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Abstract. In this paper, we make a comprehensive study of two classes of Boolean functions whose interest
originally comes from hybrid symmetric-FHE encryption (with stream ciphers like FiLIP), but which also present
much interest for general stream ciphers. The functions in these two classes are cheap and easy to implement, and
they allow the resistance to all classical attacks and to their guess and determine variants as well. We determine
exactly all the main cryptographic parameters (algebraic degree, resiliency order, nonlinearity, algebraic immunity)
for all functions in these two classes, and we give close bounds for the others (fast algebraic immunity, the dimension
of the space of annihilators of minimal degree). This is the first time that this is done for all functions in large classes
of cryptographic interest.

1 Introduction.

Classical stream ciphers, in symmetric cryptography, generate the keystream (which is added bitwise to the plaintext
for providing the ciphertext) by iteratively combining the bits at some positions in a linear feedback shift register
(LFSR) by a so-called filter nonlinear function. The known attacks on stream ciphers (Berlekamp-Massey’s attack,
fast correlation attacks, algebraic attacks) lead to demanding criteria on the filter function. The design of functions
presenting good tradeoffs between the levels at which these criteria are satisfied is not only interesting for classical
stream ciphers but also for most modern stream ciphers, which need a nonlinear part in their design.

Another stream cipher paradigm called the filter permutator [16, 17]) arose recently in the context of cloud
computing, with the need of preventing the cloud servers to learn about the data of the users on which they make
computations. The breakthrough work of Gentry [14] gave the first scheme of Fully Homomorphic Encryption (FHE),
a public key primitive allowing to perform computations on data by implementing operations on the encrypted data
only. This theoretical solution to the privacy-preserving issue when outsourcing computation needed however to be
made practical for devices with limited computing power to interact with the cloud in a secured way. In [15], the
authors introduced a hybrid framework combining symmetric encryption and FHE. Outsourcing computation was then
possible through expressing the computations as functions easy to perform homomorphically, and finding symmetric
encryption schemes as adapted as possible to the FHE scheme used. It led to building new symmetric encryption
schemes optimized for this purpose such as [1, 4, 13, 16, 17]. For the ciphers [16, 17] based on the (improved) filter
permutator model, the main steps to compute a bit of ciphertext are the choice of a part of the key, a permutation of
its bits, and the application of a filtering function to this permuted part of the key. An important difference with the
classical filtered model is in the number of variables, which is very large (about 1000) while it is much smaller for
the classical filtered model (say, at most 20). This, together with the constraints due to FHE, led to studying types of
Boolean functions having simple enough structures, but also allowing the cipher to resist all classical attacks (and even
more, since guess and determine attacks are facilitated in such framework). The security analysis of (improved) filter
permutators [16] requires not only to determine or bound the cryptographic parameters of the filtering function (i.e. the
levels at which it satisfies the criteria), but also to determine the cryptographic parameters of all bit-fixing descendants
of the filtering function, that is, of the functions obtained from it by fixing some of its input bits.

? Some results of the present paper have been presented at the Conference on Algebra, Codes, and Cryptology (A2C), held in
Dakar, Senegal, in December 2019; they were published without proof in the proceedings of this conference.



In this article, we shall completely determine the main cryptographic parameters of all Boolean functions in two
families suitable for both classical and hybrid symmetric-FHE stream ciphers. We shall see that some proofs pose
delicate problems. We note that no paper in the literature has ever determined the parameters of all the functions in
whole classes of interest. Some simple classes contain functions whose cryptographic parameters are all known, but
these classes are too elementary to contain functions presenting cryptographic interest. We detail our contributions in
the following sub-section. For more technical details on the context (fully homomorphic encryption, hybrid framework
and improved filter permutators) we refer to the introduction of [8], that is not indispensable for understanding our
contribution.

1.1 Our Contributions.

We investigate the main cryptographic properties of the two families of Direct Sums of Monomials (DSM), and XOR-
Threshold functions. These two classes have the advantage of being stable under the operation of fixing some bits
in the input to the functions, and this simplifies the necessary study, mentioned above, of the parameters of what
we called the “bit-fixing descendants” of the functions belonging to these classes. The first family is obtained by
iteratively applying to those functions having the simplest algebraic normal forms (i.e., monomials) the secondary
construction called direct sum, consisting in adding two Boolean functions which depend on different variables. By
construction, the functions from this class can be represented as extremely sparse polynomials, since their algebraic
normal forms are sums of products of disjoint sets of variables. We determine the cryptographic parameters for all
DSM. This is the first time that the parameters of all functions in a large class of functions are exhibited. 3. The
functions of the second family, XOR-Threshold functions, are defined as the direct sums of an affine function and
a symmetric function giving 1 if and only if the Hamming weight of the input is at least equal to a fixed threshold
value. The threshold functions can be evaluated simply with multiplexers, and this makes XOR-threshold functions
appealing in our context. Although symmetric functions have been the focus of different studies in cryptography,
the main parameters have been determined only for the majority functions, or symmetric functions in less than 20
variables. The majority functions correspond to the particular case of threshold functions where the threshold value
is half of the number of variables (n even or odd). We exhibit the main cryptographic parameters of the whole class
of threshold functions, showing that the parameters of majority functions cannot be used to estimate those of other
threshold functions. This allows to determine the parameters of all XOR-Threshold functions.

The criteria we study on these functions coincide with the common cryptographic criteria for Boolean functions
used in the filter register model. A general reference for all that relates to classical stream ciphers is [7] and the
reference [16] shows how to bound the complexity of the attacks known to apply on (improved) filter permutators from
the corresponding parameters of the filter function. We study the resiliency and nonlinearity, which classically quantify
the complexity of correlation-like attacks. Then, to study the complexity of algebraic-like attacks, we investigate
the algebraic immunity AI(f) of the functions f in the two families, the dimension dAN(f) of the vector space
of annihilators of algebraic degree AI(f), and the fast algebraic immunity. The security analysis against guess and
determine attacks requires to know the parameters of functions obtainable by fixing a bounded number of variables in
the filtering function. As we already mentioned, for the two considered families of functions, fixing variables always
gives functions from the same family, in less variables, and this is one of the main motivations why we chose to
characterize the parameters for these two families. For the class of DSM, we determine exactly the resiliency order,
the nonlinearity and the algebraic immunity for all functions. For the fast algebraic immunity and dAN we are able to
derive the exact value for a large proportion of the functions, and a close bound is given for the other cases. For all
XOR-threshold functions we determine the exact value of the resiliency order, the nonlinearity, the algebraic immunity
and dAN, and we give a close upper bound for the fast algebraic immunity.

To determine the parameters of these entire families of functions, we develop new tools for analyzing the properties
of Boolean functions, and in some cases, we apply known tools in different ways. We highlight more specifically
the interest of two techniques here. First, using the connections between the numerical normal form and the Walsh
transform of a Boolean function, we provide the nonlinearity of all threshold functions. The properties of the numerical

3 The functions in the Maiorana-McFarland class (that are affine on parallel affine subspaces of Fn
2 ) are also well understood,

see [7], but their parameters can be exactly determined only when these affine spaces have very large dimension, and the functions
present then little interest; moreover, the functions in this class do not have quite good algebraic immunity
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normal form are often under-utilized, whereas here it allows to get a proof simpler than when using the approach
through Krawtchouk polynomials (as done in [12] for determining the nonlinearity of majority functions). The
techniques used could also apply for the nonlinearity of other symmetric functions. Second, since the common tools
do not allow to determine the exact algebraic properties of functions obtained by direct sums (even for the algebraic
immunity, they usually only provide a small range of possible values), we develop a new representation of functions,
which we call Partitioned Algebraic Normal Form (PANF), that generalizes the algebraic normal form for direct sums.
Studying the PANF, we exhibit sufficient conditions for the Algebraic Immunity (AI) of a direct sum to exceed the
maximum of the AI of its components. We also show how to determine the different algebraic properties of DSM and
XOR-threshold functions by combining results on the PANF, on monomials and on threshold functions. Finally, we
use this new tool to exhibit different families of functions with optimal algebraic immunity. The PANF representation
and the techniques developed allow a precise study of the algebraic properties of direct sums, a further outcome could
be the characterization when direct sums have optimal algebraic immunity.

1.2 Organization.

In Section 2 we give the necessary preliminaries on Boolean functions, cryptographic criteria and families of functions
we study. The parameters and proofs related to the resiliency order, nonlinearity, algebraic immunity and fast algebraic
immunity of DSM and threshold functions are presented in Section 3. In Section 4 we introduce the partitioned
algebraic normal form and the results derived with this tool: the remaining parameters of DSM and XOR-threshold
functions, and more precise results on the algebraic properties of direct sum constructions.

1.3 Relation With The Invited Paper at Algebra Codes and Cryptology 2019

Some results of this paper have been presented by the first author as an invited speaker at the conference Algebra
Codes and Cryptology (A2C) 2019, which was held in Dakar, Senegal, in December 2019. Both authors have written
the invited paper [8] for the proceedings of this conference. In this invited paper are given the parameters of DSM
and XOR-threshold functions, without any proof. The similar parts (with however some differences) between [8] and
the present paper are: the section on preliminaries and the statements of the lemmas and theorems giving the main
criteria of DSM and XOR-threshold functions. The parts which are new are the explanations about the new tools we
developed, the general results on the algebraic properties of direct sums, and last but not least, the proofs of all results.

2 Preliminaries.

For readability we use the notation + instead of ⊕ to denote addition in F2, and [n] to denote {1, . . . , n}.

2.1 Boolean Functions.

We recall here some core notions on Boolean functions in cryptography, restricting our study to the single-output
Boolean functions.

Definition 1 (Boolean Function). A Boolean function f in n variables (an n-variable Boolean function) is a function
from Fn2 to F2. The set of all Boolean functions in n variables is denoted by Bn. We call pseudo-Boolean function a
function with domain Fn2 and co-domain the additive group Z (or the field R if we need a field); the co-domain has then
characteristic 0 (and not 2 as F2), which provides more information; Boolean functions can be viewed as particular
pseudo-Boolean functions by considering their co-domain as {0, 1} ⊂ Z instead of F2 (which is of course a change of
viewpoint).

The following representation is commonly used, and its basic properties also.

Definition 2 (Algebraic Normal Form (ANF)). We call Algebraic Normal Form of a Boolean function f its n-
variable polynomial representation over F2 (i.e. belonging to F2[x1, . . . , xn]/(x

2
1 + x1, . . . , x

2
n + xn)):
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f(x) =
∑
I⊆[n]

aI

(∏
i∈I

xi

)
=
∑
I⊆[n]

aIx
I ,

where aI ∈ F2.

– The algebraic degree of f equals the global degree of its ANF: deg(f) = max{I | aI=1} |I| (with the convention
that deg(0) = deg(1) = 0; this convention is necessary since in the case of the zero function, the set {I | aI = 1}
is empty).

– Any term
∏
i∈I xi in such an ANF is called a monomial and its degree equals |I|. A function with only one non-zero

coefficient aI , where I is non-empty, is called a monomial function.
– The function f is affine if and only if its algebraic degree is at most 1, the function is linear if in addition a∅ = 0.

2.2 Cryptographic Criteria

In this part, we recall the main cryptographic properties of Boolean functions (for more details, see e.g. [7]):
balancedness, resiliency, nonlinearity, algebraic immunity, fast algebraic immunity, and minimal degree annihilator
space’s dimension.

Definition 3 (Balancedness). A Boolean function f ∈ Bn is said to be balanced if its output is uniformly distributed
over F2.

Definition 4 (Resiliency). A Boolean function f ∈ Bn is called m-resilient if any of its restrictions obtained by fixing
at most m of its coordinates is balanced. We denote by res(f) the resiliency order of f , that is, the maximal value of
m such that f is m-resilient, and we set res(f) = −1 if f is unbalanced.

Note that the notion of resiliency includes that of balancedness, since “f is balanced” is equivalent to “f is 0-
resilient”.

We now recall the definition of the Fourier-Hadamard transform, since it is an important tool to study the resiliency
of a Boolean function.

Definition 5 (Fourier-Hadamard Transform). The Fourier-Hadamard transform is the linear mapping which maps
any pseudo-Boolean function f on Fn2 (that is, any function from Fn2 to Z) to the function f̂ defined on Fn2 as:

f̂(a) =
∑
x∈Fn

2

f(x)(−1)a·x,

where a · x denotes the inner product in Fn2 , and the sum is performed in Z.

Given a Boolean function f , the Fourier-Hadamard transform can be applied to f itself (viewed as a function
valued in {0, 1} ⊂ Z), and the resulting function is then denoted by f̂ , or to the sign function fχ(x) = (−1)f(x), and
the resulting function is then called the Walsh transform of f :

Definition 6 (Walsh Transform). Let f ∈ Bn be a Boolean function. Its Walsh transform Wf is the function that
maps any vector a ∈ Fn2 to the integer:

Wf (a) =
∑
x∈Fn

2

(−1)f(x)+a·x.

We have:
Wf (a) = −2f̂(a),∀a 6= 0; Wf (0) = 2n − 2f̂(0). (1)

Note that the Walsh transform is strongly connected to the nonlinearity:

4



Definition 7 (Nonlinearity). The nonlinearity NL(f) of a Boolean function f ∈ Bn, where n is a positive integer, is
the minimum Hamming distance between f and all the affine functions in Bn:

NL(f) = min
g, deg(g)≤1

{dH(f, g)},

where dH(f, g) denotes the Hamming distance #{x ∈ Fn2 | f(x) 6= g(x)} between f and g; and g(x) = a · x + ε,
a ∈ Fn2 , ε ∈ F2 (where · is some inner product in Fn2 ; any choice of an inner product will give the same value of
NL(f)). We have:

NL(f) = 2n−1 −
1

2
max
a∈Fn

2

|Wf (a)|. (2)

The n-variable Boolean functions maximizing the nonlinearity for n even are called bent; their nonlinearity equals
2n−1 − 2

n
2−1. Many families of bent functions are known (see surveys in [7, 10, 18]). The nonlinearity can be

generalized to the notion of higher-order nonlinearity: the rth-order nonlinearity of a Boolean function f , where r
is some positive integer, equals the Hamming distance between f and all functions of algebraic degree less than or
equal to r (the nonlinearity corresponds to the case r = 1).

Definition 8 (Algebraic Immunity and Annihilators). The algebraic immunity of a Boolean function f ∈ Bn,
denoted as AI(f), is defined as:

AI(f) = min
g 6=0
{deg(g) | fg = 0 or (f + 1)g = 0},

where deg(g) is the algebraic degree of g. The function g is called an annihilator of f (or f + 1). We additionally use
the notation AN(f) for the minimum algebraic degree of nonzero annihilators of f :

AN(f) = min
g 6=0
{deg(g) | fg = 0}.

