
Hash Functions Monolith for ZK Applications:
May the Speed of SHA-3 be With You

Lorenzo Grassi2,5, Dmitry Khovratovich3,8, Reinhard Lüftenegger1, Christian Rechberger1,
Markus Schofnegger4, and Roman Walch1,6,7

1 Graz University of Technology (Austria)
2 Ponos Technology (Switzerland)

3 Ethereum Foundation (Luxembourg)
4 Horizen Labs (United States)

5 Ruhr University Bochum (Germany)
6 Know-Center (Austria)

7 TACEO (Austria)
8 ABDK Consulting (Estonia)

Abstract. The rising popularity of computational integrity protocols has led to an increased
focus on efficient domain-specific hash functions, which are one of the core components in
these use cases. For example, they are used for polynomial commitments or membership
proofs in the context of Merkle trees. Indeed, in modern proof systems the computation of
hash functions is a large part of the entire proof’s complexity.
In the recent years, authors of these hash functions have focused on components which
are verifiable with low-degree constraints. This led to constructions like Poseidon, Rescue,
Griffin, Reinforced Concrete, and Tip5, all of which showed significant improvements
compared to classical hash functions such as SHA-3 when used inside the proof systems.
In this paper, we focus on lookup-based computations, a specific component which allows
to verify that a particular witness is contained in a lookup table. We work over 31-bit and
64-bit finite fields Fp, both of which are used in various modern proof systems today and
allow for fast implementations. We propose a new 2-to-1 compression function and a SAFE
hash function, instantiated by the Monolith permutation. The permutation is significantly
more efficient than its competitors, both in terms of circuit friendliness and plain perfor-
mance, which has become one of the main bottlenecks in various use cases. This includes
Reinforced Concrete and Tip5, the first two hash functions using lookup computations in-
ternally. Moreover, in Monolith we instantiate the lookup tables as functions defined over F2

while ensuring that the outputs are still elements in Fp. Contrary to Reinforced Concrete
and Tip5, this approach allows efficient constant-time plain implementations which mitigates
the risk of side-channel attacks potentially affecting competing lookup-based designs. Con-
cretely, our constant time 2-to-1 compression function is faster than a constant time version
of Poseidon2 by a factor of 7. Finally, it is also the first arithmetization-oriented function
with a plain performance comparable to SHA3-256, essentially closing the performance gap
between circuit-friendly hash functions and traditional ones.

Table of Contents

1 Introduction . 3
1.1 Hash Functions in Zero-Knowledge Frameworks . 3
1.2 First Lookup-Friendly Designs . 3
1.3 Performance Gains in Smaller Fields . 4
1.4 Shortcomings of Reinforced Concrete and Tip5 . 4
1.5 Monolith: High-Speed, Constant-Time-Friendly, ZK-Oriented Hashing 4

2 Specification of Monolith . 6
2.1 Domain . 6
2.2 Modes of Operation . 6
2.3 Permutation Structure . 7
2.4 Bricks . 7
2.5 Concrete . 8
2.6 Bars . 8
2.7 Round Constant Generation . 9
2.8 Number of Rounds . 10

3 Design Rationale . 10
3.1 Starting Point: Reinforced Concrete . 10
3.2 Structure of a Round . 10
3.3 The Bricks Layer . 11
3.4 The Concrete Layer . 11
3.5 The Bars Layer . 12

4 Analysis of Bar . 12
4.1 Decomposition D . 13
4.2 S-Boxes S . 13
4.3 Composition C . 14
4.4 Well-Definition and Bijectivity . 14

5 Security Analysis . 15
5.1 Differential Cryptanalysis . 15
5.2 Other Statistical Attacks . 17
5.3 Algebraic Analysis: Degree and Density of the Bars Polynomials 18
5.4 The CICO Problem for Keyless Algebraic Attacks . 21
5.5 Not-Applicable Attacks . 24

6 Performance Evaluation . 24
6.1 Plain Performance . 24
6.2 Performance in Proof Systems . 26

A Fast Reduction for Primes of the Form ϕ2 − ϕ+ 1 and 2ρ − 1 . 33
A.1 Fast Reduction for Primes of the Form ϕ2 − ϕ+ 1 . 33
A.2 Fast Reduction for Primes of the Form 2ρ − 1 . 33

1 Introduction

1.1 Hash Functions in Zero-Knowledge Frameworks

Zero-knowledge use cases and particularly the area of computational integrity combined with zero
knowledge have seen a rise in popularity in the last couple of years. Many new protocols and
low-level primitives (such as optimized hash functions) have been designed and published recently
[GWC19; ZGK+22; GHR+22; GKL+22], in an attempt to increase the performance in this set-
ting. These improvements have especially been pushed by modern blockchain implementations,
where the validity of a specific state can be proven significantly more efficiently when employing
zero-knowledge proofs (see, e.g., [SC21]). With the emergence of parallel proving techniques and re-
cursive SNARKs (incrementally verifiable computation, or IVC) it has become possible to efficiently
prove the integrity of complex computations. Proofs with 227 steps have been recorded1 whereas
Ethereum Foundation is planning to prove up to 240 steps in its VDF hardware implementation
[KMT22].

With VC programs (also called circuits) being that large and containing cryptographic proto-
cols, more and more programs contain hash functions as subroutines. Hash functions and their un-
derlying permutations are not only components for plain hashing, but also of commitment schemes,
authenticated encryption, Fiat–Shamir conversions, and other concepts. A notable case is the use
of a hash function to build a Merkle-based commitment [BBH+19] as part of a recursive SNARK,
which is then opened at the next step of the recursion to prove correctness [COS20]. A hash func-
tion in this case must be both fast enough in plain to efficiently compute a Merkle tree and small
enough to be part of a circuit defined over some prime field.

All these use cases can be accomplished with classical and well-analyzed hash functions such
as SHA-3 [Nat15]. However, the performance of the underlying proving schemes heavily depends
on certain properties which are not fulfilled by them. This performance gap led to many new
designs, dubbed arithmetization-oriented or circuit-friendly hash functions due to their efficient
arithmetic representations. While some of them focus on round functions which are exclusively built
from low-degree components (Poseidon [GKR+21], Poseidon2 [GKS23], Neptune [GOP+22],
MiMC/GMiMC-like functions [AGR+16; AGP+19]), others focus on high-degree round functions
which allow for equivalent low-degree representations in the proof system (Friday [AD18], Rescue
[AAE+20; SAD20], Griffin [GHR+22], Anemoi [BBC+22]).

1.2 First Lookup-Friendly Designs

Poseidon and its relatives are significantly more efficient in proof systems compared to, e.g., SHA-
3. However, their plain performance is usually several orders of magnitude slower. This problem
is addressed with a new line of research focusing on lookup-based hash functions. These are built
from high-degree components which can efficiently be implemented as a lookup table, significantly
improving the plain performance. While this may lead to a large number of constraints in some
proof systems, the performance in proof systems supporting lookup arguments [GW20] is still
on par with other arithmetization-oriented hash functions. Examples for these new designs are
Reinforced Concrete [GKL+22] and the recent Tip5 [SLS+23].

The round functions of both Reinforced Concrete and Tip5 generally follow a classical struc-
ture, containing an affine layer (which in both cases is a simple matrix multiplication followed
by a round constant addition) and a nonlinear layer. The latter is instantiated with the Horst
approach [GHR+22] in the case of Reinforced Concrete. In Tip5, one part of the linear layer
consists of monomial power functions x 7→ xd for a small d, while the other part (applied to four
state elements) consists of high-degree functions using lookup tables internally.

Reinforced Concrete was the first circuit-friendly hash function specifically designed to in-
crease the plain performance by using lookup arguments in the proofs. Its security analysis involves
the novel component Bars, which adds a significant amount of algebraic complexity by essentially
changing the domain over which the computation takes place. This complex structure allows for
strong arguments against algebraic attacks, comparable to those made for AES.

1 https://research.protocol.ai/sites/snarks/

3

https://research.protocol.ai/sites/snarks/

1.3 Performance Gains in Smaller Fields

The domain over which a verifiable computation is defined is fully determined by the proof system.
The zero-knowledge proof systems such as Groth16 [Gro16] and Plonk [GWC19] rely on pairings
and their computation domains are necessarily scalar fields of pairing-secure elliptic curves. These
scalar fields are about 256 bits large for providing 128 bits of security. In contrast, proof systems
relying on FRI commitment schemes, though producing larger proofs, can operate on smaller fields.
Using smaller prime fields has several advantages in the FRI setting. For example, the trace elements
become smaller, leading to a slimmer representation overall. Moreover, while FFT computations
take the same amount of operations for traces of the same length regardless of the field size, they
can be evaluated faster when smaller fields with more efficient arithmetic operations are used.
Examples are fields based on prime numbers 264 − 232 + 1 and 231 − 1. Both of them allow for
efficient modular reductions (e.g., see Appendix A) and have been chosen in various recent proving
frameworks such as Plonky2 [Pol22a], its successor Plonky3 [Pol23], and Risc0 [RIS23]. There are
also various works in recent literature discussing the use of smaller prime fields in this context
[HLN23; Hab23].

1.4 Shortcomings of Reinforced Concrete and Tip5

Both designs have various notable shortcomings.

– Performance: There is still a noticeable performance gap to SHA-3 (Table 5). Recursive FRI-
based ZK schemes such as Fractal [COS20] need the same hash function to constitute a Merkle
tree and to be proven in circuits. As a result, the generation of Merkle tree commitments takes
up to half of the overall time required for a proof [Pol22b]. Therefore, improving the plain
performance of hash functions is a promising optimization target.

– Side Channels: The usage of lookup tables is a well known source of side channel leakage.
Whenever a secret information is processed, an adversary may recover a large portion of it
from timing differences of lookups into memory or caches. These works are well known since
at least two decades in the context of encryption [Pag02; Ber05; OST06], and have recently
applied to zero-knowledge proof systems [TBP20]. As tables in Reinforced Concrete and
Tip5 are rather big, it is non-trivial to have a constant-time implementation with reasonable
overhead. The natural ways to convert a table to a polynomial or a bitsliced implementation
result in a large amount of multiplications and thus significantly worse performance. This also
implies that implementing such a function in a legacy proof system with no lookups would
result in a significant slowdown.

– Decomposition: In order to apply lookup-based functions over a fewer number of bits, the
original (larger) field element is usually split into smaller elements from a different field. This
step is often called decomposition. Specifically for Reinforced Concrete, the decomposition
of a field element into smaller table inputs requires a chain of modular reductions into smaller
prime fields. As a result, it is inherently slow and a major bottleneck in the computation.

1.5 Monolith: High-Speed, Constant-Time-Friendly, ZK-Oriented Hashing

Our main contribution is Monolith, a family permutations which are both efficient in plain and
inside of circuits and can be turned into hash functions and other permutation-based schemes. We
first present the key ideas behind the new design and then explain how we build the components
of Monolith using these ideas.

Main Monolith’s Components: Combination of New Ideas and Well-Known Ones. We
take inspiration from the components in Reinforced Concrete and Tip5 and augment them with
novel techniques to address the shortcomings from the previous section. Note that the small prime
field, while being advantageous for arithmetic performance, requires a large number of words in the
state and thus creates performance bottlenecks in diffusion layers. Our answers to those challenges
are as follows.

4

– Low-Degree Nonlinear Functions: Instead of using components such as x 7→ xd for a small
d > 2, we use only quadratic mappings in the nonlinear layers. This reduces the number of
constraints in the circuit and at the same time requires fewer modular reductions on a CPU.

– Lookup-Friendly and Constant-Time-Friendly S-Boxes: We define our lookup table over a bi-
nary extension field of sizes 7 and 8 bits, instantiated by Daemen’s χ function or similar ones
[Dae95]. These can be implemented using fast vector instructions and allow for the parallel
evaluation of multiple S-boxes.

– Flexible Design: While we target specific prime fields and security levels for the ease of imple-
mentation and analysis, all our components and their analysis are mostly independent of the
underlying prime field and scale both to bigger and smaller fields.

– Special Matrices for the Linear Layer: The large state requires matrices of size up to 24 ×
24, where the quadratic cost of matrix multiplication is significant. We reuse circulant MDS
matrices from Tip5 and the Winterfell library, which allow for fast multiplications using NTT.2

Circuit-Friendly Permutations for Small Primes. On the high level, the new permutations
follow the design of Reinforced Concrete and to some extent Tip5, which themselves are built
upon the well-known SPN paradigm. Our scheme consists of a few rounds, each using the following
three components.

– The first one is Bricks (Section 2.4), which uses low-degree nonlinear functions and is built on
a Feistel Type-3 construction [ZMI89]. It consists of square mappings and provides resistance
against statistical attacks such as differential ones.

– The second component is Bars (Section 2.6), where field elements are decomposed into smaller
chunks and χ-based S-boxes are applied to them. We prove that each such Bar operation has
a high degree and provide a security analysis against algebraic attacks. From our results, it is
sufficient to apply Bar only to a few field elements in each round.

– Finally, the third component is Concrete (Section 2.5), which is the multiplication with a
circulant MDS matrix. It provides diffusion and is necessary to gain security against statistical
attacks.

The combination of these three components in each round contributes to the security against
statistical and algebraic attacks while allowing for an efficient implementation. Our initial analysis
suggests the possibility to set up attacks on up to 4 rounds of Monolith. Since improvements are
expected (we encourage third-party cryptanalysis), we set the number of rounds uniformly to 6.

Performance Evaluation. We give an extensive comparison between our new proposal and its
competitors in Section 6. Our benchmarks confirm that the plain performance of Monolith in
software is comparable to SHA-3, which makes it the first circuit-friendly compression function
achieving this goal. At the same time, Monolith is efficient in combination with zero-knowledge
proof systems. In contrast to Reinforced Concrete and Tip5, Monolith also has the crucial
advantage that it allows for a constant-time implementation without significant performance losses
(see Fig. 1), and it can also be reasonably used in proof systems without lookup arguments.

Further, compared to Tip5, Monolith is around twice as fast and gives the user more freedom
regarding the choice of the prime number. Indeed, it can even be used with prime fields as low as 31
bits, which is a setting recently considered in the literature and various proving frameworks due to
advantageous implementation characteristics. Moreover, compared to the widely used Poseidon
permutation, Monolith shows a plain performance improvement by a factor of around 15. Finally,
Monolith allows for an efficient circuit implementation, since it can be represented by a low number
of degree-2 constraints.

