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Abstract

Data schema transformations occur in the context of software evolution, refactoring, and cross-paradigm
data mappings. When constraints exist on the initial schema, these need to be transformed into constraints
on the target schema. Moreover, when high-level data types are refined to lower level structures, additional
target schema constraints must be introduced to balance the loss of structure and preserve semantics.

We introduce an algebraic approach to schema transformation that is constraint-aware in the sense that
constraints are preserved from source to target schemas and that new constraints are introduced where
needed. Our approach is based on refinement theory and point-free program transformation. Data refine-
ments are modeled as rewrite rules on types that carry point-free predicates as constraints. At each rewrite
step, the predicate on the reduct is computed from the predicate on the redex. An additional rewrite system
on point-free functions is used to normalize the predicates that are built up along rewrite chains.

We implemented our rewrite systems in a type-safe way in the functional programming language Haskell.
‘We demonstrate their application to constraint-aware hierarchical-relational mappings.

Keywords: Schema transformation, Constraints, Invariants, Data refinement, Strategic rewriting,
Point-free program transformation, Haskell.

1 Introduction

Data schemas lie at the heart of software systems. Examples are relational database
schemas, XML document schemas, grammars, and algebraic datatypes in formal
specification. Data schemas prescribe not only the formats to which data instances
must conform, but they also dictate the well-formedness of data queries and up-
date functions. Generally, schema definitions consist of a structural description
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to A, A’ datatype and transformed datatype
T transformation of type A into type A’
to migration function of type A — A’ (injective)

from  migration function of type A’ — A (surjective)
¢, ' constraint and transformed constraint
P newly introduced constraint

¢ = ¢o from N

Fig. 1. Constraint-aware transformation of datatype A with constraint ¢ into datatype A’ with constraint
¢’. The constraint on the target type is the logical conjunction of (i) the constraint on the source type post—
composed with the migration function from, and (ii) any new constraint ¢ introduced by the type-change.
When ¢’ is normalized it works on A’ directly rather than via A.

augmented with constraints that capture additional semantic restrictions, e.g. SQL
and XSD schemas may declare referential integrity constraints, grammars include
operator precedences, VDM specifications contain datatype invariants.

Data schema transformations occur in a variety of contexts. For example, soft-
ware maintenance commonly involves enhancement of the data formats employed
for storing or exporting application data. Likewise, evolution of programming lan-
guages brings along modification of their grammars between versions. More com-
plex schema transformations are involved in data mappings between programming
paradigms [14], such as between XML and SQL.

When a data schema is transformed, the corresponding data instances, queries,
and constraints must also be adapted. For example, when mapping an XML schema
to an SQL schema, data conversion functions between schemas are required. When
an XML schema is augmented with new document elements, the queries developed
for that schema may need to be adapted to take these elements into account. When
a datatype in a formal specification is adapted, so must its invariant and update
functions.

In previous work, we and others have addressed the problem of transform-
ing schemas together with the data instances and queries that are coupled with
them. We have shown that data refinement theory can be employed to formalize
schema transformation [1] as well as the transformation of the corresponding data
instances [9]. In combination with point-free program transformation, this formal-
ization extends to migration of data processors [11] including structure-shy queries
and update functions [12]. We have harnessed this theoretical treatment in various
type-safe rewrite systems and applied these to VDM-SL specifications [1], XML
schemas and queries [11,5], and SQL databases [1,5].

We have also addressed the problem of propagation and introduction of con-
straints [5]. However, this approach was not theoretically supported, did not achieve
type-safeness, and was limited to referential integrity constraints only.

