4,440 research outputs found

    XML document design via GN-DTD

    Get PDF
    Designing a well-structured XML document is important for the sake of readability and maintainability. More importantly, this will avoid data redundancies and update anomalies when maintaining a large quantity of XML based documents. In this paper, we propose a method to improve XML structural design by adopting graphical notations for Document Type Definitions (GN-DTD), which is used to describe the structure of an XML document at the schema level. Multiples levels of normal forms for GN-DTD are proposed on the basis of conceptual model approaches and theories of normalization. The normalization rules are applied to transform a poorly designed XML document into a well-designed based on normalized GN-DTD, which is illustrated through examples

    Visual exploration and retrieval of XML document collections with the generic system X2

    Get PDF
    This article reports on the XML retrieval system X2 which has been developed at the University of Munich over the last five years. In a typical session with X2, the user first browses a structural summary of the XML database in order to select interesting elements and keywords occurring in documents. Using this intermediate result, queries combining structure and textual references are composed semiautomatically. After query evaluation, the full set of answers is presented in a visual and structured way. X2 largely exploits the structure found in documents, queries and answers to enable new interactive visualization and exploration techniques that support mixed IR and database-oriented querying, thus bridging the gap between these three views on the data to be retrieved. Another salient characteristic of X2 which distinguishes it from other visual query systems for XML is that it supports various degrees of detailedness in the presentation of answers, as well as techniques for dynamically reordering and grouping retrieved elements once the complete answer set has been computed

    Coupled schema transformation and data conversion for XML and SQL

    Get PDF
    A two-level data transformation consists of a type-level transformation of a data format coupled with value-level transformations of data instances corresponding to that format. We have implemented a system for performing two-level transformations on XML schemas and their corresponding documents, and on SQL schemas and the databases that they describe. The core of the system consists of a combinator library for composing type-changing rewrite rules that preserve structural information and referential constraints. We discuss the implementation of the system’s core library, and of its SQL and XML front-ends in the functional language Haskell. We show how the system can be used to tackle various two-level transformation scenarios, such as XML schema evolution coupled with document migration, and hierarchical-relational data mappings that convert between XML documents and SQL databases.Fundação para a Ciência e a Tecnologia (FCT) - POSI/ICHS/44304/2002

    Designing information-preserving mapping schemes for XML

    Get PDF
    Journal ArticleAn XML-to-relational mapping scheme consists of a procedure for shredding XML documents into relational databases, a procedure for publishing databases back as documents, and a set of constraints the databases must satisfy. In previous work, we discussed two notions of information preservation for mapping schemes: losslessness, which guarantees the complete reconstruction of a document from a database; and validation, which guarantees that every update to a database corresponding to a valid document results in a database corresponding to another valid document. Also, we described one information preserving mapping scheme, called Edge++, and showed that, under reasonable assumptions, lossless and validation are both undecidable. This leads to the question we study in this paper: how to design information-preserving mapping schemes. We propose to do it by starting with a scheme known to be information preserving (such as Edge++) and applying to it equivalence-preserving transformations written in weakly recursive ILOG. We study a particular incarnation of this framework, the LILO algorithm, and show that it provides signfii cant performance improvements over Edge++ and that the constraints it introduces are efficiently enforced in practice

    Constraint-aware schema transformation

    Get PDF
    Ninth International Workshop on Rule-Based Programming (Rule 2008)Data schema transformations occur in the context of software evolution, refactoring, and cross-paradigm data mappings. When constraints exist on the initial schema, these need to be transformed into constraints on the target schema. Moreover, when high-level data types are refined to lower level structures, additional target schema constraints must be introduced to balance the loss of structure and preserve semantics. We introduce an algebraic approach to schema transformation that is constraint-aware in the sense that constraints are preserved from source to target schemas and that new constraints are introduced where needed. Our approach is based on refinement theory and point-free program transformation. Data refinements are modeled as rewrite rules on types that carry point-free predicates as constraints. At each rewrite step, the predicate on the reduct is computed from the predicate on the redex. An additional rewrite system on point-free functions is used to normalize the predicates that are built up along rewrite chains. We implemented our rewrite systems in a type-safe way in the functional programming language Haskell. We demonstrate their application to constraint-aware hierarchical-relational mappings.FCT -Fundação para a Ciência e a Tecnologia(SFRH/BD/30215/2006

    Potentially Polluting Marine Sites GeoDB: An S-100 Geospatial Database as an Effective Contribution to the Protection of the Marine Environment

    Get PDF
    Potentially Polluting Marine Sites (PPMS) are objects on, or areas of, the seabed that may release pollution in the future. A rationale for, and design of, a geospatial database to inventory and manipu-late PPMS is presented. Built as an S-100 Product Specification, it is specified through human-readable UML diagrams and implemented through machine-readable GML files, and includes auxiliary information such as pollution-control resources and potentially vulnerable sites in order to support analyses of the core data. The design and some aspects of implementation are presented, along with metadata requirements and structure, and a perspective on potential uses of the database
    • …
    corecore