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A bstract
An XML-to-relational mapping scheme consists 
of a procedure for shredding XML documents 
into relational databases, a procedure for publish
ing databases back as documents, and a set of 
constraints the databases must satisfy. In pre
vious work, we discussed two notions of infor
mation preservation for mapping schemes: loss
lessness, which guarantees the complete recon
struction of a document from a database; and 
validation, which guarantees that every update 
to a database corresponding to a valid docu
ment results in a database corresponding to an
other valid document. Also, we described one 
information preserving mapping scheme, called 
Edge++, and showed that, under reasonable as
sumptions, lossless and validation are both unde- 
cidable. This leads to the question we study in 
this paper: how to design information-preserving 
mapping schemes. We propose to do it by starting 
with a scheme known to be information preserving 
(such as Edge++) and applying to it equivalence- 
preserving transformations written in weakly re
cursive ILOG. We study a particular incarnation 
of this framework, the LILO algorithm, and show 
that it provides significant performance improve
ments over Edge++ and that the constraints it 
introduces are efficiently enforced in practice.

1 Introduction
In  order to  use relational engines for m anaging XML 
da ta , we need a mapping scheme consisting of a pro
cedure for shredding XML docum ents into relational 
databases, a procedure for publishing those databases 
as docum ents, and a set of constrain ts th a t those 
databases m ust satisfy. As w ith any other m ap
ping strategy, it is im portan t to  study  the inform a
tion preservation properties of such a scheme in or
der to  understand  its su itability  for a given applica
tion [25]. A lthough there is a rich lite ra tu re  on m ap
ping schemes [5, 13, 16, 21, 29, 22, 31], little  a tten tion
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has been given to  their correctness; i.e., w hether they 
preserve enough inform ation. In  previous work [3], we 
defined lossless m apping schemes as those th a t allow 
the reconstruction of the  original docum ents, and val
idating  m apping schemes as those in which all legal 
relational databases correspond to  a valid XML doc
um ent. We argued th a t while lossless ness is enough 
for applications involving only queries over the docu
m ents, bo th  losslessness and validation are required if 
the docum ents m ust conform to an XML schem a and 
the application involves bo th  queries and updates to 
the docum ents. We also described a m apping scheme, 
E dge+ + , in which bo th  losslessness and validation are 
guaranteed by constrain ts in its relational schema.

In  th is paper, we address the problem  of design
ing inform ation-preserving m apping schemes from an 
XML schema. Previous m apping design algorithm s [5, 
29] do not guarantee inform ation preservation. M ore
over, since b o th  losslessness and validation are unde- 
cidable for a large class of m apping schemes th a t in
cludes all those in the lite ra tu re  [3], a rb itra ry  design 
procedures cannot guarantee inform ation preservation 
in general. We propose a sound framework for design
ing inform ation-preserving m apping schemes th a t can 
serve as the  basis for design algorithm s: s ta r t w ith an 
inform ation preserving m apping scheme, and repeat
edly apply equivalence-preserving transform ations [25] 
to it. Following this procedure, inform ation preser
vation is guaranteed by construction. O ur framework 
is extensible and allows any transform ation  th a t can 
be w ritten  in weakly recursive ILOG w ith stratified 
negation [19] (w rec-ILOG^), which is powerful enough 
for expressing most of transform ations proposed in the 
lite ra tu re  (e.g., [5, 28]). We also discuss an  instance 
of our framework: the LILO (for Lossless Inlining, 
Lossless Outlining) algorithm , which uses Edge++ as 
s ta rting  point and defines several equivalence preserv
ing transform ations (some of which are extensions of 
transform ations in the  literature). O ur experim ental 
results show th a t LILO results in m apping schemes 
th a t outperform  the previous Edge++ substantially.

In fo rm a tio n  P re s e rv a tio n  in  M ap p in g  S chem es.
T he example below illustrates inconsistencies th a t 
arise when updates are considered in a m apping 
scheme th a t is not validating.
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mondial

£  =  {m ondia l, cities, country, city, 
province, sta te, nam e, official}

root = m ondial

R  =  {mondial*— c ities, country*: cities*—city*',
city*—nam e, (province\sta te ), oJJicial[l, 5]; 
country*—nam e, capital; 
name*—#  P  CD A  T A ; province*—#  PC D A T A ; 
state*—#  PC D  A  T A : official*—#  PC D  A  TA:. 
capital*—#  P C D A TA }

(a)

Figure 1: (a) XML document; elements are shown as circles and text nodes are shown as boxes. The labels of elements 
and the values of the text nodes are also shown, (b) a DTD for the document.

E xa m p le  1. Consider the  schem a in Figure 1(a). in
spired by the  M ondial D atabase1, describing cities and 
countries. For each city, the  database contains its 
name; the  nam e of the province or s ta te  the city is lo
cated; and from 1 to  5 government officials. Countries 
are described by the ir nam e and  the nam e of their cap
itals. A typical relational schem a derived from apply
ing inlining techniques to  the  docum ent schem a above 
is as follows2:
c ity (c ity ld ,n am  e.provinceld,stateld) 
o f f i c i a l ( o f f i c i a l l d , citvld.nam e) 
coun try (coun try Id ,name, c a p ita l)
For the  docum ent in Figure 1(b). we would have the 
following database instance under th is mapping: 
c i t y ( l , ’Toronto’ , ’O ntario ’ .NULL) 
c i t y ( 4 , ’S a lt Lake C ity ’ .HULL,’Utah’)
o f f i c i a l ( 2 , l . ’David’) 
o f f i c i a l ( 5 ,4 , ’Rocky’) 
o f f i c i a l ( 6 ,4 , ’Sam’) 
c a p i ta l ( 7 , ’B ra z il’ , ’B r a s i l ia ’)
This m apping scheme is lossless as the original docu
m ent can be reconstructed  from the  database. How
ever. by applying the following legal update:
UPDATE c i ty  SET province=’Utah’
WHERE name=’S a lt Lake C ity ’
we arrive a t database th a t no longer corresponds to  a 
valid docum ent. This anom aly is due to  the  fact th a t 
the  m apping scheme does not preserve the  sem antics 
of the choice (I)  construct, i.e.. th a t cities can have 
either a province or s ta te , but not both. ■

In a lossless and validating m apping scheme, the  re
lational schem a is equivalent to  the docum ent schema. 
Thus, constrain ts in the  relational schem a prevent such 
anomalies by disallowing SQL updates th a t result in 
databases corresponding to  invalid docum ents. The al
ternative to  using an inform ation-preserving m apping 
scheme would be re-validating the XML docum ent re

1http://dbis.informatik.uni-goettingen.de/Mondial
2 P rim ary  keys are underlined and nullable colum ns are

shown in italics

suiting from the update  before changes are com m it
ted. However, note th a t testing  w hether even simple 
updates such as3:
update in s e r t  < o f f ic ia l> J o h n < /o f f ic ia l>
in to  /m o n d ia l /c i t ie s /c ity [n a m e = ’S a lt  Lake C ity ’ ]
results in a valid docum ent cannot be done statically  
(in th is case, the  legality of the update  depends on the 
num ber of officials already associated w ith the city). 
W hile one could test w hether an  update  is permissible 
by reconstructing the  elem ents involved, applying the 
update  to  those elements, and using a validator to  test 
w hether the result conforms to  the  docum ent schema, 
this approach has several disadvantages. F irst, vali
dation is com putationally  expensive [26]; also, incre
m ental validation techniques [4. 27] require and m ain
ta in  auxiliary inform ation th a t m ust be kept synchro
nized w ith the database; finally, th is approach requires 
developing and m aintaining a special-purpose applica
tion. and ignores the  DBMS infrastructure  for checking 
constraints.
O u tlin e  a n d  C o n tr ib u tio n s . We argue in th is  pa
per th a t it is feasible to  augm ent the  relational schemas 
in m apping schemes w ith constrain ts for ensuring the 
validity of the  elements in the XML docum ents w ith 
respect to  the content models in an XML schema. We 
s ta r t in Section 2 discussing element and docum ent va
lidity. XML m apping schemes and inform ation preser
vation. We propose a sound and extensible fram e
work for designing inform ation preserving m apping 
schemes (Section 3). which consists of applying equiv
alence preserving transform ations to  an inform ation- 
preserving m apping scheme. We show how a m ap
ping scheme and  an a rb itra ry  transform ation  w ritten  
in wrec-ILOG-1 can be rew ritten  as another m apping 
scheme (Section 3.3) in a m echanical way. We discuss 
several equivalence preserving transform ations th a t re
sult in m apping schemes defining sim pler relational 
constrain ts for ensuring element validity, and in tro
duce the LILO algorithm  in Section 4. We show th a t

' l-sing the  syn tax  of [23]
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LILO provides significant perform ance im provements 
over Edge++ and th a t the  constrain ts it introduces 
can be efficiently enforced in practice (Section 5). We 
conclude w ith a discussion in Section 6.