We also use the notation dAN(f) for the dimension of the vector space made of the annihilators of f of algebraic
degree AI(f) and the zero function. Note that, for every function f we have dAN(f) ≤

(
n

AI(f)

)
since two distinct

annihilators of f of degree AI(f) cannot have the same degree-AI(f) part, otherwise g1+g2 would be an annihilator
of f (different form 0) with degree lower than AI(f).

Note that, for every Boolean function f , we have that f and f + 1 are mutual annihilators, and:

Property 1 (Algebraic Immunity Properties).

– The null and the all-one functions are the only functions such that AI(f) = 0.
– All monomial (non constant) functions f are such that AI(f) = 1.
– For all non constant f it holds: AI(f) ≤ AN(f) ≤ deg(f).

Definition 9 (Fast Algebraic Immunity). The fast algebraic immunity of a Boolean function f ∈ Bn, denoted as
FAI(f), is defined as:

FAI(f) = min{2AI(f), min
1≤deg(g)<AI(f)

deg(g) + deg(fg)}.

Balancedness, algebraic degree, nonlinearity, algebraic immunity, dimension of the vector space of annihilators
and fast algebraic immunity are affine invariant parameters: for every affine permutation L of Fn2 and every Boolean
function f , function f ◦ L has parameters with the same values.
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2.3 Families of Boolean Functions.

In this part, we highlight three families of functions: those of direct sums of monomials, of threshold functions, and of
XOR-Threshold functions. We start by introducing a secondary construction called direct sum, enabling to construct
the first family.

Definition 10 (Direct sum). Let f be a Boolean function of n variables and g a Boolean function of m variables, the
direct sum h of f and g is defined by:

h(x, y) = f(x) + g(y), where x ∈ Fn2 and y ∈ Fm2 .

Families of functions obtained by direct sums can be of particular interest when looking for functions simple
to evaluate. Note that the direct sum has been generalized into the so-called indirect sum (see [7]), but this latter
construction leads to functions which are already too complex for being homomorphic-friendly. We shall focus on
direct sums of monomials, the simplest functions from the viewpoint of their representation by the ANF.

Definition 11 (Direct Sum of Monomials). Let f be a non constant n-variable Boolean function. We call f a Direct
Sum of Monomials (or DSM) if the following holds for its ANF:

∀(I, J) such that aI = aJ = 1, I ∩ J ∈ {∅, I ∪ J}.

In other words, in the ANF of such functions, each variable appears at most once.

Definition 12 (Direct Sum Vector [17]). Let f be a DSM, we define its direct sum vector (DSV):

mf = [m1,m2, . . . ,mk],

of length k = deg(f), where mi is the number of monomials of degree i, i > 0, in the ANF of f :

mi = |{I ⊂ {1, . . . , n}; aI = 1 and |I| = i}|.

All DSM admitting [m1,m2, . . . ,mk] for direct sum vector and having no ineffective variable are equivalent
to each others, under permutation of their input coordinates and addition of a constant. Their ANFs contain M =∑k
i=1mi monomials, and have N =

∑k
i=1 imi variables. We shall always view in the sequel DSM as functions

having no ineffective variable. We use the direct sum vector notation from 1 to k (which is relevant for most of the
cryptographic parameters studied in this article) rather than the more general one from 0 to k (which is relevant for
the dAN). With the notation from 1 to k, a DSM f and its complementary to 1 ( i.e.f + 1) admit the same direct
sum vector, this is coherent with the fact that the parameters of resiliency, nonlinearity, algebraic immunity, and fast
algebraic immunity are invariant under the addition of constant function 1 to f . On the contrary, the parameter of dAN
can be different for f and f +1; therefore we shall also consider the constant coefficient (represented as m0) when we
study this parameter.

A sub-family of particular interest of DSM is the family of triangular functions:

Definition 13 (Triangular Functions [17]). Let k be a strictly positive integer. The k-th triangular function Tk is the
following direct sum of monomials of k(k + 1)/2 variables:

Tk(x1, . . . , xk(k+1)/2) =

k∑
i=1

i∏
j=1

xj+i(i−1)/2.

It can also be defined from its direct sum vector which is the all-1 vector of length k: mTk
= [1, 1, . . . , 1].

Let us now define the family of threshold functions:

Definition 14 (Threshold function). For any positive integers d ≤ n + 1 we define the Boolean function Td,n as
follows:

∀x = (x1, . . . , xn) ∈ Fn2 , Td,n(x) =

{
0 if wH(x) < d,

1 otherwise.
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Of course, a sub-family of particular interest of threshold functions is the family of majority functions:

Definition 15 (Majority function). For any positive odd integer n we define the Boolean function MAJn as:

∀x = (x1, . . . , xn) ∈ Fn2 , MAJn(x) = Tdn+1
2 e,n

=

{
0 if wH(x) ≤ bn2 c,
1 otherwise.

Note that threshold functions are symmetric functions (changing the order of the input bits does not change the
output), which have been the focus of many studies e.g. [5, 6, 12, 19, 20, 21]. These functions can be described more
succinctly through the simplified value vector.

Definition 16 (Simplified value vector). Let f be a symmetric function in n variables, we define its simplified value
vector:

s=[w0, w1, . . . , wn]

of length n + 1, where for each k ∈ {0, . . . , n}, wk = f(x) where wH(x) = k, i.e. wk is the value of f on all inputs
of Hamming weight k.

Note that for a threshold function, we have wk = 0 for k < d and 1 otherwise, so the simplified value vector of a
threshold function Td,n is the length n+ 1 vector of d consecutive 0’s and n+ 1− d consecutive 1’s.

Remark 1 (Constant Functions). The two n-variable constant functions 0 and 1 correspond to the threshold functions
Tn+1,n and T0,n respectively. Since the cryptographic parameters of these functions are already known, we will not
include these functions in our study. We recall their parameters: deg = AI = FAI = NL = 0, and res = −1.

We will also be interested in functions obtained by the direct sum of the linear symmetric function and a threshold
function, called XOR-THR (or XOR-MAJ when the threshold function happens to be a majority function). The main
advantage of these functions is to provide a high resiliency in contrast to threshold functions.

Definition 17 (XOR-THR Function). For any positive integers k, d and n such that d ≤ n+1 we define XORk+Td,n
for all z = (x1, . . . , xk, y1, . . . , yn) ∈ Fk+n2 as follows:

(XORk + Td,n)(z) = x1 + · · ·+ xk + Td,n(y1, . . . , yn) = XORk(x) + Td,n(y).

2.4 Boolean Functions and Bit-Fixing.

In this part, we give the necessary vocabulary relatively to bit-fixing (as defined in [2]), the action on Boolean functions
consisting in fixing the values of some of their input variables, and then considering the resulting Boolean function.
These notions are important when guess-and-determine attacks are investigated.

Definition 18 (Bit-fixing descendant). Let f be a Boolean function in n variables x1, . . . , xn, let ` be an integer such
that 0 ≤ ` < n, let I ⊂ [n] be of size ` (i.e. I = {i1, . . . , i`} with ij < ij+1 for all j ∈ [` − 1]), and let b ∈ F`2. We
denote then by fI,b the so-called `-bit fixing descendant of f on subset I with binary vector b the Boolean function in
n− ` variables:

fI,b(x
′) = f(x), where x′ = (xi | i ∈ [n]\I) and xij = bj ,∀j ∈ [`].

Definition 19 (Bit-fixing stability). Let F be a family of Boolean functions, F is called bit-fixing stable, or stable
relatively to guessing and determining, if for all functions f ∈ F such that f is an n-variable function with n > 1, the
following holds:

– for every number of variables ` such that 0 ≤ ` < n,
– for every choice of the variables 1 ≤ i1 < i2 < · · · < i` ≤ n,
– for every value of the guess (b1, . . . , b`) ∈ F`2,

at least one of the following properties is fulfilled: fI,b ∈ F , or fI,b + 1 ∈ F , or deg(fI,b) = 0.
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Remark 2. Both DSM and XOR-THR functions are bit-fixing stable families. More precisely, for a DSM, considering
the behavior on its ANF, fixing a variable to 0 cancels a monomial, fixing a variable to 1 reduces the degree of one of
the monomials. Then, the property on the ANF coefficients defining a DSM is still satisfied by the descendant function.
Fixing variables recursively does not change this property, and when ` is greater than the number of monomials, it is
possible to have only the constant coefficient nonzero, adding the constant functions to the list of descendants.
For the family of XOR-THR functions, first note that fixing variables maintains the direct sum structure. If a variable
is fixed to 0 in the XOR part, the descendant has a XOR part with one variable less and the threshold part is the same. If
the variable is fixed to 1, the descendant has a XOR part with one variable less and the threshold part is the complement
of the initial one, therefore 1+f ′ is a XOR-THR function. If a variable is fixed in the threshold part, it gives a threshold
function. Indeed, for n > 1 using Definition 14, fixing a variable to 1 for Td,n gives the function Td−1,n−1, and fixing
a variable to 0 gives the function Td,n−1. Therefore, these descendants are also XOR-THR functions. Then, recursively
fixing ` < n variables gives descendants which are XOR-THR functions or their complements (note that the constant
functions are in this family too).

3 Parameters of Direct Sums of Monomials and XOR-Threshold Functions.

In this section and in the following, we determine the relevant parameters relative to the main Boolean cryptographic
criteria for the family of DSM functions, for that of threshold functions, and for the larger family (containing all
threshold functions) of XOR-THR functions. The results relative to balancedness, resiliency and nonlinearity and the
first part of the algebraic properties are proven in this section. The second part of the algebraic properties requiring
new techniques based on the so-called partitioned algebraic normal form (PANF) coefficients, we give them in the
next section where this new tool is developed.

In sub-section 3.1 we give the parameters and proofs related to the resiliency, nonlinearity, algebraic immunity and
fast algebraic immunity of DSM functions. In sub-section 3.2 we give the parameters and proofs of threshold functions.
Combining it with results on direct sums (Lemma 1) gives the resiliency order and nonlinearity of XOR-THR.

3.1 Parameters of Direct Sums of Monomials.

First we recall some properties on direct sums (see e.g. [17]).

Lemma 1 (Direct sum properties ( [17] Lemma 3)). Let h be the direct sum of two functions f , in n variables, and
g, in m variables. Then h has the following cryptographic properties:

1. Resiliency: res(h) = res(f) + res(g) + 1.
2. Walsh transform: Wh(a, b) =Wh(a)Wg(b).
3. Nonlinearity: NL(h) = 2mNL(f) + 2nNL(g)− 2NL(f)NL(g).
4. Algebraic Immunity: max(AI(f),AI(g)) ≤ AI(h) ≤ AI(f) + AI(g).
5. Fast Algebraic Immunity: FAI(h) ≥ max(FAI(f),FAI(g)).

Resiliency and Nonlinearity Lemma 1 directly provides the resiliency order and the nonlinearity of any direct sum
of monomials (which are already well known).

Lemma 2 (Resiliency of direct sum of monomials). Let f ∈ Bn be a direct sum of monomials with associated direct
sum vector = [m1, . . . ,mk]. The resiliency order of f equals:

res(f) = m1 − 1

Proof. A monomial function of algebraic degree larger than 1 has resiliency order−1, as it is unbalanced. A monomial
function of algebraic degree 1 has resiliency 0. Then, applying the first item of Lemma 1 recursively (adding one by
one the monomial functions) gives the result.
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Lemma 3 (Nonlinearity of direct sum of monomials). Let f ∈ Bn be a direct sum of monomials with associated
direct sum vector [m1, . . . ,mk]. The nonlinearity of f equals:

NL(f) = 2n−1 −
1

2

(
2(n−

∑k
i=2 imi)

k∏
i=2

(
2i − 2

)mi

)
.

Proof. This is a straightforward consequence of Relation (2), of item 2 of Lemma 1 and of the fact that, for a monomial
function g of algebraic degree d ≥ 1 in m variables, maxa∈Fm

2
|Wg(a)| equals 2m if d = 1 and 2m − 2m−d if

d > 1.

Algebraic Immunity The exact value of the algebraic immunity of general direct sums of monomials has never been
determined in the literature. Particular cases have been addressed, in particular that of triangular functions in [17,
Lemma 6]); in the general case, only bounds are known. To determine this exact value, we shall use this very result
on triangular functions, recalled in Lemma 4, and an inequality shown in [9] and recalled in Lemma 5, between the
algebraic immunity of some functions satisfying a particular property and their restrictions obtained by fixing one of
their input bit.

Lemma 4 (Algebraic immunity of triangular functions (adapted from [17], Lemma 6)). Let k be a strictly positive
integer and let Tk be the k-th triangular function, then AI(Tk) = k.

Lemma 5 ( [9] Proposition 11). Let f(x1, x2, x3, . . . , xn) be a Boolean function in n variables such that there exist
two variables (x1 and x2 without loss of generality) satisfying:

∀x ∈ Fn−22 f(0, 0, x) = f(0, 1, x) = f(1, 0, x)

Let g(x0, x3, . . . , xn) be the Boolean function in n− 1 variables defined by :

∀x ∈ Fn−22 g(1, x) = f(1, 1, x) and g(0, x) = f(0, 0, x).

Then AI(g) ≤ AI(f).

Note that any non-affine direct sum of monomials has such property, the two variables being those present in some
monomial of degree at least 2. Using these two lemmata we can determine the exact algebraic immunity of any direct
sum of monomials:

Theorem 1 (Algebraic Immunity of Direct Sums of Monomials). Let f ∈ Fn2 be a Boolean function obtained by
direct sum of monomials with associated direct sum vector mf = [m1, . . . ,mk], its algebraic immunity is:

AI(f) = min
0≤d≤k

(
d+

k∑
i=d+1

mi

)
.

Proof. First, we prove the inequality:

AI(f) ≤ min
0≤d≤k

(
d+

k∑
i=d+1

mi

)
.

Let d ∈ [0, k], and f = f1 + f2 with mf1 = [m1, . . . ,md], and mf2 = [0, . . . , 0,md+1, . . . ,mk]. We have
AI(f1) ≤ d since the algebraic immunity of any function is bounded above by its algebraic degree. We have
AI(f2) ≤

∑k
i=d+1mi since the algebraic immunity algebraic immunity of a monomial equals 1 (as recalled with

Property 1) and the algebraic immunity of a direct sum of functions is bounded above by the sum of the algebraic
immunities of the functions (as recalled in Lemma 1). Reusing the latter argument, we deduce AI(f) ≤ d+

∑k
i=d+1mi.

Considering the minimum over the values of d gives the final inequality.
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Then, we prove the inequality in the other direction:

AI(f) ≥ min
0≤d≤k

(
d+

k∑
i=d+1

mi

)
.

