
D esigning Inform ation-Preserving
M apping Schem es for XML

Denilson Barbosa
University of Calgary

denilson@scpsc.ucalgaxy.ca

Juliana Freire
University of U tah

juliana@ cs.utah.edu

Alberto 0 . Mendelzon
U niversity of Toronto

m endel@ cs.toronto.edu

A bstract
An XML-to-relational mapping scheme consists
of a procedure for shredding XML documents
into relational databases, a procedure for publish
ing databases back as documents, and a set of
constraints the databases must satisfy. In pre
vious work, we discussed two notions of infor
mation preservation for mapping schemes: loss
lessness, which guarantees the complete recon
struction of a document from a database; and
validation, which guarantees that every update
to a database corresponding to a valid docu
ment results in a database corresponding to an
other valid document. Also, we described one
information preserving mapping scheme, called
Edge++, and showed that, under reasonable as
sumptions, lossless and validation are both unde-
cidable. This leads to the question we study in
this paper: how to design information-preserving
mapping schemes. We propose to do it by starting
with a scheme known to be information preserving
(such as Edge++) and applying to it equivalence-
preserving transformations written in weakly re
cursive ILOG. We study a particular incarnation
of this framework, the LILO algorithm, and show
that it provides significant performance improve
ments over Edge++ and that the constraints it
introduces are efficiently enforced in practice.

1 Introduction
In order to use relational engines for m anaging XML
da ta , we need a mapping scheme consisting of a pro
cedure for shredding XML docum ents into relational
databases, a procedure for publishing those databases
as docum ents, and a set of constrain ts th a t those
databases m ust satisfy. As w ith any other m ap
ping strategy, it is im portan t to study the inform a
tion preservation properties of such a scheme in or
der to understand its su itability for a given applica
tion [25]. A lthough there is a rich lite ra tu re on m ap
ping schemes [5, 13, 16, 21, 29, 22, 31], little a tten tion

P erm ission to copy w ilhoul fee all or pari o f this m aterial is
granted provided that the copies are no t made or distributed fo r
direct commercial advantage, the V LD B copyright notice and
the title o f the publication and Us dale appear, and notice is
given that copying is by perm ission o f the Very Large D ata Base
Endow m ent. To copy otherwise, or to republish, requires a fee
a n d /o r special perm ission fro m the E ndow m ent.

Proceedings o f the 31st V L D B Conference,
Trondheim, Norway, 2005

has been given to their correctness; i.e., w hether they
preserve enough inform ation. In previous work [3], we
defined lossless m apping schemes as those th a t allow
the reconstruction of the original docum ents, and val
idating m apping schemes as those in which all legal
relational databases correspond to a valid XML doc
um ent. We argued th a t while lossless ness is enough
for applications involving only queries over the docu
m ents, bo th losslessness and validation are required if
the docum ents m ust conform to an XML schem a and
the application involves bo th queries and updates to
the docum ents. We also described a m apping scheme,
E dge+ + , in which bo th losslessness and validation are
guaranteed by constrain ts in its relational schema.

In th is paper, we address the problem of design
ing inform ation-preserving m apping schemes from an
XML schema. Previous m apping design algorithm s [5,
29] do not guarantee inform ation preservation. M ore
over, since b o th losslessness and validation are unde-
cidable for a large class of m apping schemes th a t in
cludes all those in the lite ra tu re [3], a rb itra ry design
procedures cannot guarantee inform ation preservation
in general. We propose a sound framework for design
ing inform ation-preserving m apping schemes th a t can
serve as the basis for design algorithm s: s ta r t w ith an
inform ation preserving m apping scheme, and repeat
edly apply equivalence-preserving transform ations [25]
to it. Following this procedure, inform ation preser
vation is guaranteed by construction. O ur framework
is extensible and allows any transform ation th a t can
be w ritten in weakly recursive ILOG w ith stratified
negation [19] (w rec-ILOG^), which is powerful enough
for expressing most of transform ations proposed in the
lite ra tu re (e.g., [5, 28]). We also discuss an instance
of our framework: the LILO (for Lossless Inlining,
Lossless Outlining) algorithm , which uses Edge++ as
s ta rting point and defines several equivalence preserv
ing transform ations (some of which are extensions of
transform ations in the literature). O ur experim ental
results show th a t LILO results in m apping schemes
th a t outperform the previous Edge++ substantially.

In fo rm a tio n P re s e rv a tio n in M ap p in g S chem es.
T he example below illustrates inconsistencies th a t
arise when updates are considered in a m apping
scheme th a t is not validating.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276285855?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:denilson@scpsc.ucalgaxy.ca
mailto:juliana@cs.utah.edu
mailto:mendel@cs.toronto.edu

mondial

£ = {m ondia l, cities, country, city,
province, sta te, nam e, official}

root = m ondial

R = {mondial*— c ities, country*: cities*—city*',
city*—nam e, (province\sta te), oJJicial[l, 5];
country*—nam e, capital;
name*—# P CD A T A ; province*—# PC D A T A ;
state*—# PC D A T A : official*—# PC D A TA:.
capital*—# P C D A TA }

(a)

Figure 1: (a) XML document; elements are shown as circles and text nodes are shown as boxes. The labels of elements
and the values of the text nodes are also shown, (b) a DTD for the document.

E xa m p le 1. Consider the schem a in Figure 1(a). in
spired by the M ondial D atabase1, describing cities and
countries. For each city, the database contains its
name; the nam e of the province or s ta te the city is lo
cated; and from 1 to 5 government officials. Countries
are described by the ir nam e and the nam e of their cap
itals. A typical relational schem a derived from apply
ing inlining techniques to the docum ent schem a above
is as follows2:
c ity (c ity ld ,n am e.provinceld,stateld)
o f f i c i a l (o f f i c i a l l d , citvld.nam e)
coun try (coun try Id ,name, c a p ita l)
For the docum ent in Figure 1(b). we would have the
following database instance under th is mapping:
c i t y (l , ’Toronto’ , ’O ntario ’ .NULL)
c i t y (4 , ’S a lt Lake C ity ’ .HULL,’Utah’)
o f f i c i a l (2 , l . ’David’)
o f f i c i a l (5 ,4 , ’Rocky’)
o f f i c i a l (6 ,4 , ’Sam’)
c a p i ta l (7 , ’B ra z il’ , ’B r a s i l ia ’)
This m apping scheme is lossless as the original docu
m ent can be reconstructed from the database. How
ever. by applying the following legal update:
UPDATE c i ty SET province=’Utah’
WHERE name=’S a lt Lake C ity ’
we arrive a t database th a t no longer corresponds to a
valid docum ent. This anom aly is due to the fact th a t
the m apping scheme does not preserve the sem antics
of the choice (I) construct, i.e.. th a t cities can have
either a province or s ta te , but not both. ■

In a lossless and validating m apping scheme, the re
lational schem a is equivalent to the docum ent schema.
Thus, constrain ts in the relational schem a prevent such
anomalies by disallowing SQL updates th a t result in
databases corresponding to invalid docum ents. The al
ternative to using an inform ation-preserving m apping
scheme would be re-validating the XML docum ent re

1http://dbis.informatik.uni-goettingen.de/Mondial
2 P rim ary keys are underlined and nullable colum ns are

shown in italics

suiting from the update before changes are com m it
ted. However, note th a t testing w hether even simple
updates such as3:
update in s e r t < o f f ic ia l> J o h n < /o f f ic ia l>
in to /m o n d ia l /c i t ie s /c ity [n a m e = ’S a lt Lake C ity ’]
results in a valid docum ent cannot be done statically
(in th is case, the legality of the update depends on the
num ber of officials already associated w ith the city).
W hile one could test w hether an update is permissible
by reconstructing the elem ents involved, applying the
update to those elements, and using a validator to test
w hether the result conforms to the docum ent schema,
this approach has several disadvantages. F irst, vali
dation is com putationally expensive [26]; also, incre
m ental validation techniques [4. 27] require and m ain
ta in auxiliary inform ation th a t m ust be kept synchro
nized w ith the database; finally, th is approach requires
developing and m aintaining a special-purpose applica
tion. and ignores the DBMS infrastructure for checking
constraints.
O u tlin e a n d C o n tr ib u tio n s . We argue in th is pa
per th a t it is feasible to augm ent the relational schemas
in m apping schemes w ith constrain ts for ensuring the
validity of the elements in the XML docum ents w ith
respect to the content models in an XML schema. We
s ta r t in Section 2 discussing element and docum ent va
lidity. XML m apping schemes and inform ation preser
vation. We propose a sound and extensible fram e
work for designing inform ation preserving m apping
schemes (Section 3). which consists of applying equiv
alence preserving transform ations to an inform ation-
preserving m apping scheme. We show how a m ap
ping scheme and an a rb itra ry transform ation w ritten
in wrec-ILOG-1 can be rew ritten as another m apping
scheme (Section 3.3) in a m echanical way. We discuss
several equivalence preserving transform ations th a t re
sult in m apping schemes defining sim pler relational
constrain ts for ensuring element validity, and in tro
duce the LILO algorithm in Section 4. We show th a t

