improve the security upon XOR-THR functions. Another
modification consists in building the direct sums of various threshold functions. An efficient evaluation of
threshold functions on the homomorphic side leads to an efficient evaluation of the whole function in this
context. On the Boolean function side, determining all exact parameters (as the algebraic immunity and fast
variant) might be very challenging, but known bounds enable to give security estimates, as for the other
modification.

Potential challenges of FiLIPXMAJ are given in Table 2, n is the number of variables of F , d is the
multiplicative depth of the function in ANF representation, r is the number of multiplications using the
MUX gates (see Section 7), and N is the size of the key register relatively to λ the conjectured security
parameter.

70

F n d r N , λ = 80 N , λ = 128

XOR81 + T8,15 96 3 69 32768

XOR113 + T16,31 144 4 269 4096 65536

XOR81 + T32,63 144 5 1053 2048 16384

XOR129 + T64,127 256 6 4157 1536 8192

XOR257 + T128,255 512 7 16509 1024 4096

Table 2. FiLIPXMAJ Instances.

10 Performance Evaluation.

Ultimately, the goal of SE-FHE applications is to obtain the result of the homomorphic computations with
the best latency and throughput. However, such performance metrics can only be evaluated if the functions
to be evaluated by the Cloud are known in advance. In previous evaluations of symmetric ciphers for FHE
evaluation, this issue was (partially) circumvented by studying the latency and throughput of homomorphic
ciphertexts that will just enable decryption or a fixed number of levels of multiplications. This allows getting
lower bounds on the timings necessary to evaluate any function, and the performances are reasonably
accurate for simple functions with the given multiplicative depth. Yet, one important drawback of this
approach remains that optimizing latency and throughput requires to fix parameters such as the size of
the ciphertexts and the quantity of noise (which set the security of the FHE scheme). More precisely, in
homomorphic encryption, it is the quantity of noise that determines the size of the ciphertexts required to
correctly handle the operations. This size is in turn the main factor determining the latency and throughput of
the homomorphic operations. Therefore, optimizing throughput and latency is ideal for one specific function,
but it looses its accuracy when the application deviates from this particular function. We next propose an
alternative comparison methodology, based on the homomorphic noise, that aims to be more independent of
the applications.

10.1 Methodology.

Considering the performances of SE-FHE relatively to the homomorphic noise is based on two simple
principles. The smaller is the noise, the wider is the class of functions still evaluable on these ciphertexts.
The smaller is the noise, the smaller are the homomorphic ciphertexts, the faster are the evaluations. It means
that the homomorphic noise dictates the ciphertext parameters, and eventually the latency and throughput
of the final application. Consequently, an appealing performance evaluation could consist in determining
exactly the error-growth (in average or with overwhelming probability) given by an SE scheme relatively to a
specific FHE scheme. As there is no simple parameter (such as the multiplicative depth) which encompasses
totally the error-growth, we use a simpler methodology consisting in measuring the noise just after evaluating
the symmetric decryption or after some additive levels of multiplications.

In contrast with the aforementioned latency/throughput oriented methodology, which leads to fix the
homomorphic parameters to optimize the timings for a given target function, a noise-oriented methodology
can ensure that the ciphertext parameters are the same for all SE schemes to be compared. This has two
advantages. First, all homomorphic ciphertexts obtained have the same security, that we fix to λ, the security
level of the symmetric scheme. Second, once the symmetric decryption is performed, the evaluation time
of any function will be independent of the SE scheme used for the transciphering. Such a scheme is then

71

only limited by the ciphertext noise, which determines the quantity of operations that can be performed until
decryption becomes impossible. Consequently, with this methodology, the smaller is the measured noise,
the better suited is the SE scheme. We believe this approach provides interesting insights for the comparison
of SE schemes in an application-dependent manner.

Additionally, and for completeness, we give some indications on the time performances, using the
strategy of previous works. To do so, for each symmetric scheme we select homomorphic parameters that are
sufficient to evaluate the decryption circuit, but no more. It gives an idea on the minimal size of homomorphic
ciphertext and minimal evaluation time required for each SE scheme relatively to the library used. The result
corresponds to a minimum as for any application, bigger ciphertexts are necessary to make the evaluations
of the computation part.