Let us denote by e one of the values of d at which the minimum is taken, and let E = e +
∑k
i=e+1mi be this

minimum. The principle of the proof is to repetitively use Lemma 5, to construct from f a simpler function g such
that AI(g) ≤ AI(f), thanks to Lemma 5, and which satisfies AI(g) ≥ E. For a DSM f , we can apply Lemma 5 on
any pair of variables appearing in a monomial of degree at least 2. This monomial is then contracted into a monomial,
the degree of which is reduced by one unit. Applying this on a degree d ≥ 2 monomial in the ANF of f gives a DSM
whose direct sum vector is obtained from that of f by increasing by 1 its (d − 1)-th element and decreasing by 1 its
d-th element. We will apply such ”monomial contractions” until reaching the function g which is the direct sum of the
triangular function TE and another function, therefore having algebraic immunity at least E. Note that during all this
process, the value of e will not change. Note also that this strategy is only guaranteed when e is one of the values of d
at which the minimum is taken.

We first handle the monomials of degrees at most e. Let us show that, by contracting monomials, we can obtain
from f a DSM f ′ having the same direct sum vector values for the indices (i.e. degrees) strictly larger than e, and
having direct sum vector values which are nonzero for the index 1 and equal to 1 for the indices between 1 and e.
When e = 0, the condition on f ′ is empty and we can take f ′ = f . We assume then that e ≥ 1. For all integers d such
that 0 ≤ d < e, we have the following property, that we denote by (P):

(P ) e+

k∑
i=e+1

mi ≤ d+
k∑

i=d+1

mi, or equivalently: e− d ≤
e∑

i=d+1

mi.

Property (P) will allow us to contract monomials until obtaining the function f ′. In the following, we show that
applying Lemma 5 on a monomial of degree ` = max2≤d≤e{d |md > 1} in a DSM with direct sum vector
[m1, · · · ,mk] satisfying (P) gives a DSM having the same number of monomials and also satisfying (P). By definition
of `:

– for ` ≤ d ≤ e:
∑e
i=d+1mi = e− d, because the value d+

∑k
i=d+1mi cannot decrease when d moves from ` to

e since the mi’s are smaller than or equal to 1, and this same value cannot increase either since the value at e is
minimal,

– for d = `− 1:
∑e
i=d+1mi = m` + e− ` > e− d, since m` > 1,

– for 0 ≤ d ≤ `− 2:
∑e
i=d+1mi ≥ e− d.

Applying Lemma 5, denoting by m′i the elements of the direct sum vector of the obtained function, we get m′` =
m` − 1, m′`−1 = m`−1 + 1 and the other elements are unchanged. Therefore, the number of monomials remains
the same, the sums

∑e
i=d+1m

′
i and

∑e
i=d+1mi differ only for d ∈ {` − 1, ` − 2}. Indeed, for d = ` − 1, we have∑e

i=`m
′
i = (

∑e
i=`mi) − 1 ≥ e − d, and for d = ` − 2, we have

∑e
i=`−1m

′
i = (

∑e
i=`−1mi) + 1 ≥ e − d + 1.

Hence, the function obtained satisfies Property (P). Note that e is then still such that e+
∑k
i=e+1m

′
i is minimal.

We can apply the transformation of Lemma 5 repetitively, until the elements of indices e, . . . , 2 in the resulting
direct sum vector are all smaller than or equal to 1, and they are then all equal to 1, since Property (P) for d = 1 shows
that the sum of these elements equals e− 1. The resulting function f ′ (in terms of the initial elements mi of mf ) has
for direct sum vector:

mf ′ =

[(
e∑
i=1

mi

)
− e+ 1, 1, . . . , 1,me+1, . . . ,mk

]
.

Now, let us consider the monomials of degrees larger than e. Let us show that, by contracting monomials similarly,
we can obtain from f ′ a DSM g having the same direct sum vector values of indices at most e, having value 1 for the
indices between e+1 andE, and having value 0 for the indices strictly larger thanE. When e = k (equivalently, when
e = E), we have f ′ = g; we assume then that e < k and we focus on the elements of the direct sum vector between
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e + 1 and k. By definition of e, for all integers d such that e + 1 ≤ d ≤ k, we have the following property that we
denote by (P’):

(P ′) d+

k∑
i=d+1

mi ≥ e+
k∑

i=e+1

mi, or equivalently: d ≥ e+
d∑

i=e+1

mi.

Similarly as above, we repetitively apply Lemma 5 on DSM functions from f ′ until obtaining g. Recall that contracting
this way a monomial of degree ` decreases the `-th direct sum vector’s element by one and increases the (` − 1)-th
element by one, and that it keeps constant the other elements and the total number of monomials. Let us show that we
can do this with ` = max(max{d > E ; md > 0},max{d > e ; md > 1}) and that it transforms a DSM satisfying
(P’) into a DSM also satisfying (P’). Note that, according to what we recalled above, the only position where Property
(P’) could become unsatisfied is for d = ` − 1. Let us denote again by mi the elements of the direct sum vector of
the function before contraction and by m′i those of the function after contraction. By definition of `, two cases are
possible: ` > E or ` ∈ [e+ 1, E].
- In the first case, since we have ` − 1 ≥ E ≥ e +

∑`
i=e+1mi ≥ e +

∑`−1
i=e+1mi + 1 = e +

∑`−1
i=e+1m

′
i, Property

(P’) is still satisfied.
- In the second case, for all i > E, we have mi = 0 and for all i ∈ [` + 1, E], we have mi ≤ 1. Let us show
that this implies that mi = 1 for all i ∈ [` + 1, E]: before the contraction, we had, according to Property (P’), that
` ≥ e+

∑`
i=e+1mi, and there were then at most `− e monomials of indices in the interval [e+1, `], and therefore at

leastE−` of indices in the interval [`+1, E]. Since all themi’s for i ∈ [`+1, E] are bounded above by 1 and their sum
is bounded below by their number, they are all equal to 1. We have then

∑k
i=`+1m

′
i =

∑E
i=`+1m

′
i = E− `, and then,

since the global number of monomials has not changed, ` = e +
∑`
i=e+1m

′
i and therefore

∑`−1
i=e+1m

′
i ≤ ` − e − 1

and Property (P’) is then satisfied for d = `− 1 and therefore for every d.
We can apply such contractions repetitively (but never contracting a monomial of degree e+1), until the elements

of the resulting direct sum vector of indices in the interval [e + 1, E] are all at most equal to 1 and the elements of
higher indices are all equal to 0. Since the number of monomials of indices in the interval [e+1, k] remained constantly
equal to E − e, the elements of indices e+ 1, . . . , E are equal to 1, and the resulting function g (in terms of the initial
elements mi of mf ) is a DSM with direct sum vector mg = [m′′1 , · · · ,m′′E ] such that:

m′′1 =

(
e∑
i=1

mi

)
− e+ 1, and m′′i = 1 for i ∈ [2, E].

By the repetitive application of Lemma 5, we have AI(f) ≥ AI(f ′) ≥ AI(g), and since g is the direct sum of TE and a
function of degree at most 1, we have then AI(g) ≥ E, thanks to Lemmas 1 and 4. This completes the proof.

Note that to estimate accurately the time complexity of the algebraic attack (mounted on f ), it is better to
additionally know the number of annihilators of f or f + 1 of degree AI(f). As determining this number requires
additional concepts on algebraic immunity and direct sums, we defer its study to Section 4.

Fast Algebraic Immunity Concerning the fast algebraic immunity criterion, its definition (recalled in Subsection
2.2) leads to the bound FAI(f) ≥ AI(f) + 1 for any f , since for any g such that 1 ≤ deg(g) < AI(f), fg is a nonzero
annihilator of f + 1. In the case of those direct sums of monomials whose algebraic immunity equals the algebraic
degree (and is then optimal, given the degree), we can show that the FAI is reaching this bound in some cases and
exceeds it by 1 in the other cases (hence, when AI(f) = deg(f), the fast algebraic immunity is not good, given the
algebraic immunity4). Note that, because of Theorem 1, having a direct sum vector mf = [m1, . . . ,mk] such that
mk > 1, where k = deg(f), increases the chances that AI(f) = deg(f), but there are examples where we have
mk = 1 and AI(f) = deg(f) (take a triangular function).

4 Nevertheless, the algebraic immunity is here assumed optimal, given the algebraic degree, and the fast algebraic immunity, even
if not much larger, may not be that bad, in our context. Recall that we must deal with functions of a very elementary structure but
having many variables. The context is different from the usual one, and comparing with the optimum is more or less pointless.
What we need with homomorphic-friendly functions is only to have a fast algebraic immunity larger than some threshold.
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Proposition 1 (Fast algebraic immunity of direct sums of monomials). Let f ∈ Fn2 be a Boolean function obtained
by the direct sum of monomials with associated direct sum vector mf = [m1, . . . ,mk] such that AI(f) = deg(f) =
k > 1, its fast algebraic immunity is:

FAI(f) =

{
AI(f) + 1 if mk = 1,

AI(f) + 2 otherwise.

Proof. We first consider the case where mk = 1. As AI(f) = deg(f) = k, we have mk−1 ≥ 1 by Theorem 1 (indeed,
if mk−1 = 0, then d+

∑k
i=d+1mi is smaller for d = k − 2 than for d = k). Let us denote by x1 one of the variables

of the monomial of degree k, then we consider the degree of the product of f and 1 + x1; this function has degree
k (as the only monomial of degree k of f is canceled, and the mk−1 monomials of degree k − 1 do not contain x1).
Then, by definition of the FAI (see Definition 9), we have FAI(f) ≤ AI(f) + 1, and then FAI(f) = AI(f) + 1.

We consider now the case mk > 1. Multiplying f by an affine function g we study the degree of fg. As f is a
DSM, denoting without loss of generality by x1 a variable present in the ANF of g, x1 appears in either zero or one of
the higher degree monomials of f . If it does not appear then fg produces mk monomials of degree k + 1 containing
x1; as k > 1, all these monomials are different and since k + 1 = deg(f) + deg(g) no other cross-terms can cancel
monomials of this degree, hence deg(fg) = k + 1. This gives:

FAI(f) ≤ min(2AI(f),AI(f) + 2).

And therefore FAI(f) ≤ AI+2. Then, as for all nonzero function g such that deg(g) < AI(f) we have deg(fg) ≥
AI(f) (property of the AI), any nonlinear function g leads to consider a maximum greater than or equal to AI(f) + 2
leading to an equal or higher upper bound. It enables to conclude: FAI(f) = AI(f) + 2.

Note that this lemma does not consider the case AI(f) = 1 (linear or monomial functions), for this case the fast
algebraic immunity is not very relevant as the algebraic attack already targets a linear system.

3.2 Parameters of Threshold Functions.

In order to obtain the parameters of XOR-THR functions we first need to determine those of threshold functions, and
then to use the properties of direct sum constructions.

Threshold functions are symmetric functions, and symmetric functions have been much studied for their
cryptographic criteria (e.g. [5]). But the exact values of the parameters of symmetric functions could seldom be
determined. Threshold functions make no exception. Here, we determine the exact values of their parameters. We first
observe an obvious relation between Td,n and Tn−d+1,n, which will simplify the number of cases to be considered in
some proofs.

Property 2. Let n ∈ N∗ and d ∈ [0, n+ 1]. For all x ∈ Fn2 , let 1 + x denote the element (1 + x1, . . . , 1 + xn) ∈ Fn2 .
Then:

∀x ∈ Fn2 , 1 + Td,n(1 + x) = Tn−d+1,n(x).

Indeed, we have wH(1 + x) = n− wH(x) and then wH(1 + x) < d⇔ wH(x) > n− d.
We now study the main criteria of threshold functions, note that the particular cases d = 0 and d = n + 1 are

already taken care of in Remark 1.

Resiliency

Proposition 2 (Resiliency of threshold functions). Let n ∈ N∗ and d ∈ [n]. Let f be the threshold function Td,n,
then we have:

res(Td,n) =

{
0 if n = 2d− 1,

−1 otherwise.
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Proof. The Hamming weight of a symmetric function is equal to
∑n
i=0 wi

(
n
i

)
. We deduce:

wH (Td,n) =
n∑
i=d

(
n

i

)
=

n−d∑
i=0

(
n

i

)
.

This sum equals 2n−1 if and only if d = (n+1)/2, that is, when the function is the majority functions in odd dimension.
To complete the proof, let us recall why the majority functions is not 1-resilient. As the family of XOR-MAJ functions
is bit-fixing stable, fixing one variable of a majority function gives a threshold function in n − 1 variables, which
cannot be balanced, as shown in the previous part, since n− 1 is even.

Nonlinearity In [12] is determined the nonlinearity of the majority functions Tn+1
2 ,n (n odd) and Tn

2 +1,n (n even),
by expressing their Walsh transform by means of Krawtchouk polynomials and using relations on these polynomials to
obtain the maximal absolute value. But the resulting proof, when written for all threshold functions, needs to consider
several particular cases, and is 5 page long (preliminaries on Krawtchouk polynomials excluded). There is a better way
to obtain the nonlinearity by using an efficient representation of Boolean functions called the numerical normal form
(see e.g. [7]).

Definition 20 (Numerical normal form). For every n-variable Boolean function f , we call numerical normal form
(NNF) of f the unique polynomial Nf (x) =

∑
I⊆[n] λIx

I ∈ Z[x1, . . . , xn]/(x21− x1, . . . , x2n− xn), where xI stands
for
∏
i∈I xi, such that f(x) = Nf (x) for every x ∈ Fn2 .

Note that the ANF (see Definition 2) is simply the reduction modulo 2 of the NNF. Both representations determine
uniquely the Boolean function, and the NNF needs more storage space than the ANF and has the drawback that not all
polynomials in Z[x1, . . . , xn]/(x21 − x1, . . . , x2n − xn) can be the NNF of Boolean functions, but it gives more direct
information on the function. First we recall some useful properties of the NNF, then using them we prove a lemma
linking the Walsh transform of threshold functions to already studied functions, and we conclude by giving the exact
nonlinearity of all threshold functions.

Lemma 6 (Properties of NNF and Walsh transform, adapted from [7]).

1. Let f be any Boolean function in n variables and any I ⊆ [n], then we have:

λI = (−1)|I|
∑

x∈Fn
2 ; supp(x)⊆I

(−1)wH(x)f(x),

where supp(x) denotes the support {i ∈ [n] | xi 6= 0} of vector x, this sum being calculated in Z.
2. Let f be the indicator function 1En,r

of the set En,r of all vectors of Hamming weight r and length n, then for any
I ⊆ [n], we have:

λI = (−1)|I|
∑

x∈Fn2 ; wH (x)=r

supp(x)⊆I

(−1)wH(x) = (−1)|I|−r
(
|I|
r

)
.