' l-sing the syn tax of [23]

2

http://dbis.informatik.uni-goettingen.de/Mondial

LILO provides significant perform ance im provements
over Edge++ and th a t the constrain ts it introduces
can be efficiently enforced in practice (Section 5). We
conclude w ith a discussion in Section 6.

2 Definitions and Terminology
XML docum ents are modeled by ordered labeled trees
whose nodes represent either elem ents or tex tu a l con
ten t. thus capturing the essential d a ta representation
com ponents of XML [7]. We use r . A and v to de
note the the type, the label and the value of nodes in
the tree, respectively. More precisely, let I , V be two
disjoint, countably infinite sets of node ids and values:

D efin itio n 1. A n XML D ocum ent is a tuple
(T . A , t , v) , where T is an ordered tree whose nodes are
elements o f I ; r : I —► {element, text} assigns types
to nodes in T , such that r (r) = elem ent i f r is the
root o f T , and i f r (e) = text then e is a leaf in T ;
A : I —> V assigns labels to nodes in T such that the
label o f all text nodes is # P C D A T A ; and v : I —► V
assigns values to text nodes in T .

For brevity, we will refer to subtrees rooted a t el
em ent nodes sim ply as “elem ents’'. We denote by X
the set of all XML docum ents.

The focus of th is work is on preserving the valid
ity constrain t of elements, which is identical for bo th
DTDs and XML Schemas: an element of a given type
is said to be valid if its content is a word in a 1-
unam biguous regular language [8] associated w ith th a t
type. The only difference btween these formalisms is
the way th a t types are associated to elements: DTDs
restric t all elem ents w ith the sam e label to have the
same type, while XML Schema allows assigning differ
ent types to the same label, depending on the context
in which the label appears. W hile our m ethod handles
XML Schemas and D TD s seamlessly, we restric t our
discussion to D TD s for simplicity, and refer the reader
to [3. 4] for handling type specialization.

D efin itio n 2. A n X M L DTD is a triple (S . r . R)
where S is a set o f elem ent labels, r e S is a distin
guished label and R is a mapping associating to each
a € S a content model expressed as a 1-unambiguous
regular expression over S U {i t P(T) A 1 A }.

Figure 1(a) shows a DTD; cardinality constrain ts
of the form a[x, y] are shorthands for x copies of a
followed by y copies of a?.

The validity of a docum ent I) w ith respect to a
DTD X = (S . r . R) is done as follows. Let e be an
element and Ci. e„ be its ordered children; the con
ten t of e is the string A(ci) • • • A(e„). We say th a t e
is valid w ith respect to X if its content m atches the
regular expression associated w ith A(e) in R. A docu
m ent I) is valid w ith respect to X , w ritten I) € L (X) ,
if all of its elem ents are valid w ith respect to X and
the label of its root element is r. Using our natation .

the validation problem can be re-sta ted as: given D
and X , is it the case th a t D € L (X)7

2.1 X M L -to -re la tio n a l M ap p in g Schem es
We model relational databases w ith separate dom ains
for surrogates to element ids (e.g.. c i t y l d in Exam
ple 1) and other constants. Let 3, D be two disjoint
countably infinite sets of surrogates and constants, re
spectively. A relational schem a is a set of relation
schemes and constraints; each relation scheme R has
a set (possibly em pty) of a ttrib u tes w ith dom ain 3—
called the surrogate attributes o f R , and a set (possibly
em pty) of a ttr ib u tes w ith dom ain D. Instances are de
fined as custom ary [1. 24]. A constraint is expressed as
a boolean query and is said to be violated if th a t query
evaluates to true. A relational database instance is le
gal if it does not violate any constrain t in its schema.
7Z(S) denotes the set of legal instances of S .

No m eaning is assigned to node ids the docum ent
tree, nor to the surrogates used for representing them ;
furtherm ore, no relationship between node ids and sur
rogates is assume either. T h a t is. renam ing node ids in
Figure 1(b) does not yield a new docum ent; similarly,
renam ing surrogates in the database in Exam ple 1 does
not create a new database. These properties are cap
tu red as follows:

D efin itio n 3. X M L documents l) t = (T%, Ai, t%, Vi) ,
and D '2 = (T-2 , X2, t 2, v2), are equivalent, denoted by
D i = x D 2, i f there exists an isomorphism <f> : I —> I
between T \ and T2 such that Ai(v) = X2((f>(v)); t i (v) =
t 2(4>(v)), and v \{v) = v2{4>{v)), fo r all v G T i.

D efin itio n 4. Database instances I i , I 2 are equiva
lent, written 11 = r I 2 i f there is a bisection on 3 U D
that maps 3 to J, is the identity on D , and transform s
1% into I2.

T he notion of database equivalence above has been
called OID equivalence in object databases [1]. [D]
denotes the equivalence class of docum ent D; th a t is
[D] = {D f € X | D ' = x D}; similarly. [I] denotes the
equivalence class of database I .

An X M L-to-relational mapping scheme [3] as a
triple n = (a,TT,S), where S is a relational schema;
a is a mapping function th a t assigns instances of S to
XML docum ents; and n is a publishing function th a t
assigns XML docum ents to instances of S .

D efin itio n 5. A n XM L-to-relational mapping scheme
is a triple (j, = (a, tt, S) , where a : X —► 1Z(S) is a
partial fun c tio n , and tt : 1Z(S) —> X is a total fun c tio n ,
and the following hold: (1) fo r all D%,D2 £ X we have
that D i = x D 2 implies a (D i) = r <j(D2); and (2)
fo r all I i , I 2 € Tl{S) we have that I i = r I 2 implies
7 r (/ i) = x n (h) .

Defining a as a partia l function accom m odates m ap
ping schemes custom ized for a specific DTD (e.g.. [5.
29]); on the o ther hand, defining n to be to ta l ensures

3

th a t any legal database represents (i.e., can be pub
lished as) a docum ent. Conditions (1) and (2) ensure
th a t bo th a and tt are generic: they m ap equivalent
docum ents to equivalent databases and vice-versa.

2 .2 T h e X D S C la s s o f M a p p in g S c h e m e s

A class of m apping schemes is defined in term s of
the languages used for specifying a, S , and tt. The
power of these languages determ ines w hat kinds of
m appings can be specified. The X D S class of m ap
ping schemes [3] is defined as follows.
T h e M a p p in g L a n g u a g e . The language consists
of XQuery augm ented w ith a clause s q l . . . end for
specifying SQL insert statem ents, and to be used in
stead of the r e t u r n clause in a FLO W R expression.
The sem antics of the m apping expressions is defined
sim ilarly to the usual sem antics of FLO W R expres
sions: the f o r , l e t , w here , o rd e r by clauses de
fine a list of tuples which are passed, one at a time,
to the s q l . . . end clause, and one SQL transaction is
issued per such tuple.
T h e C o n s t r a in t L a n g u a g e . C onstrain ts are
boolean program s in D atalog w ith stratified nega
tion [1]. This language allows easy expression of
standard relational constrain ts (e.g., functional de
pendencies and referential integrity), as well as graph
connectivity required for ensuring the database en
codes a tree, and element validity (Section 3.2).
T h e P u b l is h in g L a n g u a g e . Publishing functions
are a rb itra ry XQuery expressions over a "canonical"
XML view of a relational database. T h a t is, each re
lation is m apped into an elem ent whose children rep
resent the tuples in th a t relation in the stan d ard way
(i.e., one elem ent per colum n). This is the approach
taken by SilkRoute [15] and X PER A N TO [9].