10.2 Performances and Comparisons.

We chose to compare the following symmetric schemes: LowMC [ARS+15], FLIP [MJSC16], Rasta
and Agrasta [DEG+18] and FiLIPDSM, all designed for the SE-FHE framework. We did not consider
Kreyvium [CCF+16] as its implementation is very different (based on previous studies the related numbers
would be slightly better than the one of LowMC due to a multiplicative depth of 12 and 13). All
implementations were made with the HElib library [HS14]. The LowMC implementations were taken from
the publicly available code (https://bitbucket.org/malb/lowmc-helib). The one of Rasta were built
from this implementation and the publicly available one (https://github.com/iaikkrypto/rasta).
We use the same code for computing the “Four Russians” method, used for multiplying binary matrices.
The FLIP and FiLIPDSM implementations were made ad hoc. These implementations were evaluated on
laptop computer with processor Intel(R) Core(TM) i5-4210M CPU at 2.60GHz.

Accordingly to the previously described methodology, we chose parameters in HElib enabling to
evaluate the decryption of all these schemes. These parameters are in this case dictated by LowMC (due
to its higher multiplicative depth), so we choose the minimal parameters such that LowMC ciphertexts
can be decrypted while keeping an FHE security of at least the security of the symmetric ciphers. The
noise level after evaluation is estimated thanks to HElib function log of ratio() which returns the difference
log(σ)− log(q) where σ2 is the noise variance3 of the error part of the ciphertext, and q is the modulus. In
order to have a glimpse of what this noise level represents, we also computed 1 (respectively 2) level(s) of
multiplications between ciphertexts (after the homomorphic evaluation of the symmetric schemes).

The results for 80-bit security and 128-bit security are given in Table 3 and Table 44. Symbol d denotes
the multiplicative depth of the decryption circuit of the SE scheme, N is the key size, symbol b denotes the
number of bits produced. The latency refers to the time required to have the first ciphertext after evaluation,
the noise columns refer to the output of the log of ratio() function, with respectively 0, 1 and 2 levels of
multiplications (after evaluation of the symmetric decryption function).

From these results we can conclude that LowMC ciphertexts have the biggest error-growth. For the 80-
bit security instances the noise after evaluating FLIP, Rasta or Agrasta is similar whereas the instances of
FiLIPDSM enable 1 or 2 additional levels of multiplications. For 128 bits of security, FiLIP-1280 ciphertexts
are slightly less noisy than Agrasta and FLIP ciphertexts, whereas FiLIP-1216 offers an additional level of
multiplications. In terms of evaluation time, the parameters are more suited for LowMC, but relatively to
this size of ciphertexts we can conclude that Agrasta evaluations produce more ciphertexts per second. The
instances of FiLIPDSM produce the ciphertexts one by one, and have then a throughput around 50 times

3 This variance is derived from bounds on the error-growth of addition, product, automorphism, and switchings.
4 These security levels are the one given by HElib, more accurate estimations are given in [Alb17]

72

https://bitbucket.org/malb/lowmc-helib
https://github.com/iaikkrypto/rasta

Cipher d N b Latency (s) noise noise × noise ×2

LowMCv2 (12, 31, 128) 12 80 128 329.38 -2.966 n/a n/a

LowMCv2 (12, 49, 256) 12 80 256 699.10 -2.495 n/a n/a

Agrasta (81, 4) 4 81 81 67.48 -155.722 -139.423 -119.459

Rasta (327, 4) 4 327 327 290.99 -154.502 -139.423 -119.459

Rasta (327, 5) 5 327 327 366.30 -135.727 -119.459 -100.641

FLIP-530 4 530 1 42.06 -157.201 -139.423 -119.459

FiLIP-512 2 16384 1 33.74 -194.342 -177.739 -158.241

FiLIP-430 3 1792 1 31.25 -176.039 -158.241 -139.423

FiLIP-320 3 1800 1 21.41 -176.588 -158.241 -139.423

Table 3. Noise comparison for 80-bit security. HElib parameters: LWE dimension of the underlying lattice
= 15709, HElib Depth L = 14, B = 28 (Bit per level parameter that influence BGV security), BGV security
= 84.3, Nslots = 682, log of ratio() of fresh ciphertext : -237.259.

slower for 80-bit instances and 200 for 128-bit instances. These results confirm the excellent behavior of
FiLIPDSM in terms of noise, enabling 1 or 2 supplementary levels of multiplication (at the cost of a moderate
decrease of the time performances detailed next).