3. Let f be any Boolean function in n variables, then

Wf (0) = 2n − 2
∑

I⊆{1,...,n}

2n−|I|λI ,

and for u 6= 0, then:
Wf (u) = 2(−1)wH(u)+1

∑
I⊆[n]; supp(u)⊆I

2n−|I|λI .

Lemma 7. For every n and d ∈ [n] and every nonzero u ∈ Fn2 , we haveW1En,d
(u) = −WTd+1,n+1

(u, 1) (where (u, 1)
is the concatenation of u and the length one vector (1)) and for u = 0, we have W1En,d

(u) = 2n −WTd+1,n+1
(u, 1).
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Proof. Using the second item of Lemma 6, since Td,n =
∑n
r=d 1En,r (this sum being calculated in Z), the coefficient

of xI , for I 6= ∅, in the NNF of Td,n(x) equals:

(−1)|I|
|I|∑
r=d

(−1)r
(
|I|
r

)
= (−1)|I|−1

d−1∑
r=0

(−1)r
(
|I|
r

)
= (−1)|I|−d

(
|I| − 1

d− 1

)
,

where the first equality comes from
∑|I|
r=0(−1)r

(|I|
r

)
= 0, and the latter equality is obtained by induction on d ≥ 1,

using Pascal’s identity, with induction step: (−1)|I|−d
(|I|−1
d−1

)
+ (−1)|I|−1−d

(|I|
d

)
= (−1)|I|−1−d

(|I|−1
d

)
. For I = ∅,

the coefficient of xI also equals (−1)|I|−d
(|I|−1
d−1

)
= 0.

Using the third item of Lemma 6, we deduce that the Walsh transform of the threshold function satisfies for u 6= 0:

WTd,n
(u) = 2(−1)wH(u)+1

∑
I⊆[n]

supp(u)⊆I

2n−|I|(−1)|I|−d
(
|I| − 1

d− 1

)
.

Using the second and third items of Lemma 6, we obtain for 1En,r
that for u 6= 0:

W1En,r
(u) = 2(−1)wH(u)+1

∑
I⊆[n]; supp(u)⊆I

2n−|I|(−1)|I|−r
(
|I|
r

)
.

For u = 0, we have:

W1En,r
(0) = 2n − 2

∑
I⊆[n]

2n−|I|(−1)|I|−r
(
|I|
r

)
, and WTd,n

(0, . . . , 0, 1) = 2
∑

n∈I⊆[n]

2n−|I|(−1)|I|−d
(
|I| − 1

d− 1

)
.

This completes the proof.

Remark 3. Given an n-variable (resp. (n + 1)-variable) Boolean function g (resp. f ), we have Wf (u, 1) = −Wg(u)
for every nonzero u ∈ Fn2 and Wf (u, 1) = 2n − Wg(u) for u = 0 if and only if, by the bijectivity of the
Fourier transform, for every x ∈ Fn2 , we have

∑
u∈Fn

2
Wf (u, 1)(−1)u·x = 2n −

∑
u∈Fn

2
Wg(u)(−1)u·x, that is,∑

u,y∈Fn
2 ,ε∈F2

(−1)f(y,ε)+u·y+ε+u·x = 2n−
∑
u,y∈Fn

2
(−1)g(y)+u·y+u·x, or equivalently, using that

∑
u∈Fn

2
(−1)u·(y+x)

equals 2n if y = x and equals 0 otherwise, and dividing by 2n:∑
ε∈F2

(−1)f(x,ε)+ε = 1− (−1)g(x), that is, f(x, 1)− f(x, 0) = g(x).

It is easily checked that this property is true for f = Td+1,n+1 and g = 1En,d
.

We can finally give the exact nonlinearity of all threshold functions through the following theorem:

Theorem 2 (Nonlinearity of threshold functions). Let n > 0 and 1 ≤ d ≤ n, then:

NL(Td,n) =



2n−1 −
(

n−1
(n−1)/2

)
if d = n+1

2 ,
n∑
k=d

(
n

k

)
= wH(Td,n) if d > n+1

2 ,

d−1∑
k=0

(
n

k

)
= 2n − wH(Td,n) if d < n+1

2 .

Proof. 1. The first case, corresponding to the majority function for n odd, is proved in [12].
2. For the case d > (n+ 1)/2, we use Relation (1) and Lemma 7. For every nonzero u ∈ Fn−12 :

|WTd,n
(u, 1)| = |W1En−1,d−1

(u)| = 2 |
∑

x∈En−1,d−1

(−1)u·x| ≤ 2wH(1En−1,d−1
) = 2

(
n− 1

d− 1

)
.
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For u = 0, we have |WTd,n
(u, 1)| = |2n −W1En−1,d−1

(0)| = 2
(
n−1
d−1
)
. Since Td,n is symmetric, for every nonzero

v ∈ Fn2 : |WTd,n
(v)| ≤ 2

(
n−1
d−1
)
. For the null vector:

|WTd,n
(0)| = 2n − 2

n∑
i=d

(
n

i

)
=

d−1∑
i=n−d+1

(
n

i

)
.

Let us show that |WTd,n
| takes its maximum at the 0 input.

When d = n/2 + 1, using Pascal’s identity, we have:

d−1∑
i=n−d+1

(
n

i

)
=

(
n
n
2

)
=

(
n− 1
n
2

)
+

(
n− 1
n
2 − 1

)
= 2

(
n− 1
n
2

)
= 2

(
n− 1

d− 1

)
.

When d > n/2 + 1, we have:

d−1∑
i=n−d+1

(
n

i

)
≥
(

n

n− d+ 1

)
+

(
n

d− 1

)
= 2

(
n

d− 1

)
≥ 2

(
n− 1

d− 1

)
.

3. The case d < (n + 1)/2 is then deduced from the case d > (n + 1)/2, since Property 2 states that, for all
x ∈ Fn2 , we have 1 + Td,n(x + 1) = Tn−d+1,n(x) and this implies |WTd,n

| = |WTn−d+1,n
| and then NL(Td,n) =

NL(Tn−d+1,n), with n− d+ 1 > n+1
2 .

Algebraic Immunity, dAN, and Fast Algebraic Immunity. We now study the algebraic immunity of threshold
functions. Recall that very few examples of infinite classes of Boolean functions with optimal algebraic immunity
are known and that the majority functions T(n+1)/2,n and Tn/2+1,n provide one of them (see [3, 12]). As far as we
know, the exact algebraic immunity of general threshold functions has not been determined. We opt for the following
proof strategy: we consider as known the algebraic immunity of the majority function in an odd number of variables,
AI(T(n+1)/2,n) =

n+1
2 , and we use the connections between various threshold functions to get the algebraic immunity

of all functions of the family. A method for determining the algebraic immunity of threshold functions consists in
using the following known result on the algebraic immunity of restrictions of functions.

Lemma 8. Fixing ` ∈ [0, n] variables of an n-variable Boolean function f decreases its algebraic immunity by at
most `.

Indeed, given a nonzero annihilator g of the restriction of f (resp. of f + 1), obtained by fixing xi to ai for any
i ∈ I ⊆ {1, . . . , n}, a nonzero annihilator of f (resp. f + 1) equals g(x)

∏
i∈I(xi + ai + 1), which has algebraic

degree at most deg(g) + |I|.
This result could be used in conjunction with the fact that, if d ≤ n+1

2 , then Td,n can be obtained by fixing
n − 2d + 1 input bits to 1 in the (2n − 2d + 1)-variable majority function (indeed we saw in Remark 2 that fixing
a variable to 1 in Td,n gives Td−1,n−1). But we can also give a direct proof of the algebraic immunity of threshold
functions (and also determine their annihilators of minimum algebraic degree):

Proposition 3 (Algebraic immunity of threshold functions). Let n > 0 and 1 ≤ d ≤ n. The threshold function
Td,n has the following algebraic immunity:

AI(Td,n) = min(d, n− d+ 1).

Moreover, the minimum algebraic degree of the nonzero annihilators of Td,n and 1+Td,n satisfy AN(Td,n) = n−d+1
and AN(1 + Td,n) = d.

Proof. Applying the transformation x 7→ x + 1n, where 1n is the all-1 vector of length n, changes Td,n into the
indicator of the set of vectors of Hamming weight at most n−d; the relations relating the expressions of the coefficients
of the ANF

∑
I⊆{1,...,n} aIx

I by means of the values of the function, namely, aI =
∑

supp(x)⊆I f(x) and f(x) =

15



∑
I⊆supp(x) aI , show that the annihilators of this indicator are all the linear combinations over F2 of the monomials of

degrees at least n − d + 1; hence, the annihilators of Td,n are obtained from these latter linear combinations by the
transformation x 7→ x+ 1n, which preserves the algebraic degree. They can then have every algebraic degree at least
n− d+1. And the annihilators of 1+Td,n are similarly the linear combinations over F2 of the monomials of degrees
at least d. They can have every algebraic degree at least d. Hence AI(Td,n) = min(d, n− d+ 1).

We finally study the dimension dAN of the space of annihilators of minimal degree of threshold functions, and we
derive a bound on the fast algebraic immunity.

Proposition 4 (dAN of threshold functions). Let n > 0 and 1 ≤ d ≤ n. The threshold function Td,n and its
complementary have the following dAN:

dAN(Td,n) =

{
0 if d < n+1

2 ,(
n
d−1
)

if d ≥ n+1
2 ,

and dAN(1 + Td,n) =

{(
n
d

)
if d ≤ n+1

2 ,

0 if d > n+1
2 .

Proof. First, we investigate dAN(Td,n) for d ≥ n+1
2 . According to Property 2 and using that the dimension of the

annihilators of a fixed degree is affine invariant, this is equivalent to considering the annihilators of degree d of 1+Td,n
with d ≤ n+1

2 .
When d ≤ n+1

2 , the function 1+Td,n has simplified value vector [1, . . . , 1, 0, . . . , 0] where the first 0 corresponds
to the Hamming weight d. All monomial functions of degree d are then annihilators since they vanish on the support of
1+Td,n. Since d = AI(1+Td,n) from Proposition 3, we have then dAN(1+Td,n) =

(
n
d

)
, since, of course, dAN(1+

Td,n) cannot be larger than
(
n
d

)
. Therefore, denoting d′ = n − d + 1, we have dAN(Td′,n) = dAN(Tn−d+1,n) =(

n
d

)
=
(

n
d′−1

)
.

For the function Td,n itself with d < n+1
2 , using Proposition 3 we know that AI(Td,n) = d and AN(Td,n) =

n − d + 1, in this case AN(Td,n) > AI(Td,n) which implies dAN(Td,n) = 0. Accordingly, using Property 2, for
d > n+1

2 it gives dAN(1 + Td,n) = 0.

We use the following property of the fast algebraic immunity to derive a bound for the threshold functions.

Lemma 9. For every Boolean function f , FAI(f) ≥ min(2AI(f), 1 + AN(f + 1)).

Proof. This bound comes from the definition of FAI(f) (see Definition 9). If AI(f) ≤ 1, then we have FAI(f) =
2AI(f) ≥ min(2AI(f), 1 + AN(f + 1)). If AI(f) ≥ 2, then let us denote h = fg; we have (1 + f)h = 0. Since f is
non constant (when f is constant AI(f) = 0 as seen in Property 1), and since g is taken such that deg(g) < AI(f), h
is nonzero, therefore h is a nonzero annihilator of 1 + f , and by definition deg(h) ≥ AN(f + 1).

Proposition 5 (Lower bound on the fast algebraic immunity of threshold functions). Let n > 0 and 1 ≤ d ≤ n.
The fast algebraic immunity of the threshold function Td,n follows the following bound:

FAI(Td,n) ≥

{
min(2d, n− d+ 2) if d ≤ n+1

2 ,

min(2(n− d+ 1), d+ 1) if d > n+1
2 .

Proof. Since the fast algebraic immunity is invariant when we add 1 to f , using Lemma 9 on f and f + 1 we get:

FAI(f) = FAI(f + 1) ≥ min(2AI(f), 1 + max(AN(f),AN(f + 1))).

Plugging the values of AI(Td,n) and AN(1 + Td,n) from Proposition 3 formula gives the result.

Remark 4. Note that this bound can be reached, as proven in [22] for the majority functions T2m−1,2m and
T2m−1+1,2m+1 for all integers m ≥ 2.
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3.3 Parameters of XOR-THR Functions.

The particular structure of XOR-THR functions, that are the direct sums of a linear function and a threshold function,
makes their parameters easy to deduce from those of these two components. For k > 1 the function XORk + Td,n is
affine equivalent to XOR1 + Td,n, hence these functions have the same nonlinearity, (fast) algebraic immunity, and
dAN. The resiliency and nonlinearity can be directly determined by combining Lemma 1 with the parameters of the
threshold functions for these criteria (Proposition 2 and Theorem 2). For the exact algebraic immunity, the dimension
of the vector space of annihilators of minimum degree and the bound on the fast algebraic immunity, we need more
advanced tools developed in Section 4.

Proposition 6 (Resiliency of XOR-THR functions). Let n, k, d > 0 and d ≤ n. The resiliency order of the XOR-
THR function XORk + Td,n is given by:

res(XORk + Td,n) =

{
k if n = 2d− 1,

k − 1 otherwise.

Proof. The resiliency of XORk equals k − 1, then combining the first item of Lemma 1 and Proposition 2 gives the
result.

Proposition 7 (Nonlinearity of XOR-THR functions). Let n, k, d > 0 and d ≤ n. The nonlinearity of the XOR-
THR function XORk + Td,n is given by:

NL(XORk + Td,n) =



2n+k−1 − 2k
(

n−1
(n−1)/2

)
if d = n+1

2 ,

2k
n∑
i=d

(
n

i

)
if d > n+1

2 ,

2k
d−1∑
i=0

(
n

i

)
if d < n+1

2 .

Indeed, adding a linear function to Td,n does not change its nonlinearity, that is given by Theorem 2.

Remark 5. Note that for the special cases not addressed in these two lemmas, the result is already known: when k = 0,
the XOR-THR function is simply a threshold function, with resiliency order and nonlinearity addressed in Remark 1
for d ∈ {0, n+1} and given by Proposition 2 and Theorem 2 for the other cases; and when k 6= 0 and d ∈ {0, n+1},
the XOR-THR function is a DSM associated to the DSV [k], hence with resiliency order k − 1 (Lemma 2) and
nonlinearity 0 (Lemma 3).