Security Analysis Summary. We have conducted extensive analysis of our design in the context
of various attacks (Section 5). As some of the components or combinations are new, our analysis
contains several non-trivial ideas and may be of separate interest to cryptanalysts and designers.
Here are several insights.
2 https://github.com/facebook/winterfell/

5

https://github.com/facebook/winterfell/

Mo
no
li
th

-64

Po
se
id
on

Po
se
id
on

2

Re
in
fo
rc
ed

Co
nc
re
te

Tip5

SH
A3-2

56

SH
A-25

6

0

500

1,000

1,500

2,000

ru
nt

im
e

[n
s]

Time is input-dependent
Time is constant

Fig. 1. Runtime comparison of different hash functions. The benchmarks are from Table 5 and Table 6 and
the numbers for Monolith-64, Poseidon, and Poseidon2 are taken for the 64-bit prime field and a state
size of t = 8. (We acknowledge that the comparison is between 2-to-1 compression functions and sponge
hash functions.)

– In the spirit of the wide trail strategy [DR02], we prove tight bounds for the number of active
squarings in differential characteristics for the Type-3 Feistel-MDS combination in Section 5.1.

– We study rebound attacks in Section 5.2, a research direction that is often missed in the ZK
hash function design. We demonstrate practical attacks on a reduced version of Monolith and
argue the security of the full version.

– Using differential and linear properties of Bar, we prove lower bounds on its algebraic degree
in Section 5.3, which imply resistance against algebraic attacks after a few rounds.

– While arguing the security of Monolith against algebraic attacks, we study the complexity of
Gröbner basis attacks on toy versions of Monolith with smaller primes but still realistic Bars
layers in Section 5.4.

2 Specification of Monolith

In the following, we define the symmetric primitives Monolith-64 and Monolith-31. Monolith-64 is
defined over pGoldilocks = 264−232+1, whereas Monolith-31 is defined over pMersenne = 231−1. The
main difference lies in the definition of the Bars layer. For this reason, we first describe Monolith-
64 and Monolith-31 in a generic matter, using the “Monolith” notation, and we then give the
specification for our schemes.

2.1 Domain

Our main two instances work over Ft
p, where p is either pGoldilocks = 264−232+1 or pMersenne = 231−

1, and 8 ≤ t ≤ 24. The instances using pGoldilocks provide a security level of 2 log2(pGoldilocks) ≈ 128
bits and the instances using pMersenne provide a security level of 4 log2(pMersenne) ≈ 124 bits.

2.2 Modes of Operation

We suggest two modes of operation for Monolith, an arbitrary-length hashing one and a fixed-size
compression one. The former is useful for general-purpose hashing or processing the leaf data in
a Merkle tree, whereas the latter is useful for fixed compression ratios (such as e.g. 2-to-1) in the
upper levels of a Merkle tree construction.

6

SAFE-Based Schemes. A Monolith permutation can be plugged into the SAFE sponge frame-
work [AKM+22] and implement variable-length hash functions, commitment schemes, authenti-
cated encryption, stream ciphers, and other schemes. The SAFE framework is an extension of
earlier duplex and sponge constructions [BDP+07; BDP+08], where the permutation state is split
into an outer part with a rate of r elements and an inner part with a capacity of c elements. A cru-
cial difference to a classical sponge framework (without any modifications) is that SAFE handles
domain separation automatically by initializing the capacity part with a specific value derived from
the input-output pattern of the scheme. In particular, the sequence of the input and the output
lengths is used to separate the different applications of the underlying permutation.

For a security level of κ bits, we require that c ≥
⌈

2κ
log2(p)

⌉
and that the output of the hash

function consists of at least 2κ/ log2(p) elements. For example, for a 64-bit prime field, we suggest
r = 8 and c = 4 (hence, a state size of t = 8 + 4 = 12) to obtain a security level of 128 bits,
while requiring only a single permutation call to process two 256-bit inputs (each one requiring
four elements in the rate part).

2-to-1 Compression Function. We also suggest a fixed-length t-to-n compression function.
Concretely, it takes t Fp elements as input and produces n Fp elements as output. It is defined as

x ∈ Ft
p 7→ Z(x) := Trn(P(x) + x) ∈ Fn

p ,

where Trn yields the first n elements of the inputs. A compression function can be used in Merkle
trees with various arities and has recently also been applied in similar constructions, including
Anemoi [BBC+22], Griffin [GHR+22], and Poseidon2 [GKS23].

For a security level of κ bits and assuming a pseudo-random (known) permutation for P, Z is
a secure compression function with respect to collisions and (second-)preimages if pn ≥ 22κ (due
to the birthday bound attack) and pt−n ≥ 2κ (in order to avoid a guessing attack on the truncated
part). For the goal of this paper, we limit ourselves to the case t = 2n. Taking the example from
above with a 64-bit prime field, we suggest t = 8 and n = 4 to obtain a security level of 128 bits,
while requiring only a single permutation call to process two 256-bit inputs (each one requiring
four elements of the input).

2.3 Permutation Structure

The Monolith permutation is defined as

Monolith(·) = Rr ◦ · · · ◦ R2 ◦ R1 ◦ R′(·),

where r is the number of rounds and Ri,R′ over Ft
p are defined as

R′(·) = Concrete(·) ,
Ri(·) = c(i) + Concrete ◦ Bricks ◦ Bars(·), ∀i ∈ {1, 2, . . . , r} ,

where Concrete is a linear operation, Bars and Bricks are nonlinear operations over Ft
p and

c(1), . . . , c(r−1) ∈ Ft
p are pseudo-random round constant. The last layer of round constants c(r)

is set to 0. Note that a single Concrete operation is applied before the first round. A graphical
overview of one round of the construction is shown in Fig. 2.

2.4 Bricks

The component Bricks over Ft
p is defined as a Feistel Type-3 construction [ZMI89] (without shift)

instantiated with a square map x 7→ x2, i.e.,

Bricks(x1, x2, . . . , xt) := (x1, x2 + x21, x3 + x22, . . . , xt + x2t−1) ,

where we denote by xi the i-th entry of the vector x ∈ Ft
p.

7

x1

y1

x2

y2

· · ·

· · ·

xt

yt

S S · · · S S S · · · S · · ·Bars

x2 x2 x2· · ·Bricks

M × (x1, x2, . . . , xt)
T + (c1, c2, . . . , ct)

TConcrete,
constants

Fig. 2. One round of the Monolith construction, where xi, yi ∈ Fp.

2.5 Concrete

The Concrete layer serves as a linear layer to achieve strong diffusion required for statistical
security. In particular, Concrete is defined as

Concrete(x1, x2, . . . , xt) :=M × (x1, x2, . . . , xt)
T ,

where M ∈ Ft×t
p is an MDS matrix. Since the multiplication with an MDS matrix is in general

expensive and requires a number of operations in O(t2), we use matrices with special properties.

– Goldilocks Prime pGoldilocks. We use the circulant matrix circ(23, 8, 13, 10, 7, 6, 21, 8) for t = 8
and the matrix circ(7, 23, 8, 26, 13, 10, 9, 7, 6, 22, 21, 8) for t = 12, as found and implemented by
the Winterfell STARK library.3 These matrices have the unique advantage of having small
elements in the time and frequency domain (i.e., before and after DFT application), allowing
for especially fast plain performance.

– Mersenne Prime pMersenne. We instantiate M via the matrix used in Tip5 [SLS+23] for
t = 16, since it is also MDS for pMersenne.4 Since we are not aware of any fast MDS matrix for
t = 24, we suggest to use a random Cauchy matrix [YMT97] in the concrete layer at the cost
of a slower plain performance. The problem of finding a fast MDS matrix for this larger state
size (which would significantly increase the plain performance of Monolith − 31 with t = 24)
is left as future work.

2.6 Bars

The Bars layer is defined as

Bars(x1, x2, . . . , xt) := Bar(x1) || Bar(x2) || · · · || Bar(xu) || xu+1 || · · · || xt (1)

for a t-element state, where u ∈ {1, . . . , t} denotes the number of Bar applications in a single
round. Each Bar application is defined as

Bar(x) = C ◦ S ◦ D(x), (2)

where

– the decomposition D : Fp → Fn1
2 × Fn2

2 × · · · × Fnm
2 reads the original field element x ∈ Fp as

an integer and splits it into m chunks y1, y2, . . . , ym,
– S is the parallel application of m ≥ 2 bijective S-boxes over Fni

2 such that

S(y1, y2, . . . , ym) = S1(y1) || S2(y2) || · · · || Sm(ym), (3)
3 https://github.com/facebook/winterfell/tree/main/crypto/src/hash/mds
4 https://github.com/Neptune-Crypto/twenty-first/blob/master/twenty-first/src/shared_
math/tip5.rs

8

https://github.com/facebook/winterfell/tree/main/crypto/src/hash/mds
https://github.com/Neptune-Crypto/twenty-first/blob/master/twenty-first/src/shared_math/tip5.rs
https://github.com/Neptune-Crypto/twenty-first/blob/master/twenty-first/src/shared_math/tip5.rs

– the composition C is the inverse operation of the decomposition.

We now describe these components individually for both Monolith-64 and Monolith-31. For a
more generic description of Bars and Bar and for the reasoning behind the building blocks we refer
to Section 4.

Bars for Monolith-64. In Eq. (1) we set t ∈ {8, 12} (compression or sponge use case, resp.) and
we set u = 4 (i.e., 4 Bar operations are applied in each round).

Decomposition D and Composition C. We use a decomposition into 8-bit values s.t.

x = 256y8 + 248y7 + 240y6 + 232y5 + 224y4 + 216y3 + 28y2 + y1.

The composition C is the inverse operation of the decomposition.

S-Boxes S. In Eq. (3) we set m = 8. Then all Si over F8
2 are identical as (see [Dae95, Table A.1])

Si(y) =
(
y ⊕

(
(y ≪ 1)⊙ (y ≪ 2)⊙ (y ≪ 3)

))
≪ 1, (4)

where ≪ is a circular shift (here we interpret an integer as a big-endian 8-bit string) and y is the
bitwise negation.

Bars for Monolith-31. In Eq. (1) we set t ∈ {16, 24} (compression or sponge use case, resp.) and
we set u = 8 (i.e., 8 Bar operations are applied in each round).

Decomposition D and Composition C. The decomposition D is given by

x = 224y′4 + 216y3 + 28y2 + y1,

where y′4 ∈ Z7
2 and y3, y2, y1 ∈ Z8

2. The composition C is the inverse operation of the decomposition.

S-Boxes S. In Eq. (3) we set m = 4 using {8, 7}-bit lookup tables. Then the S-boxes are defined
as (see [Dae95, Table A.1])

∀i ∈ {1, 2, . . . ,m− 1} : Si(y) =
(
y ⊕

(
(y ≪ 1)⊙ (y ≪ 2)⊙ (y ≪ 3)

))
≪ 1,

Sm(y′) =
(
y′ ⊕

(
(y′ ≪ 1)⊙ (y′ ≪ 2)

))
≪ 1,

(5)

where y ∈ F8
2 and y′ ∈ F7

2.

2.7 Round Constant Generation

The round constants c(i)1 , c
(i)
2 , . . . , c

(i)
t for the i-th round are generated using the well-known ap-

proach of seeding a pseudo-random number generator and reading its output stream. In particular,
we use SHAKE-128 with rejection sampling, i.e., we discard elements which are not in Fp. SHAKE-
128, thereby, is seeded with the initial seed “Monolith” followed by the state size t and number
of rounds r, each represented as one byte, the prime p represented by ⌈log2(p)/8⌉ bytes in little
endian representation, and the decomposition sizes in the bar layer, where each si is represented
as one byte. Thus, the seed is

b’Monolith\x08\x06\x01\x00\x00\x00\xff\xff\xff\xff\x08\x08\x08\x08\x08\x08\x08\x08’

for Monolith-64 with t = 8, r = 6 and

b’Monolith\x10\x06\xff\xff\xff\x7f\x08\x08\x08\x07’

for Monolith-31 with t = 16, r = 6.

9

Table 1. Parameters for Monolith.

Name p Security (κ bits) Rounds r Width t # Bar u
Compression Sponge

Monolith-64 264 − 232 + 1 128 6 8 12 4
Monolith-31 231 − 1 124 6 16 24 8

2.8 Number of Rounds

In Table 1, we propose to use r = 6 rounds for Monolith-64 and Monolith-31, which comes with
security claims of 2 log2(pGoldilocks) ≈ 128 bits and 4 log2(pMersenne) ≈ 124 bits, respectively. These
numbers are conservatively chosen based on the security analysis proposed in Section 5. We note
that we do not use the Bars layer in the analysis against statistical attacks, and we do not use the
Bricks layer to argue algebraic security. Consequently, these layers act as an additional security
margin of the design.

3 Design Rationale

We carefully chose the components Bricks, Concrete, and Bars in order to provide specific prop-
erties outlined below. In particular, we focused on the best plain performance while not impacting
the efficiency in the proof systems.

3.1 Starting Point: Reinforced Concrete

Proposed in 2022 [GKL+22], Reinforced Concrete is arguably the first lookup-based circuit-
friendly hash function. It has shown that the performance advantage compared to other approaches
in this setting can be significant. Thus, it was a natural choice to use Reinforced Concrete as
a basis when designing our new construction for smaller prime fields. However, some of these
building blocks are relatively expensive. For instance, the decomposition requires a chain of modular
reductions into smaller prime fields which are not CPU-friendly. Our plan was to modify the
components of Reinforced Concrete in order to tailor them to certain prime fields and make the
resulting design even faster.

We follow the naming convention established in Reinforced Concrete with the main compo-
nents being called Concrete, Bricks, and Bars. While Concrete and Bricks operate over large
field elements (≈ 256 bits in the case of Reinforced Concrete), Bars decomposes them into
elements of a smaller prime field and applies small parallel S-boxes to the buckets, composing
back thereafter. These S-boxes are implemented as a lookup table, which is also used in the plain
implementation despite not being constant-time.

An graphical comparison between Reinforced Concrete and our new permutation Monolith
is shown in Fig. 3.

3.2 Structure of a Round

In contrast to Reinforced Concrete, a single Bars layer is not sufficient to prevent algebraic
attacks. This is based on the fact that the maximum degree of each Bars is only p (≈ 264 or ≈ 231

for the instances considered in this paper). This implies that we need at least two (four for p ≈ 231)
of these operations in order to reach the desired degree of ≈ 2128.