2 Definitions and Terminology
XML docum ents are modeled by ordered labeled trees 
whose nodes represent either elem ents or tex tu a l con
ten t. thus capturing the essential d a ta  representation  
com ponents of XML [7]. We use r .  A and v  to  de
note the  the type, the  label and the value of nodes in 
the tree, respectively. More precisely, let I ,  V  be two 
disjoint, countably infinite sets of node ids and values:

D efin itio n  1. A n  XML D ocum ent is a tuple 
(T . A , t , v ) ,  where T  is an ordered tree whose nodes are 
elements o f I ;  r  : I  —► {element, text} assigns types 
to nodes in  T , such that r ( r )  =  elem ent i f  r  is the 
root o f  T , and i f  r (e )  =  text then e is a leaf in  T ;  
A : I  —> V  assigns labels to nodes in  T  such that the 
label o f all text nodes is # P C D A T A ; and v  : I  —► V  
assigns values to text nodes in  T .

For brevity, we will refer to  subtrees rooted a t el
em ent nodes sim ply as “elem ents’'. We denote by X  
the  set of all XML docum ents.

The focus of th is work is on preserving the valid
ity constrain t of elements, which is identical for bo th  
DTDs and XML Schemas: an element of a given type 
is said to  be valid if its content is a word in a 1- 
unam biguous regular language [8] associated w ith th a t 
type. The only difference btween these formalisms is 
the  way th a t types are associated to  elements: DTDs 
restric t all elem ents w ith the sam e label to  have the 
same type, while XML Schema allows assigning differ
ent types to  the same label, depending on the  context 
in which the label appears. W hile our m ethod handles 
XML Schemas and D TD s seamlessly, we restric t our 
discussion to  D TD s for simplicity, and refer the  reader 
to  [3. 4] for handling type specialization.

D efin itio n  2. A n  X M L  DTD is a triple (S . r . R) 
where S  is a set o f elem ent labels, r  e  S  is a distin
guished label and R  is a mapping associating to each 
a €  S  a content model expressed as a 1-unambiguous 
regular expression over S  U {i t  P( T) A 1 A }.

Figure 1(a) shows a DTD; cardinality  constrain ts 
of the  form a[x, y] are shorthands for x  copies of a 
followed by y  copies of a?.

The validity of a docum ent I) w ith respect to  a 
DTD X  =  (S . r .  R) is done as follows. Let e be an 
element and Ci. . . . . e„ be its ordered children; the con
ten t of e is the  string  A(ci) • • • A(e„). We say th a t e 
is valid w ith  respect to  X  if its content m atches the 
regular expression associated w ith A(e) in R. A docu
m ent I) is valid w ith respect to  X ,  w ritten  I) € L (X ) ,  
if all of its elem ents are valid w ith respect to  X  and 
the label of its root element is r. Using our natation .

the validation problem  can be re-sta ted  as: given D  
and X ,  is it the  case th a t D  € L (X )7

2.1 X M L -to -re la tio n a l M ap p in g  Schem es
We model relational databases w ith separate  dom ains 
for surrogates to  element ids (e.g.. c i t y l d  in Exam 
ple 1) and other constants. Let 3, D  be two disjoint 
countably infinite sets of surrogates and constants, re
spectively. A relational schem a is a set of relation 
schemes and constraints; each relation scheme R  has 
a set (possibly em pty) of a ttrib u tes  w ith dom ain 3— 
called the surrogate attributes o f R , and a set (possibly 
em pty) of a ttr ib u tes  w ith dom ain D. Instances are de
fined as custom ary [1. 24]. A constraint is expressed as 
a boolean query and is said to  be violated if th a t query 
evaluates to  true. A relational database instance is le
gal if it does not violate any constrain t in its schema. 
7Z(S) denotes the set of legal instances of S .

No m eaning is assigned to  node ids the docum ent 
tree, nor to  the surrogates used for representing them ; 
furtherm ore, no relationship between node ids and sur
rogates is assume either. T h a t is. renam ing node ids in 
Figure 1(b) does not yield a new docum ent; similarly, 
renam ing surrogates in the database in Exam ple 1 does 
not create a new database. These properties are cap
tu red  as follows:

D efin itio n  3. X M L  documents l ) t =  (T%, Ai, t%, Vi ) , 
and D '2 =  (T-2 , X2, t 2, v2), are equivalent, denoted by 
D i = x  D 2, i f  there exists an isomorphism  <f> : I  —> I  
between T \ and T2 such that Ai(v) =  X2((f>(v)); t i ( v )  =  
t 2(4>(v)), and v \{v ) = v2{4>{v)), fo r  all v G T i.

D efin itio n  4. Database instances I i , I 2 are equiva
lent, written 11 = r  I 2 i f  there is a bisection on 3 U D  
that maps 3 to J, is the identity  on D , and transform s 
1% into I2.

T he notion of database equivalence above has been 
called OID equivalence in object databases [1]. [D] 
denotes the equivalence class of docum ent D; th a t is 
[D] =  {D f € X  | D ' = x  D}; similarly. [I] denotes the 
equivalence class of database I .

An X M L-to-relational mapping scheme [3] as a 
triple n  =  (a,TT,S), where S  is a relational schema; 
a  is a mapping function  th a t assigns instances of S  to  
XML docum ents; and n  is a publishing function  th a t 
assigns XML docum ents to  instances of S .

D efin itio n  5. A n  XM L-to-relational mapping scheme 
is a triple (j, =  (a, tt, S ) , where a  : X  —► 1Z(S) is a 
partial fun c tio n , and tt : 1Z(S) —> X  is a total fun c tio n , 
and the following hold: (1) fo r  all D%,D2 £ X  we have 
that D i = x  D 2 implies a (D i)  = r  <j(D2); and (2) 
fo r  all I i , I 2 € Tl{S) we have that I i  = r  I 2 implies 
7 r ( / i )  = x  n ( h ) .

Defining a  as a partia l function accom m odates m ap
ping schemes custom ized for a specific DTD (e.g.. [5.
29]); on the o ther hand, defining n  to  be to ta l ensures
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th a t any legal database represents (i.e., can be pub
lished as) a docum ent. Conditions (1) and (2) ensure 
th a t bo th  a  and tt are generic: they  m ap equivalent 
docum ents to  equivalent databases and vice-versa.