X'D S is, by design, a powerful m apping tool. In
fact, all m apping schemes th a t we are aware of in the
literature can be expressed using it.

2 .3 In f o r m a t io n P r e s e r v a t io n in X'D S

For completeness, we briefly revisit losslessness and
validation here, and refer the reader to [3] for details.
A m apping scheme is losslessness it it allows the com
plete to reconstruction of any (fragm ent of a) docu
m ent from its database (see Figure 2(a)):

D e f in it io n 6. .4 mapping scheme (j. = (a, tt, S) is loss
less i f fo r all D € Dum(tr), tt((j(D)) = \- D .

The following are easy to verify:

P r o p o s i t io n 1. /i = (<j , tt,S) is lossless if and only
if tt((t(-)) is the identity on equivalence classes in
Doiii((t).

Validation is defined in term s of a D TD X . A val
idating m apping scheme is one in which every legal
database instance corresponds to a docum ent in L(X):

,v mb’)

(a) Lossless m apping scheme.

X K{S)

(b) Lossless and validating m apping scheme.

Figure 2: Information preservation in mapping schemes.

D e f in it io n 7. .4 mapping scheme (j. = (a, t t , S) is val
idating with respect to DTD X if a is total on L(X) ,
and fo r all T € 7l(S) , there exists D € L (X) such that
T = ij a{D).

Note th a t for a validating (j. = (a, tt, S) , every suc
cessful update on an instance of S results in a database
th a t represents a valid docum ent; it follows th a t only
permissible updates over the original docum ent can be
effected on its corresponding relational database. As
discussed in Section 1, when /j is lossless only, testing
if an update is permissible can be done by m aterializ
ing tt((j(D))), effecting the update , and validating the
resulting docum ent, which can be prohibitively expen
sive in m ost cases.

As discussed in [3], losslessness and validation are
orthogonal and one does not imply the other. Appli
cations th a t define a DTD, and involve bo th querying
and updating the XML docum ents require m apping
schemes th a t have bo th properties. Note th a t when
this is the case, it is guranteed th a t all queries and up
dates over the docum ents can be done using SQL and
th a t every database corresponds to a valid docum ent:

P r o p o s i t io n 2. /j = (a, t t, S) is lossless and validating
with respect to D TD X -if and only ■if a and tt are
Injective, and tt is the inverse of a (up to equivalence).

Proof. It is easy to see th a t /j is bo th lossless and val
idating if a and tt are as above. For the o ther implica
tion, note th a t since /j is validating w .r.t. X and both
a and tt are generic (Definition 5), it follows th a t a

defines a bijection between equivalence classes of doc
um ent in L (X) and database instances in 7Z(S) . A
sim ilar argum ent applies for t t . Since /j is also lossless.

4

So
Oil

S i
a2 ak

s k

Mo
0i

mi

02 Sk
Vk

Figure 3: Designing of an information-preserving mapping
scheme: X is a DTD, fio is the Edge++ mapping scheme,
and each fn is the result of applying an information-
preserving schema transformation.

Proposition 1 implies th a t a and 7r are the inverse of
each o ther up to equivalence. □

P u t in o ther words, a lossless and validating m apping
scheme defines a bijection among equivalence classes
of valid docum ents and legal relational databases, as
depicted in Figure 2(b). We call m apping schemes
th a t are bo th lossless and validating (w ith respect to
a D TD) information-preserving.

3 D esigning Inform ation-Preserving
M apping Schemes

We now discuss a general and sound framework
for designing inform ation-preserving m apping schemes
based on applying structural transform ations [18, 25]
to an existing schema. In summary, we s ta r t w ith
an initial m apping scheme /xo th a t is known to be
inform ation-preserving, and subsequently transform it
until the desired one Hk, defined as

f t = ((a l 0 « | t _ i 0 . . . 0 a i 0 (r) , (tt o j3i o • • • o ;3k), Sk)
is found, as illustrated by Figure 3. To make this
framework concrete we m ust specify the languages for
expressing the (1) m appings between XML docum ents
and database instances, as well as the (2) m appings
cti, pi between instances of different relational schemas.
In our case, the m apping and publishing languages are
those in X D S (Section 2.2), and the m appings be
tween relational instances are given as “weakly recur
sive” ILOG program s w ith stratified negation (wrec-
ILO G ^) [19]. Informally, th is language corresponds to
D atalog w ith stratified negation augm ented w ith non
recursive “invention” rules th a t create new surrogates,
and is powerful enough for the kinds of transform a
tions we define.
S o u n d n ess. Inform ation preservation in our fram e
work is achieved is as follows. F irst, we always s ta rt
w ith a m apping scheme /xo = (cto, tto,-S'o) th a t is bo th
lossless and validating w ith respect to a DTD X ; as we
discuss below, th is is the case if and only if X and So
are equivalent (P roposition 3). Second, every tran s
form ation applied to a m apping scheme /x*, 0 < i < k
results in /Xj+i whose relational schem a is equivalent to
th a t of fii. Such transform ations are called equivalence
preserving [25]. It follows th a t the resulting m apping
scheme Hk = (ak,TTk,Sk) is such th a t Sk is equivalent
to X and thus inform ation preserving.

In the rem ainder of this section, we relate classical
notions of inform ation preservation and relative capac
ity of schemas [18, 25] to our notions of lossless and

validation [3]. Then, we briefly describe the E dge++
m apping scheme, which is the sta rtin g point of LILO,
discussed in Section 4. Finally, we give a procedure
for incorporating a rb itra ry w rec-ILO G " program s into
X D S m apping and publishing functions (Section 3.3),
thus m aking our framework extensible: any equiva
lence preserving transform ation th a t can be specified
in wrec-ILOG^ can be used w ith our m ethod.

3.1 D o m in an ce a n d E q u iv a len ce o f Schem as
Equivalence of schemas S and T (w ithin or across d a ta
models) is defined based on properties of the m appings
between their instances [25]. Let I (S) denote the set of
all instances of S (e.g., valid docum ents if S' is a DTD
or legal database instances if S' is a relational schema).

Let a : 1(5) —> I(T) be a m apping given in some
appropriate language, a is said to be inform ation-
preserving if it is reversible; th a t is, there exists ,3 :
I(T) —> I (S) such th a t ,3(a(-)) is an equivalence rela
tion in 1(5). If th is is the case, we say th a t T dom
inates S (via a , 3)-, denoted 5 ^ T . (We note th a t
classical notions of schem a dom inance [18, 25] require
3{a(-)) to be the identity on I(T); w ithout loss of gen
erality, we use an equivalence relation to account for
renam ings of element surrogates.)

If bo th a and 3 are to ta l and bijective, th en 5 < T
via (a, 3) and T ^ 5 (via 3, <*)• In th is case, we say
th a t 5 and T are equivalent, denoted 5 = T , and th a t
3 (resp. a) is an equivalence preserving transform a
tion. Note th a t ^ is a transitive relation, while = is
an equivalence relation.

Schema dom inance and equivalence establish no
tions of “relative inform ation capacity” between
schemas. I f S < T , we say th a t T has at least the
inform ation capacity o f S , since instances of 5 can
represent any instance of T . Similarly, if S = T , we
say 5 and T have the same inform ation capacity.
E q u iv a len ce o f D T D s a n d R e la tio n a l Schem as.
In a m apping scheme /x = (<j,tt,S), a and tt play the
role of a and 3 above, respectively:

P ro p o s itio n 3. I f X is a D T D and /j = (a, ir ,S) is a
mapping scheme such that L (X) C Dom(er) then: (1)
11 is lossless i f and only i f X < S ; (2) \± is both lossless
and validating with respect to X i f and only i f X = S .
Proof. (1) follows from Proposition 1, the fact th a t
L (X) C Dom(<r), and the definition of (2) follows
from Proposition 2 and the definition of = . □

Since losslessness and validation are undecidable [3], it
follows tha t:

C o ro lla ry 1. Equivalence o f D TD s and relational
schemas is undecidable.

