9 research outputs found

    On a New, Efficient Framework for Falsifiable Non-interactive Zero-Knowledge Arguments

    Get PDF
    Et kunnskapslĂžst bevis er en protokoll mellom en bevisfĂžrer og en attestant. BevisfĂžreren har som mĂ„l Ă„ overbevise attestanten om at visse utsagn er korrekte, som besittelse av kortnummeret til et gyldig kredittkort, uten Ă„ avslĂžre noen private opplysninger, som for eksempel kortnummeret selv. I mange anvendelser er det Ăžnskelig Ă„ bruke IIK-bevis (Ikke-interaktive kunnskapslĂžse bevis), der bevisfĂžreren produserer kun en enkelt melding som kan bekreftes av mange attestanter. En ulempe er at sikre IIK-bevis for ikke-trivielle sprĂ„k kun kan eksistere ved tilstedevĂŠrelsen av en pĂ„litelig tredjepart som beregner en felles referansestreng som blir gjort tilgjengelig for bĂ„de bevisfĂžreren og attestanten. NĂ„r ingen slik part eksisterer liter man av og til pĂ„ ikke-interaktiv vitne-uskillbarhet, en svakere form for personvern. Studiet av effektive og sikre IIK-bevis er en kritisk del av kryptografi som har blomstret opp i det siste grunnet anvendelser i blokkjeder. I den fĂžrste artikkelen konstruerer vi et nytt IIK-bevis for sprĂ„kene som bestĂ„r av alle felles nullpunkter for en endelig mengde polynomer over en endelig kropp. Vi demonstrerer nytteverdien av beviset ved flerfoldige eksempler pĂ„ anvendelser. SĂŠrlig verdt Ă„ merke seg er at det er mulig Ă„ gĂ„ nesten automatisk fra en beskrivelse av et sprĂ„k pĂ„ et hĂžyt nivĂ„ til definisjonen av IIK-beviset, som minsker behovet for dedikert kryptografisk ekspertise. I den andre artikkelen konstruerer vi et IIV-bevis ved Ă„ bruke en ny kompilator. Vi utforsker begrepet Kunnskapslydighet (et sterkere sikkerhetsbegrep enn lydighet) for noen konstruksjoner av IIK-bevis. I den tredje artikkelen utvider vi arbeidet fra den fĂžrste artikkelen ved Ă„ konstruere et nytt IIK-bevis for mengde-medlemskap som lar oss bevise at et element ligger, eller ikke ligger, i den gitte mengden. Flere nye konstruksjoner har bedre effektivitet sammenlignet med allerede kjente konstruksjoner.A zero-knowledge proof is a protocol between a prover, and a verifier. The prover aims to convince the verifier of the truth of some statement, such as possessing credentials for a valid credit card, without revealing any private information, such as the credentials themselves. In many applications, it is desirable to use NIZKs (Non-Interactive Zero Knowledge) proofs, where the prover sends outputs only a single message that can be verified by many verifiers. As a drawback, secure NIZKs for non-trivial languages can only exist in the presence of a trusted third party that computes a common reference string and makes it available to both the prover and verifier. When no such party exists, one sometimes relies on non interactive witness indistinguishability (NIWI), a weaker notion of privacy. The study of efficient and secure NIZKs is a crucial part of cryptography that has been thriving recently due to blockchain applications. In the first paper, we construct a new NIZK for the language of common zeros of a finite set of polynomials over a finite field. We demonstrate its usefulness by giving a large number of example applications. Notably, it is possible to go from a high-level language description to the definition of the NIZK almost automatically, lessening the need for dedicated cryptographic expertise. In the second paper, we construct a NIWI using a new compiler. We explore the notion of Knowledge Soundness (a security notion stronger than soundness) of some NIZK constructions. In the third paper, we extended the first paper’s work by constructing a new set (non-)membership NIZK that allows us to prove that an element belongs or does not belong to the given set. Many new constructions have better efficiency compared to already-known constructions.Doktorgradsavhandlin

    Hash Functions Monolith for ZK Applications: May the Speed of SHA-3 be With You

    Get PDF
    The rising popularity of computational integrity protocols has led to an increased focus on efficient domain-specific hash functions, which are one of the core components in these use cases. For example, they are used for polynomial commitments or membership proofs in the context of Merkle trees. Indeed, in modern proof systems the computation of hash functions is a large part of the entire proof\u27s complexity. In the recent years, authors of these hash functions have focused on components which are verifiable with low-degree constraints. This led to constructions like Poseidon, Rescue, Griffin, Reinforced Concrete, and Tip5, all of which showed significant improvements compared to classical hash functions such as SHA-3 when used inside the proof systems. In this paper, we focus on lookup-based computations, a specific component which allows to verify that a particular witness is contained in a lookup table. We work over 31-bit and 64-bit finite fields Fp\mathbb F_p, both of which are used in various modern proof systems today and allow for fast implementations. We propose a new 2-to-1 compression function and a SAFE hash function, instantiated by the Monolith permutation. The permutation is significantly more efficient than its competitors, both in terms of circuit friendliness and plain performance, which has become one of the main bottlenecks in various use cases. This includes Reinforced Concrete and Tip5, the first two hash functions using lookup computations internally. Moreover, in Monolith we instantiate the lookup tables as functions defined over F2\mathbb F_2 while ensuring that the outputs are still elements in Fp\mathbb F_p. Contrary to Reinforced Concrete and Tip5, this approach allows efficient constant-time plain implementations which mitigates the risk of side-channel attacks potentially affecting competing lookup-based designs. Concretely, our constant time 2-to-1 compression function is faster than a constant time version of Poseidon2 by a factor of 7. Finally, it is also the first arithmetization-oriented function with a plain performance comparable to SHA3-256, essentially closing the performance gap between circuit-friendly hash functions and traditional ones