In this paper, we propose an improved approach to constraint-aware schema
transformation. Figure 1 concisely represents the new approach. Rather than la-
beling the types being transformed with cross-reference information as in [5], we
augment them with general constraints represented by strongly-typed function rep-
resentations. Constraint-propagation is achieved by composing a constraint ¢ on
a source data type with a backward conversion function from between target and
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Fig. 2. Schema for an XML database of movies and TV series, inspired by IMDb (http://www.imdb.com/).
The shaded elements indicate unique keys in the respective collection elements. In addition, the year and
title of the played element are a foreign key into the show collection.

source type. Constraint-introduction is achieved by logical conjunction of a new
constraint ¢ to the propagated constraint. Finally, point-free program transforma-
tion is applied to fuse the various ingredients of the synthesized constraint into a
simplified form.

The paper is structured as follows. We introduce the problem of constraint-aware
schema transformation with a motivating example in Section 2. We provide back-
ground about refinement theory and point-free program calculation in Section 3.
Theoretical support about constraints representation and rewriting is provided in
Section 4. In Section 5, we explain how this theory can be made operational in
the form of strongly-typed rewriting systems implemented in the functional pro-
gramming language Haskell. We return to the motivating example in Section 6 to
demonstrate the application of our rewriting system to schema-aware hierarchical-
relational mapping. We discuss related work in Section 7 and conclude in Section 8.

2 Motivating Example

To illustrate the objectives of our approach, we will pick up the motivating example
from [5]. The diagram in Figure 2 represents an XML schema for a database of
movies and TV series. The schema indicates that the database contains two main
collections: one for shows (movies or TV series), and one for actors that play in
those shows. Apart from the structure of the database, the following uniqueness
constraints are present:

(i) A show is identified by its year and title.
(ii) An actor is identified by his/her name.
(iii) A season is identified by its yr.
(iv) A played element is identified by its year, title, and role.
Also the following referential integrity constraint is present:
(v) The year and title of a played element refer to the year and title of a show.

In XML Schema, such uniqueness and referential integrity constraints are defined
by so-called identity constraints, using the key, keyref, and unique elements. More
constraints could exist, such as that value is always non-zero, or that the name of
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an episode is different from the title of the corresponding series. Such constraints
could be expressed by general queries, e.g. using XPath.

When an XML-to-SQL data mapping is applied to our XML schema, an SQL
database schema should result where the various constraints are propagated appro-
priately. In addition, new constraints would need to exist on the SQL schema that
balance the loss of structure due to the flattening to relational form. The schema
we need is the following:

shows (year,title)
reviews(id,year,title,review)

foreign key (year,title) references shows(year,title)
movies(year,title,director)

foreign key (year,title) references shows(year,title)
boxoffices(id,year,title,country,value)

foreign key (year,title) references movies(year,title)
series(year,title)

foreign key (year,title) references shows(year,title)
seasons (year,title,yr)

foreign key (year,title) references series(year,title)
episodes(id,year,title,yr,name,director?)

foreign key (year,title,yr) references seasons(year,title,yr)
actors (name)
playeds(name,year,title,role)

foreign key (year,title) references shows(year,title)

foreign key (name) references actors(name)
awards (name,year,title,role,id,award)

foreign key (name,year,title,role) references playeds(name,year,title,role)

In this pseudo-SQL notation, primary keys are indicated by underlining. The first
foreign key constraint is an example of a newly introduced constraint. It arises from
the fact that reviews were nested inside shows in the XML schema, but appear in
a separate top-level table in the SQL schema. The first foreign key on the playeds
table is an example of a constraint that was present in the original XML schema
and was propagated through the data mapping.

In the remainder of this paper, we will demonstrate how schema transformations
such as this XML-to-SQL data mapping can be constructed from strongly-typed
algebraic combinators. The propagation of initial constraints and the introduction
of new constraints will come for free.

3 Background

In this section, we will explain how schema transformation can be formalized by data
refinement theory and point-free program transformation. We start in Section 3.1
by providing background on data refinement theory and its application to two-level
transformation. In Section 3.2, we recapitulate point-free program transformation
and show how it can be combined with data refinement to model query migration
driven by schema transformation.