3.2 T h e E dge ‘ M ap p in g Schem e
In w hat follows, we describe Edge+ + , the initial
m apping scheme in our framework and show it is
inform ation-preserving. Edge++ extends the Edge

5

m apping scheme [16] (which is lossless) w ith con
stra in ts for ensuring validation w ith respect to a DTD
X = (E . r .R) . E dge++ contains additional relations
for storing the transition functions of the DFAs of the
regular expressions in R . and constrain ts th a t check
the validity of the elem ents by sim ulating the appro
p riate DFAs on their content.
T h e E dge; ' R e la tio n a l Schem a. Recall 3 is the
dom ain of surrogates and T> is the dom ain of constants.
Let 3' = (the symbol # will be used for
m arking elem ents th a t have no children); let Q C D
be a set of surrogates for DFA states; let T C D be
a set of surrogates for element types (i.e.. symbols in
S); and let 25 C D denote the set of boolean constants.
Edge++ m apping schemes use the following relational
schem a (keys are underlined):

E d g e (paren t : 3, child : 'J, label : D),
F L C (parent : 'J,first : Z ', last : O ') ,IL S (left : 'J, right : J),

V a lu e (e lem ent : 3, value : D), T y p e f elem ent : 3, type : 7),
T ra n s it io n (t(/p e : 7, from : Q, symbol : D , to : Q, accept : 25)

The E dge and V alue relations store all edges be
tween elem ents and between elem ents and tex t nodes
in tree, respectively. Unlike Edge, the ordering of the
nodes in the docum ent is captured by the successor re
lation am ong them : for each elem ent e whose content
model is not <; I’d) A 1 A. we add a tuple (se, s f , si) to
F L C (which stands for “first and last children”) con
sisting of the surrogates of e. and its first and last
children; if e has no content (i.e.. no children), we
add a tuple (se, # , #) to FL C . The ILS (“im m ediate
left sibling”) relation contains tuples w ith surrogates
of consecutive elem ents in the docum ent. Using the
successor relation instead of the ordinals of tree nodes
was m otivated by efficiency reasons, thereby avoiding
reordering all nodes after each update [4]. The T y p e
relation contains the types of each element in the doc
um ent. Finally. T ra n s itio n stores the transition func
tions of the au to m ata th a t correspond to the content
models in the DTD.
C o n s tra in ts . Two kinds of constrain ts are defined in
E dge+ + . T he structural constraints ensure th a t every
instance of S encodes an XML docum ent (as in Defini
tion 1); to do th a t, we define constrain ts for ensuring
the database encodes a tree, the ordering of the ele
m ents is consistent, etc. These properties are easily
encoded as boolean queries in D atalog w ith stratified
negation. T he validation constraints ensure th a t ev
ery legal instance of S encodes a valid docum ent; to do
th a t, each rule ti <— in the D TD is transla ted into
the program shown in Figure 4. Note th a t reach/
sim ulates the DFA corresponding to on the content
of an element p, s ta rtin g 4 w ith either rule (1). if the
element has no content, or (2); rule (3) advances the
DFA to the next child of p if an appropriate transi
tion is defined, accep t/ com putes all elem ents whose

4T he constant qo denotes th e s ta rtin g s ta te of the DFA.

reacht,; (p. #, s) F L C (p , # , #), Type(p, ti), (1)
Transit ion(/,. </;•.. . . _)

reacht,; (p. c, s) Edge(p, c, x), F L C (p , c, _), Type(p, ti), (2)
Transit ion(/, ,qo ,x , s , -)

reacht,; (p, c, s) reacht,; (p, x, y), ILS(x, e), Type(p, ti), (3)
Edge(p, c, w), Transit ion(/,, y, w, s, _)

accept, (p) reach, (p, c, s), F L C (p , e), Type(p, t-t),

Transit ion(/,. true)
invalid, F L C (p , _), accept, (p)

Figure 4: Validation constrain t in E dge+ + .

content are accepted by the DFA (i.e.. all p elements
for which an accepting s ta te s is reached after visiting
their last children e); therefore, invalid^ evaluates to
true if and only if there is one elem ent of type ti th a t
is invalid.
T h e M a p p in g a n d P u b lish in g F u n c tio n s . Both
a and n in Edge++ are straightforw ard; due to space
constraints, we briefly describe how they work and re
fer the reader to [3] for details, a creates the database
instance by iterating on a stream of elements, accord
ing to the global docum ent ordering; n, on the o ther
hand, reconstructs the ordering of the elem ents using
the o rd e r by clause of XQuery on F L C and ILS. Note
th a t since a is defined for a specific DTD. the m apping
of T ra n s itio n and T y p e can be easily hard-coded.

P ro p o s itio n 4. I f fj, = (a, it, S) is the Edge++ m ap
ping scheme fo r a D T D X , then fj, is both lossless and
validating with respect to X .

3.3 R e w ritin g M ap p in g s
Conceptually, each tim e we transform = (a, tt, S)
into / / = { a ', t t ' ,S ') , we m ap instances of S and S '
using wrec-ILOG-1 program s a : 1Z(S) —► TZ(S') and
,3 : 1Z (S ') —> 1Z(S). To com plete our framework, we
now show how o ' and tt' are w ritten as X 'D S m apping
and publishing expressions, given a rb itra ry a, n, a and
3 ■ To do th a t, we rew rite a (resp. 3) using XQuery
functions as well as m apping expressions (resp. pub
lishing expressions), and we will represent database
instances as XML docum ents.

In sum m ary, a ' works in two steps: first, we m a
terialize the instance of S defined by a as a tem po
rary XML docum ent and apply the m apping defined
by a (rew ritten as a m apping expression). For t t ' , we
first apply 3 (rew ritten as a publishing function) to an
instance of S' , resulting in a “canonical view” of an
instance of S , to which we apply n unchanged.

Recall th a t w rec-ILOG-1 program s are ILOG pro
gram s w ith stratified negation w ithout recursive inven
tion of surrogates. We assum e a , 3 are in norm al form;
th a t is. neither program defines cascading invention of
new surrogates5, and they can be stratified in a way

°A program has cascading invention of surrogates if there are
two invention rules r't, r j such th a t th e surrogates generated for
ri are “used” for generating surrogates for r j .

6

th a t all invention rules occur after all non-invention
rules. We note th a t for every wrec-ILOG-1 program
there is an equivalent one in norm al form [19].
D efin ing a '. W ithou t loss of generality, we assume
th a t each m apping expression in a populates a sin
gle relation in S . and th a t each relation in S is popu
lated by a single m apping expression in a. (We can re
place each procedure p populating relations n , . . . , rn
by n “copies” of p such th a t copy pi populates relation
n only. Also, we can replace n m apping expressions
P i p n where each populate relation r by a new pro
cedure p' and n functions f i , f n , such th a t each /*
re tu rn the list of tuples inserted by pi and p' inserts
into r the “union” of the results o f f i , f n .)

T he first step of a ' m aterializes an “instance” of S
(which we refer to as I s) as follows. Let R i , . . . ,R n
be the relation names in S and p \ , . . . , p n be the m ap
ping expressions in a th a t populate them ; we convert
each pi into a function f i th a t re tu rns the sequence of
“tuples” th a t would be inserted in R i. T he result of
each f i is sorted lexicographically and duplicate tuples
are removed. For the second step of o ' , we convert a
into a m apping expression th a t takes I s and produces
the desired instance of S '. Let n , . . . , n , . . . , rn be the
rules in a stratified in a way th a t all invention rules
are ri+1 , . . . , r n . We define a as two standard XQuery
program s f p and fg : f p com putes P = n , . . . , ri on
I s using the conventional algorithm for fixpoint se
m antics for D atalog [1]; f g is applied to the result of
f P and com putes Q = r i+1, . . . , rn .

Defining f p . f p is a recursive function th a t takes a
“database instance” d (represented as an XML doc
um ent) as input, and com putes a new “instance” d!
(also represented as an XML docum ent) th a t contains
a copy of d and the results of the functions th a t com
p u te the rules in P . If. after an iteration of f p , d and
d! are not lexicographically identical, we ite ra te again
using d! as input; otherwise (i.e.. reach a fixpoint). we
stop. T he transla tion of the rules in P is as follows.