    Lift-and-Shift: Obtaining Simulation Extractable Subversion and Updatable SNARKs Generically

    Get PDF
    Zero-knowledge proofs and in particular succinct non-interactive zero-knowledge proofs (so called zk-SNARKs) are getting increasingly used in real-world applications, with cryptocurrencies being the prime example. Simulation extractability (SE) is a strong security notion of zk-SNARKs which informally ensures non-malleability of proofs. This property is acknowledged as being highly important by leading companies in this field such as Zcash and supported by various attacks against the malleability of cryptographic primitives in the past. Another problematic issue for the practical use of zk-SNARKs is the requirement of a fully trusted setup, as especially for large-scale decentralized applications finding a trusted party that runs the setup is practically impossible. Quite recently, the study of approaches to relax or even remove the trust in the setup procedure, and in particular subversion as well as updatable zk-SNARKs (with latter being the most promising approach), has been initiated and received considerable attention since then. Unfortunately, so far SE-SNARKs with aforementioned properties are only constructed in an ad-hoc manner and no generic techniques are available. In this paper we are interested in such generic techniques and therefore firstly revisit the only available lifting technique due to Kosba et al. (called COCO) to generically obtain SE-SNARKs. By exploring the design space of many recently proposed SNARK- and STARK-friendly symmetric-key primitives we thereby achieve significant improvements in the prover computation and proof size. Unfortunately, the COCO framework as well as our improved version (called OCOCO) is not compatible with updatable SNARKs. Consequently, we propose a novel generic lifting transformation called Lamassu. It is built using different underlying ideas compared to COCO (and OCOCO). In contrast to COCO it only requires key-homomorphic signatures (which allow to shift keys) covering well studied schemes such as Schnorr or ECDSA. This makes Lamassu highly interesting, as by using the novel concept of so called updatable signatures, which we introduce in this paper, we can prove that Lamassu preserves the subversion and in particular updatable properties of the underlying zk-SNARK. This makes Lamassu the first technique to also generically obtain SE subversion and updatable SNARKs. As its performance compares favorably to OCOCO, Lamassu is an attractive alternative that in contrast to OCOCO is only based on well established cryptographic assumptions

    Q(sqrt(-3))-Integral Points on a Mordell Curve

    Get PDF
    We use an extension of quadratic Chabauty to number fields,recently developed by the author with Balakrishnan, Besser and M ̈uller,combined with a sieving technique, to determine the integral points overQ(√−3) on the Mordell curve y2 = x3 − 4

    Non-Linear Lattice

    Get PDF
    The development of mathematical techniques, combined with new possibilities of computational simulation, have greatly broadened the study of non-linear lattices, a theme among the most refined and interdisciplinary-oriented in the field of mathematical physics. This Special Issue mainly focuses on state-of-the-art advancements concerning the many facets of non-linear lattices, from the theoretical ones to more applied ones. The non-linear and discrete systems play a key role in all ranges of physical experience, from macrophenomena to condensed matter, up to some models of space discrete space-time

    LIPIcs, Volume 258, SoCG 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 258, SoCG 2023, Complete Volum

    Advances in Robot Kinematics : Proceedings of the 15th international conference on Advances in Robot Kinematics

    Get PDF
    International audienceThe motion of mechanisms, kinematics, is one of the most fundamental aspect of robot design, analysis and control but is also relevant to other scientific domains such as biome- chanics, molecular biology, . . . . The series of books on Advances in Robot Kinematics (ARK) report the latest achievement in this field. ARK has a long history as the first book was published in 1991 and since then new issues have been published every 2 years. Each book is the follow-up of a single-track symposium in which the participants exchange their results and opinions in a meeting that bring together the best of world’s researchers and scientists together with young students. Since 1992 the ARK symposia have come under the patronage of the International Federation for the Promotion of Machine Science-IFToMM.This book is the 13th in the series and is the result of peer-review process intended to select the newest and most original achievements in this field. For the first time the articles of this symposium will be published in a green open-access archive to favor free dissemination of the results. However the book will also be o↔ered as a on-demand printed book.The papers proposed in this book show that robot kinematics is an exciting domain with an immense number of research challenges that go well beyond the field of robotics.The last symposium related with this book was organized by the French National Re- search Institute in Computer Science and Control Theory (INRIA) in Grasse, France

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum
    corecore