However, we also need diffusion between these Bars layers, which is why we decided to incor-
porate Bars with Concrete and Bricks in a single new round function such that

x 7→ c+ Concrete ◦ Bricks ◦ Bars(x).

Iterating a single round function also has advantages compared to Poseidon or in general Hades-
like schemes, where two different round functions have to be implemented in the circuit.

10

x ∈ F3
p

Concrete

Bricks

Concrete

Bricks

Concrete

Bars

Concrete

Bricks

Concrete

Bricks

Concrete

y ∈ F3
p

x ∈ Ft
p

Concrete

Bars

Bricks

Concrete

Bars

Bricks

Concrete

Bars

Bricks

Concrete

y ∈ Ft
p

Fig. 3. Structure of the Reinforced Concrete (left) and the Monolith (right) permutations, where we
omit the round constant additions for simplicity and t ∈ {8, 12, 16, 24} for Monolith.

3.3 The Bricks Layer

To achieve an appropriate level of statistical security, we require that the maximum differential
probability of a nonlinear operation is sufficiently low. A natural way to achieve a low upper
bound for that is to use a low-degree nonlinear function, which has been done in many of the
recent arithmetization-oriented designs, including Poseidon and similar constructions. However,
since many of them are SPNs, every function in the nonlinear layer needs to be invertible. For a
function defined by the power map x 7→ xd, this means that gcd(p, d− 1) = 1 in Fp, which implies
that d ≥ 2 and in particular d = 7 for p = 264−232+1. This increases both the number of nonlinear
operations (and hence modular reductions) in the implementation and the number of quadratic
constraints.

Moving to a degree-2 nonlinear function appears to be the better approach, since it achieves the
lowest bound for the maximum differential probability and the lowest number of multiplications
and constraints required. Since degree-2 functions are not invertible over Fp, we use them in a
scheme like the Feistel Type-3 (chosen over, e.g., Type-2 to maximize the number of square maps)
which is invertible independently of the details of the round function. In particular, the maximum
differential probability of the squaring operation is 1/p. This allows us to use only a small number
of Bricks layers while still obtaining the advertised level of security. Moreover, the nonlinear
squaring operation provides strong inner-word diffusion, almost optimal nonlinearity, good plain
performance characteristics, and can be efficiently represented in a circuit.

3.4 The Concrete Layer

The Concrete layer consists of a dense matrix and is used for full diffusion over the entire state after
a single round. Omitting it would require multiple rounds to get better diffusion, since otherwise
element-wise diffusion is only provided by the Bricks layer. This also allows us to omit the Feistel
swap from the Bricks layer, as proposed alread in, e.g., [BFM+16].

Moreover, we chose an MDS matrix, i.e., we benefit from a (maximum) branch number of t+1
for a t-element state. This results in strong statistical properties in combination with Bricks.
Moreover, for all t ≤ 16, we focus on circulant MDS matrices which allow us using FFT in order
to compute the matrix multiplication efficiently.

Full Diffusion at the Input and the Output. In order to establish immediate diffusion and to prevent
skipping nonlinear layers in the CICO attacks shown in [BBL+22], we apply Concrete layers at
the beginning and at the end of Monolith.

11

3.5 The Bars Layer

We designed Bars with efficiency and algebraic strength in mind, focusing on the following prop-
erties.

– Bars should be fast on modern CPUs and can benefit from vector instructions.
– Bars should allow constant-time instructions with minimal or even no overhead.
– Bars and its inverse should have a high algebraic degree.
– Bars and its inverse should be described by dense polynomials over Fp.
– Bars can be decomposed into operations that can be efficiently implemented in zero-knowledge

circuits supporting lookup arguments.

The form of the prime p makes a decomposition easier compared to Reinforced Concrete, where
an element of Fp is represented as a vector from Zp1×Zp2×· · ·Zpl

, which makes the decomposition
expensive both natively and inside the proof system. In contrast, for primes of the form 2n−1 and
2n − 2η + 1 we can use the decomposition into elements of Z2k , i.e., bit chunks. The bijectivity is
guaranteed by requiring that S-boxes have fixed points at 0 and −1 (all bits are ones). Hence, our
design is forward-compatible with other primes of the same form.

The chosen 8-bit and 7-bit S-boxes can be efficiently implemented with vector instructions (our
fastest implementation requires only 10ns for the full layer for t = 8), so that we do not need
lookup tables in the native implementation. This can also be seen from the representation given in
Eq. (6) and is again a sharp difference to Reinforced Concrete and Tip5, where the S-box does
not admit a simple representation and lookups are therefore required also for an efficient plain
implementation.

For the form of the S-box, we were looking for fast nonlinear operations. The χ function from
Keccak [Nat15] and its relatives is a natural choice. Whereas χ is not invertible for an even
number of bits, our selection is one of the few which are.

Finally, note that the functions we apply in Bars result in high-degree functions over Fp as
shown in Proposition 2. We also have strong evidence that the polynomials representing Bars
applied to a single field element are dense (we refer to Section 5.3 for our experimental results).
This is crucial, since the other components in Monolith are low-degree functions, and hence we
need Bars to reach the maximum degree of the permutation and provide security against algebraic
attacks.

4 Analysis of Bar

One of the core components for making our new hash function efficient without using lookup
tables is an efficient representation of the lookup operation over F2. While this is a prominent
and well-known topic in the area of cryptographic primitives optimized for software and especially
hardware implementations, to the best of our knowledge this approach has never been considered
for primitives over large prime fields.

Choosing this approach has one crucial advantage. While the performance is similar to a lookup-
based approach, we can implement the lookup operation with a constant number of efficient in-
structions. Moreover, taking inspiration from existing primitives over F2 such as Keccak, we
show how to implement multiple lookup operations in parallel, further minimizing the number of
instructions we need.

In this section we propose a generic component called Bar, which is one of the main components
we use in Monolith. Here we give a generic description of the Bar component (see Eq. (2)), described
in Section 2.6 for Monolith-64 and Monolith-31. We also prove its invertibility and well-definition.
Our description is generic for the prime fields Fp with p being either of the form pgen1 = 2n−2η+1
or of the form pgen2 = 2n − 1.

Additional Notation. In order to define the lookup operations, we denote the sizes (in bits) of the
lookup tables by s1, s2, . . . , sm ≥ 1 such that

s1 + s2 + · · ·+ sm = n = ⌈log2(p)⌉ ,

12

where p ∈ {pgen1, pgen2}. If p = pgen1, we additionally require that there exists l ∈ {1, 2, . . . ,m− 1}
such that

s1 + s2 + · · ·+ sl = η and sl+1 + sl+2 + · · ·+ sm = n− η.

For efficiency reasons, we suggest to choose s1 = s2 = · · · = sm = n/m whenever possible.
Otherwise, we suggest to choose s1, s2, . . . , sm to be integers close to n/m that (i) satisfy the
previous requirements and (ii) for which maxi̸=j{|si− sj |} is minimized. Note that the parameters
chosen for Monolith-64 and Monolith-31 fulfill these criteria.

4.1 Decomposition D

The decomposition D decomposes the original field element x ∈ Fp into m > 1 smaller elements
x1, x2, . . . , xm, where xi ∈ Zsi

2 ≡ Fsi
2 . For this purpose, we first set

x =

m∑
i=1

2
∑i

j=1 sj · x′i

for x′i ∈ Z2si . Then, for each i ∈ {1, 2, . . . ,m}, xi ∈ Zsi
2 is the binary decomposition of x′i ∈ Z2si .

4.2 S-Boxes S

The operation S is the parallel application of m S-boxes, i.e.,

S(x1, x2, . . . , xm) = S1(x1) || S2(x2) || · · · || Sm(xm),

where Si : Fsi
2 → Fsi

2 . To guarantee that Bar is well-defined, we require that 0b11..11 ∈ Fsi
2 is a

fixed point, i.e.,
Si(0b11..11) = 0b11..11,

where 0b11..11 is the binary representation of 2si − 1 ∈ Z2si . Moreover, if p is of the form pgen1,
we also require that 0b00..00 ∈ Fsi

2 is a fixed point, i.e.,

Si(0b00..00) = 0b00..00.

We define each permutation Si as an invertible shift-invariant function defined via a local map
Ωi : Fli

2 → F2 for a certain 3 ≤ li ≤ si, i.e.,

Si(z1, . . . , zsi) = Ωi(z1, . . . , zli) || Ωi(z2, z3, . . . , zli+1) || · · · || Ωi(zsi , z1, . . . , zli−1), (6)

where z1, z2, . . . , zsi ∈ F2 and where the sub-indices are computed modulo si. For the local map,
we use one proposed in Daemen’s PhD thesis [Dae95, Table A.1], so that each Si is invertible and
satisfies the previous requirement. In particular, let ⊕ denote the XOR operation and ⊙ the AND
operation, respectively. If gcd(si, 2) = 1, we suggest to use the chi-function χ : F3

2 → F2 (that
instantiates Keccak/SHA-3) defined as

χ(x1, x2, x3) = x1 ⊕ (x2 ⊕ 1)⊙ x3.

If gcd(si, 2) ̸= 1 and gcd(si, 3) = 1, we suggest to use ψ : F4
2 → F2 defined as

ψ(x1, x2, x3, x4) = x1 ⊕ (x2 ⊕ 1)⊙ x3 ⊙ x4.

If necessary, we suggest to apply a rotation of the bits at the output of Si in order to reduce
the number of fixed points.

13

4.3 Composition C

The final operation of Bar is the inverse of the decomposition. Given (x1, x2, . . . , xm) ∈ Fs1
2 ×

Fs2
2 × · · · × Fsm

2 , it yields an element y ∈ Fp. For this purpose, first each element xi ∈ Fsi
2 ≡ Zsi

2 is
mapped into x′i ∈ Z2si .5 Then, if p = pgen1, y is defined as

y =

m∑
i=1

2
∑i

j=1 sj · x′π(i) + 2η ·

(
n∑

i=m+1

2
∑i

j=1 sj · x′Π(i)

)
,

where π is a permutation of {1, 2, . . . , l} and Π is a permutation of {l+1, l+2, . . . ,m}. If p = pgen2,
y is defined as

y =

m∑
i=1

2
∑i

j=1 sj · x′π(i),

where π is a permutation of {1, 2, . . . ,m}.

4.4 Well-Definition and Bijectivity

Here we prove that our Bars layer and in particular its Bar components are invertible and well-
defined. For simplicity, we omit the final rotation if existing and note that this operation is naturally
invertible and maps 0b00..00 to 0b00..00 and 0b11..11 to 0b11..11.

Lemma 1. Let Si be a permutation over Fsi
2 such that Si(0) = 0 and Si(2si − 1) = 2si − 1, where

i ∈ {1, 2, . . . ,m}. If p = 2n − 1, Bar maps elements from Fp to elements from Fp.

Proof. Let

x =

m∑
i=1

2
∑i

j=1 sjx′i, y =

m∑
i=1

2
∑i

j=1 sjy′i

be the decomposition of an input x ∈ Fp and the corresponding output y, respectively, where
y′i = Si(x′i) and s1+ s2+ · · ·+ sm = n. By definition, the application of all Si does not extend y to
more than ⌈log2(p)⌉ = n bits. Further, the output 2n − 1 can never be reached, since by definition
x < 2n − 1 and x′i ̸= 2si − 1 =⇒ Si(x′i) = y′i ̸= 2si − 1 (recall that 2si − 1 is a fixed point for Si).
It follows that y < 2n − 1 and hence y ∈ Fp.

Lemma 2. Let Si be a permutation over Fsi
2 such that Si(0) = 0 and Si(2si − 1) = 2si − 1, where

i ∈ {1, 2, . . . ,m}. If p = 2n − 2η + 1, Bar maps elements from Fp to elements from Fp.

Proof. Let

x =

m∑
i=1

2
∑i

j=1 sjx′i, y =

m∑
i=1

2
∑i

j=1 sjy′i

be the decomposition of an input x ∈ Fp and the corresponding output y, respectively, where
y′i = Si(x′i) and s1 + s2 + · · ·+ sj = η, sj+1 + sj+2 + · · ·+ sm + η = n for some j ∈ {1, 2, . . . ,m}.
By definition, the application of all Si does not extend y to more than ⌈log2(p)⌉ = n bits. In
Fp, p − 1 (i.e., the largest possible input element) is given by 2η · (2n−η − 1), and in this case
(x′1, x

′
2, . . . , x

′
j) = (0, 0, . . . , 0) and (x′j+1, x

′
j+2, . . . , x

′
m) = (1, 1, . . . , 1). Since Si(0) = 0 for i ∈

{1, 2, . . . , j} and Si(2si − 1) = 2si − 1 for i ∈ {j + 1, j + 2, . . . ,m}, p − 1 is a fixed point under
the application of Bar. For any other element in Fp, either (x′1, x′2, . . . , x′j) = (0, 0, . . . , 0) or, if this
is not the case, (x′j+1, x

′
j+2, . . . , x

′
m) ̸= (1, 1, . . . , 1). Together with the fact that 2η · (2n−η − 1)

is a fixed point when applying Si for i ∈ {j + 1, j + 2, . . . ,m}, it follows that y < p and hence
y ∈ Fp.

Lemma 3. If p ∈ {pgen1 = 2n − 2η + 1, pgen2 = 2n − 1}, the Bar operation

Bar = C ◦ S ◦ D(x)

is invertible.
5 Note that in this case xi has already been transformed by Si.

14

Proof. Let

x =

m∑
i=1

2
∑i

j=1 sjx′i, y =

m∑
i=1

2
∑i

j=1 sjy′i

be the decomposition of an input x ∈ Fp and the corresponding output y, respectively, where
y′i = Si(x′i). First, note that Fn

2 , F2n , and Z2n are isomorphic to each other. Then the operations C
and D are invertible by definition, since they only consist of different representations of x and y.
Finally, each Si is invertible by definition, from which it follows that y′i = Si(x′i) =⇒ x′i = S

−1
i (y′i)

for a well-defined function S−1i .

5 Security Analysis

In this section, we propose a security analysis of our design. To summarize, we are not able to break
6 rounds of the proposed scheme or a weaker version of it (i.e., without some of the components)
with any basic attacks proposed in the literature. As future work, we encourage to study reduced-
round or/and toy variants of our design.