4 Partitioned Algebraic Normal Form Coefficients and Applications.

In this section we introduce the partitioned normal form coefficients, and we use this tool to prove different results
relatively to the algebraic properties of direct sums, that will be applied to XOR-THR functions. In Subsection 4.1 we
begin by defining the partitioned algebraic normal form, and we exhibit conditions for a direct sum construction to
exceed the maximum algebraic immunity of its 2 components. Then, we use it in Subsection 4.2 to determine the exact
algebraic immunity of all XOR-THR functions and a lower bound on the fast algebraic immunity. Another application
of the partitioned normal form is given in Subsection 4.3, enabling to determine the dAN of XOR-THR functions.
In Subsection 4.4 we determine and prove the dAN of DSM functions. It finishes to prove all relevant cryptographic
criteria on the two families of functions we consider in this article. Finally, in Subsection 4.5 we exhibit families of
direct sums with optimal algebraic immunity.

4.1 Partitioned Algebraic Normal Form and Algebraic Immunity of General Direct Sums.

We develop here some techniques to better estimate the algebraic immunity, or the dimension of the space of
annihilators of degree at most the algebraic immunity, in the case of direct sums. First recall from Lemma 1 that
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the algebraic immunity of a direct sum is always between the maximum of the algebraic immunities of its components
and their sum. The upper bound is reduced in [3] to:

AI(f1 + f2) ≤ min (max [deg(f1), deg(f2)],AI(f1) + AI(f2)). (3)

This upper bound is obtained by considering specific annihilators of f1 and f2: f1 + f2 or 1 + f1 + f2 for the
maximum on the degree, and the product of a function defining the algebraic immunity of f1 by a function defining
the algebraic immunity of f2 for the sum. In the following, we determine sufficient conditions to refine these bounds,
beginning with conditions under which the lower bound cannot be achieved.

The ANF (see Definition 2) can be a useful tool to study the algebraic immunity of a function. Here, in the particular
case of direct sums, we will modify the form of this representation. Instead of considering binary coefficients related
to subsets of all variables, we represent a function in N variables as a function in m variables with m ≤ N , but with
coefficients which are functions in the N −m other variables. We partition then the set of all variables into two sets of
sizes m and (say) n = N −m. This modification of the representation in ANF makes some concepts easier to study
for functions obtained by direct sum (adapting the variable partition to the direct sum).

Definition 21 (Partitioned Algebraic Normal Form). We call (n,m)-Partitioned Algebraic Normal Form of an
(n+m)-variable Boolean function f its polynomial representation over F2 (i.e. belonging to

(
F2[x1, . . . , xn]/(x

2
1 +

x1, . . . , x
2
n + xn)

)
[y1, . . . , ym]/(y21 + y1, . . . , y

2
m + ym):

f(x, y) =
∑
I⊆[m]

aI(x1, . . . , xn)

(∏
i∈I

yi

)
=
∑
I⊆[m]

aI(x) y
I ,

where aI ∈ F2[x1, . . . , xn]/(x
2
1 + x1, . . . , x

2
n + xn) and x = (x1, . . . , xn).

We call partitioned-(n,m)-ANF coefficients the coefficients aI .

Note that when the partition into the n andm parts is clear, we shall refer to the (n,m)-partitioned ANF coefficients
as PANF coefficients. Note also that the uniqueness of the ANF representation guarantees the uniqueness of the (n,m)
partitioned algebraic form. The standard ANF corresponds to the (0, n)-partitioned ANF. In the following we give a
characterization of the annihilators of a direct sum based on the PANF coefficients.

Lemma 10. Let f be a Boolean function in the variables x1, . . . xn and g be a Boolean function in the variables
y1, . . . ym. Let ϕ be the direct sum of f and g. Let ε ∈ {0, 1}, and let h be a function in x1, . . . , xn, y1, . . . , ym
with the (n,m)-partitioned algebraic normal form: h(x, y) =

∑
I⊆[m] hI(x) y

I . We denote accordingly by gI the
(standard) ANF coefficients of g. Then h is an annihilator of ϕ + ε if and only if the following relation holds on its
PANF coefficients:

∀I ⊆ [m], hI(x)

f(x) + ε+
∑
J⊆I

gJ

 =
∑
J(I

hJ(x)
∑
K⊆J

gK∪(I\J). (4)

Proof. We first consider the case ε = 0. We have:

ϕh = 0⇔
∑
I⊆[m]

hI(x) y
I(f(x) + g(y)) = 0,

⇔

 ∑
I⊆[m]

hI(x)f(x)y
I

+

 ∑
J⊆[m]

hJ(x)y
J
( ∑
K⊆[m]

gK y
K
) = 0,

⇔
∑
I⊆[m]

hI(x)f(x) + ∑
J⊆[m],K⊆[m]

J∪K=I

hJ(x) gK

 yI = 0

⇔ ∀I ⊆ [m], hI(x)f(x) +
∑

J⊆[m],K⊆[m]
J∪K=I

hJ(x) gK = 0.
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Then, rewriting the last part as follows:∑
J⊆[m],K⊆[m]

J∪K=I

hJ(x) gK =
∑
J⊆I

hJ(x)
∑
K⊆J

gK∪(I\J) = hI(x)
∑
K⊆I

gK +
∑
J(I

hJ(x)
∑
K⊆J

gK∪(I\J),

we obtain:

ϕh = 0⇔ ∀I ⊆ [m], hI(x)

f(x) +∑
J⊆I

gJ

 =
∑
J(I

hJ(x)
∑
K⊆J

gK∪(I\J).

The general case follows by changing f into f + ε.

Now we can show a sufficient condition for obtaining AI(f + g) > max (AI(f),AI(g)):

Lemma 11. Let ϕ be the direct sum of two Boolean functions f and g in respectively n and m variables, and such
that (without loss of generality) AI(f) ≥ AI(g).

If g is non-constant, and AN(f) 6= AN(f + 1) then AI(ϕ) > AI(f).

Proof. First we assume that h is a nonzero annihilator of ϕ, and we use Lemma 10 to obtain relations on its
PANF coefficients. Since h is nonzero, at least one of the functions hI(x) is nonzero. Then, there exists a subset
I0 ⊆ [m] such that, for all J ( I0, hJ(x) = 0, and hI0(x) 6= 0. It follows that Equation (4) relatively to I0 gives:
hI0(x)(f(x) +

∑
J⊆I0 gJ) = 0. Thus, hI0(x) is a nonzero annihilator of f or f + 1, giving deg(hI0) ≥ AI(f) and

therefore, since deg(h) ≥ |I0|+deg(hI0), it gives deg(h) ≥ |I0|+AI(f). The unique possibility to get AI(ϕ) = AI(f)
is that I0 = ∅, i.e. h∅(x) is a nonzero annihilator of f + g∅ and deg(h∅) ≥ AI(f). Then we consider two cases:

– either h∅(x) is the unique non-zero (x-dependent) coefficient of h; then for all I 6= ∅, Equation (4) gives: 0 =
h∅(x)gI , which is impossible as g is non-constant (for at least one subset I 6= ∅ the coefficient gI is equal to 1);

– or there is a least another nonzero coefficient; then there exists a subset I1 6= ∅ such that for all non-empty J ( I1,
we have hJ(x) = 0, and hI1(x) 6= 0. Relatively to I1, Equation (4) gives then:

hI1(x)

f(x) + ∑
J⊆I1

gJ

 = h∅(x)gI1 . (5)

Note that, since h∅(x) is nonzero, for all non-empty J ( I1, Equation (4) gives: 0 = h∅(x)gJ , forcing gJ to be 0.
Then from Equation (5) we get:

hI1(x) (f(x) + g∅ + gI1) = h∅(x)gI1 . (6)

If gI1 = 0, then hI1 is a nonzero annihilator of f+g∅, leading to deg(hI1) ≥ AI(f) and thereafter deg(h) ≥ |I1|+
AI(f) and since I1 6= ∅ it gives deg(h) > AI(f). Else, gI1 = 1 and multiplying Equation (6) by (f(x) + g∅ + 1)
implies then:

(hI1(x) + h∅(x)) (f(x) + g∅ + 1) = 0.

So, hI1 + h∅ is an annihilator of f + g∅ + 1, and we already know that h∅ is a nonzero annihilator of f + g∅.
If deg(hI1 + h∅) 6= deg(h∅) then either deg(hI1 + h∅) > deg(h∅), and then deg(hI1) > deg(h∅), or deg(hI1 +
h∅) < deg(h∅) and deg(hI1) = deg(h∅) implying in all cases deg(hI1) ≥ deg(h∅) ≥ AI(f) and then deg(h) ≥
|I1| + AI(f) > AI(f). Otherwise, we have deg(hI1 + h∅) = deg(h∅), but recall that hI1 + h∅ is a nonzero
annihilator of f + g∅ + 1; hence deg(hI1 + h∅) ≥ AN(f + g∅ + 1), and h∅ is a nonzero annihilator of f + g∅
hence deg(h∅) ≥ AN(f + g∅). Since we assumed AN(f) 6= AN(f + 1), the degree of h∅ being greater than or
equal to both of them implies deg(h∅) > AI(f) and therefore deg(h) > AI(f). This concludes this part.

The same reasoning applies to the annihilators of ϕ + 1, replacing g by g + 1, since we made no assumption on the
value of g∅ in the proof. Hence, for h 6= 0 the relation h(ϕ + 1) = 0 implies deg(h) > AI(f), allowing to conclude
AI(ϕ) > AI(f).

In the following we show how to use these lemmata to determine the remaining parameters of XOR-THR Functions
and DSM.
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4.2 Application to the Algebraic Immunity of XOR-THR Functions.

The algebraic immunity of direct sums of monomials has already been determined in Theorem 1. We apply now the
results of the previous subsection to XOR-THR functions.

Proposition 8 (Algebraic immunity of XOR-THR functions). Let XORk + Td,n be a XOR-THR function with
k > 0 and d 6∈ {0, n+1

2 , n+ 1} then:

AI(XORk + Td,n) = min(d+ 1, n− d+ 2).

Let XORk + Td,n be a XOR-THR function with k > 0 and d = n+1
2 , n odd, then:

AI(XORk + Td,n) = (n+ 1)/2.

Proof. For d 6∈ {0, n+1
2 , n + 1}, using Lemma 1 (item 4) and decomposing XORk + Td,n as the direct sum of

XORk and Td,n, we get AI(XORk + Td,n) ≤ 1 + AI(Td,n). Then, we show that this decomposition complies the
requirements of Lemma 11 and achieves then this upper bound with equality. We take XORk as the function g, which
is non-constant since k > 0, and has algebraic immunity 1 (see Property 1). Then, we take the threshold function as
the function f . Using Proposition 3 with d 6∈ {0, n + 1} gives AI(Td,n) = min(d, n − d + 1) ≥ 1. The condition
AN(Td,n) 6= AN(1+Td,n) is also verified since d 6= n−d+1 (Proposition 3 gives the two values), which corresponds
to d 6= n+1

2 . Finally applying Lemma 11 gives AI(XORk + Td,n) > AI(Td,n), which enables to conclude with the
first bound and Proposition 3: AI(XORk + Td,n) = 1 + AI(Td,n) = min(d+ 1, n− d+ 2).

For d = n+1
2 , the function is affinely equivalent to a XOR1 + Td,n function with k − 1 fictitious variables.

XOR1+Td,n has algebraic immunity at least (n+1)/2 thanks to Lemma 1 (since its component Td,n has an algebraic
immunity of (n+1)/2 from Proposition 3) and at most (n+1)/2 thanks to the upper bound on the algebraic immunity
of Boolean functions in even numbers of variables. Therefore AI(XOR1+Td,n) = (n+1)/2 and we know that adding
fictitious variables does not change the algebraic immunity. This completes the proof.

Note that some values of k, d and n are not tackled by Proposition 8. For the extreme cases k = 0, d = 0 or
d = n + 1, at least one of the two components is constant, therefore the algebraic immunity of the whole function is
determined by the other one (using Proposition 3 if k = 0, or Theorem 1).

Proposition 9 (Fast algebraic immunity of XOR-THR functions). For k > 0, we have:

FAI(XORk + Td,n) ≥

{
n+3
2 if d = n+1

2 ,

2 + min(d, n− d+ 1) otherwise.

Proof. Using Lemma 9 on f and f + 1 for all f : FAI(f) ≥ min(2AI(f), 1 + max(AN(f),AN(f + 1))). For k > 0,
AN(f) = AN(f + 1) since the affine transformation xi 7→ xi + 1 for xi one variable of the XOR part does not
change the degree of an annihilator, and changes f into 1 + f . Hence, for d = (n + 1)/2, 2AI(f) = n + 1 and
AN(f) = (n+1)/2, it leads to the bound of (n+3)/2. For d 6= (n+1)/2, AI(f) = AN(f) = 1+min(d, n−d+1),
it gives the bound of 2 + min(d, n− d+ 1).

4.3 Determining the dAN of XOR-THR Functions.

We shall need the following proposition, where we denote by XORk Bn, with k > 0, the direct sum of the function
XORk and a n-variable Boolean function.

Proposition 10 ( [11]). Let f be a XORk Bn Boolean function with k > 0 then:

∀a ∈ [0, k + n], N0
a = N1

a ,

where Nε
a for ε ∈ {0, 1} denotes the number of independent annihilators of f + ε of degree at most a.

When a = AN(f), this gives dAN(f) = dAN(f + 1).
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Proposition 11 (dAN of XOR-THR Functions). Let XORk+Td,n be a XOR-THR function such that k > 0, n ∈ N,
and 1 ≤ d ≤ n, then:

dAN(XORk + Td,n) =



(
n
d

)
if d < n

2 ,(
n+1
d+1

)
if d = n

2 ,(
n
d

)
if d = n+1

2 ,(
n+1
d

)
if d = n

2 + 1,(
n
d−1
)

otherwise.

Furthermore dAN(XORk + Td,n) = dAN(1 + XORk + Td,n).

Proof. Using Proposition 10, we have dAN(XORk+Td,n) = dAN(1+XORk+Td,n). Then, according to Property 2,
the affine transformation defined as: ∀(x, y) ∈ Fk+n2 , (x, y) 7→ (x, y + 1n), maps XORk + Td,n to 1 + XORk +
Tn−d+1,n, and the dimension of the annihilators of fixed degree being affine invariant, we have dAN(XORk+Td,n) =
dAN(1 + XORk + Tn−d+1,n). We deduce:

dAN(XORk + Td,n) = dAN(1 + XORk + Td,n) = dAN(XORk + Tn−d+1,n) = dAN(1 + XORk + Tn−d+1,n),

which enables to determine the dAN only considering d ≤ (n+ 1)/2.

We will proceed then in three steps: first we will study the PANF coefficients of the annihilators of a direct sum of
two functions, one of which is a XOR function. Then, we will focus on the XOR-THR functions where the threshold
function is the majority function in odd dimension (i.e. d = (n + 1)/2)). Finally we will determine the dAN of the
other XOR-THR functions for which d < (n+ 1)/2 (case of Proposition 8).