A rule f i : A (x) <— B% { u \ B n (un) defining a
conjunctive query where each I >, appears positively is
im plem ented as a function f i using nested loops to iter
ate over the cartesian product of relations B%. . . . ,B n ,
thus com puting all possible valuations to the variables
in n , and re tu rns the “tuples” th a t satisfy the con
junctive query in the body of the rule. N egation is
dealt w ith in the usual way for D atalog w ith stratified
negation: - iR (x) holds if and only if x is in the active
dom ain bu t not in R . A set of rules

E d g e 0

A (x) A (x)

com puting a union is im plem ented as a separate func
tion for each rule (as above); the “union” is done
by concatenating w ith duplicate elim ination and lex
icographic sorting the individual “relations” (i.e.. se
quences of tuples) re tu rned by each function.

Defining f g . Since we do not allow recursive gen-

p id eid label
1 19 country

19 20 name
19 22 c a p it a l

F L C o
pid first last
19 20 22

IL So V alueo

left right
20 22

eid value
20 B r a z il
22 B r a s i l ia

(a) E dge++ m apping of th e M ondial XML docum ent.

C o u n tr y i V a lu e i
country name capital country value

19 20 22 20
22

B r a z il
B r a s i l ia

(b) Inlining elem ent ids.

Country-.'
country name capital

19 B r a z il B r a s i l ia

(c) Inlining elem ent content.

Figure 5: Applying mapping scheme transformations.

eration of surrogates, we tre a t each invention rule
A(*. x) <— B i (u i) , . . . , B n (un) like a s tan d ard non
recursive rule as in f p . except th a t an invented surro
gate is added to each tuple in the result set. com puted
by a Skolem function /^ (S) . Note th a t the m apping
expressions th a t populate an instance of S ' from the
result of f g are straightforw ard.
D efin ing tt'. We ob tain tt' by converting ,3 into
X Query functions as discussed above; note th a t, on a
“canonical view” of an instance of S ', these functions
com pute a “canonical view” of the corresponding in
stance of S , to which we can apply tt unchanged.

4 The LILO A lgorithm
In th is section we describe LILO (Lossless Inlining.
Lossless O utlining), a m apping scheme design algo
rithm based on the framework discussed in Section 3.
LILO uses Edge++ as its initial m apping scheme and
defines several equivalence-preserving transform ations,
some of which are sim ilar to those defined in the lit
erature. This section s ta rts w ith an example th a t il
lustra tes the application of two transform ations to the
Edge++ m apping scheme, showing the Edge++ m ap
ping of the docum ent in F igure 1(b). and the databases
th a t result from each transform ation. Next, we discuss
in detail the transform ations used in LILO and give an
intuitive argum ent of why they are equivalence pre
serving. Finally, the LILO algorithm is discussed.
E xa m p le 2. Recall the fragm ent of the m ondial

7

database shown in Figure 1(b) and its DTD in Fig
ure 1(a). In th is example, we focus on country ele
m ents and the constrain ts defined for them . For clar
ity, the figures om it relations not involved in the dis
cussion. Note th a t subscripts are used to distinguish
relations w ith the same nam e in different schemas
(e.g., V a lu e i is a relation in S i) .
E dge M ap p in g . Figure 5(a) shows the Edge++
m apping for the country element; we refer to its rela
tional schem a as So in the rem ainder of the example.
In So, we have a recursive constrain t to check th a t each
element e labeled country has has exactly two children
ci, C2 ; ci is labeled name; C2 is labeled capital; and cl
precedes c2. Moreover, So also has a s tru c tu ra l con
stra in t requiring bo th Ci, C2 to have a m atching tuple
in the V alue relation.
In lin in g E lem en ts . Consider a schem a S i th a t adds
to So a relation C o u n try 1(country, name., capital)
for inlining country elem ents and their children, and
constraints for enforcing the functional dependencies
name —> country and capital —> country , for ensuring
th a t each nam e and cap ita l element has a single coun
try element as its paren t in the tree. The constrain ts
for validating nam e and capital elements (Section 3.2)
are also modified so th a t they access C o u n try 1 as
opposed to E d g e i . Intuitively, a m apping scheme de
fined on Si has one advantage over Edge+ + : the val
idation constrain ts for country elem ents can be spec
ified directly using SQL [12], and thus enforced effi
ciently by relational database engines. The m apping
oti : TZ(So) —► 'R-(Si) is:

D i f f (e) K d g o o i . e. 'c o u n try ')

D i f f (e) K d g o o i . e. 'c a p i t a l ')

D i f f (e) K d g o o i . e. 'c o u n try ') . K d g o o ir. e. 'name')

C o u n t r y i (e . n. e) E d g e o (e . n. 'name'). E d g eo (e . e. 'c a p i t a l ')
K dgoi i (. c, I) Kdgooi'< . c. I), Diff'i'< j

F L C i (p, f , I) F L C 0 (p, J, I)-. D ifF ipi
I L S i (l , r) IL S o (I, r), D ifl i /)

V a lu e i (e. v) V a lu eo (e . v)

D iff com putes all elem ents th a t are m apped into
C o u n try 1 instead of E d g e i, F L C i and IL Si. Fig
ure 5(b) shows the resulting database instance. The
instance of So is recovered by 3i : TZ(Si) —> TZ(So):

K dgo(,i(. e, I) E d g e i (e , e, I)

Kdgooi'(. c. I) E d g e i (e . 'c o u n try s ') . Coun t ry: r. _).

I = /c o u n try /

E d g eo (e . c. I) C o u n t r y i(e. c. _). I = /name/

E d g eo (e . c. I) C o u n t r y i (e . c). I = ̂c a p i ta] /
F L C 0 (p -/• I) F L C i(p . / . I)
F L C o (p.. I-. I) C o u n t r y (p. / , 1)

IL S o (I, r) : - I L S i (I, r)
I l .Sof/-> I : C o u n t r y , ! . I . r)

V a lu e o (e ; v) V a lu e i(e . v)

It is easy to see th a t So = S i: So d S i v ia (a i ,3 i)
and th a t S i ^ So via (3 i ,a i)

In lin in g T ex tu a l C o n te n t. We can further m od
ify S i by storing the actual nam es and capitals of
the countries instead of their surrogates; in th is new
schem a 52, there is no need to enforce the functional
dependencies in 5 i , nor the validating constrain ts for
nam e and capital elem ents (note th a t the validation
constraints for nam e elem ents th a t are not children
of country are not affected by either transform ation).
Furtherm ore, no joins are required for finding nam es
or capitals of the countries when processing queries.
Instances of 52 are com puted by « 2 : TZ(Si) —> 7Z(S2):

D i f f (e) C o u n t ry i ip. e, _). V a lu e i(e . _)
D i f f (e) C o u n t ry] ip. e). V a lu e i(e . _)

K dgo2 i<. e. I) E d g e i (e . c. I)
F L C 2(p J , I) : - F L C i(p . / . I)

IL S 2 (l , r) : - I L S i (l , r)
C o u n t r,V2i (. n, c) C o u n t r y i i< . v\ , V 2) ,

V a lu e i (d i , n), V a lu e i (v2, c)
V aluoai't . v) Va l u o i i < . v), D ifI‘it i

Figure 5(c) shows the resulting instance. To recon
s truc t the instances of 5 i , f t : ^ (5 2) —*• H (S i) uses
invention rules (m arked w ith *) to replace the surro
gates lost by ct2 ‘-

E d g e i (e, c. I) E d g e 2 (e, c, I)
F L C i(p . / . I) F L C 2 (p- /- 0

I L S i(l . r) IL S 2 (I. r)
P N a m e (* . e. n) C o u n t r y 2i (. n. _) (*)

P C a p i ta l i . e. c) C o u n t r y 2i (. c) (*)
C o u n t r y i i< . n. c) P N a m e (n . e. _). P C a p ita l iC . e. _)