Note that the gain in depth of FiLIPDSM relatively to Agrasta or Rasta is obtained at the price of
larger key sizes. When choosing which scheme to use in the hybrid homomorphic framework, a trade-
off can be considered between these schemes, depending on the number of levels of multiplications required
(computation phase) and constraints on the key-size (initialization phase). The more computations over the
data will be considered, the more important will be the influence of the error-growth, making negligible the
impact of the key-size (provided that its storage is manageable in clear by the user, and in homomorphic by
the server).

We also note that in [DEG+18], instances with a smaller multiplicative depth are considered, but the
authors recommend a depth at least 4 for security reason. These alternative instances always involve way
bigger keys than FiLIPDSM instances with the same multiplicative depth, and due to the high number of
XORs in these alternative instances, the error-growth would be higher. Rasta ciphers were not optimized
for the metric we consider, instances designed for the error-growth could lead to better performances. We
argue that minor modifications would benefit to evaluation over HElib, but by design the noise is larger
than the one from IFPs. For example, the high number of additions occurring at different levels between
multiplications prohibits Rasta design to be used in a SE-FHE framework using 3G FHE, whereas IFPs are
performing well for all known FHE.

For completeness we also study the performance results in time for the different SE ciphers considered.
For this purpose, we chose the HElib parameters such that the ciphers can just be decrypted (by setting the
appropriate L value), while keeping a similar security level for the HE scheme (by modifying with trial and
errors the other parameters). These numbers here have to be taken as a global behavior of the achievable
performances of the ciphers. We report the results in Table 5 for 80-bit and Table 6 for 128-bit security (note
that these estimations of security are the one given by HElib, more accurate one are can be found in [Alb17],
but it does not affect the comparison). B is the bit per level parameter, m is the LWE dimension, L is the
HElib depth, λ′ is the BGV security, ns the number of slots. The latency refers to the time required to have

73

Cipher d N b Latency (s) noise noise × noise ×2

LowMCv2(14, 63, 256) 14 128 256 1629.03 -3.418 n/a n/a

Agrasta (129, 4) 4 128 129 207.68 -207.478 -190.086 -169.011

Rasta (525, 5) 5 525 525 1264.30 -185.885 -169.011 -148.313

Rasta (351, 6) 6 351 351 967.62 -164.945 -148.313 -129.716

FLIP-1394 4 1394 1 272.31 -207.831 -190.086 -169.011

FiLIP-1216 3 16384 1 251.28 -227.93 -210.437 -190.086

FiLIP-1280 4 4096 1 325.04 -208.112 -190.086 -169.011

Table 4. Noise comparison for 128-bit security. HElib parameters: LWE dimension dimension of the
underlying lattice = 24929, HElib Depth = 16, B = 30, BGV security = 132.1, Nslots = 512, log of ratio()
of fresh ciphertext : -293.929.

the first ciphertext after evaluation, the noise columns refers to the output of the log of ratio() function after
evaluation of the symmetric scheme decryption.

Many optimizations can still be made in the code itself but also in the choice of the FHE parameters.
These results show that, adapting the FHE parameters to the decryption of the symmetric scheme only, the
throughput can be sensibly increased. For some schemes the ciphertexts are still usable for more evaluations,
it comes from the fact that HElib rejects smaller values of L, whereas the multiplicative depth of the scheme
is inferior. Then it does not enable us to compare perfectly the different schemes.

Cipher B m L λ′ ns Latency (s) noise

LowMCv2(12, 31, 128) 28 15709 14 84.3 682 329.38 -2.966

LowMCv2(12, 49, 256) 28 15709 14 84.3 682 699.10 -2.495

Agrasta (81, 4) 26 5461 5 82.9 378 12.97 -2.03

Rasta (327, 4) 26 8435 5 84.6 240 76.33 -1.903

Rasta (327, 5) 25 7781 7 85.1 150 90.78 -14.42

FLIP-530 21 4859 5 85.3 168 6.48 -1.23

FiLIP-512 21 4859 5 85.3 168 7.05 -29.09

FiLIP-430 21 4859 5 85.3 168 6.01 -15.457

FiLIP-320 21 4859 5 85.3 168 5.04 -16.02

Table 5. Performances for minimal FHE parameters, 80-bits security.