Direct sum with a XOR function and PANF coefficients:
First, we focus on the behavior of the PANF coefficients of an annihilator h(x, y) of any direct sum f(x) + g(y)

where g is a XOR function of m 6= 0 variables. We recall the equations on the PANF coefficients given by Lemma 10:

∀I ⊆ [m], hI(x)

f(x) +∑
J⊆I

gJ

 =
∑
J(I

hJ(x)
∑
K⊆J

gK∪(I\J).

Since g equals XORm, this gives: gJ = 1 ⇔ |J | = 1. Thereafter
∑
J⊆I gJ = |I| mod 2, and ∀J (

I,
∑
K⊆J gK∪(I\J) = gI\J (since I\J is non-empty, K ∪ (I\J) has a size strictly larger than 1 for every K 6= ∅).

We obtain then the following equations (simpler than in the general case):

∀I ⊆ [m], hI(x) (f(x) + (|I| mod 2)) =
∑
J(I

hJ(x) gI\J =
∑
J(I
|I\J|=1

hJ(x). (7)

When the cardinality of the subset I is at most 2, this gives in particular:
If |I| = 0, then I = ∅, h∅f = 0,

if |I| = 1, then I = {i}, h{i}(f + 1) = h∅,

if |I| = 2, then I = {i, j}, hIf = h{i} + h{j}.

(8)

Case d = (n+ 1)/2:
In this case, we know that AI(XORk+Td,n) =

n+1
2 = d from Proposition 8. Consequently, we have the following

bound on the PANF coefficients: deg(hI) ≤ deg(h) − |I| ≤ d − |I|. We consider the system of PANF coefficients
given by (8) with f = Td,n.

Then, based on Proposition 4 we know that for d = (n + 1)/2 both Td,n and Td,n + 1 do not have nonzero
annihilators of degree less than d. So, the first equation (|I| = 0) implies that h∅ is an annihilator of Td,n of degree d
or the null function. As we saw in the proof of Lemma 11, h∅ 6= 0 otherwise AI(f + g) > AI(f) which is not the case
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here, hence deg(h∅) = d. Considering the second equation (|I| = 1) with any pair (i, j) ∈ [m]2, i 6= j, the sum of two
equations gives (h{i} + h{j})(f + 1) = 0, and since deg(hI) ≤ d− |I|, it means that h{i} = h{j}. Hence, all PANF
coefficients related to a subset of cardinal 1 are equal, and for all I ⊆ [m] such that |I| ≥ 2, hI = 0 (by induction on
the cardinal of the subset, taking |I| = 2 as initialization step).

Then, any degree d annihilator of XORk + Td,n in this case has the form h∅ + h{1}(XORk). We finish this
part by showing that when h∅ is chosen, it fixes h{1}, enabling to conclude on the dimension of vector space of
nonzero annihilators of minimum degree. Let us write h∅ as h∅,<d+ h∅,d, where we separate the function h∅ (in ANF
representation) in two parts, one with all monomials of degree less than d and the other part of degree exactly d.

Since h∅f = 0, deg(h∅) = d, and dAN(Td,n) =
(

n
(n−1)/2

)
by Proposition 4 we consider as h∅ any nonzero

element of this vector space. Then, we consider the following equation: (h{1} + h∅)(1 + Td,n) = 0 (obtained when
XORk = 1). Since deg(h{1}) ≤ d− 1 and the product of any function with only monomials of degree d or more with
1+Td,n gives 0, we obtain h{1} = h∅,<d. Therefore, any nonzero annihilator of minimal degree of XORk+T(n+1)/2,n

can be written as:

h∅ + h∅,<d · (XORk), where h∅ · Td,n = 0, and h∅ 6= 0.

Finally, since the null function is always an annihilator, we get:

dAN
(
XORk + Tn+1

2 ,n

)
= dAN

(
Tn+1

2 ,n

)
=

(
n
n−1
2

)
=

(
n
n+1
2

)
.

Case d < (n+ 1)/2:
In this case (note that we do not consider the case d = 0), from Proposition 8, we know that AI(XORk + Td,n) =

d + 1. Consequently it gives the following bound on the PANF coefficients: ∀I ⊆ [m], deg(hI) ≤ d + 1 − |I|. We
consider the system of PANF coefficients described in the first part with f = 1 + Td,n, hence with AN(f) = d and
AN(1 + f) = n− d+ 1 accordingly to Proposition 3.

The first equation given by 8 (|I| = 0) gives: h∅ = 0 or d ≤ deg(h∅) ≤ d + 1. The second equation (|I| = 1)
implies:

∀i ∈ [m], (h{i} + h∅)(f + 1) = 0. (9)

Since deg(h∅ + h{i}) ≤ d + 1 and AN(f + 1) = n − d + 1, two cases appear depending on d, giving a different
situation for d+ 1 = n− d+ 1 i.e. d = n/2 and for d+ 1 6= n− d+ 1.

We begin with the case d 6= n/2. Equation (9) gives that ∀i ∈ [m] we have h{i} = h∅, and by induction hI = 0
for all I such that |I| ≥ 2. Since deg(h{i}) ≤ d, h∅ is a degree d annihilator of 1 + Td,n or the null function. All
annihilators of XORk + Td,n are then of the form h∅ + h∅ · (XORk), and using Proposition 4 we can conclude in this
case:

dAN(1 + XORk + Td,n) = dAN(1 + Td,n) =

(
n

d

)
.

Finally, we consider the case d = n/2. In this case, Equation (9) gives that ∀i ∈ [m], the function h{i} + h∅ of
degree at most d + 1 annihilates Td,n, and since d = n/2 from Proposition 3 we know that AN(Td,n) = d + 1. So
either h∅ = h{i} as in the precedent case, either h{i} + h∅ is a degree d + 1 annihilator of Td,n. Then, we determine
the PANF coefficients for the subsets of bigger cardinality. From the system, multiplying by f +1, the equation for the
case |I| = 2 implies that for any i ∈ [m] and j ∈ [m]\i, we get (h{i}+h{j})Td,n = 0 whereas deg(h{i}+h{j}) ≤ d.
Thereafter, h{i} = h{j} for all i and j both taken in [m], and by induction all hI such that |I| ≥ 2 are null. Finally, we
choose h∅ in a particular vectorial space and show that only one value for h{i} is possible, and we express it relatively
to h∅, giving the expression of all annihilator of XORk + Td,n of degree less than or equal to d+ 1 when d = n

2 .
Since AN(1 + Td,n) = d, and since for all functions with all monomials (ANF representation) of degree greater

than or equal to d the product with 1 + Td,n gives the null function, the vectorial space of annihilators of 1 + Td,n of
degree less than or equal to d + 1 has dimension

(
n
d

)
+
(
n
d+1

)
. Note that it corresponds to the null function and the

functions with monomials of degree d and d + 1 only, we denote this vectorial space S. Let h∅ ∈ S, we consider the
affine transformation x 7→ x+1n, transforming Td,n(x) into Td,n(x+1n) for all x ∈ Fn2 . Using Property 2, we know
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that Td,n(1n + x) = 1 + Tn−d+1,n(x), then we can equivalently write Equation 9 (for any i ∈ [m]):

∀x ∈ Fn2 , (h∅ + h{i})(x)Td,n(x) = 0,

⇐⇒ ∀x ∈ Fn2 , (h∅ + h{i})(1n + x)Td,n(1n + x) = 0,

⇐⇒ ∀x ∈ Fn2 , (h̃∅ + h̃{i})(x)(1 + Td+1,n)(x) = 0,

where h̃∅ denotes the function such that ∀x ∈ Fn2 , h̃∅(x) = h∅(1n + x), and similarly for h̃{i}.

Since the affine transformation x 7→ x+ 1n preserves the degree, we can write h̃∅ as ˜h∅,<d+1 + h̃∅,d+1 (similarly
to what we did with h∅ in the case d = (n+ 1)/2)). For all functions whose monomials (in ANF representation) have
all degree greater than or equal to d+ 1, the product with 1 + Td+1,n gives the null function, then:

( ˜h∅,<d+1 + h̃{i})(1 + Td+1,n) = 0.

Since deg( ˜h∅,<d+1 + h̃{i}) ≤ d, it implies that ˜h∅,<d+1 = h̃{i}, and since the transformation x 7→ x + 1n is a

bijection, h{i} is fixed by the choice of h∅. In conclusion, it gives that h∅ + h′∅,<d+1 · (XORk), where ˜h′∅,<d+1 is the

result of ˜h∅,<d+1 through the transformation x 7→ x + 1n, is an annihilator of 1 + XORk + Td,n of minimal degree
(or null) for any h∅ ∈ S. Finally:

dAN(1 + XORk + Td,n) =

(
n

d

)
+

(
n

d+ 1

)
=

(
n+ 1

d+ 1

)
,

concluding the case d < (n+ 1)/2. The identity
(
n
k

)
=
(
n

n−k
)

enables to obtain the value of dAN(XORk + Td,n) for
the case d > (n+ 1)/2.

Note that this lemma does not give the dAN of XOR functions (the threshold part is constant, thus it corresponds
to a DSM, the dAN of such functions will be given in Section 4.4) nor threshold functions which is already given in
Proposition 4.

4.4 Determining the dAN of DSM.

We shall use again Lemma 10 to study now the dimension dAN of a DSM f (recall that this is the dimension of the
vector space whose nonzero elements are those annihilators of f whose algebraic degree is bounded above by AI(f),
and therefore equals AI(f)). We shall first study, in Lemma 12 below, the evolution of the dAN when a new monomial
is added to a DSM (and we shall need to address only the case where the monomial has degree not smaller than the
algebraic degree of f ). We shall then use this lemma to prove Lemma 13, which studies the dAN of homogeneous
polynomials, and Lemma 14, which studies the evolution of the dAN when a homogeneous polynomial is added to a
DSM. These two lemmas will allow us to address the initialization and the generic step of a recursion proving finally
Theorem 3, which determines an upper bound on the dAN of any DSM, with a simple expression by means of the
direct sum vector.

Lemma 12. Let f be a degree k > 0 DSM, we consider the direct sum of f and of the monomial yT such that
t = |T | ≥ k, then:

dAN(f + yT ) =


1 if AI(f) = t,

1 + t · dAN(f) if AI(f) = t− 1,

t · dAN(f) otherwise,

Proof. To study the annihilators of f + yT , we first apply Lemma 10 to the (n, t)-partitioned algebraic normal form
of f + yT . Since g is here a monomial function, for all I ( T we get gI = 0, and gT = 1. The relation

∀I ⊆ [m], hI(x)

f(x) +∑
J⊆I

gJ

 =
∑
J(I

hJ(x)
∑
K⊆J

gK∪(I\J).
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gives: hIf = 0 for all I ( T,

hT (f + 1) =
∑
J(T

hJ for J = T . (10)

Since we are looking for nonzero annihilators h of minimal degree, we also use the following equation for each subset
I ⊆ T :

deg(hI) ≤ AI(f + yT )− |I|. (11)

We now decompose the rest of the proof in three parts:

1. Expression of the algebraic immunity of f + yT by means of that of f :
We have determined the algebraic immunity of DSM functions in Theorem 1. Here we want to find an explicit

expression of AI(f + yT ) by means of AI(f).
Since f + yT is a degree t function, its algebraic immunity is at most t. Let us show that, if AI(f) < t, then

AI(f + yT ) = AI(f) + 1, and that (otherwise) AI(f) = t (which supposes that t = k) implies AI(f + yT ) = AI(f).
• Let us start with the case AI(f) = t. Then, since the function f + yT cannot have a higher AI than t since its

degree is equal to t, and since it is a direct sum and we know by Lemma 1 that its AI is then at least AI(f) = t, we get
AI(f + yT ) = AI(f).

• Let us now address the case AI(f) < t. We use the formalization of direct sum vector. Considering mf =
[m1, . . . ,mk], we have:

mf+yT =


[m1, . . . ,mk−1,mk + 1] if t = k,

[m1, . . . ,mk, 0, . . . , 0︸ ︷︷ ︸
t−k−1

, 1] if t > k.

We deduce the algebraic immunity of f + yT using the characterization of Theorem 1 on f + yT :

– If t = k, then the k-th coefficient in mf+yT being mk + 1, we have according to Theorem 1:

AI(f + yT ) = min

(
min

0≤d<k

[
d+

(
k∑

i=d+1

mi

)
+ 1

]
, k

)
. (12)

Since we are considering the case AI(f) < t, which corresponds here to AI(f) < k, we necessarily have: AI(f) =
min0≤d<k

(
d+

∑k
i=d+1mi

)
. Therefore, Relation (12) can be simplified as AI(f + yT ) = min(AI(f) + 1, k).

Since AI(f) < k, we deduce AI(f + yT ) = AI(f) + 1.
– If t > k, the characterization of Theorem 1 gives:

AI(f + yT ) = min

(
min

0≤d≤k

[
d+

(
k∑

i=d+1

mi

)
+ 1

]
, min
k+1≤d≤t−1

d+ 1, t

)
.

It can be simplified to AI(f + yT ) = min (AI(f) + 1, k + 2, t). Since f is a degree k function and t > k, the
minimum is always equal to AI(f) + 1. Summarizing: if AI(f) < t, then AI(f + yT ) = AI(f) + 1.

2. Degrees of the PANF coefficients:
Now that we know the exact value of AI(f + yT ), we can apply Equation (11).
• In the case AI(f) = t, then we know that AI(f + yT ) = t and Equation (11) can be rewritten as: deg(hI) ≤ t− |I|.
We deduce, by also using (10), that:

deg(h∅) ≤ t and h∅f = 0 for the subset ∅,
hIf = 0 and deg(hI) < t = AI(f), hence hI = 0 for all I ( T, I 6= ∅,
deg(hT ) ≤ 0 and hT (f + 1) = h∅ for the substet T .
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If hT = 0 then h∅ = 0 (from the last equation), which gives that h = 0, and if hT = 1, then h∅ = 1 + f and
h(x, y) = (1 + f(x)) + yT . Note that this shows that dAN(f + yT ) = 1.
• In the case AI(f) < t, we know that AI(f + yT ) = AI(f) + 1 and therefore we can rewrite Equation (11) as:
deg(hI) ≤ AI(f) + 1− |I|. We deduce, by also using (10), that:

deg(h∅) ≤ AI(f) + 1 and h∅f = 0 for the subset ∅,
deg(hI) ≤ AI(f) and hIf = 0 for all I ( T such that |I| = 1,

hIf = 0 and deg(hI) < AI(f), hence hI = 0 for all I ( T such that |I| > 1,

deg(hT ) ≤ AI(f) + 1− t and hT (f + 1) =
∑
I(T

|I|≤1

hI for the substet T .
(13)

Considering the last equation, the case hT = 0 is always possible and the only possibility for hT to be nonzero is
when AI(f) = t− 1 (since AI(f) < t). But we have AI(f) ≤ k ≤ t; hence this latter case can occur only if t = k and
AI(f) = k − 1, or t = k + 1 and AI(f) = k. In these two cases hT is constant and if it equals 1, then we have:

f + 1 =
∑

I(T, |I|≤1

hI . (14)

3. Determining dAN(f + yT ):
• In the case AI(f) = t, we have shown that dAN(f + yT ) = 1.
• In the case AI(f) < t, we use the system of equations (13), and consider different subcases:

– Case AN(f) ≥ AI(f) + 2.
Since deg(h∅) ≤ AI(f) + 1 < AN(f) and h∅f = 0, we necessarily have h∅ = 0. Similarly, all the PANF
coefficients hI (where by definition I ⊆ T ) such that |I| = 1 are null, since deg(hI) ≤ AI(f) < AN(f), and
hIf = 0.
We have seen above (after Relation (13)) that the only possibility for hT to be nonzero is t = k and AI(f) = k−1,
or t = k + 1 and AI(f) = k, and f + 1 =

∑
I(T, |I|≤1

hI = 0, which is impossible, therefore hT = 0, the null

function is the only annihilator of f + yT of degree less than or equal to AI(f + yT ), giving dAN(f + yT ) = 0.
– Case AN(f) = AI(f) + 1.