2 .2  T h e  X D S  C la s s  o f  M a p p in g  S c h e m e s

A class of m apping schemes is defined in term s of 
the languages used for specifying a, S , and  tt. The 
power of these languages determ ines w hat kinds of 
m appings can be specified. The X D S  class of m ap
ping schemes [3] is defined as follows.
T h e  M a p p in g  L a n g u a g e . The language consists 
of XQuery augm ented w ith a clause s q l  . . .  end for 
specifying SQL insert statem ents, and to  be used in
stead  of the r e t u r n  clause in a FLO W R  expression. 
The sem antics of the m apping expressions is defined 
sim ilarly to  the usual sem antics of FLO W R  expres
sions: the f o r ,  l e t ,  w here , o rd e r  by clauses de
fine a list of tuples which are passed, one at a time, 
to  the s q l  . . .  end clause, and one SQL transaction  is 
issued per such tuple.
T h e  C o n s t r a in t  L a n g u a g e . C onstrain ts are 
boolean program s in D atalog w ith stratified nega
tion  [1]. This language allows easy expression of 
standard  relational constrain ts (e.g., functional de
pendencies and referential integrity), as well as graph 
connectivity required for ensuring the database en
codes a tree, and element validity (Section 3.2).
T h e  P u b l is h in g  L a n g u a g e . Publishing functions 
are a rb itra ry  XQuery expressions over a "canonical" 
XML view of a relational database. T h a t is, each re
lation is m apped into an  elem ent whose children rep
resent the  tuples in th a t relation in the stan d ard  way 
(i.e., one elem ent per colum n). This is the  approach 
taken  by SilkRoute [15] and X PER A N TO  [9].

X'D S  is, by design, a powerful m apping tool. In 
fact, all m apping schemes th a t we are aware of in the 
literature  can be expressed using it.

2 .3  In f o r m a t io n  P r e s e r v a t io n  in  X'D S

For completeness, we briefly revisit losslessness and 
validation here, and refer the reader to  [3] for details. 
A m apping scheme is losslessness it it allows the com
plete to  reconstruction of any (fragm ent of a) docu
m ent from its database (see Figure 2(a)):

D e f in it io n  6. .4 mapping scheme (j. =  (a, tt, S )  is loss
less i f  fo r  all D  €  Dum(tr), tt((j(D )) = \- D .

The following are easy to  verify:

P r o p o s i t io n  1. /i = (<j , tt,S )  is lossless if  and only 
if  tt((t(-)) is the identity on equivalence classes in 
Doiii((t).

Validation is defined in term s of a D TD  X .  A val
idating m apping scheme is one in which every legal 
database instance corresponds to  a docum ent in L(X ):

,v mb’)

(a) Lossless m apping  scheme.

X K{S)

(b) Lossless and  validating  m apping scheme.

Figure 2: Information preservation in mapping schemes.

D e f in it io n  7. .4 mapping scheme (j. =  (a, t t , S )  is val
idating with respect to DTD X  if  a  is total on L( X) ,  
and fo r  all T €  7l(S ) ,  there exists D  €  L ( X)  such that 
T = ij a{D ).

Note th a t for a validating (j. =  (a, tt, S ) ,  every suc
cessful update  on an  instance of S  results in a database 
th a t represents a valid docum ent; it follows th a t only 
permissible updates over the original docum ent can be 
effected on its corresponding relational database. As 
discussed in Section 1, when /j is lossless only, testing  
if an  update  is permissible can be done by m aterializ
ing tt((j(D ))), effecting the update , and validating the 
resulting docum ent, which can be prohibitively expen
sive in m ost cases.

As discussed in [3], losslessness and validation are 
orthogonal and one does not imply the other. Appli
cations th a t define a DTD, and involve bo th  querying 
and updating  the XML docum ents require m apping 
schemes th a t have bo th  properties. Note th a t when 
this is the  case, it is guranteed th a t all queries and up
dates over the docum ents can be done using SQL and 
th a t every database corresponds to  a valid docum ent:

P r o p o s i t io n  2. /j =  (a, t t, S) is lossless and validating 
with respect to D TD  X  -if and only ■if a  and tt are 
Injective, and tt is the inverse of a  (up to equivalence).

Proof. It is easy to  see th a t /j is bo th  lossless and val
idating if a  and tt are as above. For the o ther implica
tion, note th a t since /j is validating w .r.t. X  and both  
a  and tt are generic (Definition 5), it follows th a t a  

defines a bijection between equivalence classes of doc
um ent in L ( X )  and database instances in 7Z(S) .  A 
sim ilar argum ent applies for t t . Since /j is also lossless.
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Figure 3: Designing of an information-preserving mapping 
scheme: X  is a DTD, fio is the Edge++ mapping scheme, 
and each fn is the result of applying an information- 
preserving schema transformation.

Proposition  1 implies th a t a  and 7r are the  inverse of 
each o ther up to  equivalence. □

P u t in o ther words, a lossless and validating m apping 
scheme defines a bijection among equivalence classes 
of valid docum ents and legal relational databases, as 
depicted in Figure 2(b). We call m apping schemes 
th a t are bo th  lossless and validating (w ith respect to  
a D TD) information-preserving.

3 D esigning Inform ation-Preserving  
M apping Schemes

We now discuss a general and sound framework 
for designing inform ation-preserving m apping schemes 
based on applying structural transform ations [18, 25] 
to  an  existing schema. In summary, we s ta r t w ith 
an initial m apping scheme /xo th a t is known to  be 
inform ation-preserving, and subsequently transform  it 
until the  desired one Hk, defined as

f t  =  ( ( a l 0 « | t _ i 0 . . . 0 a i 0 ( r ) ,  (tt o  j3i o  • • • o ;3k ), Sk)
is found, as illustrated  by Figure 3. To make this 
framework concrete we m ust specify the languages for 
expressing the (1) m appings between XML docum ents 
and database instances, as well as the (2) m appings 
cti, pi between instances of different relational schemas. 
In our case, the  m apping and publishing languages are 
those in X D S  (Section 2.2), and the m appings be
tween relational instances are given as “weakly recur
sive” ILOG program s w ith stratified  negation (wrec- 
ILO G ^) [19]. Informally, th is language corresponds to 
D atalog w ith stratified negation augm ented w ith non
recursive “invention” rules th a t create new surrogates, 
and is powerful enough for the kinds of transform a
tions we define.
S o u n d n ess. Inform ation preservation in our fram e
work is achieved is as follows. F irst, we always s ta rt 
w ith a m apping scheme /xo =  (cto, tto,-S'o) th a t is bo th  
lossless and validating w ith respect to  a DTD X ; as we 
discuss below, th is is the case if and only if X  and So 
are equivalent (P roposition 3). Second, every tran s
form ation applied to  a m apping scheme /x*, 0 <  i < k 
results in /Xj+i whose relational schem a is equivalent to  
th a t of fii. Such transform ations are called equivalence 
preserving [25]. It follows th a t the  resulting m apping 
scheme Hk =  (ak,TTk,Sk) is such th a t Sk is equivalent 
to  X  and thus inform ation preserving.

In the rem ainder of this section, we relate classical 
notions of inform ation preservation and relative capac
ity of schemas [18, 25] to  our notions of lossless and

validation [3]. Then, we briefly describe the E dge++ 
m apping scheme, which is the  sta rtin g  point of LILO, 
discussed in Section 4. Finally, we give a procedure 
for incorporating a rb itra ry  w rec-ILO G " program s into 
X D S  m apping and publishing functions (Section 3.3), 
thus m aking our framework extensible: any equiva
lence preserving transform ation  th a t can be specified 
in wrec-ILOG^ can be used w ith our m ethod.

3.1 D o m in an ce  a n d  E q u iv a len ce  o f Schem as
Equivalence of schemas S  and T  (w ithin or across d a ta  
models) is defined based on properties of the m appings 
between their instances [25]. Let I (S) denote the set of 
all instances of S  (e.g., valid docum ents if S' is a DTD 
or legal database instances if S' is a relational schema).

Let a  : 1(5) —> I(T ) be a m apping given in some 
appropriate language, a  is said to  be inform ation- 
preserving if it is reversible; th a t is, there exists ,3 : 
I(T ) —> I (S ) such th a t ,3(a(-)) is an equivalence rela
tion  in 1(5). If th is is the case, we say th a t T  dom 
inates S  (via a , 3)-, denoted 5  ^  T . (We note th a t 
classical notions of schem a dom inance [18, 25] require 
3{a(-)) to  be the identity  on I(T ); w ithout loss of gen
erality, we use an equivalence relation to  account for 
renam ings of element surrogates.)