3.1  Two-level transformation as data refinement

Data refinement theory provides an algebraic framework for calculating with
datatypes [20,16,18]. The following inequation captures the essence of refining a
datatype A to a datatype B:
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Sequential and structural composition

to to’ to’-to
if A/Ng\*B and B//?*C then A/’%\C
from from' from-from’
/,tg\ /EEQ\
if A < B then FA < FB
\,,/ S~
from F from
Hierarchical-relational data mapping
A*<IN —~ A List elimination
24> 4 1 Set elimination
AT=1—~ A Optional elimination
A+ B<A? x B? Sum elimination
Ax (B+C)=2(AxB)+(AxC) Distribute product over sum
A= (B+C)<(A—B)x(A—=0) Distribute map over sum (range)
(B+C)—A=(B—A)x(C—A) Distribute map over sum (domain)

A— (Bx(C—=D))<(A—B)x(AxC— D) Flatten nested map

Fig. 3. Summary of data refinement theory. For a complete account, the reader is referred to Oliveira [20].
Note that - — - denotes a simple relation, of which finite maps are a special case.

/,Ii\ to : A — B injective and total
A < B where from : B — A surjective
\/ )
From from - to =idy

Here, id4 is the identity function on datatype A. Thus, the inequation A < B
expresses that B is a refinement of A, which is witnessed by the conversion functions
to and from. (In fact, to can be any injective and total relation, not necessarily
a function.) In the special case where the refinement works in both ways we have
an isomorphism A = B. On the basis of this formalization of data refinement, an
algebraic theory for calculation with datatypes has been constructed. This theory
is summarized in Figure 3.

Data refinement theory can be used to formalize coupled transformation of
schemas and their instances [9]. Such two-level transformations can be captured
by sequential and structural compositions of data refinement rules. In particular,
hierarchical-relational data mappings can be modeled by repeated application of
elimination, distribution, and flattening rules, until a fixpoint is reached [1].

3.2 Point-free program transformation

In his 1977 Turing Award lecture, Backus advocated a variable-free style of func-
tional programming, on the basis of the ease of formulating and reasoning with
algebraic laws over such programs [3]. After Backus, others have adopted, comple-
mented, and extended his work; an overview of this point-free style of programming
is found in [10]. Some function combinators and associated laws that are used in
the current paper are shown in Figure 4.

Point-free program transformation can be used after schema transformation to
simplify the calculated conversion functions and to migrate queries from source
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Primitive combinators
id: A—A (0): (B—C)— (A—B) — (A—C)
m: AXB — A (A):(A— B) — (A—C) — (A— BxO)
m:AxB — B (x): (A—=B) = (C—D) — (AxC — BxD)
d:(A— B)— Set A list : (A—B) — ([A]—[B])
p:(A— B)— Set B set: (A—B) — (Set A — Set B)
4 (A= B)X((AxC) = D)) = (A= (Bx(C = D))
4,1 :(A = (Bx(C — D)) — ((A— B)x((4xC) = D))
Laws
Foid=7 idof =] Fid=id
folgoh)=(fog)oh FfoFg=F(fog)
mo(fag)=f mo(fag) =g
T A T = id (fxg)o(hAi)=(foh)A (goi)
mo(fxg)=fom mao (fxg) =gom
idxid = id (fxg)o(hxi)=(foh)x(goi)
list id = id list f o list g = list (f o g)
set id = id set foset g=set (fog)

Fig. 4. Summary of point-free program transformation. For a complete account, refer to Cunha et al. [10].

to target type or vice-versa [11]. In Section 5.4 we will use point-free program
transformation to migrate and simplify constraints during schema transformation.

4 Refinement of datatypes with constraints

In this section we provide theoretical support about constraints representation and
rewriting. The formalization of constraints is presented in Section 4.1. Section 4.2
discusses how constraints can be added to data refinement laws to formalize the
propagation and introduction of constraints during schema transformation.