5.1 Differential Cryptanalysis

Given pairs of inputs with some fixed input differences, differential cryptanalysis [BS90] considers
the probability distribution of the corresponding output differences produced by the cryptographic
primitive. Let ∆I , ∆O ∈ Ft

p be respectively the input and the output differences through a permu-
tation P over Ft

p. The differential probability (DP) of having a certain output difference ∆O given
a particular input difference ∆I is equal to

ProbP(∆I → ∆O) =
|{x ∈ Ft

p | P(x+∆I)− P(x) = ∆O}|
pt

.

In the case of iterated schemes, a cryptanalyst searches for ordered sequences of differences over
any number of rounds that are called differential characteristics/trails. Assuming the independence
of the rounds, the DP of a differential trail is the product of the DPs of its one-round differences.

As is well-known, the maximum differential probability of the square map is 1/p. Here we
compute the minimum number of active square maps over r rounds. Since the Bars layer is not
supposed to have good statistical properties, we simply assume that the attacker can skip it with
probability 1. Hence, we omit it in our analysis.

Denote the number of active words in the input and the output of the i-th Bricks layer by ai
and bi, respectively. Then we exploit two properties:

– Each active input word (different from the last one) activates at least 1 squaring in Bricks.
Hence, a ≥ 1 words activate at least a− 1 ≥ 0 squarings.

– Each active output word (different from the last one) implies that 1 squaring is active, for this
word or the left one. Hence, b ≥ 1 words activate b−1

2 ≥ 0 squarings.

Together with the MDS property, implying bi+ai+1 ≥ t+1 for each i ≥ 1, we obtain the following
inequalities for the number of active squarings si:

s1 ≥ max

{
(a1 − 1,

b1 − 1

2

}
, b1 + a2 ≥ t+ 1,

s2 ≥ max

{
a2 − 1,

b2 − 1

2

}
, b2 + a3 ≥ t+ 1,

s3 ≥ max

{
a3 − 1,

b3 − 1

2

}
, b3 + a4 ≥ t+ 1,

...

sr−1 ≥ max

{
ar−1 − 1,

br−1 − 1

2

}
, br−1 + ar ≥ t+ 1,

sr ≥ max

{
ar − 1,

br − 1

2

}
,

15

where r is the number of rounds. We propose the following lemma for finding the minimum number
of active square maps.

Lemma 4. A set of real positive values (s1, s2, . . . , sr), which minimizes the expression smax :=
s1 + s2 + s3 + . . .+ sr and si ≥ 0, ai ≥ 1, bi ≥ 1, satisfies

sr = 0 and sr−i =
t− 1

3
·
(
1 +

(−1)i+1

2i

)
for each i > 0. (7)

Proof. Consider an optimal tuple (s1, s2, . . . , sr). Note first that such a tuple turns all inequalities
into strict equations, as otherwise we can reduce smax. Now consider any MDS property bi+ai+1 =
t+1. If (bi− 1)/2 < si, we can increase bi to make those equal and not to increase smax. Similarly,
if ai+1 < si+1, we can increase ai to make those equal and not to increase smax. Thus we conclude
that for an optimal tuple the values bi and ai+1 are the maximums that determine si and si+1

respectively. This simplifies our system, i.e.,

s1 =
b1 − 1

2
, b1 + a2 = t+ 1,

s2 = a2 − 1 =
b2 − 1

2
, b2 + a3 = t+ 1,

s3 = a3 − 1 =
b3 − 1

2
, b3 + a4 = t+ 1,

...
sr = ar − 1,

and even further, i.e.,

2s1 + s2 = t− 1,

2s2 + s3 = t− 1,

2s3 + s4 = t− 1,

...
2sr−1 + sr = t− 1,

sr = ar − 1.

It is simple to note that if sr > 0, then we could decrease smax. Indeed, if we decrease sr to 0, we
would have to increase sr−1 by sr/2, then decrease sr−2 by sr/4 and so on, altogether decreasing
smax by sr · (1− 1/2 + 1/4− 1/8 + · · ·), where (1− 1/2 + 1/4− 1/8 + · · ·) > 0. Note also that for
sr ≤ t− 1 all other si are non-negative. Thus, the minimum is achieved by sr = 0 and

sr−1 =
t− 1

2
, sr−2 =

t− 1

4
, sr−3 =

3(t− 1)

8
, . . . , sr−i =

t− 1

3
·
(
1 +

(−1)i+1

2i

)
.

This completes the proof.

Thus we have the following bounds for the total number of active squarings.

– 2 rounds: smax ≥ t−1
2 ;

– 3 rounds: smax ≥ 3(t−1)
4 ;

– 4 rounds: smax ≥ 9(t−1)
8 ;

– 5 rounds: smax ≥ 23(t−1)
16 ;

Since the maximum differential probability of a squaring is 1/p, we get the following.

Corollary 1. Any 4-round differential characteristic for Monolith has a probability of at most
p

−9(t−1)
8 .

As a result, any characteristic that spans over 5 rounds and more would cover more squarings
than the number of state elements, and thus a solution to it cannot be found by standard means.
Therefore, a differential-based collision attack on 5 rounds looks infeasible.

16

5.2 Other Statistical Attacks

We claim that 6 rounds are sufficient for preventing other statistical attacks as well. Here we provide
argument to support such conclusion for one of the most powerful statistical attacks against a hash
function, that is, the rebound attack. For that goal, we propose an analysis of the number of the
fixed points and of the truncated differential characterestics.

Fixed Points. Contrary to Reinforced Concrete, the Bars layer of Monolith has very few fixed
points, thanks to the prime number form and an extra bit shift.

Both local maps x ⊕
(
(x ≪ 1) ⊙ (x ≪ 2) ⊙ (x ≪ 3)

)
and x ⊕

(
(x ≪ 1) ⊙ (x ≪ 2)

)
have

about (7/4)n fixed points (for even and odd n, respectively) when considered over Fn
2 (a bit value

is preserved if the product of nearby bits is 0). However, all of them except 0 and 1 = 2n − 1 are
destroyed by the circular shift (verified experimentally).

A Bar of Monolith-64, consisting of 8 such S-boxes, admits 28 − 24 + 1 = 241 fixed points out
of 264 − 232 + 1. This implies that the probability that a point is fixed is approximately 2−56 for
Bar and less than 2−56·4 = 2−224 for Bars. Similarly, a Bar of Monolith-31 admits 24 − 1 = 15
fixed points out of 231 − 1. This implies that the probability that a point is fixed is approximately
2−27 for Bar and less than 2−27·8 = 2−216 for Bars.

For comparison, we recall that a Bar of Reinforced Concrete has 2134.5 fixed points out of
2254 possibilities. Hence, the probability of encountering a fixed point is approximately 2−119.5·3 =
2−358.5 for Bars. At the current state of the art, we are not aware of any attack that exploits these
fixed points.

Truncated Differential and Rebound Attacks. Truncated differential attacks [Knu94] are
used mostly against primitives that have incomplete diffusion over a few rounds. This is not the
case here as the Concrete matrix is MDS. We have not found any other attacks where a truncated
differential can be used as a subroutine either.

Rebound attacks [MRS+09] are widely used to analyze the security of various types of hash
functions against shortcut collision attacks since the beginning of the SHA-3 competition. It starts
by choosing internal state values in the middle of the computation, and then computing in the
forward and backward directions to arrive at the inputs and outputs. It is useful to think of it as
having central (often called "inbound") and the above mentioned "outbound" parts. In the attack,
solutions to the inbound phase are first found, and then are filtered in the outbound phase.

Whereas it is not possible to prove the resistance to the rebound attacks rigorously, we can
provide some meaningful arguments to demonstrate that they are not feasible. The inbound phase
deals with truncated and regular differentials. By Corollary 1 we see that a solution for a 5-round
differential cannot be found, and so the inbound phase cannot cover more than 4 Bricks layers. In
the outbound phase, the Concrete layers that surround these Bricks layers make all differentials
diffuse to the entire state, so that the next Bricks layers destroy all of those. We hence conclude
that 6 rounds of Monolith are sufficient to prevent rebound attacks.

The best attack of this kind that we were able to conduct ourselves is a near-collision attack
on the reduced 3-round permutation without the Bars layer. In our attack we show how to find
a state that satisfies a differential ∆1 → ∆8 for certain ∆1, ∆8 which are equal in the last Fp

word, i.e., ∆1,t = ∆8,t. As a concrete application, this yields a zero difference in this word for the
compression function x 7→ Truncn(P(x) + x), which is a near-collision.

The inbound phase covers 3 layers of Bricks separated by 2 Concrete layers:

∆1
Concrete←−−−−−

t→1
∆2

Bricks←−−−−
1

∆3
Concrete−−−−−→

1→t
∆4

Bricks←−−→
t

∆5
Concrete−−−−−→

t←2
∆6

Bricks−−−−→
2

∆7︸ ︷︷ ︸
inbound phase

Concrete−−−−−→
2→t

∆8.

To find such a state pair, we apply the following approach.

1. In the inbound phase we arbitrarily choose δ and set ∆3 = [0, 0, . . . , 0, δ] such that its non-
zero difference is in the last word only and propagates through Bricks−1 untouched. That is,
∆2 = ∆3. Let ∆1 be Concrete−1(∆2).

17

2. The inbound phase covers the expansion of ∆2 to t words and back to the 2-word difference
∆7 = [0, 0, . . . , 0, δ2, δ3]. Note that we have ∆6 = [0, 0, . . . , 0, δ2, δ4]. We arbitrarily set δ2, δ3
such that ∆8,t = ∆1,t and then choose δ4 such that

Concrete(∆2) = ∆4,1 = ∆5,1 = Concrete−1(∆6).

3. As a result, the differential path for the full 3-round scheme is established, and we determine
the state. The (δ3, δ4) differential determines the input word xt−1 of the third Bricks layer,
and the equation

Bricks(X+∆4) = Bricks(X) +∆5.

determines input words x1, x2, . . . , xt−1 of the second Bricks layer. Note that this is a system
of linear equations, and solving it we can determine the full state.

Overall we obtain a partial collision at a negligible cost (the cost for solving the linear system of
equations can be approximated by O(t3), which is much smaller than the cost for constructing the
collision in the case of a random permutation approximated by O(p1/2)). We are not aware of any
possible extension of such attack to more rounds and/or including Bars, which is left as an open
problem for future work.

5.3 Algebraic Analysis: Degree and Density of the Bars Polynomials

Generic Lemmas. We first establish several lemmas that are valid for all primes.

Lemma 5. Let p ≥ 3 be a prime number, and let F denote the squaring function x → x2 over
Fp. Let F ′ be any interpolant of F over F⌈log2 p⌉

2 , i.e. for any a < p and its bit representation a′

we have that F ′(a′) is the bit representation of F(a). Then F ′ has degree at least d, where d is the
maximum positive integer such that d < log2

√
p and ⌈2d−0.5⌉ is odd.

Proof. We prove this result by contradiction. Suppose that the degree of F ′ is smaller than d. Then
the XOR sum of its output over any hypercube of degree d is equal to zero [Lai94], including the
hypercube

H := {a0 = (0, 0, . . . , 0), . . . , a2d−1 = (0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸
d ones

)} .

Note that F(ai) = i2 < p by the definition of d. Now consider B = {ai ∈ H | i > 2d−0.5}, so that
(i) 22d > F(b ∈ B) > 22d−1, and (ii) the 2d-th least significant bit is set. By simple computation,
the size of B is 2d−⌈2d−0.5⌉. Whenever this number is odd, F does not XOR to 0 at the 2d-th least
significant bit, which contradicts the previous fact. As a result, the squaring has at least degree d
if d ∈ D and d < log2

√
p.

For example, ⌈2d−0.5⌉ is odd for d ∈ D = {2, 4, 5, 6, 7, 9, 10, 11, 12, 13, 15, 16, 21, 22, 25, 26, 29,
30, . . . }.

Lemma 6 (Differential). Let F be a function that maps Fp to itself with a differential ∆I → ∆O

holding with probability 0 < α < 1, that is, |{x∈Fp|F(x+∆I)=F(x)+∆O}|
p = α. Then we have

deg(F) > α · p, (8)

where deg(F) is the degree of F as a polynomial over Fp.

Proof. By definition, the equation F(x + δin) = F(x) + δout has at most α · p < p solutions
x1, x2, . . . , xαp. Therefore, the polynomial G(x) := F(x + δin) − F(x) − δout is divisible by the
polynomial (x − x1) · (x − x2) · · · · · (x − xα·p) of degree α · p, and so it has a degree of at least
α · p. As the degree of the polynomial G is smaller than the degree of F by 1, we obtain that
deg(F) > α · p.

Lemma 7 (Linear Approximation). Let F be a function that maps Fp to itself such that there
exists a linear approximation (a, b) with probability 0 < β < 1, that is, |{x∈Fp|F(x)=a·x+b}|

p = β.
Then we have

deg(F) ≥ β · p . (9)

18

Proof. By definition, the equation F(x) = A · x + B has at most β · p solutions x1, x2, . . . , xβ·p.
Therefore, the polynomial G(x) := F(x)− (A · x+B) is divisible by the polynomial (x− x1) · (x−
x2) · · · · · (x − xβp) of degree β · p. Similar to before, we can conclude that F has degree at least
equal to β · p.

Based on the previous result, we can immediately conclude the following.

Corollary 2. Let F be a function that maps Fp to itself with b < p fixed points, that is, |{x ∈ Fp :
F (x) = x}| = b. It follows that

deg(F) ≥ b . (10)

Lower Bound on the Degree over F2.

Proposition 1. Let p ∈ {pMersenne, pGoldilocks}. Let F ′ be an interpolant over F⌈log2 p⌉
2 of the squar-

ing operation F(x) = x2 over Fp.Then F ′ has degree at least d, where

– d = 30 for p = 264 − 232 + 1,
– d = 15 for p = 231 − 1.

As the squaring operation is a component of Bricks, we get that it has degree d ≥ 30 as well.

Lower Bound on the Degree over Fp.

Lemma 8. Let n > 4.

– The maximum differential probability over Fn
2 of the S-box Eq. (4)

y 7→
(
y ⊕

(
(y ≪ 1)⊙ (y ≪ 2)⊙ (y ≪ 3)

))
≪ 1

is at least 13/32.
– The maximum differential probability over Fn

2 of the S-box Eq. (5)

y′ 7→
(
y′ ⊕

(
(y′ ≪ 1)⊙ (y′ ≪ 2)

))
≪ 1

is at least 1/8.