If bo th  a  and 3  are to ta l and bijective, th en  5  < T  
via (a, 3)  and T  ^  5  (via 3, <*)• In th is case, we say 
th a t 5  and T  are equivalent, denoted 5  =  T , and th a t 
3  (resp. a)  is an  equivalence preserving  transform a
tion. Note th a t ^  is a transitive relation, while =  is 
an equivalence relation.

Schema dom inance and equivalence establish no
tions of “relative inform ation capacity” between 
schemas. I f S  < T , we say th a t T  has at least the 
inform ation capacity o f S , since instances of 5  can 
represent any instance of T . Similarly, if S  = T , we 
say 5  and T  have the same inform ation capacity. 
E q u iv a len ce  o f D T D s a n d  R e la tio n a l Schem as. 
In a m apping scheme /x =  (<j,tt,S), a  and tt play the 
role of a  and 3  above, respectively:

P ro p o s itio n  3. I f  X  is a D T D  and /j =  (a, ir ,S )  is a 
mapping scheme such that L (X )  C Dom(er) then: (1) 
11 is lossless i f  and only i f  X  < S ; (2) \± is both lossless 
and validating with respect to X  i f  and only i f  X  = S .
Proof. (1) follows from Proposition  1, the  fact th a t 
L (X )  C Dom(<r), and the definition of (2) follows 
from Proposition  2 and the definition of = . □

Since losslessness and validation are undecidable [3], it 
follows tha t:

C o ro lla ry  1. Equivalence o f D TD s and relational 
schemas is undecidable.

3.2 T h e  E dge ‘ M ap p in g  Schem e
In w hat follows, we describe Edge+ + , the initial 
m apping scheme in our framework and show it is 
inform ation-preserving. Edge++ extends the Edge
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m apping scheme [16] (which is lossless) w ith con
stra in ts  for ensuring validation w ith respect to  a DTD 
X  =  ( E . r .R ) .  E dge++ contains additional relations 
for storing the transition  functions of the DFAs of the 
regular expressions in R . and constrain ts th a t check 
the validity of the elem ents by sim ulating the appro
p riate  DFAs on their content.
T h e  E dge; ' R e la tio n a l Schem a. Recall 3 is the 
dom ain of surrogates and T> is the  dom ain of constants. 
Let 3' =  (the symbol #  will be used for
m arking elem ents th a t have no children); let Q C D 
be a set of surrogates for DFA states; let T  C D be 
a set of surrogates for element types (i.e.. symbols in 
S); and let 25 C D denote the set of boolean constants. 
Edge++ m apping schemes use the following relational 
schem a (keys are underlined):

E d g e  (paren t : 3, child : 'J, label : D),
F L C ( parent : 'J,first : Z ', last : O ') ,IL S (left : 'J, right : J),

V a lu e  (e lem ent : 3, value : D ), T y p e f  elem ent : 3, type : 7),
T ra n s it io n (t( /p e  : 7, from  : Q, symbol : D , to : Q, accept : 25)

The E dge and V alue relations store all edges be
tween elem ents and between elem ents and tex t nodes 
in tree, respectively. Unlike Edge, the ordering of the 
nodes in the  docum ent is captured by the successor re
lation am ong them : for each elem ent e whose content 
model is not <; I’d ) A 1 A. we add a tuple (se, s f , si) to  
F L C  (which stands for “first and last children” ) con
sisting of the  surrogates of e. and its first and last 
children; if e has no content (i.e.. no children), we 
add a tuple (se, # ,  # )  to  FL C . The ILS ( “im m ediate 
left sibling” ) relation contains tuples w ith surrogates 
of consecutive elem ents in the  docum ent. Using the 
successor relation instead of the ordinals of tree nodes 
was m otivated by efficiency reasons, thereby avoiding 
reordering all nodes after each update  [4]. The T y p e  
relation contains the types of each element in the  doc
um ent. Finally. T ra n s itio n  stores the  transition  func
tions of the au to m ata  th a t correspond to  the  content 
models in the DTD.
C o n s tra in ts . Two kinds of constrain ts are defined in 
E dge+ + . T he structural constraints ensure th a t every 
instance of S  encodes an XML docum ent (as in Defini
tion 1); to  do th a t, we define constrain ts for ensuring 
the database encodes a tree, the ordering of the  ele
m ents is consistent, etc. These properties are easily 
encoded as boolean queries in D atalog w ith stratified 
negation. T he validation constraints ensure th a t ev
ery legal instance of S  encodes a valid docum ent; to  do 
th a t, each rule ti <— in the D TD  is transla ted  into 
the program  shown in Figure 4. Note th a t reach/ 
sim ulates the DFA corresponding to  on the content 
of an element p, s ta rtin g 4 w ith either rule (1). if the 
element has no content, or (2); rule (3) advances the 
DFA to  the next child of p  if an appropriate  transi
tion is defined, accep t/ com putes all elem ents whose

4T he constant qo denotes th e  s ta rtin g  s ta te  of the  DFA.

reacht,; (p. #, s ) F L C (p , # , #), Type(p, ti), (1)
Transit ion(/,. </;•.. . . _ )  

reacht,; (p. c, s ) Edge(p, c, x),  F L C (p , c, _), Type(p, ti), (2) 
Transit ion( /, ,qo ,x , s , - )  

reacht,; (p, c, s ) reacht,; (p, x, y), ILS(x, e), Type(p, ti), (3) 
Edge(p, c, w), Transit ion(/,, y, w, s, _) 

accept, ( p ) reach, (p, c, s), F L C (p , e), Type(p, t-t), 

Transit ion(/,. true) 
invalid, F L C (p , _), accept, (p)

Figure 4: Validation constrain t in E dge+ + .

content are accepted by the DFA (i.e.. all p  elements 
for which an accepting s ta te  s is reached after visiting 
their last children e); therefore, invalid^  evaluates to  
true  if and only if there is one elem ent of type ti  th a t 
is invalid.
T h e  M a p p in g  a n d  P u b lish in g  F u n c tio n s . Both 
a  and n  in Edge++ are straightforw ard; due to  space 
constraints, we briefly describe how they  work and re
fer the  reader to  [3] for details, a  creates the database 
instance by iterating  on a stream  of elements, accord
ing to  the global docum ent ordering; n, on the o ther 
hand, reconstructs the ordering of the elem ents using 
the o rd e r by clause of XQuery on F L C  and ILS. Note 
th a t since a  is defined for a specific DTD. the m apping 
of T ra n s itio n  and T y p e  can be easily hard-coded.

P ro p o s itio n  4. I f  fj, =  (a, it, S)  is the Edge++ m ap
ping scheme fo r  a D T D  X ,  then fj, is both lossless and 
validating with respect to X .

3.3 R e w ritin g  M ap p in g s
Conceptually, each tim e we transform  =  (a, tt, S) 
into / /  =  { a ', t t ' ,S ') ,  we m ap instances of S  and S ' 
using wrec-ILOG-1 program s a  : 1Z(S) —► TZ(S') and 
,3 : 1Z (S ')  —> 1Z(S). To com plete our framework, we 
now show how o ' and tt' are w ritten  as X 'D S  m apping 
and publishing expressions, given a rb itra ry  a, n, a  and 
3 ■ To do th a t, we rew rite a (resp. 3) using XQuery 
functions as well as m apping expressions (resp. pub
lishing expressions), and we will represent database 
instances as XML docum ents.

In sum m ary, a ' works in two steps: first, we m a
terialize the instance of S  defined by a  as a tem po
rary  XML docum ent and apply the  m apping defined 
by a  (rew ritten as a m apping expression). For t t ' , we 
first apply 3  (rew ritten  as a publishing function) to  an 
instance of S' ,  resulting in a “canonical view” of an 
instance of S , to  which we apply n  unchanged.