References

[ACG+06] Frederik Armknecht, Claude Carlet, Philippe Gaborit, Simon Künzli, Willi Meier, and Olivier Ruatta. Efficient
computation of algebraic immunity for algebraic and fast algebraic attacks. In Serge Vaudenay, editor,
EUROCRYPT 2006, volume 4004 of LNCS. Springer, Heidelberg, May / June 2006.

74

Cipher B m L λ′ ns Latency (s) noise

LowMCv2(14, 63, 256) 30 24929 16 132.1 512 1629.3 -3.418

Agrasta (129, 4) 27 7781 5 134.7 150 20.26 -3.03

Rasta (525, 5) 27 10261 7 128.9 330 277.24 -20.441

Rasta (351, 6) 27 10261 8 128.9 330 195.40 -1.92

FLIP-1394 28 8191 6 146.8 630 26.53 -5.11

FiLIP-1216 22 7781 5 186.3 150 24.37 -15.94

FiLIP-1280 28 8191 6 146.8 630 26.59 -5.11

Table 6. Performances for minimal FHE parameters, 128-bits security.

[AD18] Tomer Ashur and Siemen Dhooghe. Marvellous: a stark-friendly family of cryptographic primitives. Cryptology
ePrint Archive, Report 2018/1098, 2018. https://eprint.iacr.org/2018/1098.

[AGR+16] Martin R. Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and Tyge Tiessen. MiMC: Efficient encryption
and cryptographic hashing with minimal multiplicative complexity. In Jung Hee Cheon and Tsuyoshi Takagi, editors,
ASIACRYPT 2016, Part I, volume 10031 of LNCS, pages 191–219. Springer, Heidelberg, December 2016.

[AL16] Benny Applebaum and Shachar Lovett. Algebraic attacks against random local functions and their countermeasures.
In Daniel Wichs and Yishay Mansour, editors, 48th ACM STOC. ACM Press, June 2016.

[AL18] Benny Applebaum and Shachar Lovett. Algebraic attacks against random local functions and their countermeasures.
SIAM J. Comput., (1):52–79, 2018.

[Alb17] Martin R. Albrecht. On dual lattice attacks against small-secret LWE and parameter choices in HElib and SEAL. In
Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part II, volume 10211 of LNCS, pages
103–129. Springer, Heidelberg, May 2017.

[AP14] Jacob Alperin-Sheriff and Chris Peikert. Faster bootstrapping with polynomial error. In Juan A. Garay and Rosario
Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS, pages 297–314. Springer, Heidelberg, August 2014.

[App12] Benny Applebaum. Pseudorandom generators with long stretch and low locality from random local one-way
functions. In Howard J. Karloff and Toniann Pitassi, editors, 44th ACM STOC, pages 805–816. ACM Press, May
2012.

[App13] Benny Applebaum. Cryptographic hardness of random local functions-survey. In Amit Sahai, editor, TCC 2013,
volume 7785 of LNCS, page 599. Springer, Heidelberg, March 2013.

[ARS+15] Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen, and Michael Zohner. Ciphers for MPC
and FHE. In Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part I, volume 9056 of LNCS, pages
430–454. Springer, Heidelberg, April 2015.

[ARS+16] Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen, and Michael Zohner. Ciphers for MPC
and FHE. IACR Cryptology ePrint Archive, page 687, 2016.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully homomorphic encryption without
bootstrapping. In Shafi Goldwasser, editor, ITCS 2012, pages 309–325. ACM, January 2012.

[BP05] An Braeken and Bart Preneel. On the algebraic immunity of symmetric boolean functions. In Progress in Cryptology
- INDOCRYPT 2005, 6th International Conference on Cryptology in India, Bangalore, India, December 10-12, 2005,
Proceedings, pages 35–48, 2005.

[Bra12] Zvika Brakerski. Fully homomorphic encryption without modulus switching from classical GapSVP. In Reihaneh
Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 868–886. Springer, Heidelberg,
August 2012.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from (standard) LWE. In Rafail
Ostrovsky, editor, 52nd FOCS, pages 97–106. IEEE Computer Society Press, October 2011.