4.1 Data types with constraints

A constraint on a datatype can be modeled as a unary predicate, i.e. a boolean
function which distinguishes between legal values and values that violate the con-
straint. To associate a constraint to a type, we will write it as a subscript: Ag
where ¢ : A — IB total and functional. This notation, as well as some of the results
below, originates in [19]. We will write constraints as much as possible as point-free
expressions, to enable subsequent calculation with them. For example, the following
datatype represents two tables with a foreign key constraint:

((A - B) X (C — A x D))(set 1 )opomy Comy

Here we use projection functions 71 and 7 to select the left or right table, we use §
and p to select the domain and range of a map, and set f to map a function f over
the elements of a set. Additionally, we use a variant of the set inclusion operated
lifted to point-free functions: C :(A—Set B) — (A—Set B) — (A—B).

Hence, the defined constraint states that all values of A defined in the left table
must be contained in the set of keys of the right table.
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When a second constraint is added to a constrained datatype, both constraints
can be composed with logical conjunction: (Ag)y = Agay-

When a constraint is present on a datatype under a functor, the constraint can
be pulled up through the functor (for a categorical proof, see [19]):

F(Ay) = (FA)Fg functorial pull

For example, a constraint on the elements of a list can be pulled up to a constraint
on the list: (Ay)* = (A*)iisto-

4.2 Introducing, propagating, and eliminating constraints

The laws of the data refinement calculus must be enhanced to deal with constrained
datatypes. Firstly, if a constrained datatype is refined with a ‘classic’ law, i.e. a
law that does not involve constraints, the constraint must be properly propagated
through the refinement:

to to

if A/';-\B then A¢/m<—\B¢-fmm
\——// \_/

from from

Thus, the constraint of the source datatype is propagated to the target datatype,
where it is post-composed with the backward conversion function from. Such com-
positions can give rise to opportunities for point-free program transformation, as
we will see further on.

Several refinement laws can be changed from inequations to isomorphisms by
adding a constraint to the target type. For example, the laws from Figure 3 for
sum elimination, distribution of map over sum in its range, and flattening of nested
maps can be enhanced as follows:

A+ B = A7 x B?(eOﬂl)EB(EOTrQ)
A= (B+C)=2(A—-1)x(A—=B)x (A~ C)(507T2§507F1)/\(507F3§507T1)
A— (B X (C - D)) = (A - B) X (A x C — D)(set m1)odome Cdomry
Here, we have used point-free variants of exclusive disjunction (@) and a test for
emptiness of an optional (e).

When applying a law that introduces a constraint to a datatype that already

has a constraint, the new and existing constraints must be combined:

to to
if A < By then Ay < (By)gfrom = By(g-from)
\.// \_/
from from

This is the invariant pulling theorem of [19]. A more general case arises when not
only the target, but also the source is constrained in the law that is applied:

to to
/\ /_\
if Ay < By and ¢ = x then Ay < Byn(¢-from)
\f/ '\f___/

Here we use a point-free variant on logical implication (=) to state that the actual
constraint ¢ on A must imply the required constraint .

In addition to introduction and propagation, constraints can also be weakened
or even eliminated, by virtue of the following: if ¢ = 1) then Ay < Ay.
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In the special case that v is the constant true predicate, such weakening boils
down to elimination of a constraint.

5 Constraint-aware rewriting

In this section, we show how the enhanced data refinement theory of the previous
section can be captured in a rewriting system, implemented as a strategic functional
program in the functional language Haskell. In Section 5.1 we recall how type-
safe representations of types and functions can be constructed using generalized
algebraic datatypes (GADTs). In Section 5.2 we extend the type representation to
constrained types. In Section 5.3 and 5.4, we explain how rewrite systems can be
constructed to transform such constrained types.