Recall th a t w rec-ILOG-1 program s are ILOG pro
gram s w ith stratified negation w ithout recursive inven
tion of surrogates. We assum e a , 3  are in norm al form; 
th a t is. neither program  defines cascading invention of 
new surrogates5, and they can be stratified  in a way

°A  program  has cascading invention of surrogates if there  are 
two invention rules r't, r j  such th a t th e  surrogates generated  for 
ri are “used” for generating  surrogates for r j .
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th a t all invention rules occur after all non-invention 
rules. We note th a t for every wrec-ILOG-1 program  
there is an equivalent one in norm al form [19]. 
D efin ing  a '. W ithou t loss of generality, we assume 
th a t each m apping expression in a  populates a sin
gle relation in S . and th a t each relation  in S  is popu
lated  by a single m apping expression in a. (We can re
place each procedure p populating relations n , . . .  , rn 
by n  “copies” of p such th a t copy pi populates relation 
n  only. Also, we can replace n  m apping expressions 
P i . . . . .  p n where each populate relation r  by a new pro
cedure p' and n  functions f i , . . . .  f n , such th a t each /* 
re tu rn  the list of tuples inserted by pi and p' inserts 
into r  the  “union” of the  results o f f i , . . . .  f n .)

T he first step  of a ' m aterializes an “instance” of S  
(which we refer to  as I s )  as follows. Let R i , . . .  ,R n 
be the relation names in S  and p \ , . . . , p n be the m ap
ping expressions in a  th a t populate them ; we convert 
each pi into a function f i  th a t re tu rns the  sequence of 
“tuples” th a t would be inserted in R i. T he result of 
each f i  is sorted lexicographically and duplicate tuples 
are removed. For the  second step of o ' , we convert a  
into a m apping expression th a t takes I s  and produces 
the  desired instance of S '.  Let n , . . . ,  n , . . . ,  rn be the 
rules in a  stratified in a way th a t all invention rules 
are ri+1 , . . .  , r n . We define a  as two standard  XQuery 
program s f p  and fg :  f p  com putes P  = n , . . . ,  ri on 
I s  using the conventional algorithm  for fixpoint se
m antics for D atalog [1]; f g  is applied to  the  result of 
f P and com putes Q = r i+1, . . . ,  rn .

Defining f p .  f p  is a recursive function th a t takes a 
“database instance” d  (represented as an  XML doc
um ent) as input, and com putes a new “instance” d! 
(also represented as an  XML docum ent) th a t contains 
a copy of d  and the  results of the  functions th a t com
p u te  the rules in P . If. after an  iteration  of f p ,  d  and 
d! are not lexicographically identical, we ite ra te  again 
using d! as input; otherwise (i.e.. reach a fixpoint). we 
stop. T he transla tion  of the rules in P  is as follows.

A rule f i  : A (x )  <— B% { u \ B n (un ) defining a 
conjunctive query where each I >, appears positively is 
im plem ented as a function f i  using nested loops to  iter
ate  over the  cartesian  product of relations B%. . . .  ,B n , 
thus com puting all possible valuations to  the  variables 
in n ,  and re tu rns the “tuples” th a t satisfy the  con
junctive query in the  body of the rule. N egation is 
dealt w ith in the  usual way for D atalog w ith stratified 
negation: - iR (x )  holds if and only if x  is in the  active 
dom ain bu t not in R . A set of rules

E d g e 0

A (x) A (x)

com puting a union is im plem ented as a separate  func
tion  for each rule (as above); the  “union” is done 
by concatenating  w ith duplicate elim ination and lex
icographic sorting the  individual “relations” (i.e.. se
quences of tuples) re tu rned  by each function.

Defining f g .  Since we do not allow recursive gen-

p id eid label
1 19 country

19 20 name
19 22 c a p it a l

F L C o
pid first last
19 20 22

IL So V alueo

left right
20 22

eid value
20 B r a z il
22 B r a s i l ia

(a) E dge++  m apping of th e  M ondial XML docum ent.

C o u n tr y i V a lu e i
country name capital country value

19 20 22 20
22

B r a z il
B r a s i l ia

(b) Inlining elem ent ids.

Country-.'
country name capital

19 B r a z il B r a s i l ia

(c) Inlining elem ent content.

Figure 5: Applying mapping scheme transformations.

eration  of surrogates, we tre a t each invention rule 
A(*. x)  <— B i ( u i ) , . . . ,  B n (un ) like a s tan d ard  non
recursive rule as in f p .  except th a t an  invented surro
gate is added to  each tuple in the result set. com puted 
by a Skolem function /^ (S ) . Note th a t the  m apping 
expressions th a t populate an  instance of S ' from the 
result of f g  are straightforw ard.
D efin ing  tt'. We ob tain  tt' by converting ,3 into 
X Query functions as discussed above; note th a t, on a 
“canonical view” of an  instance of S ',  these functions 
com pute a “canonical view” of the  corresponding in
stance of S , to  which we can apply tt unchanged.

4 The LILO A lgorithm
In  th is section we describe LILO (Lossless Inlining. 
Lossless O utlining), a m apping scheme design algo
rithm  based on the framework discussed in Section 3. 
LILO uses Edge++ as its initial m apping scheme and 
defines several equivalence-preserving transform ations, 
some of which are sim ilar to  those defined in the  lit
erature. This section s ta rts  w ith an example th a t il
lustra tes the  application of two transform ations to  the 
Edge++ m apping scheme, showing the  Edge++ m ap
ping of the  docum ent in F igure 1(b). and the databases 
th a t result from each transform ation. Next, we discuss 
in detail the  transform ations used in LILO and give an 
intuitive argum ent of why they are equivalence pre
serving. Finally, the  LILO algorithm  is discussed. 
E xa m p le  2. Recall the  fragm ent of the  m ondial
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database shown in Figure 1(b) and its DTD in Fig
ure 1(a). In th is example, we focus on country ele
m ents and the constrain ts defined for them . For clar
ity, the figures om it relations not involved in the dis
cussion. Note th a t subscripts are used to  distinguish 
relations w ith the same nam e in different schemas 
(e.g., V a lu e i is a relation in S i) .
E dge M ap p in g . Figure 5(a) shows the Edge++ 
m apping for the country element; we refer to  its rela
tional schem a as So in the rem ainder of the example. 
In So, we have a recursive constrain t to  check th a t each 
element e labeled country has has exactly two children 
ci, C2 ; ci is labeled name; C2 is labeled capital; and cl 
precedes c2. Moreover, So also has a s tru c tu ra l con
stra in t requiring bo th  Ci, C2 to  have a m atching tuple 
in the V alue relation.
In lin in g  E lem en ts . Consider a schem a S i th a t adds 
to  So a relation C o u n try  1(country, name., capital) 
for inlining country elem ents and their children, and 
constraints for enforcing the functional dependencies 
name —> country and capital —> country , for ensuring 
th a t each nam e and cap ita l element has a single coun
try  element as its paren t in the tree. The constrain ts 
for validating nam e and capital elements (Section 3.2) 
are also modified so th a t they access C o u n try  1 as 
opposed to  E d g e i . Intuitively, a m apping scheme de
fined on Si has one advantage over Edge+ + : the val
idation constrain ts for country elem ents can be spec
ified directly using SQL [12], and thus enforced effi
ciently by relational database engines. The m apping 
oti : TZ(So) —► 'R-(Si ) is:

D i f f ( e ) K d g o o i  . e. 'c o u n try ')

D i f f ( e ) K d g o o i  . e. 'c a p i t a l ')

D i f f ( e ) K d g o o i  . e. 'c o u n try ') .  K d g o o ir. e. 'name') 

C o u n t r y i ( e .  n.  e ) E d g e o ( e .  n.  'name'). E d g eo (e . e. 'c a p i t a l ')  
K dgoi i ( . c, I ) Kdgooi'< . c. I), Diff'i'< j 

F L C i (p, f ,  I ) F L C 0 (p, J, I)-. D ifF ipi 
I L S i  ( l , r ) IL S o (I, r), D ifl i /)

V a lu e i  (e. v ) V a lu eo (e . v)

D iff com putes all elem ents th a t are m apped into 
C o u n try  1 instead of E d g e i, F L C i and IL Si. Fig
ure 5(b) shows the resulting database instance. The 
instance of So is recovered by 3i : TZ(Si) —> TZ(So):

K dgo(,i( . e, I ) E d g e i ( e ,  e, I)

Kdgooi'( . c. I ) E d g e i ( e .  'c o u n try s ') .  Coun t  ry: r. _).