[BV14] Zvika Brakerski and Vinod Vaikuntanathan. Lattice-based FHE as secure as PKE. In Moni Naor, editor, ITCS 2014,
pages 1–12. ACM, January 2014.

[BY03] Mihir Bellare and Bennet S. Yee. Forward-security in private-key cryptography. In Marc Joye, editor, CT-RSA 2003,
volume 2612 of LNCS, pages 1–18. Springer, Heidelberg, April 2003.

75

https://eprint.iacr.org/2018/1098

[Car04] Claude Carlet. On the degree, nonlinearity, algebraic thickness, and nonnormality of boolean functions, with
developments on symmetric functions. IEEE Trans. Information Theory, pages 2178–2185, 2004.

[Car10] Claude Carlet. Boolean Functions for Cryptography and Error-Correcting Codes, page 257397. Encyclopedia of
Mathematics and its Applications. Cambridge University Press, 2010.

[CCF+16] Anne Canteaut, Sergiu Carpov, Caroline Fontaine, Tancrède Lepoint, Marı́a Naya-Plasencia, Pascal Paillier, and
Renaud Sirdey. Stream ciphers: A practical solution for efficient homomorphic-ciphertext compression. In Thomas
Peyrin, editor, FSE 2016, volume 9783 of LNCS. Springer, Heidelberg, March 2016.

[CDM+18] Geoffroy Couteau, Aurélien Dupin, Pierrick Méaux, Mélissa Rossi, and Yann Rotella. On the concrete security of
goldreich’s pseudorandom generator. In ASIACRYPT 2018, Part I, LNCS. Springer, Heidelberg, December 2018.

[CGGI16] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. Faster fully homomorphic encryption:
Bootstrapping in less than 0.1 seconds. In Jung Hee Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part I,
volume 10031 of LNCS, pages 3–33. Springer, Heidelberg, December 2016.

[CLT14] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Scale-invariant fully homomorphic encryption over
the integers. In Hugo Krawczyk, editor, PKC 2014, volume 8383 of LNCS, pages 311–328. Springer, Heidelberg,
March 2014.

[CM03] Nicolas Courtois and Willi Meier. Algebraic attacks on stream ciphers with linear feedback. In Eli Biham, editor,
EUROCRYPT 2003, volume 2656 of LNCS. Springer, Heidelberg, May 2003.

[CMR17] Claude Carlet, Pierrick Méaux, and Yann Rotella. Boolean functions with restricted input and their robustness;
application to the FLIP cipher. IACR Trans. Symmetric Cryptol., (3), 2017.

[Cou03a] Nicolas Courtois. Fast algebraic attacks on stream ciphers with linear feedback. In Dan Boneh, editor, CRYPTO 2003,
volume 2729 of LNCS, pages 176–194. Springer, Heidelberg, August 2003.

[Cou03b] Nicolas Courtois. Higher order correlation attacks, XL algorithm and cryptanalysis of toyocrypt. In Pil Joong Lee
and Chae Hoon Lim, editors, ICISC 02, volume 2587 of LNCS. Springer, Heidelberg, November 2003.

[CV05] Anne Canteaut and Marion Videau. Symmetric boolean functions. IEEE Trans. Information Theory, (8):2791–2811,
2005.

[DEG+18] Christoph Dobraunig, Maria Eichlseder, Lorenzo Grassi, Virginie Lallemand, Gregor Leander, Eik List, Florian
Mendel, and Christian Rechberger. Rasta: A cipher with low anddepth and few ands per bit. In CRYPTO 2018,
pages 662–692, 2018.

[DGM04] Deepak Kumar Dalai, Kishan Chand Gupta, and Subhamoy Maitra. Results on algebraic immunity for
cryptographically significant Boolean functions. In Anne Canteaut and Kapalee Viswanathan, editors,
INDOCRYPT 2004, volume 3348 of LNCS, pages 92–106. Springer, Heidelberg, December 2004.

[DGM05] Deepak Kumar Dalai, Kishan Chand Gupta, and Subhamoy Maitra. Cryptographically significant Boolean functions:
Construction and analysis in terms of algebraic immunity. In Henri Gilbert and Helena Handschuh, editors, FSE 2005,
volume 3557 of LNCS, pages 98–111. Springer, Heidelberg, February 2005.