In this case, we still have hI = 0 for all I ( T such that |I| = 1, because hIf = 0 and deg(hI) < AN(f).
- If h∅ = 0, then as in the previous case, h = 0 is the unique possibility and dAN(f + yT ) = 0.
- Otherwise, h∅ is a nonzero annihilator of f of algebraic degree AN(f), and the last line in (13) gives hT (f+1) =
h∅. Then, hT = 0 is impossible. According to what we observed above after Relation (13), we have then hT = 1,
h∅ = f + 1, and either t = k and AI(f) = k − 1, or t = k + 1 and AI(f) = k. In the latter case, f + 1 is then
a minimum degree annihilator of f (and vice versa), implying AN(f) = deg(f + 1) = deg(f) 6= AI(f) + 1, a
contradiction.
In the former case, the annihilators of f + yT are 0 and 1 + f + yT , giving dAN(f + yT ) = 1.

– Case AN(f) = AI(f).
In this case, h∅ can be either zero or an annihilator of f of degree AN(f) or of degree AN(f) + 1. For all I ( T
such that |I| = 1, hI can be either zero or an annihilator of f of degree AN(f).
• If hT = 0, then

∑
I(T

|I|≤1

hI = 0. This implies that h∅ cannot be of degree AN(f) + 1. Then, among the t+ 1

coefficients, exactly t can be chosen freely in the vectorial space of annihilators of f of degree less than or
equal to AN(f) and the last one is equal to the sum. We get dAN(f + yT ) = t · dAN(f).

• If hT = 1, we saw after Relation (13) that only two cases happen:
(i) If t = k and AI(f) = k−1, then for all I ( T ; |I| = 1, the coefficients hI are such that deg(hI) ≤ k−1

whereas f + 1 has degree k. Therefore, according to (14), h∅ equals f + 1 + h′ where h′ is a function
such that deg(h′) ≤ k − 1, and according to (13), h∅ annihilates f . Since f + 1 is an annihilator of f ,
and since the annihilators form a vectorial space, h′ is an annihilator of f of degree AN(f) or is null.
Summarizing, building an annihilator of f + yT in such case consists in choosing h′ and the t − 1 first
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coefficients hI ; |I| = 1, from the vector space of annihilators of f of degree less than or equal to AN(f),
the last coefficient being equal to the sum of the others in order to fulfill Equation (14). Note that all the
annihilators of f+yT created this way are of the form f+1+yT+h′′, where h′′ is an annihilator of f+yT

given by the case hT = 0 (indeed, h′ and the hI such that |I| = 1 are chosen exactly under the same
constraints as h∅ and the same hI in the previously studied case). We get dAN(f +yT ) = 1+ t ·dAN(f).

(ii) If t = k + 1 and AI(f) = k, then deg(h∅) ≤ k + 1 and for all I ( T ; |I| = 1, the coefficients hI are
such that deg(hI) ≤ k. Then, again according to (14) and since deg(f + 1) = k, h∅ cannot be of degree
k + 1. Hence, building an annihilator of f + yT in this case consists in choosing t coefficients from the
vectorial space of annihilators of f of degree less than or equal to AN(f), the last one being equal to f+1
plus this sum. This part (where hT = 1) gives 2t·dAN(f) annihilators, adding the annihilators for hT = 0
enables to conclude: we get dAN(f + yT ) = 1 + t · dAN(f).

Putting all together:
Let us summarize what we obtain for the different cases:
1. If AI(f) = t then dAN(f + yT ) = 1.
2. Else, AI(f) < t:

(a) If AN(f) ≥ AI(f) + 2, then dAN(f + yT ) = 0.
(b) If AN(f) = AI(f) + 1, then:

i. If t = k and AI(f) = k − 1 then dAN(f + yT ) = 1.
ii. Else, dAN(f + yT ) = 0.

(c) Else, AN(f) = AI(f):
i. If t = k and AI(f) = k − 1 then dAN(f + yT ) = 1 + t · dAN(f).

ii. If t = k + 1 and AI(f) = k then dAN(f + yT ) = 1 + t · dAN(f).
iii. Else, dAN(f + yT ) = t · dAN(f).

Then:

– if AI(f) = t, this corresponds to item 1 only, then dAN(f + yT ) = 1.
– if AI(f) = t−1 then we are in item 2, as proven previously AI(f) = t−1 corresponds to AI(f) = k and t = k+1,

or AI(f) = k − 1 and t = k.
– Case 2 (a) is impossible since it gives AN(f) > t whereas f + 1 is an annihilator of f of degree t− 1 or t.
– Case 2 (b) is possible, since we have dAN(f) = 0 by definition, if t = k and AI(f) = k − 1 we are in the case 2

(b) i. then dAN(f+yT ) = 1 = 1+ t ·dAN(f), and the case t = k+1 and AI(f) = k is impossible (it corresponds
to AN(f) > deg(f)).

– We are then reduced to Case 2 (c), AI(f) = k − 1 and t = k or AI(f) = k and t = k + 1 correspond to cases 2
(c) i. or 2 (c) ii., then we have that dAN(f + yT ) = 1 + t · dAN(f).

– if AI(f) < t− 1 also enters in item 2.
– In Case 2 (a) and 2 (b) i. since dAN(f) = 0 by definition we get dAN(f + yT ) = 0 = t · dAN(f).
– Case 2 (c) iii. leads to dAN(f + yT ) = t · dAN(f).

Lemma 13. Let f be an homogeneous DSM of degree k > 0, or its complement, with direct sum vector mf =
[0, . . . , 0,mk], then: if mf = [1] then dAN(f) = 1, otherwise:

dAN(f) ≤


1 if mk > k,

1 + kmk if mk = k,

kmk if mk < k.

When m0 (the constant coefficient of f ) is equal to 0, this inequality becomes an equality.

Proof. First we address the case of a monomial function, that is, the case mk = 1. We have f = xT , with |T | = k ∈
N∗. Without loss of generality we assume T = {1, . . . , k}. We have AN(xT ) = 1, since for any i ∈ T , 1 + xi is an
annihilator of xT , and the constant function 1 does not annihilate xT . Note that exactly k independent annihilators can
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be created this way (1 for each variable indexed by T ), therefore dAN(xT ) = k.
We address now the case of the complement of a monomial function 1 + xT . For k = 1, the constant function 1 is not
an annihilator and x1 is one. Then AN(1 + x1) = 1 and dAN(1 + x1) = 1, since there is no other nonzero annihilator
of degree 1 than x1. For k > 1, note than 1 + xT cannot be annihilated by a nonzero function of degree lesser than
k. Indeed, let g be a nonzero function of degree lesser than k, then g · (1 + xT ) = g or g · (1 + xT ) = g + xT ,
since each monomial xI in the ANF of g is such that I ( T , implying that xI · xT = xT (and the same holds for the
constant coefficient), then none of these products is null. Therefore, it gives AN(1 + xT ) = k, and there is no nonzero
annihilator of 1 + xT of degree AI(xT ) = 1, and then we have dAN(1 + xT ) = 0.
Concluding this part, when f is a DSM whose associated direct sum vector has a unique nonzero coefficient equal to
1, then dAN(f) ≤ k, and the upper bound is reached when the constant coefficient of f is null.

Then, we address the general case of homogeneous DSM. Let f be a homogeneous DSM of degree k (or its
complement), its associated vector is mf = [0, . . . , 0,mk], where mk > 0. Such function can be constructed
recursively by adding degree-k monomials to xT (or 1 + xT ), where |T | = k. To study the parameters of these
functions used in the recursion, we denote by fi the function such that the k-th coefficient of mfi is equal to i, all the
other coefficients being zeros. Using Theorem 1 we obtain AI(fi) = min{i, k}. Let us combine this with Lemma 12
for various values of i > 0:

– Case 1 ≤ i < k − 1:
AI(fi) = i < k − 1, it corresponds to the third item of Lemma 12, giving dAN(fi+1) = k · dAN(fi). Since
dAN(f1) ≤ k by the previous part of the proof, an immediate recursion gives dAN(fi) ≤ ki for i ∈ [k−1]. When
m0, the constant coefficient of f , is null, then we also know that dAN(f1) = k, and therefore dAN(fi) = ki for
i ∈ [k − 1].

– Case i = k − 1:
AI(fi) = k − 1, it corresponds to the second item of Lemma 12, then dAN(fi+1) = 1 + k · dAN(fi), so since
i > 0, dAN(fk) ≤ 1 + kk for k > 1. When m0 = 0 since dAN(fk−1) = kk−1 then dAN(fk) = 1 + kk.

– Case i ≥ k:
AI(fi) = k, it corresponds to the first item of Lemma 12, then dAN(fi+1) = 1, hence dAN(fj) = 1 for j ≥ k+1.

Note that the special case i = 1 = k is not tackled by these cases, but it corresponds to the monomial function
x1 or its complement, treated in beginning of this proof: if mf = [1] then dAN(f) = 1. For the other homogeneous
functions (and there complements), summarizing the three cases gives dAN(f) ≤ kmk ifmk < k, dAN(f) ≤ 1+kmk

if mk = k and dAN(f) ≤ 1 if mk > k, with the inequality becoming an equality when m0 = 0.

Lemma 14. Let f be a DSM of degree k > 0, and g be an homogeneous DSM of degree t such that t > k with
associated vector mg = [0, . . . , 0,mt], the direct sum f + g has the following property:

dAN(f + g) =


tmt · dAN(f) if AI(f) +mt < t,

1 + tmt · dAN(f) if AI(f) +mt = t,

1 if AI(f) +mt > t.

Proof. First, let us denote by gi the DSM function such that the t-th coefficient of mgi is equal to i, all the other
coefficients being zeros. For i > 0, we determine AI(f + gi) by using Theorem 1:

AI(f + gi) = min
0≤d≤t

d+∑
j>d

mj

 = min

 min
0≤d≤t−1

d+ k∑
j>d

mj + i

 , t

 = min(AI(f) + i, t).

Then, depending on the value of i, Lemma 12 enables to determine dAN(f + gi):

1. Case 1 ≤ i < t− 1− AI(f):
we have AI(f + gi) < t − 1 and we are in the case of the third item of Lemma 12, giving dAN(f + gi+1) =
t · dAN(f + gi). Since AI(f) < t− 1, dAN(f + g1) = t · dAN(f), an immediate recursion gives: dAN(f + gj) =
tj · dAN(f) for j ∈ [t− 1− AI(f)].
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2. Case i = t− 1− AI(f):
AI(f+gi) = t−1, then we are in the case of the second item of Lemma 12, dAN(f+gi+1) = 1+t ·dAN(f+gi),
so: dAN(f + gt−AI(f)) = 1 + tt−AI(f) · dAN(f),

3. Case i ≥ t− AI(f):
AI(f + gi) = t, then we are in the case of the first item of Lemma 12, and dAN(f + gi+1) = 1, hence: dAN(f +
gj) = 1 for j > t− AI(f).

Summing up, if the condition of Case 1 is satisfied for all i < mt, that is ifmt ∈ {1, . . . , t−1−AI(f)}, or equivalently,
AI(f)+mt < t, then we have dAN(f+g) = tmt ·dAN(f). If we reach Case 2 for i = mt−1, that is if AI(f)+mt = t,
then we have dAN(f + g) = 1 + tmt · dAN(f), and if we reach Case 3 for i < mt, that is if AI(f) +mt > t, then we
have dAN(f + g) = 1.

Given a DSM f , using Lemma 14 in the generic step of a recursion, and Lemma 13 in the initialization step, we
derive a tight bound on the dimension dAN(f) of the vector space whose nonzero elements are those annihilators of f
whose degree equals the algebraic immunity of f .

Theorem 3. Let f be a DSM with associated direct sum vector mf = [m1, . . . ,mk]. Let us define the following set:

S(f) =

{
{0 < d ≤ k | d+

∑
i>dmi = AI(f)} if m1 = 1,

{0 ≤ d ≤ k | d+
∑
i>dmi = AI(f)} if m1 6= 1.

Then, we have the following relation:

dAN(f) ≤
∑
d∈S(f)

k+1∏
i>d

imi .

And when m0 (the constant coefficient of f ) is equal to 0, the inequality becomes an equality.

Proof. Let us denote by SD(f) the quantity
∑
d∈S(f)

∏k+1
i>d i

mi and prove by recursion on the number of nonzero
coefficients mi that dAN(f) ≤ SD(f), and that, when m0 = 0, dAN(f) = SD(f).
The initialization is when there is one nonzero coefficient mi, that is, for an homogeneous DSM or its complement.
In the case mf = [1], Lemma 13 gives dAN(f) = 1. Let us check the assertion of the theorem in this case: we have
AI(f) = 1 = k = mk, so S(f) = {1}, and SD(f) =

∏2
i>1 i

mi = 20 = 1, which is consistent with the hypothesis.
In all the other cases, we have a homogeneous DSM of degree at least 1 or its complement, with mf = [0, . . . , 0,mk],
mk > 0, and mk > 1 if k = 1. Note that for these functions we have:

d+
∑
i>d

mi =

{
d+mk if 0 ≤ d < k,

k if d = k.