5.1 Representation of types and functions

To represent both types and functions in a type-safe manner, we rely on generalized
algebraic data types (GADTs) [21]. To represent types, we use a GADT:

data Type t where
One :: Type ()
List  :: Type a — Type |a]
Set  :: Type a — Type (Set a)
- — - = Type a — Type b — Type (a — b) -- We use 1hs2TeX for
-+ = Type a — Type b — Type (a + b) -- type-setting various
-x - Type a — Type b — Type (a,b) -- symbols in Haskell.
String :: Type String

In the result types of the various constructors of this GADT, the parameter ¢
has been instantiated exactly to the type that is represented by the constructor.
Such instantiation is what distinguishes a GADT from a traditional parameterized
algebraic datatype. To represent functions, we also use a GADT:

data F' f where

id = F (a—a)

co- nF(b—c¢)—=F(a—b)—F(a—c)

“N- 2F(a—B)—F (a— B)— F (a — B)

-C- uF(a— (Set b)) — F (a — (Set b)) — F (a — IB)
m = F ((a,b) — a)

mo = F ((a,b) — b)

X uF(a—b)—F(c—d)— F((a,c) — (b,d))
A 2F(a—b)—F(a—c¢c)— F(a— (b,c))

Note that the parameters in the result types are instantiated exactly to the type of
the function being represented. For brevity, only a few constructors are shown.

Function representations can be evaluated to the function that is represented:
eval :: Type (a—b) — F (a—b) — a — b.

8
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Note that GADTSs help us to enforce that the type of the function produced
matches the type of the function representation.

5.2  Representation of constrained types

To represent constrained datatypes, the first GADT above needs to be enhanced:
data Type t where
(+). :: Type a — F (a — IB) — Type a

Thus, the (-). constructor has as first argument the type that is being constrained,
and as second argument the function that represents the constraint. The use of
GADTs pays off here, since it enforces that the function is of the right type. This
use of the function representation inside the type representation has as important
consequence that the rewriting system for functions will be embedded into the
rewrite system for types, as we will see later.

To verify if the constraints hold for a specific value we defined check:

check :: Type t — t — Bool
check One _ = True
check (t1 x t2) (z,y) = check t1 = A check t2 y

check (ty) © = eval (Func t Bool) ¢ x A check t =

This function descends through a type representation and the corresponding value.
Each time a constraint is found the ewval function is applied to check its value.

5.3  Rewriting types and functions

The laws of point-free program transformation can be captured in rewrite rules of
the following type:

type RuleF =Va b . F (a — b) — Maybe (F (a — b))

We make use of the Maybe monad to deal with partiality. For example, the law
stating that id is the identity of composition is defined as follows:

idR :: RulelF
idR (f o id) = return f
1dR _ = mzero

Single step rules of this kind can be combined into full rewrite systems using com-
binators like the following:

nop :: RuleF -- identity
(>) :: RuleF' — RuleF — RuleF  -- sequential composition
(@) :: RuleF — RuleF — RuleF  -- left-biased choice

9
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many :: RuleF — RuleF -- repetition
once :: RuleF — RuleF -- arbitrary depth rule application

For the implementation of these and other combinators, we refer elsewhere [12,11],
as well as for how they can be combined into rewrite systems such as:

simplify :: RuleF -- exhaustively apply rules until reaching normal form

To implement type transformations, we need a two-level rewrite system. A two-
level rewrite rule can be represented as follows [9]:

type Rule =Va . Type a — Maybe (View (Type a))
data View a where View :: (a—b) — (b—a) — Type b — View (Type a)

The View constructor expresses that a type a can be refined to a type b if a pair of
conversion functions between them exist. Note that only the source type a escapes
from the type constructor of View. The Rule type expresses that, when rewrit-
ing a type representation we do not replace it but augment it with representation
functions to translate between the source and the target types.

To compose two-level rewrite systems out of single rules, strategic rewrite com-
binators are defined, similar to those for rewriting point-free functions. A strategy
flatten for hierarchical-relational mappings is defined for example in [9].