In particular we have input pairs of form (x1, x2, . . . , xn−1, 0), (x1, x2, . . . , xn−1, 1) mapping to
(y1, y2, . . . , 0, yn), (y1, y2, . . . , 1, yn) with at least the same probability (13/32 and 1/8, resp.).

Proof. Consider two input states x, y with a single bit difference in bit i such that xi = 1− yi = 0.
Let us derive sufficient conditions when the output states x′, y′ differ in bit i − 1 only and x′i =
1− y′i = 0. This happens when the product in the S-box bit mapping is 0 whenever bit i is XORed
or is part of the product, i.e.,

yi+1 ⊙ yi+2 ⊙ yi+3 = 0,

yi+1 ⊙ yi+2 = 0,

yi−1 ⊙ yi+1 = 0,

yi−2 ⊙ yi−1 = 0.

The number of 5-tuples satisfying this system is 13 out of 32 possible. Therefore, a differential
holds with probability 13/32.

For the S-box Eq. (5) we observe that a single bit difference in bit i is mapped to a single bit
difference in bit i− 1 if

yi+1 ⊙ yi+2 = 0,

yi+1 = 0,

yi−1 = 0,

which holds for one 3-tuple out of 8 ones. Therefore, the differential holds with probability 1/8.

19

Table 2. Degree and density of the polynomials resulting from Bar applied to various field elements.

p Bit splittings Degree Density

28 − 24 + 1 {4, 4} 239 (= p− 2) 100%
213 − 28 + 1 {8, 5}, {4, 4, 5} 7935 (= p− 2) > 99% (7934/7935)
213 − 25 + 1 {5, 8}, {5, 4, 4} 8159 (= p− 2) > 99% (8157/8159)
214 − 210 + 1 {10, 4}, {5, 5, 4} 15359 (= p− 2) > 99% (15358/15359)
214 − 24 + 1 {4, 10} 16367 (= p− 2) 100%
214 − 24 + 1 {4, 5, 5} 16367 (= p− 2) > 99% (16364/16367)

213 − 1 {5, 8}, {8, 5}, {4, 9}, {9, 4} 8189 (= p− 2) > 99% (8188/8189)
27 − 1 {3, 4}, {4, 3} 125 (= p− 2) > 99% (124/125)

25 − 1 – 26 (= p− 5) ≈ 21% (6/29)
27 − 1 – 120 (= p− 7) ≈ 14% (18/125)
213 − 1 – 8178 (= p− 13) ≈ 8% (629/8189)

Lemma 9. The Bar function for p = 264 − 232 + 1. The Bar function for p = 231 − 1 has a
differential probability of at least 2−1.2.

Proof. The differential probability of Bar as a function over F2 is at least the probability of a single
S-box, as we can select inputs that activate only one S-box. By Lemma 8 the F2-differential in the
last bit implies the Fp differential 1→ 2 of the same probability. When 8 S-boxes are used, the F64

2

differential holds for at least 13 · 259 64-bit inputs. To get to Fp we should exclude from those the
ones that possibly exceed p, i.e., 232 ones. The probability is then lower-bounded by 2−1.4.

Similarly, for 31-bit inputs, Lemma 8 implies that 3 + 1 concatenated S-boxes together yield
a differential probability of at least 13/32 (we activate the weaker 8-bit S-box) both when viewed
over F31

2 and over Fp.

Proposition 2. The Bars operation (and its inverse) has degree at least

– 262 for p = 264 − 232 + 1;
– 229 for p = 231 − 1.

Degree and Density over Fp: Practical Results. Evaluating the actual density of the polyno-
mial resulting from Bar applied to a single field element in Fp, where p ∈ {264−232+1, 231−1}, is
infeasible in practice. Indeed, any enumeration and subsequent interpolation approach would take
far too long.

Therefore, in our experiments we focus on smaller finite fields defined by “similar” prime num-
bers. In particular, we focus on n-bit primes of the form 2n− 2η +1 for η as close to n as possible.
We then apply the S-box Si to smaller parts of the field element, exactly as in Bar where the S-box
is applied to each 8-bit part of the larger field element. We also vary the sizes of the parts to which
the Si are applied in order to get a broader picture.

The results of our evaluation are shown in Table 2. For example, in the first case, where
p = 28 − 24 + 1, Si is applied to the first 4 bits (starting from the least significant bit) and then
to the next 4 bits, covering the entire field element. The size of these parts is indicated in the
second column. As we can see, the maximum degree is reached for all tested primes of the form
2n − 2η + 1, where η > 1. Moreover, for these primes, the density is always close to 100%, mostly
matching it. We also applied Si to elements of F2n−1 directly, where n ∈ {5, 7, 13}, which resulted
in almost maximum-degree polynomials of low density (specifically, only 6, 18, and 630 monomials
exist in the polynomial representation, respectively). This suggests that increasing the number of
S-box applications per field element (i.e., increasing the number of smaller parts to which Si are
applied) is beneficial for the density of the resulting polynomial.

We also evaluated the degrees and density values resulting from the inverse S-boxes applied to
the field elements, in order to get an estimation of the algebraic strength of the inverse operation.
The results match the results given in Table 2, where always more than 99% monomials are reached
together with a degree close to the maximum.

20

Table 3. Degree and density of the polynomials after a single round, where t = 4 and two input variables
are used (with the other two input elements being fixed).

p Bit splittings Degree Density

28 − 24 + 1 {4, 4} 239 (= p− 2) > 99% (28785/28920)
27 − 1 {3, 4} 125 (= p− 2) > 98% (7919/8001)
27 − 1 {4, 3} 125 (= p− 2) > 98% (7919/8001)

Degree and Density over Ft
p: Practical Results. We also ran tests regarding the density over

the entire state. Naturally, this task gets harder with an increased number of rounds, since the
degrees are rising too quickly. In our tests we focused on p ∈ {28 − 24 + 1, 27 − 1} and t = 4, and
we give the results together with the sizes of the smaller S-boxes in Table 3.

As can be seen, the maximum number of monomials is almost reached after a single round.
We suspect that some of the monomials are not reached due to cancellations, which is reasonable
when considering these small prime fields. Still, we acknowledge this fact by adding another round
on top of that in order to ensure that all polynomial representations of the state are dense and of
maximum degree. Thus, having 6 rounds achieves 4 rounds of security margin regarding degrees
and density of polynomials.

5.4 The CICO Problem for Keyless Algebraic Attacks

In recent circuit-friendly hash functions, the CICO problem described in the following has often
been exploited in order to argue security against some classes of algebraic attacks (in particular
Gröbner basis ones).

Definition 1 (CICO Problem). A permutation P : Ft
p → Ft

p provides κ bits of security against
the v-CICO problem if no algorithm with expected complexity smaller than pv finds I1 ∈ Ft−v

p and
O2 ∈ Ft−v

p such that P(I1 || 0︸︷︷︸
v words

) = 0︸︷︷︸
v words

|| O2.

The relation between the CICO problem and the preimage security of a hash function is for
example described in [GHR+22]. In particular, solving it yields a preimage solution for a sponge
hash function with v capacity elements and v output elements, and hence solving this instance of
the problem must not require fewer than pv/2 operations.

To express the CICO problem algebraically, we first interpret the output elements as polyno-
mials of the input elements. Then, we find a solution to the system of v polynomial equations of
t − v input variables (as the remaining v ones are set to zero). Let us now consider two ways of
solving this system.

Remark 1. For completeness, we point out that the strategies used for solving the CICO problem
can be also adapted to attack the case in which our design is used for authenticated encryption.
In such a case, the attacker observes several outputs of a permutation where part of the input is
secret, that is,

∀i ∈ {1, 2, . . . } : P(ki || xi) = ci || yi,
where xi and yi are available to the attacker, while ci (the inner part) and k are secret. Hence, we
remark that the security against CICO implies the security against this problem as well.

Univariate Case. One way to solve a multivariate system is to make it univariate by guessing
t − v − 1 variables. Note that our guess may be invalid if the number of equations exceed the
number of variables so we have to repeat the guess pv−1 times.

– If v = 1, we have to solve a single polynomial equation faster than in time p. The degree of
the polynomial reaches p after 2 applications of the Bars layer, i.e., after 2 rounds. Therefore,
solving the equation will require time ≈ p.

– If v > 1, we have several polynomial equations of degree close to p. Solving a system of
univariate dense polynomials of degree d is close to d, so we expect spending at least time p to
verify the guess. Therefore the total complexity still exceeds pv.

21

Multivariate Case: Gröbner Bases. In a more general case we work with a system of v
polynomial equations of t− v input variables. The system likely remains solvable if we guess extra
t−2v variables to have both v equations and variables. The main technique of solving these systems
is to use Gröbner bases, as described with the following steps.

1. Compute a Gröbner basis for the zero-dimensional ideal of the system of polynomial equations
with respect to the degrevlex term order.

2. Convert the degrevlex Gröbner basis into a lex Gröbner basis using the FGLM algorithm
[FGL+93].

3. Factor the univariate polynomial in the lex Gröbner basis and determine the solutions for the
corresponding variable. Back-substitute those solutions, if needed, to determine solutions for
the other variables.

The total complexity of a Gröbner basis attack is hence the sum of the respective complexities
of the above steps. In our following analysis, we only estimate the complexity for computing a
Gröbner basis in degrevlex order to argue security against this type of attack.

For a semi-regular input system F1, . . . ,Fk in l variables with degrees d1, . . . , dk, it is well-known
that the Hilbert series of the ideal generated by F1, . . . ,Fk is related to the cost of computing a
degrevlex-Gröbner basis, see [BFS+05]. The index of the first non-positive coefficient of the function

z 7→
∏k

i=1(1− zdi)

(1− z)l

is called degree of regularity dreg and it is used to establish the following upper bound for the
complexity CGB (counting finite field operations) of computing a Gröbner basis in degrevlex order
(via the matrix-F5 algorithm [Fau02]) of a semi-regular input system:

CGB(l, dreg) ∈ O
((

l + dreg
l

)ω)
, (11)

where ω denotes the linear algebra constant. Most of the time, the algebraic model of a cryp-
tographic primitive does not yield a semi-regular sequence, however, the case of a semi-regular
sequence can be considered as the generic case. Colloquially speaking, ‘generic case’ in this context
means a system of random equations. Thus, a comparison of the algebraic model with this generic
case can still be an informative approach and help to establish heuristic bounds on the maximum
degree in a Gröbner basis computation when practical experiments are no longer possible.

To estimate the complexity of computing a Gröbner basis in degrevlex order, a widely used
heuristic approach is to compute such a basis for small-scale instances of the analysed primitive
and to observe the maximum degrees reached during these computations. This degree can be used
as in indicator of the final complexity. With this approach, an estimate for the maximum degree
of the full-round primitive can be found by extrapolating the acquired data points.

Algebraic Model for Bar. We suggest the following algebraic model for Bar for a decomposition
of a prime field element into m buckets with sizes 2s1 , 2s2 , . . . , 2sm :

x = x1b1 + x2b2 + · · ·+ xmbm,

0 =
∏2si

i=j(xi − j), 1 ≤ j ≤ m,
y = L1(x1)b1 + L2(x2)b2 + · · ·+ Lm(xm)bm.

Here, b1 = 1 and bi := 2s1+···+si for 2 ≤ i ≤ m and Li(xi) is the interpolation polynomial of degree
2si − 1 for S-box Si given by

Li(xi) :=
∑

1≤k≤si

Si(k)
∏

1≤j≤si
j ̸=k

xi − j
k − j

.

The resulting system consists of m + 2 equations, namely m equations of respective degrees
2s1 , . . . , 2sm and 2 equations of degree 1. The m+ 2 variables are x1, . . . , xm, x, y.

22

Algebraic Model for One Round of Monolith. We model one round of Monolith as a CICO
problem with t = 4 words, i.e., we are looking for x2, x3, x4, y2, y3, y4 ∈ Fp such that

F(0, x2, x3, x4) = (0, y2, y3, y4),

where F := Concrete ◦ Bricks ◦ Bars ◦ Concrete denotes a single round of Monolith with an
added Concrete layer. For Concrete, we use the circulant matrix M =circ(2, 1, 1, 1), which is not
MDS and can thus be seen as an optimistic choice (from the attacker’s perspective). We model
the above CICO problem as a system of polynomial equations, which we solve using Gröbner basis
techniques. To solve this problem we suggest an algebraic model such that

0 = Concrete−1(u1, u2, u3, u4)0,
v1 = Bar(u1),
v2 = Bar(u2),
0 = (Concrete ◦ Bricks)(v1, v2, u3, u4)0,

where H(·)i denotes the i-th element of the output of the function H for i ∈ {1, 2, 3, 4}. We note,
each Bar function decomposes a prime field element into 2 buckets and vi = Bar(ui) denotes above
algebraic model for Bar with m = 2. The resulting equation system consists of 10 equations with

– 4 equations for each Bar system vi = Bar(ui), i = 1, 2, and
– 2 equations for modelling the CICO constraint at the input and the output.

In total, we have 10 variables, namely u1, u2, u3, u4, v1, v2 and 2 internal variables for each Bar
system. To estimate the cost of Gröbner basis computations, we use the well-known estimate

CGB ∈ O
((

nv + dmax

n

)ω)
for an equation system in nv variables and with maximum degree dmax reached during the Gröbner
basis computation. ω denotes the linear algebra constant 2 ≤ ω < 3. We use ω = 2 for our estimates.
We use the expression

CGB :=

(
nv + dmax

n

)ω

directly in our complexity estimates.

p 11 29 61 113

l, n 10, 10 10, 10 10, 10 10, 10
s1, s2 2, 2 2, 3 2, 4 4, 3
dreg 18 34 66 74
dmag 11 14 19 24
dreg : dmag 1.62 2.43 3.47 3.08
T (s) 0.09 1.50 40.00 1418.50
Cbit/2 18.4 20.9 24.2 27.0

Table 4. Results of Gröbner basis computations on small-scale instances of a single round of Monolith in
the CICO setting for t = 4 words, u = 2 Bar elements per Bar layer, various primes p, and decompositions
into 2 buckets with bucket sizes 2s1 and 2s2 . The degree of regularity dreg is computed under the assumption
that the input system is regular, the timings of the Gröbner basis computations T are given in seconds, and
the estimated bit complexity Cbit := log2(CGB) is divided by 2 (to reflect practical runtimes). l denotes
the number of equations and n the number of variables. dmag denotes the maximum degree reached during
a Gröbner basis computation with the computational algebra system Magma.