V a lu e i (e. v) V a lu e 2 (e. v)
V a lu e i (e. v) P N a m e (e . v. _)
V a lu e i(e . v) P C a p i ta l (e . v)

Again, note th a t 52 = 5 i. Thus, the m apping scheme
resulting from applying the two transform ations above
to Edge++ is inform ation-preserving. ■

4.1 E q u iv a len ce P re se rv in g T ra n sfo rm a tio n s
We now present the equivalence preserving transfor
m ations used in LILO. O ur goal in defining them is
twofold: we want to reduce the num ber of joins re
quired for navigating the m apped docum ent; and we
w ant to replace the validation constrain ts defined by
Edge+ + , which require recursive D atalog program s,
into simpler ones th a t can be expressed in SQL. In
the interest of space and for clarity of exposition, we
om it the wrec-ILOG^ program s in the discussion be
low; instead, we inform ally describe each transform a
tion when arguing they are equivalence preserving.
E q u iv a len ce P re se rv a tio n . We apply transform a
tions to the relational schemas in the m appings be
cause we are interested in elim inating some of the con
s tra in ts defined in them . However, describing them
as changing the content models in the D TD gives a
m ore intuitive explanation of w hat they do. For ex
ample, suppose /i = (a ,n ,S) is the Edge++ m ap
ping scheme for the D TD in Figure 1(a); we can

8

view inlining the nam e of cities in S on as replac
ing city <— nam e, (province] state), o ffic ia l[l, 5} in the
D TD by c ity1 <— (province]state), o ffic ia l[l, 5], m od
ifying a (resp., t t) for storing (resp., fetching) the
name elements in a separate relation. Some of our
transform ations result in m ixing the content of dif
ferent elements. For example, we can use a tran s
form ation for nesting (defined below) the content of
cities elements as children of mondial, thus replac
ing mondial <— cities, country* and cities <— city*
by mondial <— city*, country* (in th is case, a ignores
cities elem ents and tt is hard-coded to introduce them
when processing a m ondial element).

An im portan t requirem ent for equivalence preser
vation in our transform ations is that all content m od
els they “in troduce” are 1-unambiguous regular ex
pressions, and if r = n , . . . , r j , . . . , r n is a 1-unambi
guous regular expression and w € L(r) then there ex
ist unique w \ , . . . ,w n such that w t € L(r{), 1 < i < n,
and w = u>i • • • w n [8]. (Note some Wi may be the
em pty string.) Thus, it follows that, even when we
mix the contents of different elements, we can always
distinguish, and thus reconstruct the original docu
ment.
N o ta tio n . In the rem ainder of this section, r, s de
note regular expressions over £ U j^ P C D A T A and
a € S denotes an element label, ji = (a, tt, S) and
fi' = (o ', t t ' ,S ') denote, respectively, the input and the
ou tpu t of each transform ation. Recall that each rule
U <— n in the D TD becomes a constrain t in E dge++
involving the sim ulation of the appropriate DFA on the
children of elem ents of type ti, we call such constraint
an edge constrain t and denote it by U n below.

The relational schem a of the input m apping scheme
is of the form S = { E i , . . . , E n , M i , . . . , A//... I ']. where
E i , . . . , E n are edge relations as defined by Edge+ + ;
M i , . . . , M k are mapped relations (resulting from the
application of a transform ation); and T = T E u r M , is
the set of constrain ts in S where contains all edge
constraints, and T M is a set of mapped constraints
(resulting from the application of a transform ation).
E ach transform ation creates or modifies one or more
m apped relations, and replaces one constraint in
by other constraints in T in a way th a t the resulting
relational schem a is equivalent to S.
4.1 .1 In lin in g
Inlining [5, 29] consists of storing an elem ent together
w ith one or more of its children in the same relation.
In l in e E le m e n t! / , r , . M). where t ^ r is an edge
constrain t, r = n , . . . , r j , . . . , r n and rj is either a
or a ?, results in using the m apped relation M to
store pairs of surrogates of elements of type t and a,
and applies only if s = r i , . . . , r j - i , r j+i , . . , , r n is 1-
unam biguous. The schem a for M is (t, c i , . . . ,Ck,a)
(the prim ary key is underlined), where a , . . . , Ck, k >
0, are columns added by previous applications of in
lining on type t. We replace the constrain t t <— r by

t ^ s, and add a m apped constrain t for checking th a t
values of a in M are unique (th a t is, the FD a —> t
holds). Since ji' stores the surrogates for a elements
in M , we also modify the edge constrain t for validat
ing a elem ents so th a t the datalog program refers to
M as opposed to the oringial edge relations (recall the
discussion in Exam ple 2). Finally, if a elem ents are
required (i.e., rj = a), we define a to be not null in M .

M apping instances of S into instances of S ' is done
by m apping the surrogates of inlined elements (of types
c i , . . . , c k ,a) into M , while all o ther children of t el
em ents are m apped into edge relations in S ' (as il
lustrated in Exam ple 2). The m apping in the o ther
direction is done by copying the surrogates of the in
lined elements into the edge relations in S . Since
s = n , . . . , r j - i , r j+ i , . . . , r n is 1-unambiguous, we can
recover the original elem ent ordering in an instance
of S\ we know th a t each a element m ust occur after
an element in n , . . . , r j - 1 and before an element in
rj+ i , . . . , r n .
I n l in e _ U n io n (t , f j ,M) is a special case of inlining
th a t applies when rj = (s i | . . . |s„), and each Si is ei
ther a,i or a il. We add columns a i , . . . , an to M , and
define the following constraints. F irst, we need to en
force th a t a t m ost one of these columns is not null in
each tuple in M ; also, if no s it is of the form a^?, then
one of these columns m ust be not null. To ensure th a t
at m ost one a* is present a t any tim e, we define a con
stra in t com prising of a boolean form ula of the form
<f>i V . . . V <f>k and each <pi checks a* is not null while
each t i j , i ^ j is. The constrain t for ensuring th a t a t
least one of a* is present is straightforw ard.

N ote th a t the update anom aly discussed in Exam
ple 1 would be elim inated by defining the constraints
discussed above in th a t relational schema.
In lin in g T ex tu a l C o n te n t. W hen an element of
content model #PC D A T A is inlined, we can use the
m apped relation to store its content:
In lin e_ C d ata (a , M), where a is the type of an inlined
element in the m apped relation M , replaces the col
um n for storing surrogates of a elements by a column
for storing their tex tual content. As illustrated in Ex
ample 2, the m apping between instances of S and S '
m aps the tuples in V alue corresponding to a elements
into M . The reverse m apping is done by inventing new
surrogates for each inlined element.

4 .1 .2 N e stin g E lem en ts
This transform ation elim inates some elem ents by nest
ing their contents w ithin their parents:

N e s t (t,a) applies when t ^ r and a ^ r ' are
edge constraints, r = n , . . . , a , . . . , r n , and s =
n , . . . , r ' , . . . , r n is 1-unambiguous. As a result, we re
place the constrain ts t ^ r and a ^ r ' by t s
in S '. The w rec-ILO G " program s for m apping in
stances of S and S ' are straightforw ard, and since s
is 1-unambiguous, we can distinguish the children of

9

I n p u t : a D T D X = (S . r. R)
O u tp u t : a m apping scheme (j.. = (a. ir. S)
1. Let (j. be th e Edge++ m apping scheme for X
2. For each t 6 E , create a m apped re la tion M t in S
3. Let I = r
4. Let r = r \ r n be th e content m odel associated

w ith t in R
5. For each n , 1 < i < n, apply N e st(t . n) ,

Inl ine Klement i / . n , Mt) , Inl ine (Ma ta i r , . Mt),
In lin e_ U n io n (i. n , Mt), O u tlin e(t . n) ,

O u tlin e_ U n io n (i. n) whenever possible
and in th is order

6. If a transfo rm ation creates a new type //.
add a m apped re la tion M tr to S

7. For each elem ent type /,: occurring in r.
let t = ti and repea t from step 3 until no changes
are m ade to S

8. Remove from S all relations are no t used by a or tt
9. R e tu rn the resulting m apping scheme

Figure 6: LILO algorithm for designing information-
preserving mapping schemes.

a elements am ong the children of t elem ents in an in
stance of S ' .