I =  /c o u n try /

E d g eo (e . c. I) C o u n t r y  i(e. c. _). I =  /name/

E d g eo (e . c. I ) C o u n t r y i ( e .  c). I =   ̂c a p i ta ] /
F L C 0 (p -/•  I ) F L C i(p .  / .  I)
F L C o  (p.. I-. I) C o u n t r y  (p. / ,  1)

IL S o  (I, r ) : -  I L S i  (I, r)
I l .Sof/-> I : C o u n t r y , !  . I . r)

V a lu e o (e ; v ) V a lu e i( e .  v)

It is easy to  see th a t So = S i: So d  S i  v ia ( a i ,3 i )  
and th a t S i  ^  So via ( 3 i ,a i )

In lin in g  T ex tu a l C o n te n t. We can further m od
ify S i  by storing the actual nam es and capitals of 
the countries instead of their surrogates; in th is new 
schem a 52, there is no need to  enforce the functional 
dependencies in 5 i ,  nor the validating constrain ts for 
nam e and capital elem ents (note th a t the validation 
constraints for nam e elem ents th a t are not children 
of country are not affected by either transform ation). 
Furtherm ore, no joins are required for finding nam es 
or capitals of the countries when processing queries. 
Instances of 52 are com puted by « 2  : TZ(Si) —> 7Z(S2): 

D i f f ( e ) C o u n t ry  i ip. e, _). V a lu e i( e .  _) 
D i f f ( e ) C o u n t  ry  ] ip. e). V a lu e i( e .  _) 

K dgo2 i<. e. I ) E d g e i ( e .  c. I)
F L C  2( p J ,  I ) : -  F L C i(p .  / .  I)

IL S 2 ( l , r ) : - I L S i ( l , r )
C o u n t  r,V2i ( . n,  c ) C o u n t  r y i  i< . v\ ,  V 2 ) ,

V a lu e i ( d i  , n),  V a lu e i  (v2, c) 
V aluoai't . v ) Va l u o i i < . v), D ifI‘it i

Figure 5(c) shows the resulting instance. To recon
s truc t the instances of 5 i ,  f t  : ^ (5 2 )  —*• H (S i)  uses 
invention rules (m arked w ith *) to  replace the surro
gates lost by ct2 ‘-

E d g e i  (e, c. I ) E d g e 2 (e, c, I)
F L C i( p .  / .  I ) F L C 2 (p- /-  0  

I L S i( l .  r ) IL S 2 (I. r )
P N a m e (* . e. n ) C o u n t  r y 2i ( . n. _) (*)

P C a p i ta l i  . e. c ) C o u n t  r y 2i ( . c) (*)
C o u n t r y i  i< . n.  c ) P N a m e ( n .  e. _). P C a p ita l iC . e. _) 

V a lu e i  (e. v ) V a lu e 2 (e. v)
V a lu e i  (e. v ) P N a m e (e .  v. _)
V a lu e i( e .  v ) P C a p i ta l ( e .  v)

Again, note th a t 52 =  5 i.  Thus, the m apping scheme 
resulting from applying the two transform ations above 
to  Edge++ is inform ation-preserving. ■

4.1 E q u iv a len ce  P re se rv in g  T ra n sfo rm a tio n s
We now present the equivalence preserving transfor
m ations used in LILO. O ur goal in defining them  is 
twofold: we want to  reduce the num ber of joins re
quired for navigating the m apped docum ent; and we 
w ant to  replace the validation constrain ts defined by 
Edge+ + , which require recursive D atalog program s, 
into simpler ones th a t can be expressed in SQL. In 
the interest of space and for clarity of exposition, we 
om it the  wrec-ILOG^ program s in the  discussion be
low; instead, we inform ally describe each transform a
tion when arguing they are equivalence preserving. 
E q u iv a len ce  P re se rv a tio n . We apply transform a
tions to  the relational schemas in the m appings be
cause we are interested in elim inating some of the con
s tra in ts  defined in them . However, describing them  
as changing the content models in the D TD  gives a 
m ore intuitive explanation  of w hat they do. For ex
ample, suppose /i =  ( a ,n ,S )  is the Edge++ m ap
ping scheme for the D TD  in Figure 1(a); we can
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view inlining the nam e of cities in S  on as replac
ing city  <— nam e, (province] state), o ffic ia l[l, 5} in the 
D TD by c ity1 <— (province]state), o ffic ia l[l, 5], m od
ifying a  (resp., t t) for storing (resp., fetching) the 
name elements in a separate relation. Some of our 
transform ations result in m ixing  the  content of dif
ferent elements. For example, we can use a tran s
form ation for nesting (defined below) the content of 
cities elements as children of mondial, thus replac
ing mondial <— cities, country*  and cities <— city* 
by mondial <— city*, country* (in th is case, a  ignores 
cities elem ents and tt is hard-coded to  introduce them  
when processing a m ondial element).

An im portan t requirem ent for equivalence preser
vation in our transform ations is that all content m od
els they “in troduce” are 1-unambiguous regular ex
pressions, and if r  =  n , . . .  , r j , . . .  , r n is a 1-unambi
guous regular expression and w  €  L(r)  then  there ex
ist unique w \ , . . .  ,w n such that w t €  L(r{), 1 <  i < n, 
and w  =  u>i • • • w n [8]. (Note some Wi may be the 
em pty string.) Thus, it follows that, even when we 
mix the contents of different elements, we can always 
distinguish, and thus reconstruct the original docu
ment.
N o ta tio n . In the rem ainder of this section, r, s de
note regular expressions over £  U j^ P C D A T A  and 
a €  S  denotes an element label, ji = (a, tt, S )  and 
fi' = ( o ', t t ' ,S ')  denote, respectively, the input and the 
ou tpu t of each transform ation. Recall that each rule 
U <— n  in the  D TD  becomes a constrain t in E dge++ 
involving the sim ulation of the appropriate DFA on the 
children of elem ents of type ti, we call such constraint 
an edge constrain t and denote it by U n  below.

The relational schem a of the input m apping scheme 
is of the form S  = { E i , . . . ,  E n , M i , . . . ,  A//... I ' ]. where 
E i , . . . ,  E n are edge relations as defined by Edge+ + ; 
M i , . . . ,  M k are mapped relations (resulting from the 
application of a transform ation); and T  =  T E u r M , is 
the set of constrain ts in S  where contains all edge 
constraints, and T M is a set of mapped constraints 
(resulting from the application of a transform ation). 
E ach transform ation  creates or modifies one or more 
m apped relations, and replaces one constraint in 
by other constraints in T  in a way th a t the resulting 
relational schem a is equivalent to  S.
4.1 .1  In lin in g
Inlining [5, 29] consists of storing an  elem ent together 
w ith one or more of its children in the same relation. 
In l in e  E le m e n t! / ,  r , . M ). where t ^  r  is an edge 
constrain t, r  =  n , . . .  , r j , . . .  , r n and rj is either a 
or a ?, results in using the m apped relation M  to 
store pairs of surrogates of elements of type t  and a, 
and applies only if s = r i , . . . ,  r j - i , r j+i , . .  , , r n is 1- 
unam biguous. The schem a for M  is (t, c i , . . .  ,Ck,a) 
(the prim ary key is underlined), where a , . . . ,  Ck, k >  
0, are columns added by previous applications of in
lining on type t. We replace the constrain t t <— r  by

t ^  s, and add a m apped constrain t for checking th a t 
values of a in M  are unique (th a t is, the FD a —> t 
holds). Since ji' stores the surrogates for a elements 
in M , we also modify the edge constrain t for validat
ing a elem ents so th a t the datalog program  refers to 
M  as opposed to  the  oringial edge relations (recall the 
discussion in Exam ple 2). Finally, if a elem ents are 
required (i.e., rj =  a), we define a to  be not null in M .