According to Theorem 1, AI(f) (involved in the definition of S(f)) is the minimum of this value when d ranges
between 0 and k. Note that the minimum when d ranges between 0 and k − 1 equals mk; then we have AI(f) =
min(mk, k). Lemma 13 gives three possible cases for dAN(f), depending on the value of the nonzero coefficient mk

relatively to k:

– Case 1 ≤ mk ≤ k − 1:
In this case dAN(f) ≤ kmk , it corresponds to AI(f) = mk 6= k which implies S(f) = {0}. Here SD(f) =∏k+1
i>0 i

mi = kmk .
– Case mk = k:

This setting corresponds to dAN(f) ≤ 1+kk (since k > 1), and AI(f) = mk = k. The condition on the algebraic
immunity gives S(f) = {0, k}. Then:

SD(f) =
∑
d∈S(f)

k+1∏
i>d

imi =

k+1∏
i>0

imi +

k+1∏
i>k

imi = kk + 1.
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– Case mk > k:
In this case dAN(f) ≤ 1, it corresponds to AI(f) = k 6= mk which implies S(f) = {k}, and then SD =∏k+1
i>k i

mi = 1.

For these three cases dAN(f) ≤ SD(f) and since when m0 the constant coefficient of f is equal to 0 the
inequality becomes an equality (Lemma 13) it is consistent with the hypothesis, which concludes the initialization
of the recursion.

We address now the recursion step: let f be a DSM with ` + 1 nonzero mi coefficients, with ` ≥ 1. Then f can
always be written as a direct sum of g and h such that:

– g is a DSM with ` nonzero direct sum vector coefficients, with mg = [m′1, . . . ,m
′
k] and same constant coefficient

as f ,
– h is an homogeneous DSM of degree t > k.

We denote mf = mg+h as [m1, . . . ,mt], note that by construction:

mi =


m′i for 1 ≤ i ≤ k,
0 for k < i < t,

mt > 0 for i = t.

Applying the recursion hypothesis on g, we use Lemma 14 to study dAN(f). Using Theorem 1, we have:

AI(f) = min
0≤d≤t

{
d+

t∑
i>d

mi

}
= min

{
min

0≤d≤k

(
d+

(
k∑
i>d

m′i

)
+mt

)
, t

}
= min {AI(g) +mt, t} .

We study the three cases for dAN(f) given by Lemma 14:

– Case AI(g) +mt < t:
In this case, Lemma 14 gives dAN(f) = dAN(g+h) = tmt ·dAN(g). Since in this case AI(f) = AI(g)+mt < t,
we have S(f) = S(g), and then:

SD(f) =
∑
d∈S(f)

t+1∏
i>d

imi =
∑
d∈S(g)

t+1∏
i>d

imi = tmt

 ∑
d∈S(g)

k+1∏
i>d

im
′
i

 = tmtSD(g).

By the recursion hypothesis, this last sum is an upper bound for dAN(g) or the value of dAN(g) if m0 = 0, hence
the hypothesis is valid at this step.

– Case AI(g) +mt = t:
This setting corresponds to dAN(f) = dAN(g + h) = 1 + tmt · dAN(g), and to AI(f) = AI(g) +mt = t, then
S(f) = S(g) ∪ {t}. We consider the sum indexed by S(f):

SD(f) =

 ∑
d∈S(f)\t

t+1∏
i>d

imi

+

t+1∏
i>t

imi = tmt

 ∑
d∈S(g)

k+1∏
i>d

im
′
i

+ 1 = tmtSD(g) + 1.

By the recursion hypothesis, the last sum upper bounds dAN(g) (and equals dAN(g) when m0 = 0), hence the
hypothesis is valid at this step.

– Case AI(g) +mt > t:
In this case dAN(f) = dAN(g + h) = 1, it corresponds to AI(f) = t 6= AI(g) +mt, then S(f) = {t}. Therefore:
SD(f) =

∏t+1
i>t i

mi = 1.

In conclusion, for the three cases we proved dAN(f) ≤ SD(f) and dAN(f) = SD(f) when the constant coefficient
of f is null. It finishes the recursion step and therefore concludes the proof.
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Remark 6. For a DSM such that m0 = 0 we can give more insight on its annihilators. From the proof of Theorem 1
(lower bound part) we know that these DSM are such that AN(f) = AI(f) since we can construct nonzero annihilators
of degree AI(f). These annihilators are built by taking d ∈ S(f) and writing f as f1 + f2 where f1 consists in the
monomials of f with degree at most d, and f2 is the part with the other monomials. 1 + f1 is an annihilator of f1, and
taking one variable of each monomial of f2, the product of the complement of each of these variables is an annihilator
of f2. Then,

∏k
i>d i

mi linearly independent annihilators can be created this way. Whenm1 = 1 both 0 and 1 can fulfill
the formula AI(f) = d+

∑
d>1mi, and in this case, d = 0 and d = 1 lead to the same annihilators since the degree-

exactly-1 component function of f is a monomial function then annihilated by 1 + x1 both for d = 0 (canceling
the monomial x1 in f2) and d = 1 (annihilating f1 with its complement). For all the other cases, by construction
two different d lead to linearly independent annihilators of f . Since 0 is removed from S(f) when m1 = 1, we can
build SD(f) linearly independent annihilators with this method, then all degree-AI(f) annihilators of f are a linear
combinations of these annihilators.

4.5 More on the Algebraic Immunity of General Direct Sums.

Although the direct sum of two functions is a simple construction, we cannot determine automatically its algebraic
immunity from the parameters of its two components, nor even characterize all the cases leading to a function with
optimal algebraic immunity dn2 e. When studying in Section 4.1 the main cryptographic parameters of DSM and
XOR-THR functions, we saw that the PANF coefficients can be an efficient tool to determine more precisely the
algebraic immunity of a direct sum, as we used it to show a sufficient condition for the algebraic immunity of a direct
sum to be strictly larger than the maximum of the AI of its two components. This tool allows a step further towards a
better understanding of the algebraic immunity of direct sums (but does not allow to solve completely the problem). In
this section, we focus on the conditions leading to direct sums with optimal algebraic immunity, and using the PANF
coefficients, we exhibit direct sum constructions with optimal algebraic immunity for all n ≥ 2.

For studying the cases where an (n +m)-variable Boolean function ϕ, equal to a direct sum f + g, has optimal
algebraic immunity, three different cases need to be considered, depending on the parity of the numbers of variables
n and m of the two component functions. If both n and m are even, then because of Lemma 1 (item 4) and since
dn+m2 e = dn2 e + d

m
2 e, the only possibility for having AI(ϕ) = dn+m2 e is that both f and g have optimal AI and

AI(ϕ) = AI(f) + AI(g). If n and m have different parities, then for the same reasons, we have the same situation.
When n and m have odd parity, the situation is different, since dn+m2 e = dn2 e + d

m
2 e − 1 (in particular, if both

functions have optimal AI, then the upper bound of Lemma 1 item 4 cannot be achieved with equality). Hence there
are two possibilities for ϕ to have optimal AI in this case, either both functions have optimal AI, either one of the
functions has optimal AI and the other one has almost optimal AI (that is, differs with an optimal AI by at most 1). We
summarize these observations in the following lemma (and we subsequently give examples):

Lemma 15. Let n,m ∈ N∗ be the number of variables of f and g respectively. If the direct sum ϕ has maximal AI,
then: 

AI(f) = n
2 , AI(g) =

m
2 and AI(ϕ) = AI(f) + AI(g) if n ≡ m ≡ 0 mod 2,

AI(f) = dn2 e, AI(g) = d
m
2 e and AI(ϕ) = AI(f) + AI(g) if n 6≡ m mod 2,

AI(f) = n+(−1)a
2 , AI(g) = m+(−1)b

2 , a, b ∈ {0, 1} | a+ b ≤ 1 if n ≡ m ≡ 1 mod 2.

Some examples of direct sums having maximum algebraic immunity are given by direct sums of monomials (the
algebraic immunity of DSM is stated in Theorem 1):

– x1 + x2 + x3x4 with direct sum vector [2, 1] is the direct sum of f = x1 + x2 and g = x3x4, both of algebraic
immunity 1 since f is linear and g is a monomial function (see Property 1). It is an example with n ≡ m ≡ 0
mod 2.

– T2 = x1 + x2x3 is an example where n 6≡ m mod 2.
– x1 + x2 is an example where n ≡ m ≡ 1 mod 2, where f , g and h have optimal algebraic immunity.
– T3 = x1 + x2x3 + x4x5x6 where f = T2 is an example of a direct sum where n ≡ m ≡ 1 mod 2 and one of

the functions has almost optimal AI.
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More general families of direct sums having optimal AI can be exhibited using the PANF coefficients. For example,
Lemma 11 allows to build direct sums of optimal AI from a function optimal in an even number of variables. The
following lemma gives the AI of some direct sums where T2 is one of the two components, we will see thereafter that
it can be used to build direct sums of optimal AI from a function almost optimal in an odd number of variables.

Lemma 16. Let ϕ be the direct sum of T2 and f ∈ Bn:

If AI(f) ≥ 1 and |AN(f)− AN(f + 1)| ≥ 2 then AI(ϕ) = AI(f) + 2.

Proof. For this proof we use the PANF coefficients introduced in Definition 21. Using Lemma 10 with g = T2 we
obtain the following system of equations:

∀I ⊆ [3], hI(f + ε+
∑
J⊆I

gJ) =
∑
J(I

hJ
∑
K⊆J

gK∪(I\J),

for h an annihilator of ϕ+ ε. Triangular functions have a sparse ANF, here T2 has only two nonzero ANF coefficients:
g{1} and g{2,3}. Therefore the system can be rewritten as:

h∅(f + ε) = 0 for the subset ∅,
h{1}(f + ε+ 1) = h∅ for the subset {1},
h{i}(f + ε) = 0 for i ∈ {2, 3},
h{1,i}(f + ε+ 1) = h{i} for i ∈ {2, 3},
h{2,3}(f + ε+ 1) = h{2} + h{3} + h∅ for the subset {2, 3}
h[3](f + ε) = h{1,2} + h{1,3} + h{2,3} + h{1} for the subset {1, 2, 3}.

We show by contradiction that AI(ϕ) = AI(f) + 2 (note that it cannot be more since AI(T2) = 2 and AI(ϕ) ≤
AI(f) + AI(T2) by Lemma 1 item 4). We denote AI(f) by d; from the hypothesis of the lemma, f and f + 1 are such
that one has AN equal to d and the other one at least d+ 2. Let us assume AI(ϕ) ≤ d+ 1; this means that there exists
ε ∈ {0, 1} such that h is nonzero and for the coefficients of the system above:

∀I ⊆ [3] deg(hI) ≤ d+ 1− |I|. (15)

We will first study the case where f + ε has AN at least d+ 2, then the case AN = d.
Note that if AN(f + ε) ≥ d+2, it implies that h∅ = h{2} = h{3} = 0 since they are annihilators of f of degree at

most d+ 1 or at most d. Thereafter, all the PANF coefficients for I such that |I| = 2 are annihilators of f + ε+ 1 of
degree at most d−1, which implies their nullity. Hence, the last equation (for I = [3]) implies (h[3]+h{1})(f+ε) = 0,
which implies that (h[3]+h{1}) has degree at least d+2 or is null. Due to the degree restriction given by Equation (15),
the former case is impossible, the latter case implies h[3] = h{1}, and therefore deg(h{1}) ≤ d− 2, forcing h{1} to be
null (since it annihilates f + ε+ 1). Consequently, all coefficients are null: the unique solution is the null function.

We handle the other case: AN(f+ε) = d and AN(f+ε+1) ≥ d+2. The latter implies that (h∅+h{1}) annihilates
f + ε + 1 (using the equation relative to the subset {1}) and therefore h∅ = h{1}, with degree at most d, to satisfy
Equation 15. Similarly, for i ∈ {2, 3}, we obtain that (h{1,i}+h{i}) annihilates f + ε+1 and therefore h{1,i} = h{i}
with degree at most d − 1, forcing these coefficients to be null (since h{i} annihilates f + ε). Then, focusing on the
equation for I = {2, 3}, (h{2,3} + h∅) is also null, forcing both coefficients to be null by the same arguments. Hence,
the last coefficient h[3] is an annihilator of f + ε, and its degree is at most d− 2, implying its nullity. Again, only the
null function is solution to this system, proving the contradiction.

In the following proposition we give direct sum constructions reaching the optimal algebraic immunity for the
different possible parities of n and m. The four constructions correspond to the four cases of Lemma 15, the last case
corresponding to n and m both odd and one of the function having almost optimal AI. We exhibit concrete functions
in a corollary.
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Proposition 12. Let us denote by B(n, r, s) the set of n-variable Boolean functions f such that AI(f) = r and
|AN(f) − AN(f + 1)| = s. As usual, Bn stands for the set of n-variable Boolean functions, and we additionally
denote by B∗n this set deprived of the two constant functions.

For k ∈ N∗, the direct sums of the following pairs of functions have optimal algebraic immunity:

1. (f, g), where f ∈ B(2k, k, 1) and g ∈ B∗2 ,
2. (f, g), where f ∈ B(2k, k, 1) and g ∈ B∗1 ,
3. (f, g), where f ∈ B(2k − 1, k, 0) and g ∈ B1,
4. (f, T2), where f ∈ B(2k + 1, k, 2).

Proof. The two first cases come from applying Lemma 11 on f and g. Any non constant Boolean function in 1 or
2 variables has AI equal to 1 since only constant functions are such that AI = 0 (Property 1), and the maximal AI
for these number of variables is 1. Hence, AI(g) = 1, AI(g) ≤ AI(f), AN(f) 6= AN(f + 1) therefore we can apply
Lemma 11, giving AI(ϕ) > k where we denote by ϕ the direct sum of f and g. We obtain AI(ϕ) = k+1, the maximal
value of AI for functions in 2k + 1 or 2k + 2 variables.

In the third case, the function f has optimal algebraic immunity, and since 2k − 1 is odd, it is possible only when
AN(f) = AN(f + 1) = k. Adding a function of B1 gives k ≤ AI(ϕ) ≤ k, the upper bound coming from the maximal
AI of a 2k-variable function and the lower bound from the fourth item of Lemma 1: AI(ϕ) ≥ max(AI(f),AI(g)).
When g is not constant, this construction is an example where f and g both have optimal AI. The last case is proven
by Lemma 16. AI(f) ≥ 1 and |AN(f) − AN(f + 1)| = 2, allowing to apply the lemma, then AI(ϕ) = k + 2: the
maximum for a function in 2k + 3 variables.

Corollary 1. Let d ∈ N∗, all the following direct sums have maximal algebraic immunity:

XOR2 + Td,2d, XOR1 + Td,2d, XOR1 + Td,2d−1, and T2 + Td,2d+1.

Proof. The 4 families correspond to the examples of Proposition 12. Recall from Proposition 3 that AN(Td,n) = n−
d+1 and AN(1+Td,n) = d hence Td,2d ∈ B(2d, d, 1), Td,2d−1 ∈ B(2d− 1, d, 0) and Td,2d+1 ∈ B(2d+ 1, d, 2).
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