[DLR16] Sébastien Duval, Virginie Lallemand, and Yann Rotella. Cryptanalysis of the FLIP family of stream ciphers. In
Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part I, volume 9814 of LNCS, pages 457–475.
Springer, Heidelberg, August 2016.

[DM15] Léo Ducas and Daniele Micciancio. FHEW: Bootstrapping homomorphic encryption in less than a second. In
Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part I, volume 9056 of LNCS, pages 617–640.
Springer, Heidelberg, April 2015.

[DMS06] Deepak Kumar Dalai, Subhamoy Maitra, and Sumanta Sarkar. Basic theory in construction of boolean functions with
maximum possible annihilator immunity. Designs, Codes and Cryptography, (1), 2006.

[DSES14] Yarkin Doröz, Aria Shahverdi, Thomas Eisenbarth, and Berk Sunar. Toward practical homomorphic evaluation of
block ciphers using prince. In Rainer Böhme, Michael Brenner, Tyler Moore, and Matthew Smith, editors, FC 2014
Workshops, volume 8438 of LNCS, pages 208–220. Springer, Heidelberg, March 2014.

[Fau99] Jean-Charles Faugère. A new efficient algorithm for computing groebner bases. Journal of Pure and Applied Algebra,
139:61–88, june 1999.

[FV12] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic encryption. Cryptology ePrint
Archive, Report 2012/144, 2012. http://eprint.iacr.org/2012/144.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzenmacher, editor, 41st ACM STOC,
pages 169–178. ACM Press, May / June 2009.

[GGNS13] Benoı̂t Gérard, Vincent Grosso, Marı́a Naya-Plasencia, and François-Xavier Standaert. Block ciphers that are easier
to mask: How far can we go? In Guido Bertoni and Jean-Sébastien Coron, editors, CHES 2013., volume 8086 of
Lecture Notes in Computer Science. Springer, 2013.

[GHS12] Craig Gentry, Shai Halevi, and Nigel P. Smart. Homomorphic evaluation of the AES circuit. In Reihaneh Safavi-
Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 850–867. Springer, Heidelberg, August

76

http://eprint.iacr.org/2012/144

2012.
[GLSV14] Vincent Grosso, Gaëtan Leurent, François-Xavier Standaert, and Kerem Varici. Ls-designs: Bitslice encryption for

efficient masked software implementations. In Fast Software Encryption - 21st International Workshop, FSE 2014,
London, UK, March 3-5, 2014. Revised Selected Papers, 2014.

[Gol00] Oded Goldreich. Candidate one-way functions based on expander graphs. Electronic Colloquium on Computational
Complexity (ECCC), 7(90), 2000.

[GRR+16] Lorenzo Grassi, Christian Rechberger, Dragos Rotaru, Peter Scholl, and Nigel P. Smart. Mpc-friendly symmetric
key primitives. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi,
editors, ACM SIGSAC Conference on Computer and Communications Security, 2016.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning with errors: Conceptually-
simpler, asymptotically-faster, attribute-based. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part I,
volume 8042 of LNCS, pages 75–92. Springer, Heidelberg, August 2013.

[HAO15] Ryo Hiromasa, Masayuki Abe, and Tatsuaki Okamoto. Packing messages and optimizing bootstrapping in GSW-
FHE. In Jonathan Katz, editor, PKC 2015, volume 9020 of LNCS. Springer, Heidelberg, 2015.

[HKM17] Matthias Hamann, Matthias Krause, and Willi Meier. LIZARD – A lightweight stream cipher for power-constrained
devices. IACR Trans. Symm. Cryptol., 2017(1):45–79, 2017.

[HS14] Shai Halevi and Victor Shoup. Algorithms in HElib. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014,
Part I, volume 8616 of LNCS, pages 554–571. Springer, Heidelberg, August 2014.

[IKOS08] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Cryptography with constant computational
overhead. In 40th ACM STOC, pages 433–442. ACM Press, May 2008.

[KGV14] Alhassan Khedr, Glenn Gulak, and Vinod Vaikuntanathan. SHIELD: Scalable homomorphic implementation of
encrypted data-classifiers. Cryptology ePrint Archive, Report 2014/838, 2014.