23

Discussion of Gröbner Basis Experiments. The results of our Gröbner basis experiments on
small-scale instances of one round of Monolith with t = 4 words and modelled as a CICO problem
are depicted in Table 4. We conducted our experiments on a machine with an Intel Xeon E5-2630
v3 @ 2.40GHz (32 cores) and 378GB RAM under Debian 11 using Magma V2.26-2.

We observed a significantly faster runtime in practice than the theoretical complexity estimates
indicated, even when we used dmax = dmag in the expression CGB =

(
nv+dmax

n

)ω
. This is the reason

why we chose to divide the bit complexity log2(CGB) by 2 and use this estimate as an indicator for
the cost of computing a Gröbner basis for above algebraic model. Put differently, this is equivalent
to using ω = 1 in CGB. This is a highly optimistic scenario for an attacker, and we argue that even
in this optimistic scenario our design is still secure against Gröbner basis attacks. We therefore
conclude that using Monolith with 6 rounds provides ample security margin against Gröbner basis
attacks.

5.5 Not-Applicable Attacks

We emphasize that we do not claim security of Monolith against zero-sum partitions [BCC11]
(which can be set up via higher-order differentials [Knu94; BCD+20] and/or integral/square at-
tacks [DKR97]). In such an attack, the goal is to find a collection of disjoint sets of inputs and
corresponding outputs for the given permutation that sum to zero (i.e., satisfy the zero-sum prop-
erty). Our choice is motivated by the fact that, to the best of our knowledge, it is not possible to
turn such a distinguisher into an attack on the hash and/or compression function. For example, in
the case of SHA-3/Keccak [Nat15; BDP+11], while 24 rounds of Keccak-f can be distinguished
from a random permutation using a zero-sum partition [BCC11] (that is, full Keccak-f), preim-
age/collision attacks on Keccak can only be set up for up to 6 rounds of Keccak-f [GLL+20].
Indeed, the authors of Keccak-f deem a 12-round version of the primitive to provide ample secu-
rity margin [BDP+18]. For this reason and as already done in similar work [GKR+21; GHR+22],
we ignore zero-sum partitions for practical applications.

6 Performance Evaluation

6.1 Plain Performance

In this section, we implement Monolith in Rust and compare its plain performance to its competi-
tors in Table 5. Thereby, we included implementations of Monolith into the framework in [IAI21],6
and also added instantiations of Poseidon [GKR+21], Poseidon2 [GKS23], and Griffin [GHR+22],
with p = 264 − 232 +1. We benchmark against these designs since Poseidon has become an unof-
ficial standard for many zero-knowledge proof use cases, Poseidon2 being the fastest non-lookup
based generic arithmetization friendly hash function in the literature so far, and Griffin being the
fastest hash function in plain for the x1/d line of designs, which also includes Rescue-Prime [SAD20]
and Anemoi [BBC+22].7 We benchmark these hash function with a state size of t = 8 and t = 12
to benchmark both a sponge mode and the compression mode from Section 2.2 to have a fair
comparison. Furthermore, we compare against Tip5 with its fixed state size of t = 16 using the
implementation from [SLS+23],8 and against Tip4′, a faster instance of Tip5 with a fixed state size
t = 12, using the implementation from [Sal23].9 We also compare against Reinforced Concrete
instantiated with the scalar field of the BN254 curve [Woo+14], and against SHA3-256/SHA-256
as implemented in RustCrypto.10 Finally, we compare Monolith to Poseidon and Poseidon2
(i.e., the fastest generic arithmetization frienldy hash functions) when instantiated with p = 231−1
and state sizes of t = 16 and t = 24 (again for sponge and compression mode). All benchmarks
were taken on an AMD Ryzen 9 7900X CPU (singlethreaded, 4.7GHz).

6 Source code is thus available at https://extgit.iaik.tugraz.at/krypto/zkfriendlyhashzoo/-/
tree/master/plain_impls.

7 See, e.g., https://github.com/anemoi-hash/hash_f64_benchmarks
8 https://github.com/Neptune-Crypto/twenty-first
9 https://github.com/Nashtare/winterfell

10 https://github.com/RustCrypto/hashes

24

https://extgit.iaik.tugraz.at/krypto/zkfriendlyhashzoo/-/tree/master/plain_impls
https://extgit.iaik.tugraz.at/krypto/zkfriendlyhashzoo/-/tree/master/plain_impls
https://github.com/anemoi-hash/hash_f64_benchmarks
https://github.com/Neptune-Crypto/twenty-first
https://github.com/Nashtare/winterfell
https://github.com/RustCrypto/hashes

Table 5. Plain performance comparison in nano seconds (ns) of different hash functions. Benchmarks are
given for one permutation call, i.e., hashing ≈ 500 bits. Implemented in Rust. ⋆ indicates an implementation
without circulant MDS matrix.

Hashing algorithm Time for one permutation (ns)
2-to-1 compression sponge

p = 264 − 232 + 1: t = 8 t = 12

Monolith-64 129.9 210.5
Poseidon 1897.6 3288.7
Poseidon2 944.6 1291.5
Griffin 1815.0 1988.4
Tip5 (t = 16) 463.6
Tip4′ 247.9

p = 231 − 1: t = 16 t = 24

Monolith-31 210.3 1015.3⋆

Poseidon 4478.8 8539.7
Poseidon2 792.8 1257.4

Other:

Reinforced Concrete (BN254) 1467.1
SHA3-256 189.8
SHA-256 45.3

Table 6. Plain performance comparison in nano seconds (ns) of different hash functions with a constant-
time modular reduction and no lookup tables. Benchmarks are given for one permutation call. Implemented
in Rust. ⋆ indicates an implementation without circulant MDS matrix.

Hashing algorithm Time (ns)

p = 264 − 232 + 1: t = 8 t = 12

Monolith-64 148.5 230.4
Poseidon 2347.6 4059.1
Poseidon2 1149.2 1617.9

p = 231 − 1: t = 16 t = 24

Monolith-31 237.9 1120.5⋆

Poseidon 4372.9 8538.0
Poseidon2 840.7 1355.3

We see that Monolith-64 is significantly faster than any other arithmetization-oriented hash
function. For example, the fastest one, i.e., Poseidon2, is slower by a factor 7.3 for t = 8. Tip4′,
the fastest lookup table based design, is also slower by a factor of 1.9 when using Monolith with
the compression mode, and also slower by 36ns compared to Monolith with the same state size
t = 12.

Most interestingly, the performance gap between arithmetization-friendly hash functions and
traditional ones is now closed, with SHA3-256 being slower than Monolith-64 with t = 8 and only
faster by 21ns than Monolith-64 in the sponge mode with t = 12.

Regarding Monolith-31 for the 31 bit Mersenne prime field we observe that we still get a fast
plain performance with 210ns for t = 16. This is significantly faster than Tip5 which has the same
state size, but is implemented with the larger 64 bit prime field. Only for t = 24 we observe a
slower plain performance which is due to the usage of a generic MDS matrix in the Concrete layer
instead of an optimized circular matrix as we use for the other state sizes. However, competing
designs, such as Tip5 also rely on MDS matrices and thus will suffer from the same performance
loss. Despite this unoptimized linear layer one can observe that Monolith-31 is still faster than
the fastest competitor for the same prime field and state size, i.e., Poseidon2. We will leave it for
future work to find a more optimized 24 × 24 MDS matrix which will further speed up the plain

25

Table 7. Plain performance of each different round function in Monolith. Implemented in Rust. ⋆ indicates
an implementation without circulant MDS matrix.

Operation Time (ns) Const. Time (ns)

p = 264 − 232 + 1: t = 8 t = 12 t = 8 t = 12

Concrete 19.5 33.6 19.5 33.6
Bricks 12.2 19.3 16.0 21.8
Bars 10.4 12.9 10.4 12.9

p = 231 − 1: t = 16 t = 24 t = 16 t = 24

Concrete 31.8 138.1⋆ 31.9 138.1⋆

Bricks 17.0 21.7 17.0 21.7
Bars 8.4 12.0 8.4 12.0

performance of Monolith-31. In the meantime we point out that using a t = 16 sponge, where
8 field elements are reserved for the inner and outer part respectively allows to absorb 512 bit of
data with two permutation calls. In that sense one can use this sponge instead of a t = 24 sponge
at the cost of evaluating two t = 16 permutations, leading to a hashing performance of ≈ 420ns,
which is significantly faster than any competitor for this specific prime field.

Another advantage of Monolith over Tip5, Tip4′, and Reinforced Concrete is that its plain
performance does not rely on lookup tables and its structure allows for constant-time implementa-
tions without significant performance loss. The binary χ-like layer can be efficiently implemented
using a vectorized implementation that does not require an explicit (de-)composition, while un-
rolling the lookup-tables containing repeated power maps in Reinforced Concrete, Tip5, and
Tip4′ adds considerable workload to the computation. Thus, the overhead of going to a constant-
time implementation only consists of supporting constant-time prime field arithmetic for Monolith,
which can help in efficiently preventing side-channel attacks such as the ones proposed in [TBP20].
To this end we rewrite the fast modular reduction to be constant-time and replace the lookup-
tables in the Bars layer with its arithmetic description to instantiate a constant-time version of
Monolith. We give these benchmarks in Table 6.

We observe, that using a constant-time modular reduction leads to a slight slowdown of all
benchmarked designs. However, the resulting runtimes are still significantly faster than the non-
constant-time runtimes of traditional arithmetization friendly hash functions, such as Poseidon
and Griffin, and the variable-time version of Tip4′ for t = 8 and t = 12. Moreover, a constant time
Monolith-64 in compression mode is still faster than SHA3-256 for t = 8 (even if we acknowledge
the different security margin of the two constructions).

Finally, for the sake of completeness, we give the runtime of each part of the Monolith permu-
tation for both a constant- and variable-time version in Table 7.

6.2 Performance in Proof Systems

A modern zero-knowledge proof system defines, among other things, arithmetization rules for the
computations it attempts to prove. Most new proof systems support the Plonkish arithmetization.
Without loss of generality, its rules can be described as follows.

– The entire computation is represented as a sequence of polynomial computations over input
and intermediate data and table relations over data tuples.

– All input, output, and intermediate variables are placed into a witness matrix W with n
columns and m rows.

– The data in each row is restricted by polynomial equations determining the values and precise
computations being used. One of these generic equations of degree 2, used in the original Plonk
paper [GWC19], is

aix1x2 + bix3 + cix4 + di = 0,

where ai, bi, ci, di are public constants for the i-th row. The Plonkish arithmetization allows
for different tradeoffs between the number of columns or variables being used and the resulting
degrees.

26

– Additionally, various tuples within a row may be constrained to a table entry. This can be
defined as (x1, x2, x3) ∈ T, where T is a predefined table.

It can be seen that there can be many valid ways to arithmetize a particular computation.
The influence of the arithmetization parameters on the prover cost is not immediately clear,

and for a precise comparison it is necessary to benchmark on the target proof system. Nevertheless,
it can be seen that the dominant prover work is to construct m polynomials of degree n for the
witness columns and to prove that they satisfy each of the polynomial equations. The total work
can then be estimated as an element in O(d · n · m), where d is the maximum degree of a row
polynomial relation. The cost of using table lookups for FRI-based schemes is currently equivalent
to the use of a single polynomial of degree t = max{n, size(T)}, i.e., it is not recommended to use
a table with more rows than in the witness matrix.

In this section we give possible arithmetizations for translating Monolith into a set of Plonkish
and R1CS constraints. Our Plonkish arithmetization is designed to accommodate lookup con-
straints capable of efficiently looking up 8-bit values. If the proof system is able to use larger
tables (e.g., 16-bit ones), then multiple lookup constraints can be combined into just one larger
constraints, reducing the total number of constraints.

Plonkish. We suggest the following arithmetization for Monolith.

– Each composition Concrete ◦ Bricks is described with t polynomial equations of degree 2.
– Each Bar in the Bars layer is described as follows.
• We describe the application of m individual S-boxes with m lookup constraints (x1, y1),
(x2, y2), . . . , (xm, ym). These lookup constraints also include the range checks for each input.
• For pGoldilocks, we restrict all Bar inputs to the field, enforcing that either the least signif-

icant 32 bits are 0 or the most significant bits are not all 1, i.e.,

(x42
24 + x32

16 + x22
8 + x1)(x82

24 + x72
16 + x62

8 + x5 − z) = 0, (z − 232 + 1) · z′ = 1.

• For pMersenne = 0x7fffffff we only need to check that the combined values are not equal
to p, which is equivalent to them not being 28 − 1 (three) or 27 − 1 (one), i.e.,

(x4 + x3 + x2 + x1 − 27 − 3 · 28 + 4) · z′ = 1.

The range checks of the lookup constraints will take care for verifying correctness otherwise.
• We require the correct composition and decomposition, i.e.,

x =

m∑
i=1

2
∑i

j=1 sjx′i, y =

m∑
i=1

2
∑i

j=1 sjy′i.

• Apart from 2m lookup variables per Bar we define
∗ t− u variables for the Bars layer that correspond to the identity function application,

and
∗ t input and output variables to Bricks so that the nonlinear constraints have few

terms.
All the other trace elements are linear functions of those. Altogether, we have 6(2 ·8 ·4+ t+
2t−4) = 18t+360 variables for the pGoldilocks case and 6(2 ·4 ·8+ t+2t−8)+ t = 18t+336
variables for the pMersenne case.
• In the pGoldilocks case we have m = 8 and 4 parallel Bar functions, hence 32 lookups, t

degree-2 constraints, and t linear equations per round. In the pMersenne case this results in
8m lookups, t degree-2 constraints, and t linear equations.

Tip5 Simple Arithmetization. The Tip5 function applies four 64-bit S-boxes with lookups per
round, so 32 8-bit lookups per round. It also uses 12 degree-7 power functions per round. We
allocate variables for the inputs and outputs of the power functions in addition to 64 lookup
variables per round.

27

Similarly, the Tip4’ function also applies 32 8-bit lookups per round to the smaller state.
However, it uses 8 degree-7 power functions per round, proportionally reducing the number of
variables.

The Poseidon2 function (as well as Poseidon which has the same number of rounds and the
same arithmetization) with t = 12 defined for pGoldilocks has 8 full and 22 partial rounds, thus 118
degree-7 functions in total. We allocate variables for all inputs and outputs of the S-boxes, and
link the others via linear equations.