4.1 .3 O u tlin in g E lem en ts
This transform ation is the opposite of inlining and
results in separate m apped relations for storing the
content of elements of the same type. For in
stance, it could be used to separate city officials from
other children of city elements; intuitively, th is would
replace city <— name, (province] state), o ffic ia l{l, 5]
by c ity1 <— name, (province]state) and city2 <—
o ffic ia l[l, 5} which could be fu rther transform ed in
dependently.
O u tlin e ! /. rj), applies when t r j , . . . , r3, . . . , rm is
an edge constrain t, the partic ipation of r j is either * or
+ , and s = r i , . . . , T j - i , r j + i , . . . , r„ is 1-unambiguous.
In general, outline does not introduce new m apped re
lations; instead it replaces the original edge constraint
by t s and t ' r} . The w rec-ILO G " program s for
outlining m ap p a rt of the content of each t element
into the content of a new t ' element (in the forward
direction) and merge these pieces of content back (in
the backw ard direction).

W hen rj is either a* or a+ we can use the m apped
relation for cap turing ju st parent-child relationship, ig
noring labels (since they are all a); thus, we can also
drop the constrain t t ' r3 from the schema; the or
dering of the a elements is still cap tured by the F L C
and ILS relations.

A special case of outlining is when rj = a[x, y] defin
ing a cardinality constrain t. In th is case, we use a
m apped relation for storing pairs of surrogates of t
and a elements, and addd a constrain t th a t counts the
num ber of a elem ents associated w ith each t element
and checks th is value is in the appropriate range. If
the content model of a is ^P C D A T A , values of these
elem ents can be inlined in the m apped relation.
O u t l i n e U n i o n (/ . r ,) is a special case th a t applies

O peration 512KB 4MB 32MB 256MB 2GB
E dge++ m apping scheme

Insertion 7.72 15.87 17.70 20.48 20.45
Deletion 4.45 8.78 10.43 11.60 11.89

Q3 1.12 5.74 334.21
Q17 0.20 0.23 0.35 1.5 8

LILO m apping scheme
Insertion 4.73 8.55 9.58 9.99 11.38
Deletion 3.53 6.41 7.48 8.16 8.76

Q3 0.09 0.12 0.18 1.47 50.41
Q17 0.03 0.03 0.03 0.09 0.59

Table 1: Experimental results; all times shown in millisec
onds. For insertion and deletions, the time includes both
modifying the database and checking the constraints.

when f j = («i | . . . | «fc) and results in replacing the
original edge constrain t t r3 by the following:

ti ^ r r , _ i , Mi, rJ+1 , . . . , r n

R
t k ^ - r i , . . . , r , _ i , uk , rJ+1 , . . . , r n

It is easy to see th a t all regular expressions above
are 1-unambiguous. One issue w ith tn is transform a
tion is th a t the type of an element may change af
te r its content is updated . Thus, whenever an up
date on element e of type ti violates the edge con
stra in t ti ^ r i , . . . , r j - i ,U i ,r j+ i , . . . , r n , we m ust
check w hether the new content of e satisfies the con
stra in t of some o ther type t j ; if so, we m ust also update
the type of e.

4.2 T h e LILO A lg o rith m
T he LILO algorithm is given in Figure 6. LILO visits
each type t once, and after t is visited, its validating
constrain t is either m apped by some transform ation or
it is left unchanged. The order in which the transfor
m ations are a ttem pted reflect the criteria discussed in
the beginning of Section 4.1: reducing the num ber of
joins required for navigating the docum ent (achieved
m ostly by inlining), and simplifying the validation con
s tra in ts introduced by Edge+ + .

T h e o re m 1. Given a D T D X . L ILO always ter
minates and produces a mapping scheme that is
information-preserving with respect to X .

Proof. I t is easy to see th a t LILO always term inates:
each rule in a the D TD is visited only once, and the
to ta l length (i.e., num ber of symbols) of all valida
tion rules in T13 after each itera tion of LILO is strictly
sm aller th a n at the beginning of th a t iteration . The re
sulting m apping scheme is inform ation-preserving w ith
respect to X since Edge++ is inform ation-preserving,
and all transform ation used by LILO are equivalence
preserving (Section 3.1). □

5 Experim ental Evaluation
Table 1 presents experim ental results com paring the
behavior of Edge++ and LILO m apping schemes for

10

processing updates and queries, using X M ark docu
m ents ranging from 512KB to 2GB. For processing
updates, we m ust recom pute the queries defining con
stra in ts in the relational schema; recom puting all such
queries from scratch after each update is inefficient
and, in m ost cases, unnecessary [IT].

We used DB2 V8.1 on a Pentium -4 2.5GHz (1.5GB
of RAM) running Linux 2.4; we lim ited D B 2:s buffer to
45MB, to minimize the effects of buffering for larger
databases. This is the only param eter we tune; fur
therm ore, the only indices in each database are those
created autom atically for the prim ary keys of each re
lation. In our im plem entation of E dge+ + , we use hori
zontal partition in the E d g e relation based on the type
of the paren t element, which elim inates some joins in
the definition of the validation constraints; also, we
adap t the increm ental validation algorithm described
in [4] to E dge+ + , thus avoiding the recom putation of
the recursive constrain ts from scratch after every up
date. Finally, it is w orth noting th a t, in this experi
m ent, all transactions were executed a t the user level,
thus incurring overheads (e.g., query com pilation and
optim ization) th a t can be avoided if these m ethods are
im plem ented inside the database engine.
U p d a te s . T he update workload consists of 100 inser
tions and deletions of item s for auctions in the N orth
Am erica region, each perform ed as a separate tran s
action. Each element inserted is valid and consists of
an entire subtree of size com parable to those already
in the docum ent, and each deletion removes one of
the “new” item s inserted. Table 1 shows th a t while
bo th m apping approaches scale very well w ith docu
m ent size, LILO is on average 45% faster th an E dge++
for insertions and 26% faster for deletions.
Q u eries . W hile our focus in this paper is on infor
m ation preservation, we com pared Edge++ and LILO
for query processing as well. We used X M ark queries
whose focus was on navigating the docum ents, and
here we show the results for two of them : Q3 and
QlT; Q3 takes order into account and perform s a join,
while Q lT is am ong the sim plest queries in the bench
m ark. For practical reasons, we set a tim eout lim it of
10 m inutes for running each query. Table 1 shows th a t
LILO is vastly superior to E dge++ for query process
ing: Q3 tim es out on the 256MB Edge++ m apping,
while it takes about 5 seconds on the LILO m apping
for the 2GB docum ent. T he improved perform ance is
due m ostly to the considerably fewer joins required for
querying LILO m appings com pared to E dge+ + .

6 Discussion and R elated Work
We proposed a novel and sound framework for gener
ating inform ation-preserving X M L-to-relational m ap
ping schemes from an XML schema, which consists
of applying equivalence-preserving transform ations to
schemes th a t are known to be inform ation-preserving.
As discussed, th is process results in a m apping scheme

whose relational schema is equivalent to the original
XML schema. O ur framework is extensible and can
handle a rb itra ry transform ations th a t can be w ritten
in w rec-ILO G ", which is powerful enough for the ex
pressing the transform ations of interest.

We discussed LILO: a m apping scheme design algo
rithm for X 'D S th a t uses transform ations to derive new
m apping schemes th a t preserve the validity of XML
docum ents. Using relational constrain ts to ensure va
lidity has several advantages com pared to the alter
native of m aterializing and re-validating the portion
of the docum ent th a t is updated . Notably, our ap
proach leverages the constraint-checking infrastructure
already available in the DBMS, and does not require
the developm ent and m aintenance of a separate valida
tion tool. M oreover, our experim ents have shown th a t
even an im plem entation th a t incurs all the overheads
of user-level transactions leads to acceptable perfor
mance.

W hile checking and increm ental checking of con
s tra in ts in the relational setting is well studied (see,
e.g., [IT] for a survey), researchers are only beginning
to consider updating XML [6, 23, 30, 31], and the prob
lems of validation and increm ental validation after up
dates [4, 20, 2T]. We studied two n a tu ra l notions of
inform ation preservation for m apping schemes in pre
vious work [3], including validation; we note th a t other
authors have also identified the need for inform ation
preservation in m apping schemes and have informally
discussed losslessness [14, 31].