[Knu97] Donald E. Knuth. Seminumerical Algorithms, volume 2 of The Art of Computer Programming. Addison-Wesley
Professional, third edition, November 1997.

[LN14] Tancrède Lepoint and Michael Naehrig. A comparison of the homomorphic encryption schemes FV and YASHE.
In David Pointcheval and Damien Vergnaud, editors, AFRICACRYPT 14, volume 8469 of LNCS, pages 318–335.
Springer, Heidelberg, May 2014.

[LNV11] Kristin Lauter, Michael Naehrig, and Vinod Vaikuntanathan. Can homomorphic encryption be practical? Cryptology
ePrint Archive, Report 2011/405, 2011.

[Lob09] M. S. Lobanov. Exact relations between nonlinearity and algebraic immunity. Journal of Applied and Industrial
Mathematics, (3):367–376, Jul 2009.

[LT17] Huijia Lin and Stefano Tessaro. Indistinguishability obfuscation from trilinear maps and block-wise local PRGs.
Cryptology ePrint Archive, Report 2017/250, 2017.

[LV16] Huijia Lin and Vinod Vaikuntanathan. Indistinguishability obfuscation from DDH-like assumptions on constant-
degree graded encodings. In Irit Dinur, editor, 57th FOCS, pages 11–20. IEEE Computer Society Press, October
2016.

[Mes17] Sihem Mesnager. On the nonlinearity of boolean functions with restricted input. Talk at The 13th International
Conference on Finite Fields and their Applications, 2017.

[MJSC16] Pierrick Méaux, Anthony Journault, François-Xavier Standaert, and Claude Carlet. Towards stream ciphers for
efficient FHE with low-noise ciphertexts. In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016,
Part I, volume 9665 of LNCS, pages 311–343. Springer, Heidelberg, May 2016.

[MMM+18] Subhamoy Maitra, Bimal Mandal, Thor Martinsen, Dibyendu Roy, and Pantelimon Stănică. Tools in analyzing linear
approximation for boolean functions related to flip. In Debrup Chakraborty and Tetsu Iwata, editors, INDOCRYPT
2018, pages 282–303, 2018.

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller. In David Pointcheval
and Thomas Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 700–718. Springer, Heidelberg,
April 2012.

[MS78] F.J. MacWilliams and N.J.A. Sloane. The Theory of Error-Correcting Codes. North-holland Publishing Company,
2nd edition, 1978.

[MST03] Elchanan Mossel, Amir Shpilka, and Luca Trevisan. On e-biased generators in NC0. In 44th FOCS, pages 136–145.
IEEE Computer Society Press, October 2003.

[MZD18] Sihem Mesnager, Zhengchun Zhou, and Cunsheng Ding. On the nonlinearity of boolean functions with restricted
input. Cryptography and Communications, Mar 2018.

[PRC12] Gilles Piret, Thomas Roche, and Claude Carlet. PICARO - A block cipher allowing efficient higher-order side-
channel resistance. In ACNS 2012, Singapore, 2012. Proceedings, pages 311–328, 2012.

77

[QFLW09] Longjiang Qu, Keqin Feng, Feng Liu, and Lei Wang. Constructing symmetric boolean functions with maximum
algebraic immunity. IEEE Trans. Information Theory, pages 2406–2412, 2009.

[QLF07] Longjiang Qu, Chao Li, and Keqin Feng. A note on symmetric boolean functions with maximum algebraic immunity
in odd number of variables. IEEE Transactions on Information Theory, 2007.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In Harold N. Gabow and
Ronald Fagin, editors, 37th ACM STOC, pages 84–93. ACM Press, May 2005.

[SM07] Palash Sarkar and Subhamoy Maitra. Balancedness and correlation immunity of symmetric boolean functions.
Discrete Mathematics, (19):2351 – 2358, 2007.

[TLD16] Deng Tang, Rong Luo, and Xiaoni Du. The exact fast algebraic immunity of two subclasses of the majority function.
IEICE Transactions, pages 2084–2088, 2016.

78

	Improved Filter Permutators: Combining Symmetric Encryption Design, Boolean Functions, Low Complexity Cryptography, and Homomorphic Encryption, for Private Delegation of Computations
	Pierrick Méaux, Claude Carlet, Anthony Journault, and François-Xavier Standaert

