10 research outputs found

    Hierarchy construction schemes within the Scale set framework

    Full text link
    Segmentation algorithms based on an energy minimisation framework often depend on a scale parameter which balances a fit to data and a regularising term. Irregular pyramids are defined as a stack of graphs successively reduced. Within this framework, the scale is often defined implicitly as the height in the pyramid. However, each level of an irregular pyramid can not usually be readily associated to the global optimum of an energy or a global criterion on the base level graph. This last drawback is addressed by the scale set framework designed by Guigues. The methods designed by this author allow to build a hierarchy and to design cuts within this hierarchy which globally minimise an energy. This paper studies the influence of the construction scheme of the initial hierarchy on the resulting optimal cuts. We propose one sequential and one parallel method with two variations within both. Our sequential methods provide partitions near the global optima while parallel methods require less execution times than the sequential method of Guigues even on sequential machines

    Image Matching based on Curvilinear Regions

    Get PDF

    Constructing Stochastic Pyramids by MIDES - Maximal Independent Directed Edge Set

    No full text
    We present a new method (MIDES) to determine contraction kernels for the construction of graph pyramids. Experimentally the new method has a reduction factor higher than 2:0. Thus, the new method yields a higher reduction factor than the stochastic decimation algorithm (MIS) and maximal independent edge set (MIES), in all tests. This means the number of vertices in the subgraph induced by any set of contractible edges is reduced to half or less by a single parallel contraction. The lower bound of the reduction factor becomes crucial with large images
    corecore