In Table 8 we compare the (non-optimized) arithmetization of Monolith with the ones of other
64-bit designs. To achieve a fair comparison, we do not apply any constraint or witness optimization
but try to follow the same approach. We see that both the number of lookups and constraints in
Monolith is slightly larger than in Tip5 and Tip4’, but the constraint degree is smaller by the
factor of 3.5, which should result in an overall decrease of the prover time by a factor of at least 2
(estimated as area-degree product). This is reasonable since Tip5 and Tip4’ are able to process more
field elements with a permutation call. Interestingly, Poseidon and Poseidon2 appear somewhere
in between. Their bigger number of constraints is compensated by a smaller state. Again, we stress
that these numbers are derived from non-optimized arithmetizations and are subject to change.

Primitive Lookups Non-linear
constraints Degree Witness size Area-degree

product

Monolith-64-compression 192 48 2 644 1288
Monolith-64-sponge 192 72 2 696 1392
Tip5 160 60 7 440 3080
Tip4′ 160 40 7 400 2800
Poseidon/Poseidon2 0 118 7 236 1652

Table 8. Plonkish arithmetization comparison for various 64-bit schemes. The numbers are for a single
permutation.

Multiround Constraints for Monolith. We consider p = pGoldilocks and t = 12. When imple-
menting both Monolith and Tip5 in a single gate, we can immediately observe various similarities.
For example, considering 8-bit lookups, the number of lookups is almost the same, with Tip5 us-
ing slightly fewer ones due to its lower number of rounds (note that both permutations use four
lookup words per round). Moreover, the number of necessary columns is similar in a round-based
approach.

The major advantage of Monolith becomes apparent after considering the degree of the con-
straints. Indeed, while Tip5 uses a maximum degree of 7 (which is the smallest integer d such
that gcd(pGoldilocks − 1, d) = 1), Monolith uses a maximum degree of only 2. Not only does
this lead to more efficient constraints, but it allows for different tradeoffs. For example, consider
p = pGoldilocks, t = 12 and a state after the Concrete layer defined by 12 variables w(1)

1 , . . . w
(1)
12 . Af-

ter the subsequent application of Bars, we add 4 new variables w(2)
1 , . . . , w

(2)
4 for the state elements

modified by the lookup table. We now apply Bricks and then Concrete to the state. Note that
describing the state in w

(1)
5 , . . . w

(1)
12 , w

(2)
1 , . . . , w

(2)
4 after these transformations results in degree-2

constraints (ignoring the table lookups), since only one Bricks layer has been applied. Hence, we
may now choose to only add 4 new variables w(3)

1 , . . . , w
(3)
4 after the application of the last Concrete

layer at the positions of the table lookups. After the next Bars layer, the state is defined by 8 poly-
nomial equations in w(1)

5 , . . . w
(1)
12 , w

(2)
1 , . . . , w

(2)
4 of degree 2 and by the 4 new variables w(4)

1 , . . . , w
(4)
4

resulting from the table lookups. After applying the next Bricks and Concrete layers, we arrive at
a state defined by 12 polynomial constraints in w(1)

5 , . . . w
(1)
12 , w

(2)
1 , . . . , w

(2)
4 , w

(4)
1 , . . . , w

(4)
4 of degree

4. A graphical overview of this approach is shown in Fig. 4.
As a result, with degree-4 constraints we can save t− u trace elements in each pair of rounds,

where u is the number of Bar applications in the Bars layers. This allows us to achieve a slimmer row
with even fewer columns. We point out that this advantage of Monolith’s low degree also applies

28

Concrete

Bars

Bricks

Concrete

Bars

Bricks

Concrete

...

w
(1)
1 , . . . , w

(1)
t , Degree: 1

w
(1)
u+1, . . . , w

(1)
t , w(2)

1 , . . . , w
(2)
u , Degree: 1

w
(1)
u+1, . . . , w

(1)
t , w(2)

1 , . . . , w
(2)
u , Degree: 2

w
(1)
u+1, . . . , w

(1)
t , w(2)

1 , . . . , w
(2)
u , w(3)

1 , . . . , w
(3)
u , Degree: 2

w
(1)
u+1, . . . , w

(1)
t , w(2)

1 , . . . , w
(2)
u , w(4)

1 , . . . , w
(4)
u , Degree: 2

w
(1)
u+1, . . . , w

(1)
t , w(2)

1 , . . . , w
(2)
u , w(4)

1 , . . . , w
(4)
u , Degree: 4

w
(1)
u+1, . . . , w

(1)
t , w(2)

1 , . . . , w
(2)
u , w(4)

1 , . . . , w
(4)
u , Degree: 4

Fig. 4. Variables (or trace elements) when using Monolith with degree-4 constraints. Newly added vari-
ables are emphasized in bold and the degree indicates the maximum degree of the polynomial equations
describing the corresponding state in the given variables.

in a similar fashion when comparing to other hash functions which use xd, such as Poseidon,
Poseidon2, Rescue, Griffin, Anemoi, and many more.

R1CS. It is possible, though more expensive, to implement Monolith in legacy proof systems that
only support R1CS equations without any table lookups. In contrast to Reinforced Concrete,
our design admits a reasonably small R1CS representation described in the following.

– We use t− 1 constraints to generate equations for Bricks.
– For Bars, we decompose each element that goes into a Bar into bits thus using one constraint

per Bar for the actual decomposition plus log2(p) ·#Bar constraints for ensuring that the bits
are either 0 or 1. Then each output bit of Bar requires 3 multiplications (2 for AND and 1 for
XOR) for the 8-bit S-box and 2 multiplications for the 7-bit one as used in Monolith-31. By
combining the composition constraints with the following bricks layer we get 1028 constraints
for Monolith-64 and 944 constraints for Monolith-31 per Bars.

– The Concrete layer can be included in the constraints of Bricks and Bars.
– In total, R rounds require R · (1027 + t) R1CS constraints for Monolith-64 and R · (943 + t)

for Monolith-31.

Acknowledgments

Lorenzo Grassi is partially supported by the German Research foundation (DFG) within the frame-
work of the Excellence Strategy of the Federal Government and the States – EXC 2092 CaSa –
39078197. Roman Walch is supported by the "DDAI" COMET Module within the COMET –
Competence Centers for Excellent Technologies Programme, funded by the Austrian Federal Min-
istry for Transport, Innovation and Technology (bmvit), the Austrian Federal Ministry for Digital
and Economic Affairs (bmdw), the Austrian Research Promotion Agency (FFG), the province of
Styria (SFG) and partners from industry and academia. The COMET Programme is managed by
FFG.

References

[AAE+20] Abdelrahaman Aly, Tomer Ashur, Eli Ben-Sasson, Siemen Dhooghe, and Alan Szepi-
eniec. “Design of Symmetric-Key Primitives for Advanced Cryptographic Protocols”.
In: IACR Trans. Symmetric Cryptol. 2020.3 (2020). Available at https://eprint.
iacr.org/2019/426.pdf, pp. 1–45 (cit. on p. 3).

[AD18] Tomer Ashur and Siemen Dhooghe. “MARVELlous: a STARK-Friendly Family of
Cryptographic Primitives”. In: IACR Cryptol. ePrint Arch. (2018) (cit. on p. 3).

29

https://eprint.iacr.org/2019/426.pdf
https://eprint.iacr.org/2019/426.pdf

[AGP+19] Martin R. Albrecht, Lorenzo Grassi, Léo Perrin, Sebastian Ramacher, Christian Rech-
berger, Dragos Rotaru, et al. “Feistel Structures for MPC, and More”. In: ESORICS
2019. Vol. 11736. LNCS. Available at https://eprint.iacr.org/2019/397.pdf.
2019, pp. 151–171 (cit. on p. 3).

[AGR+16] Martin R. Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and Tyge
Tiessen. “MiMC: Efficient Encryption and Cryptographic Hashing with Minimal Mul-
tiplicative Complexity”. In: ASIACRYPT 2016. Vol. 10031. LNCS. Available at https:
//eprint.iacr.org/2016/492.pdf. 2016, pp. 191–219 (cit. on p. 3).

[AKM+22] Jean-Philippe Aumasson, Dmitry Khovratovich, Bart Mennink, and Porçu Quine.
SAFE (Sponge API for Field Elements) - A Toolbox for ZK Hash Applications. https:
//eprint.iacr.org/2023/522. 2022 (cit. on p. 7).

[BBC+22] Clémence Bouvier, Pierre Briaud, Pyrros Chaidos, Léo Perrin, Robin Salen, Vesselin
Velichkov, et al. New Design Techniques for Efficient Arithmetization-Oriented Hash
Functions:Anemoi Permutations and Jive Compression Mode. Cryptology ePrint Archive,
Paper 2022/840. https://eprint.iacr.org/2022/840 – accepted at CRYPTO
2023. 2022 (cit. on pp. 3, 7, 24).

[BBH+19] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. “Scalable Zero
Knowledge with No Trusted Setup”. In: CRYPTO (3). Vol. 11694. LNCS. Available
at https://www.iacr.org/archive/crypto2019/116940201/116940201.pdf.
Springer, 2019, pp. 701–732 (cit. on p. 3).

[BBL+22] Augustin Bariant, Clémence Bouvier, Gaëtan Leurent, and Léo Perrin. “Algebraic
Attacks against Some Arithmetization-Oriented Primitives”. In: IACR Trans. Sym-
metric Cryptol. 2022.3 (2022). Available at https://tosc.iacr.org/index.php/
ToSC/article/view/9850/9350, pp. 73–101 (cit. on p. 11).

[BCC11] Christina Boura, Anne Canteaut, and Christophe De Cannière. “Higher-Order Dif-
ferential Properties of Keccak and Luffa”. In: FSE 2011. Vol. 6733. LNCS. Available
at https://eprint.iacr.org/2010/589.pdf. 2011, pp. 252–269 (cit. on p. 24).

[BCD+20] Tim Beyne, Anne Canteaut, Itai Dinur, Maria Eichlseder, Gregor Leander, Gaëtan
Leurent, et al. “Out of Oddity - New Cryptanalytic Techniques Against Symmetric
Primitives Optimized for Integrity Proof Systems”. In: CRYPTO 2020. Vol. 12172.
LNCS. Available at https://eprint.iacr.org/2020/188.pdf. 2020, pp. 299–328
(cit. on p. 24).

[BDP+07] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Sponge functions. In: Ecrypt
Hash Workshop 2007, http://www.csrc.nist.gov/pki/HashWorkshop/PublicComments/
2007_May.html. 2007 (cit. on p. 7).

[BDP+08] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. “On the Indif-
ferentiability of the Sponge Construction”. In: EUROCRYPT 2008. Vol. 4965. LNCS.
Available at https : / / keccak . team / files / SpongeIndifferentiability . pdf.
2008, pp. 181–197 (cit. on p. 7).

[BDP+11] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Note on
zero-sum distinguishers of Keccak-f. Available at https://keccak.team/files/
NoteZeroSum.pdf. 2011 (cit. on p. 24).

[BDP+18] Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Assche, Ronny Van Keer,
and Benoît Viguier. “KangarooTwelve: Fast Hashing Based on Keccak-p”. In: ACNS.
Vol. 10892. Lecture Notes in Computer Science. Springer, 2018, pp. 400–418 (cit. on
p. 24).

[Ber05] Daniel J. Bernstein. Cache-timing attacks on AES. Avaiable at http://cr.yp.to/
antiforgery/cachetiming-20050414.pdf. 2005 (cit. on p. 4).

[BFM+16] Thierry P. Berger, Julien Francq, Marine Minier, and Gaël Thomas. “Extended Gener-
alized Feistel Networks Using Matrix Representation to Propose a New Lightweight
Block Cipher: Lilliput”. In: IEEE Trans. Computers 65.7 (2016). Preliminary ver-
sion available at https://hal.science/hal-00913881v1/file/Berger_Minier_
Thomas_Extended_Generalized_Feistel_Networks_using_Matrix_Representation.
pdf, pp. 2074–2089 (cit. on p. 11).

[BFS+05] Magali Bardet, Jean-Charles Faugere, Bruno Salvy, and Bo-Yin Yang. “Asymptotic
behaviour of the index of regularity of quadratic semi-regular polynomial systems”.

30

https://eprint.iacr.org/2019/397.pdf
https://eprint.iacr.org/2016/492.pdf
https://eprint.iacr.org/2016/492.pdf
https://eprint.iacr.org/2023/522
https://eprint.iacr.org/2023/522
https://eprint.iacr.org/2022/840
https://www.iacr.org/archive/crypto2019/116940201/116940201.pdf
https://tosc.iacr.org/index.php/ToSC/article/view/9850/9350
https://tosc.iacr.org/index.php/ToSC/article/view/9850/9350
https://eprint.iacr.org/2010/589.pdf
https://eprint.iacr.org/2020/188.pdf
http://www.csrc.nist.gov/pki/HashWorkshop/Public Comments/2007_May.html
http://www.csrc.nist.gov/pki/HashWorkshop/Public Comments/2007_May.html
https://keccak.team/files/SpongeIndifferentiability.pdf
https://keccak.team/files/NoteZeroSum.pdf
https://keccak.team/files/NoteZeroSum.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://hal.science/hal-00913881v1/file/Berger_Minier_Thomas_Extended_Generalized_Feistel_Networks_using_Matrix_Representation.pdf
https://hal.science/hal-00913881v1/file/Berger_Minier_Thomas_Extended_Generalized_Feistel_Networks_using_Matrix_Representation.pdf
https://hal.science/hal-00913881v1/file/Berger_Minier_Thomas_Extended_Generalized_Feistel_Networks_using_Matrix_Representation.pdf

In: The Effective Methods in Algebraic Geometry Conference (MEGA). Available at
https://www-polsys.lip6.fr/~jcf/Papers/BFS05.pdf. 2005, pp. 1–14 (cit. on
p. 22).

[BS90] Eli Biham and Adi Shamir. “Differential Cryptanalysis of DES-like Cryptosystems”.
In: CRYPTO 1990. Vol. 537. LNCS. Available at http://www.cs.bilkent.edu.tr/
~selcuk/teaching/cs519/Biham-DC.pdf. 1990, pp. 2–21 (cit. on p. 15).