M apping instances of S  into instances of S '  is done 
by m apping the surrogates of inlined elements (of types 
c i , . . . , c k ,a )  into M , while all o ther children of t  el
em ents are m apped into edge relations in S ' (as il
lustrated  in Exam ple 2). The m apping in the o ther 
direction is done by copying the surrogates of the in
lined elements into the edge relations in S . Since 
s =  n , . . . , r j - i , r j+ i , . . . , r n is 1-unambiguous, we can 
recover the original elem ent ordering in an  instance 
of S\ we know th a t each a element m ust occur after 
an element in n , . . . , r j - 1 and before an  element in 
rj+ i , . . . , r n .
I n l in e _ U n io n ( t , f j ,M )  is a special case of inlining 
th a t applies when rj =  ( s i | . . .  |s„), and each Si is ei
ther a,i or a il.  We add columns a i , . . . ,  an to  M , and 
define the following constraints. F irst, we need to  en
force th a t a t m ost one of these columns is not null in 
each tuple in M ; also, if no s it is of the  form a^?, then  
one of these columns m ust be not null. To ensure th a t 
at m ost one a* is present a t any tim e, we define a con
stra in t com prising of a boolean form ula of the form 
<f>i V . . .  V <f>k and each <pi checks a* is not null while 
each t i j , i  ^  j  is. The constrain t for ensuring th a t a t 
least one of a* is present is straightforw ard.

N ote th a t the update  anom aly discussed in Exam 
ple 1 would be elim inated by defining the constraints 
discussed above in th a t relational schema.
In lin in g  T ex tu a l C o n te n t. W hen an  element of 
content model #PC D A T A  is inlined, we can use the 
m apped relation to  store its content:
In lin e_ C d ata (a , M ), where a is the type of an  inlined 
element in the m apped relation M , replaces the col
um n for storing surrogates of a elements by a column 
for storing their tex tual content. As illustrated  in Ex
ample 2, the m apping between instances of S  and S ' 
m aps the tuples in V alue corresponding to  a elements 
into M . The reverse m apping is done by inventing new 
surrogates for each inlined element.

4 .1 .2  N e stin g  E lem en ts
This transform ation  elim inates some elem ents by nest
ing their contents w ithin their parents:

N e s t (t,a )  applies when t ^  r  and a ^  r ' are 
edge constraints, r  =  n , . . . , a , . . . , r n , and s = 
n , . . .  , r ' , . . .  , r n is 1-unambiguous. As a result, we re
place the constrain ts t ^  r  and a ^  r ' by t s 
in S '.  The w rec-ILO G " program s for m apping in
stances of S  and S ' are straightforw ard, and since s 
is 1-unambiguous, we can distinguish the children of
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I n p u t  : a  D T D X  =  (S . r. R )
O u tp u t : a  m apping scheme (j.. =  (a. ir. S)
1. Let (j. be th e  Edge++  m apping scheme for X
2. For each t 6  E , create  a  m apped re la tion  M t in S
3. Let I =  r
4. Let r =  r \  . . .  . r n be th e  content m odel associated 

w ith  t in R
5. For each n ,  1 <  i < n, apply N e st( t .  n ) ,

Inl ine Klement i / .  n ,  Mt ) ,  Inl ine (Ma ta i  r , . Mt),  
In lin e_ U n io n (i. n ,  Mt),  O u tlin e(t . n ) ,  

O u tlin e_ U n io n (i. n )  whenever possible 
and in  th is order

6. If a  transfo rm ation  creates a  new type //. 
add a  m apped re la tion  M tr to  S

7. For each elem ent type /,: occurring in r.
let t =  ti and repea t from step  3 until no changes 
are m ade to  S

8. Remove from  S  all relations are no t used by a  or tt
9. R e tu rn  the  resulting  m apping scheme

Figure 6: LILO algorithm for designing information- 
preserving mapping schemes.

a elements am ong the  children of t  elem ents in an in
stance of S ' .

4.1 .3  O u tlin in g  E lem en ts
This transform ation  is the  opposite of inlining and 
results in separate m apped relations for storing the 
content of elements of the same type. For in
stance, it could be used to  separate city officials from 
other children of city elements; intuitively, th is would 
replace city  <— name, (province] state), o ffic ia l{l, 5] 
by c ity1 <— name, (province]state) and city2 <— 
o ffic ia l[l, 5} which could be fu rther transform ed in
dependently.
O u tlin e !  /. rj),  applies when t  r j , . . . ,  r3, . . . ,  rm is 
an edge constrain t, the  partic ipation  of r j  is either * or 
+ , and s =  r i , . . . ,  T j - i , r j + i , . . . ,  r„  is 1-unambiguous. 
In  general, outline does not introduce new m apped re
lations; instead it replaces the original edge constraint 
by t s and t '  r} . The w rec-ILO G " program s for 
outlining m ap p a rt of the  content of each t  element 
into the  content of a new t ' element (in the forward 
direction) and merge these pieces of content back (in 
the  backw ard direction).

W hen rj is either a* or a+ we can use the m apped 
relation for cap turing  ju st parent-child  relationship, ig
noring labels (since they  are all a); thus, we can also 
drop the  constrain t t '  r3 from the  schema; the  or
dering of the a elements is still cap tured  by the  F L C  
and ILS relations.

A special case of outlining is when rj = a[x, y] defin
ing a cardinality  constrain t. In  th is case, we use a 
m apped relation for storing pairs of surrogates of t 
and a elements, and addd a constrain t th a t counts the 
num ber of a elem ents associated w ith each t  element 
and checks th is value is in the appropriate range. If 
the content model of a is ^P C D A T A , values of these 
elem ents can be inlined in the  m apped relation. 
O u t l i n e  U n i o n ( / . r , )  is a special case th a t applies

O peration 512KB 4MB 32MB 256MB 2GB
E dge++ m apping scheme

Insertion 7.72 15.87 17.70 20.48 20.45
Deletion 4.45 8.78 10.43 11.60 11.89

Q3 1.12 5.74 334.21
Q17 0.20 0.23 0.35 1.5 8

LILO m apping scheme
Insertion 4.73 8.55 9.58 9.99 11.38
Deletion 3.53 6.41 7.48 8.16 8.76

Q3 0.09 0.12 0.18 1.47 50.41
Q17 0.03 0.03 0.03 0.09 0.59

Table 1: Experimental results; all times shown in millisec
onds. For insertion and deletions, the time includes both 
modifying the database and checking the constraints.

when f j  =  ( «i | . . . | «fc)  and results in replacing the 
original edge constrain t t r3 by the  following:

ti  ^  r r , _ i , Mi, rJ+1 , . . . , r n

R
t k ^ -  r i , . . . ,  r , _ i , uk , rJ+1 , . . . , r n

It is easy to  see th a t all regular expressions above 
are 1-unambiguous. One issue w ith tn is transform a
tion  is th a t the  type of an  element may change af
te r its content is updated . Thus, whenever an  up
date on element e of type ti  violates the  edge con
stra in t ti ^  r i , . . .  , r j - i  ,U i ,r j+ i , . . .  , r n , we m ust 
check w hether the  new content of e satisfies the  con
stra in t of some o ther type t j ; if so, we m ust also update  
the  type of e.

4.2 T h e  LILO  A lg o rith m
T he LILO algorithm  is given in Figure 6. LILO visits 
each type t  once, and after t  is visited, its validating 
constrain t is either m apped by some transform ation  or 
it is left unchanged. The order in which the  transfor
m ations are a ttem pted  reflect the  criteria  discussed in 
the beginning of Section 4.1: reducing the  num ber of 
joins required for navigating the docum ent (achieved 
m ostly by inlining), and simplifying the  validation con
s tra in ts  introduced by Edge+ + .

T h e o re m  1. Given a D T D  X .  L ILO  always ter
minates and produces a mapping scheme that is 
information-preserving with respect to X .