W hile the lite ra tu re on m apping schemes is vast,
the focus of previous work has been m ostly on per
formance of queries (see e.g., [21] for a survey) and
updates [30, 31], ra th e r th an inform ation preserva
tion. Nevertheless, several existing m ethods (possi
bly w ith straightforw ard extensions) guarantee loss
lessness (only). For instance, num bering schemes th a t
cap ture bo th element identity and ordering [31, 32],
can be used to preserve the docum ent s truc tu re [5,
14, 16, 29]. Edge++ [3] cap tures the tree struc tu re of
the docum ents by representing the successor relation
am ong elements (as opposed to explicit ordering); do
ing so results in more efficient update processing.

Some m apping schemes in the lite ra tu re are oblivi
ous to docum ent schemas [16] while others exploit (and
require) docum ent schemas [5, 28, 29]. T he la tte r ap
proach has been shown to lead to b e tte r query per
formance, and is more closely related to our fram e
work and LILO; a similar gain in query perform ance
is noticed when com paring LILO to E dge+ + , whose
relational schem a is sim ilar to the one in [16]. Some
of the transform ations we define can be viewed as ex
tending those in [5, 28, 29] to guarantee inform ation
preservation. LegoDB [5] uses a cost-based model for
designing m apping schemes whose goal is minimizing
the estimated cost of executing an input query work
load on an input XML docum ent. Such estim ates are

11

obtained by using features in m odern RDBM Ss that
allow the query optim izer to use s ta tis tica l inform ation
describing a hypothetical database instance. W hile it
would be interesting to extend LILO w ith a cost-based
model, strong em pirical evidence suggests th a t, even
for simple queries, there can be discrepancies of sev
eral orders of m agnitude between the estimated costs
and the execution costs observed on th a t actual in
stance [11]. Thus, o ther cost models may have to be
considered.

Several techniques have been proposed for tran s la t
ing specific XML Schema constrain ts into relational
ones in m apping schemes; for instance, techniques for
transla ting keys [13]. foreign-keys [10]. cardinality con
s tra in ts [5. 22], ID /ID R E F a ttrib u tes [4], and type
specialization [3] have been proposed. However, to
the best of our knowledge, no work has addressed the
problem of m apping the element validity constraint,
requiring the content of valid elem ents to be words in
regular languages defined in the docum ent schemas [7].
which is achieved by LILO.

Finally, an interesting observation m ade in [2] is
th a t some of the strategies defined in the lite ra tu re
are orthogonal, and new m apping schemes can be de
rived by mixing them . The framework we propose is
extensible can can accom m odate any transform ation
th a t can be described in w rec-ILO G ". Thus, while we
considered transform ations for preserving element va
lidity only, our framework is not tied to specific kinds
of constraints: different transform ations th a t preserve
additional constrain ts can be easily incorporated.

References
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison Wesley, 1995.
[2] S. Amer-Yahia, F. Du, and J. Freire. A Compre

hensive Solution to the XML-to-Relational Mapping
Problem. In WIDM, 2004.

[3] D. Barbosa, J. Freire, and A. O. Mendelzon. Informa
tion Preservation in XML-to-Relational Mappings. In
X S ym , 2004.

[4] D. Barbosa, A. O. Mendelzon, L. Libkin, L. Mignet,
and M. Arenas. Efficient Incremental Validation of
XML Documents. In ICDE, 2004.

[5] P. Bohannon, J. Freire, P. Roy, and J. Simeon. From
XML Schema to Relations: A Cost-based Approach
to XML Storage. In ICDE, 2002.

[6] V. P. Braganholo, S. B. Davidson, and C. A. Heuser.
From XML View Updates to Relational View Up
dates: old solutions to a new problem. In VLDB,
2004.

[7] T. Bray, J. Paoli, C. M. Sperberg-McQueen, and E. M.
(Editors). Extensible Markup Language (XML) 1.0.
World Wide Web Consortium, third edition, 2004.

[8] A. Briiggemann-Klein and D. Wood. One-Unam
biguous Regular Languages. Information and Com
putation, 142, 1998.

[9] M. J. Carey, J. Kiernan, J. Shanmugasundaram,
E. J. Shekita, and S. N. Subramanian. XPERANTO:
Middleware for Publishing Object-Relational Data as
XML Documents. In VLDB, 2000.

[10] Y. Chen, S. Davidson, C. S. Ilara, and Y. Zheng.
RRXF: Redundancy reducing XML storage in rela
tions. In VLDB, 2003.

[11] M. Consens, D. Barbosa, A. Teisanu, and L. Mignet.
Goals and Benchmarks for Autonomic Configuration
Recommenders. In SIGMOD, 2005. To appear.

[12] C. J. Date and II. Darwen. A Guide to the SQL Stan
dard. Addison Wesley, 4th edition, 1997.

[13] S. Davidson, W. Fan, C. Ilara, and J. Qin. Propagat
ing XML Constraints to Relations. In ICDE, 2003.

[14] A. Deutsch, M. Fernandez, and D. Suciu. Storing
Semistructured Data with STORED. In SIGMOD,
1999.

[15] M. Fernandez, Y. Kadiyska, D. Suciu, A. Morishima,
and W.-C. Tan. SilkRoute: A Framework for Publish
ing Relational Data in XML. TODS, 27(4), 2002.

[16] D. Florescu and D. Kossmann. Storing and Querying
XML Data Using an RDBMS. IE E E Data Engineer
ing Bulletin, 22(3), 1999.

[17] A. Gupta and I. S. Mumick, editors. Materialized
Views - Techniques, Implementations and Applica
tions. MIT Press, 1998.

[18] R. Hull. Relative Information Capacity of Simple Re
lational Database Schemata. SIAM Journal of Com
puting, 15(3), 1986.

[19] R. Hull and M. Yoshikawa. ILOG: Declarative Cre
ation and Manipulation of Object Identifiers. In
VLDB, 1990.

[20] B. Kane, II. Su, and E. A. Rundensteiner. Consis
tently Updating XML Documents Using Incremental
Constraint Check Queries. In CIKM, 2002.

[21] R. Krishnamurthy, R. Kaushik, and J. F. Naughton.
XML-SQL Query Translation Literature: the State of
the Art and Open Problems. In XSym, 2003.

[22] D. Lee and W. W. Chu. Constraints-Preserving Trans
formation from XML Document Type Definition to
Relational Schema. In ER, 2000.

[23] P. Lehti. Design and implementation of a data manip
ulation processor for an xml query language. Master’s
thesis, Universitat Darmstadt, 2001.

[24] D. Maier. The Theory of Relational Databases. Com
puter Science Press, 1983.

[25] R. Miller, Y. loannidis, and R. Ramakrishnan. The
Use of Information Capacity in Schema Integration
and Translation. In VLDB, 1993.

[26] M. Nicola and J. John. XML Parsing: a Threat to
Database Performance. In CIKM, 2003.

[27] Y. Papakonstantinou and V. Vianu. Incremental Val
idation of XML Documents. In ICDT, 2003.

[28] M. Ramanath, J. Freire, J. R. Haritsa, and P. Roy.
Searching for Efficient XML-to-Relational Mappings.
In XSym, 2003.

[29] J. Shanmugasundaram, K. Tufte, C. Zhang, G. He,
D. J. DeWitt, and J. F. Naughton. Relational
Databases for Querying XML Documents: Limita
tions and Opportunities. In VLDB, 1999.

[30] I. Tatarinov, Z. G. Ives, A. Y. Halevy, and D. S. Weld.
Updating XML. In SIGMOD, 2001.' '

[31] I. Tatarinov, S. D. Viglas, K. Beyer, J. Shanmuga
sundaram, E. Shekita, and C. Zhang. Storing and
Querying Ordered XML Using a Relational Database
System. In SIGMOD, 2002.

[32] C. Zhang, J. F. Naughton, D. J. DeWitt, Q. Luo, and
G. M. Lohman. On Supporting Containment Queries
in Relational Database Management Systems. In SIG
MOD, 2001.

12