[COS20] Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. “Fractal: Post-quantum and
Transparent Recursive Proofs from Holography”. In: EUROCRYPT (1). Vol. 12105.
LNCS. Available at https://eprint.iacr.org/2019/1076.pdf. Springer, 2020,
pp. 769–793 (cit. on pp. 3, 4).

[Dae95] Joan Daemen. Cipher and hash function design strategies based on linear and differ-
ential cryptanalysis. Doctoral Dissertation. Available at https://cs.ru.nl/~joan/
papers/JDA_Thesis_1995.pdf. 1995 (cit. on pp. 5, 9, 13).

[DKR97] Joan Daemen, Lars R. Knudsen, and Vincent Rijmen. “The Block Cipher Square”. In:
FSE 1997. Vol. 1267. LNCS. Available at https://link.springer.com/content/
pdf/10.1007/BFb0052343.pdf. 1997, pp. 149–165 (cit. on p. 24).

[DR02] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Advanced
Encryption Standard. Information Security and Cryptography. Available at https:
//cs.ru.nl/~joan/papers/JDA_VRI_Rijndael_2002.pdf. Springer, 2002 (cit. on
p. 6).

[Fau02] Jean Charles Faugère. “A New Efficient Algorithm for Computing Gröbner Bases
without Reduction to Zero (F5)”. In: Proceedings of the 2002 International Symposium
on Symbolic and Algebraic Computation. Association for Computing Machinery, 2002,
pp. 75–83 (cit. on p. 22).

[FGL+93] Jean-Charles Faugère, Patrizia M. Gianni, Daniel Lazard, and Teo Mora. “Efficient
Computation of Zero-Dimensional Gröbner Bases by Change of Ordering”. In: J.
Symb. Comput. 16.4 (1993), pp. 329–344 (cit. on p. 22).

[GHR+22] Lorenzo Grassi, Yonglin Hao, Christian Rechberger, Markus Schofnegger, Roman
Walch, and Qingju Wang. Horst Meets Fluid-SPN: Griffin for Zero-Knowledge Ap-
plications. Cryptology ePrint Archive, Paper 2022/403. https://eprint.iacr.org/
2022/403 – accepted at CRYPTO 2023. 2022 (cit. on pp. 3, 7, 21, 24).

[GKL+22] Lorenzo Grassi, Dmitry Khovratovich, Reinhard Lüftenegger, Christian Rechberger,
Markus Schofnegger, and Roman Walch. “Reinforced Concrete: A Fast Hash Function
for Verifiable Computation”. In: ACM CCS. Available at https://eprint.iacr.org/
2021/1038.pdf. 2022, pp. 1323–1335 (cit. on pp. 3, 10).

[GKR+21] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and Markus
Schofnegger. “Poseidon: A New Hash Function for Zero-Knowledge Proof Systems”.
In: USENIX Security Symposium. USENIX Association, 2021, pp. 519–535 (cit. on
pp. 3, 24).

[GKS23] Lorenzo Grassi, Dmitry Khovratovich, and Markus Schofnegger. Poseidon2: A Faster
Version of the Poseidon Hash Function. Cryptology ePrint Archive, Paper 2023/323.
https://eprint.iacr.org/2023/323 – accepted at AFRICACRYPT 2023. 2023
(cit. on pp. 3, 7, 24).

[GLL+20] Jian Guo, Guohong Liao, Guozhen Liu, Meicheng Liu, Kexin Qiao, and Ling Song.
“Practical Collision Attacks against Round-Reduced SHA-3”. In: J. Cryptol. 33.1
(2020), pp. 228–270 (cit. on p. 24).

[GOP+22] Lorenzo Grassi, Silvia Onofri, Marco Pedicini, and Luca Sozzi. “Invertible Quadratic
Non-Linear Layers for MPC-/FHE-/ZK-Friendly Schemes over Fn

p – Application to
Poseidon”. In: IACR Trans. Symmetric Cryptol. 2022.3 (2022), pp. 20–72 (cit. on
p. 3).

[Gro16] Jens Groth. “On the Size of Pairing-Based Non-interactive Arguments”. In: EURO-
CRYPT (2). Vol. 9666. Lecture Notes in Computer Science. Springer, 2016, pp. 305–
326 (cit. on p. 4).

[GW20] Ariel Gabizon and Zachary J. Williamson. “plookup: A simplified polynomial protocol
for lookup tables”. In: IACR Cryptol. ePrint Arch. (2020) (cit. on p. 3).

31

https://www-polsys.lip6.fr/~jcf/Papers/BFS05.pdf
http://www.cs.bilkent.edu.tr/~selcuk/teaching/cs519/Biham-DC.pdf
http://www.cs.bilkent.edu.tr/~selcuk/teaching/cs519/Biham-DC.pdf
https://eprint.iacr.org/2019/1076.pdf
https://cs.ru.nl/~joan/papers/JDA_Thesis_1995.pdf
https://cs.ru.nl/~joan/papers/JDA_Thesis_1995.pdf
https://link.springer.com/content/pdf/10.1007/BFb0052343.pdf
https://link.springer.com/content/pdf/10.1007/BFb0052343.pdf
https://cs.ru.nl/~joan/papers/JDA_VRI_Rijndael_2002.pdf
https://cs.ru.nl/~joan/papers/JDA_VRI_Rijndael_2002.pdf
https://eprint.iacr.org/2022/403
https://eprint.iacr.org/2022/403
https://eprint.iacr.org/2021/1038.pdf
https://eprint.iacr.org/2021/1038.pdf
https://eprint.iacr.org/2023/323

[GWC19] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: Permutations
over Lagrange-bases for Oecumenical Noninteractive arguments of Knowledge. Cryp-
tology ePrint Archive, Report 2019/953. 2019 (cit. on pp. 3, 4, 26).

[Hab23] Ulrich Haböck. Brakedown’s expander code. Cryptology ePrint Archive, Paper 2023/769.
https://eprint.iacr.org/2023/769. 2023 (cit. on p. 4).

[HLN23] Ulrich Haböck, Daniel Lubarov, and Jacqueline Nabaglo. Reed-Solomon Codes over
the Circle Group. Cryptology ePrint Archive, Paper 2023/824. https://eprint.
iacr.org/2023/824. 2023 (cit. on p. 4).

[IAI21] IAIK. Hash functions for Zero-Knowledge applications Zoo. https://extgit.iaik.
tugraz.at/krypto/zkfriendlyhashzoo. IAIK, Graz University of Technology. Aug.
2021 (cit. on p. 24).

[KMT22] Dmitry Khovratovich, Mary Maller, and Pratyush Ranjan Tiwari. “MinRoot: Candi-
date Sequential Function for Ethereum VDF”. In: IACR Cryptol. ePrint Arch. (2022)
(cit. on p. 3).

[Knu94] Lars R. Knudsen. “Truncated and Higher Order Differentials”. In: FSE 1994. Vol. 1008.
LNCS. 1994, pp. 196–211 (cit. on pp. 17, 24).

[Lai94] Xuejia Lai. “Higher Order Derivatives and Differential Cryptanalysis”. In: Communi-
cations and Cryptography: Two Sides of One Tapestry. Springer US, 1994, pp. 227–
233 (cit. on p. 18).

[MRS+09] Florian Mendel, Christian Rechberger, Martin Schläffer, and Søren S. Thomsen. “The
Rebound Attack: Cryptanalysis of Reduced Whirlpool and Grøstl”. In: FSE. Vol. 5665.
LNCS. Springer, 2009, pp. 260–276 (cit. on p. 17).

[Nat15] National Institute of Standards and Technology. “SHA-3 Standard: Permutation-
Based Hash and Extendable-Output Functions”. In: Federal Information Processing
Standards Publication (FIPS) (202 2015) (cit. on pp. 3, 12, 24).

[OST06] Dag Arne Osvik, Adi Shamir, and Eran Tromer. “Cache Attacks and Countermea-
sures: The Case of AES”. In: CT-RSA. Vol. 3860. Lecture Notes in Computer Science.
Springer, 2006, pp. 1–20 (cit. on p. 4).

[Pag02] Daniel Page. Theoretical use of cache memory as a cryptanalytic side- channel. 2002
(cit. on p. 4).

[Pol22a] Polygon. Introducing Plonky2. 2022 (cit. on p. 4).
[Pol22b] Polygon. Plonky2: Fast Recursive Arguments with PLONK and FRI. 2022 (cit. on

p. 4).
[Pol23] Polygon. Plonky3. 2023. url: https://github.com/Plonky3/Plonky3 (visited on

06/12/2023) (cit. on p. 4).
[RIS23] RISC Zero. RISC Zero : General-Purpose Verifiable Computing. 2023 (cit. on p. 4).
[SAD20] Alan Szepieniec, Tomer Ashur, and Siemen Dhooghe. Rescue-Prime: a Standard Spec-

ification (SoK). Cryptology ePrint Archive, Report 2020/1143. 2020 (cit. on pp. 3,
24).

[Sal23] Robin Salen. “Two additional instantiations from the Tip5 hash function construc-
tion”. In: https: // toposware. com/ paper_ tip5. pdf (2023) (cit. on p. 24).

[SC21] Abdurrashid Ibrahim Sanka and Ray C. C. Cheung. “A systematic review of blockchain
scalability: Issues, solutions, analysis and future research”. In: J. Netw. Comput. Appl.
195 (2021), p. 103232 (cit. on p. 3).

[SLS+23] Alan Szepieniec, Alexander Lemmens, Jan Ferdinand Sauer, Bobbin Threadbare,
and Al-Kindi. The Tip5 Hash Function for Recursive STARKs. Cryptology ePrint
Archive, Paper 2023/107. https://eprint.iacr.org/2023/107. 2023 (cit. on pp. 3,
8, 24).

[TBP20] Florian Tramèr, Dan Boneh, and Kenny Paterson. “Remote Side-Channel Attacks on
Anonymous Transactions”. In: USENIX Security Symposium. USENIX Association,
2020, pp. 2739–2756 (cit. on pp. 4, 26).

[Woo+14] Gavin Wood et al. Ethereum: A secure decentralised generalised transaction ledger.
Ethereum project yellow paper.(2014). 2014 (cit. on p. 24).

[YMT97] A. M. Youssef, S. Mister, and S. E. Tavares. “On the Design of Linear Transformations
for Substitution Permutation Encryption Networks”. In: School of Computer Science,
Carleton University. 1997, pp. 40–48 (cit. on p. 8).

32

https://eprint.iacr.org/2023/769
https://eprint.iacr.org/2023/824
https://eprint.iacr.org/2023/824
https://extgit.iaik.tugraz.at/krypto/zkfriendlyhashzoo
https://extgit.iaik.tugraz.at/krypto/zkfriendlyhashzoo
https://github.com/Plonky3/Plonky3
https://toposware.com/paper_tip5.pdf
https://eprint.iacr.org/2023/107

[ZGK+22] Arantxa Zapico, Ariel Gabizon, Dmitry Khovratovich, Mary Maller, and Carla Rà-
fols. Baloo: Nearly Optimal Lookup Arguments. Cryptology ePrint Archive, Paper
2022/1565. https://eprint.iacr.org/2022/1565. 2022 (cit. on p. 3).

[ZMI89] Yuliang Zheng, Tsutomu Matsumoto, and Hideki Imai. “On the Construction of
Block Ciphers Provably Secure and Not Relying on Any Unproved Hypotheses”. In:
CRYPTO 1989. Vol. 435. LNCS. 1989, pp. 461–480 (cit. on pp. 5, 7).

A Fast Reduction for Primes of the Form ϕ2 − ϕ + 1 and 2ρ − 1

A.1 Fast Reduction for Primes of the Form ϕ2 − ϕ + 1

Here we describe the fast reduction modulo a prime number of the form ϕ2−ϕ+1. Note that this
includes p = 264 − 232 + 1, where ϕ = 232. We focus on the case of a multiplication, where two
n-bit inputs result in an output of at most 2n bits.

Given Fp for p = ϕ2 − ϕ+ 1, it follows that

ϕ2 = ϕ− 1 =⇒ ϕ3 = ϕ2 − ϕ = −1.

Now, let us write a value x to be reduced as

x = x0 + ϕ2x1 + ϕ3x2,

where x0 ∈ Z2n and x1, x2 ∈ Z2n/2 . Then

x = x0 + (ϕ− 1)x1 − x2 (mod p),

where note that log2(x0 + (ϕ − 1)x1 − x2) ≈ log2(p). This reduction can be computed using only
a small number of additions and subtractions.

A.2 Fast Reduction for Primes of the Form 2ρ − 1

Here we describe the fast reduction modulo a prime number of the form 2ρ − 1 which includes
p = 231 − 1. We focus on the case of a multiplication, where two ρ-bit inputs result in an output
of at most 2ρ bits.

Given Fp for p = 2ρ− 1, it follows that 2ρ = 1+ p. Now, let us write a value x to be reduced as

x = x0 + 2ρx1,

where x0 ∈ Z2ρ and x1 ∈ Fp. Then

x = x0 + x1 + (2ρ − 1) · x1︸ ︷︷ ︸
=0 (mod p)

= x0 + x1 (mod p).

This reduction can be computed using only a small number of additions and binary shifts.

33

https://eprint.iacr.org/2022/1565

	Introduction
	Hash Functions in Zero-Knowledge Frameworks
	First Lookup-Friendly Designs
	Performance Gains in Smaller Fields
	Shortcomings of Reinforced Concrete and Tip5
	Monolith: High-Speed, Constant-Time-Friendly, ZK-Oriented Hashing

	Specification of Monolith
	Domain
	Modes of Operation
	Permutation Structure
	Bricks
	Concrete
	Bars
	Round Constant Generation
	Number of Rounds

	Design Rationale
	Starting Point: Reinforced Concrete
	Structure of a Round
	The Bricks Layer
	The Concrete Layer
	The Bars Layer

	Analysis of Bar
	Decomposition D
	S-Boxes S
	Composition C
	Well-Definition and Bijectivity

	Security Analysis
	Differential Cryptanalysis
	Other Statistical Attacks
	Algebraic Analysis: Degree and Density of the Bars Polynomials
	The CICO Problem for Keyless Algebraic Attacks
	Not-Applicable Attacks

	Performance Evaluation
	Plain Performance
	Performance in Proof Systems

	Fast Reduction for Primes of the Form 2 - + 1 and 2-1
	Fast Reduction for Primes of the Form 2 - + 1
	Fast Reduction for Primes of the Form 2-1