Proof. I t is easy to  see th a t LILO always term inates: 
each rule in a the  D TD  is visited only once, and the 
to ta l length (i.e., num ber of symbols) of all valida
tion  rules in T13 after each itera tion  of LILO is strictly  
sm aller th a n  at the  beginning of th a t iteration . The re
sulting m apping scheme is inform ation-preserving w ith 
respect to  X  since Edge++ is inform ation-preserving, 
and all transform ation  used by LILO are equivalence 
preserving (Section 3.1). □

5 Experim ental Evaluation
Table 1 presents experim ental results com paring the 
behavior of Edge++ and LILO m apping schemes for
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processing updates and queries, using X M ark docu
m ents ranging from 512KB to 2GB. For processing 
updates, we m ust recom pute the  queries defining con
stra in ts  in the relational schema; recom puting all such 
queries from scratch after each update  is inefficient 
and, in m ost cases, unnecessary [IT].

We used DB2 V8.1 on a Pentium -4 2.5GHz (1.5GB 
of RAM ) running Linux 2.4; we lim ited D B 2:s buffer to  
45MB, to  minimize the  effects of buffering for larger 
databases. This is the  only param eter we tune; fur
therm ore, the  only indices in each database are those 
created autom atically  for the  prim ary keys of each re
lation. In our im plem entation of E dge+ + , we use hori
zontal partition  in the E d g e relation based on the  type 
of the  paren t element, which elim inates some joins in 
the  definition of the  validation constraints; also, we 
adap t the  increm ental validation algorithm  described 
in [4] to  E dge+ + , thus avoiding the  recom putation  of 
the  recursive constrain ts from scratch after every up
date. Finally, it is w orth noting th a t, in this experi
m ent, all transactions were executed a t the  user level, 
thus incurring overheads (e.g., query com pilation and 
optim ization) th a t can be avoided if these m ethods are 
im plem ented inside the  database engine.
U p d a te s . T he update  workload consists of 100 inser
tions and deletions of item s for auctions in the N orth 
Am erica region, each perform ed as a separate  tran s
action. Each element inserted is valid and consists of 
an entire subtree of size com parable to  those already 
in the  docum ent, and each deletion removes one of 
the  “new” item s inserted. Table 1 shows th a t while 
bo th  m apping approaches scale very well w ith docu
m ent size, LILO is on average 45% faster th an  E dge++ 
for insertions and 26% faster for deletions.
Q u eries . W hile our focus in this paper is on infor
m ation preservation, we com pared Edge++ and LILO 
for query processing as well. We used X M ark queries 
whose focus was on navigating the docum ents, and 
here we show the  results for two of them : Q3 and 
QlT; Q3 takes order into account and perform s a join, 
while Q lT  is am ong the sim plest queries in the bench
m ark. For practical reasons, we set a tim eout lim it of 
10 m inutes for running each query. Table 1 shows th a t 
LILO is vastly superior to  E dge++ for query process
ing: Q3 tim es out on the 256MB Edge++ m apping, 
while it takes about 5 seconds on the LILO m apping 
for the 2GB docum ent. T he improved perform ance is 
due m ostly to  the  considerably fewer joins required for 
querying LILO m appings com pared to  E dge+ + .

6 Discussion and R elated Work
We proposed a novel and sound framework for gener
ating inform ation-preserving X M L-to-relational m ap
ping schemes from an  XML schema, which consists 
of applying equivalence-preserving transform ations to 
schemes th a t are known to  be inform ation-preserving. 
As discussed, th is process results in a m apping scheme

whose relational schema is equivalent to  the  original 
XML schema. O ur framework is extensible and can 
handle a rb itra ry  transform ations th a t can be w ritten  
in w rec-ILO G ", which is powerful enough for the  ex
pressing the transform ations of interest.

We discussed LILO: a m apping scheme design algo
rithm  for X 'D S  th a t uses transform ations to  derive new 
m apping schemes th a t preserve the  validity of XML 
docum ents. Using relational constrain ts to  ensure va
lidity has several advantages com pared to  the alter
native of m aterializing and re-validating the  portion  
of the  docum ent th a t is updated . Notably, our ap
proach leverages the  constraint-checking infrastructure 
already available in the  DBMS, and does not require 
the  developm ent and m aintenance of a separate  valida
tion  tool. M oreover, our experim ents have shown th a t 
even an  im plem entation th a t incurs all the  overheads 
of user-level transactions leads to  acceptable perfor
mance.

W hile checking and increm ental checking of con
s tra in ts  in the  relational setting  is well studied (see, 
e.g., [IT] for a survey), researchers are only beginning 
to  consider updating  XML [6, 23, 30, 31], and the  prob
lems of validation and increm ental validation after up
dates [4, 20, 2T]. We studied two n a tu ra l notions of 
inform ation preservation for m apping schemes in pre
vious work [3], including validation; we note th a t other 
authors have also identified the  need for inform ation 
preservation in m apping schemes and  have informally 
discussed losslessness [14, 31].

W hile the  lite ra tu re  on m apping schemes is vast, 
the  focus of previous work has been m ostly on per
formance of queries (see e.g., [21] for a survey) and 
updates [30, 31], ra th e r th an  inform ation preserva
tion. Nevertheless, several existing m ethods (possi
bly w ith straightforw ard extensions) guarantee loss
lessness (only). For instance, num bering schemes th a t 
cap ture  bo th  element identity  and  ordering [31, 32], 
can be used to  preserve the  docum ent s truc tu re  [5, 
14, 16, 29]. Edge++ [3] cap tures the tree  struc tu re  of 
the  docum ents by representing the  successor relation 
am ong elements (as opposed to  explicit ordering); do
ing so results in more efficient update  processing.

Some m apping schemes in the  lite ra tu re  are oblivi
ous to  docum ent schemas [16] while others exploit (and 
require) docum ent schemas [5, 28, 29]. T he la tte r ap
proach has been shown to  lead to  b e tte r query per
formance, and is more closely related  to  our fram e
work and LILO; a similar gain in query perform ance 
is noticed when com paring LILO to  E dge+ + , whose 
relational schem a is sim ilar to  the  one in [16]. Some 
of the  transform ations we define can be viewed as ex
tending those in [5, 28, 29] to  guarantee inform ation 
preservation. LegoDB [5] uses a cost-based model for 
designing m apping schemes whose goal is minimizing 
the  estimated  cost of executing an  input query work
load on an input XML docum ent. Such estim ates are
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obtained by using features in m odern RDBM Ss that 
allow the query optim izer to  use s ta tis tica l inform ation 
describing a hypothetical database instance. W hile it 
would be interesting to  extend LILO w ith a cost-based 
model, strong em pirical evidence suggests th a t, even 
for simple queries, there can be discrepancies of sev
eral orders of m agnitude between the estimated  costs 
and the  execution costs observed on th a t actual in
stance [11]. Thus, o ther cost models may have to  be 
considered.

Several techniques have been proposed for tran s la t
ing specific XML Schema constrain ts into relational 
ones in m apping schemes; for instance, techniques for 
transla ting  keys [13]. foreign-keys [10]. cardinality  con
s tra in ts  [5. 22], ID /ID R E F  a ttrib u tes  [4], and type 
specialization [3] have been proposed. However, to 
the best of our knowledge, no work has addressed the 
problem of m apping the  element validity constraint, 
requiring the content of valid elem ents to  be words in 
regular languages defined in the  docum ent schemas [7]. 
which is achieved by LILO.

Finally, an  interesting observation m ade in [2] is 
th a t some of the strategies defined in the  lite ra tu re  
are orthogonal, and new m apping schemes can be de
rived by mixing them . The framework we propose is 
extensible can can accom m odate any transform ation 
th a t can be described in w rec-ILO G ". Thus, while we 
considered transform ations for preserving element va
lidity only, our framework is not tied to  specific kinds 
of constraints: different transform ations th a t preserve 
additional constrain ts can be easily incorporated.
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