5.4 Constructing constraint-aware rewrite rules

The construction of constraint-aware rewrite rules differs from normal rules in three
important details. Firstly, the rules need to introduce constraints on the target
types. Secondly, they need to take into account the possible existence of a constraint
on the source type, which needs to be propagated and combined with the newly
introduced constraint. Thirdly, some rules require the existence of a constraint on
the source type, which must be checked before rule application. To illustrate the
first two issues, consider the rule for flattening nested maps.

flatMap :: Rule
flatMap (a — (b x (¢ — d))) = return (View X1 X, (t5))
where t = (a — b) x ((a x ¢) = d)
¢ = ((set m)o(domy)) C (dom)
flatMap t = propagate flatMap t

The first equation takes care of invariant introduction, where constraint ¢ is at-
tached to the result type t. The issue of constraint propagation is dealt with by the
helper function propagate, defined as follows:

propagate rule (ay) = do
(View to from b) «— rule a
let v = ¢ o from
return $ View to from (by)
propagate _ _ = mzero

10
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The propagate function applies its argument rewrite rule to a constrained datatype
a to obtain a new datatype b and the conversion functions to and from. It post-
composes constraint ¢ with the from to obtain the new constraint . Finally, that
constraint is attached to the result type b.

The third issue, of checking the existence of a required constraint, comes into
play in the construction of the reciprocal rule, which nests one map into another:

nestMap :: Rule

nestMap (((a = b) x (= X ¢) = d))(((set m1)o(60m2))C(60m1)))
= return $ View X, X1 (a — (b x (¢ — d)))

nestMap _ = mzero

Here, pattern matching is performed on the type as well as the constraint. Only
if this constraint is equal to the required constraint, the rule succeeds. This does
not take into account the possibility that the actual constraint implies the required
constraint, but is not equal to it. In that case, some satisfiability proof is needed,
which falls outside the scope of this paper (but see [17]).

The function compositions and nested constraints that are created during the
application of rewrite steps can be simplified with the following rules:

compose_constraint :: Rule
compose_constraint ((ag)y) = return (View id id (agny)))
compose_constraint _ = mzero

fuse_constraint :: Rule
fuse_constraint (ay) = do
Y «— simplify ¢
return (View id id (ay))

fuse_constraint _ = mzero

In the latter rewrite rule, the rewrite system simplify for point-free functions is
invoked, which means that our first function rewrite system will be embedded in
our type rewrite system.

6 Application to hierarchical-relational mapping

We will now revisit the example of Section 2. The schema of Figure 2 can be
captured by the following type representation:

imdb = (actors X show)imdb_inv
where imdb_inv = (set 71) o fuse o (set §) o pom C §omy
show = ("Year" x "Title") — ((List "Review") x (movie + series))
movie = (List ("Country" X "Value")) x "Director"
series = "Yr" — (List episode)
episode = "Name" X (Maybe "Director")
actors = "Name" — played

played = (("Year" x "Title") X "Role") — (List "Award")
11
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The primary key constraints of the original schema are captured structurally, by
the employment of finite maps. The foreign key constraint is captured by imdb_inv,
which specifies that the values in the domain of played are contained in the domain
of show, i.e. the year and title (defined in the domain) of played are references to
the year and title defined in (the domain of) show. This constraint is expected to
be propagated through the schema transformation process.

The result of the transformation from hierarchical to its relation equivalent,
using the flatten strategy of [9], followed by constraint simplification, is as follows:

(playeds x awards x actors X shows X reviews X seasons
X episodes X series X movies X bozoffices)iny

where
playeds = ("Name" X "Year" X "Title" X "Role") — One
awards = (("Name" X "Year" x "Title" X "Role") X Int) — "Award"
actors = "Name" — One
shows = ("Year" X "Title") — One
reviews = (("Year" X "Title") X Int) — "Review"
seasons = (("Year" X "Title") X "Yr") — One
episodes = ((("Year" x "Title") X "Yr") X Int)
— ("Name" x (Maybe "Director"))
series = ("Year" X "Title") — One
movies = ("Year" X "Title") — "Director"
bozoffices = (("Year" x "Title") x Int) — ("Country" X "Value")
mnu = fk1 N fk2 N fk3 A fl4 N fk5 N fk6 N KT N [RS8 A k9
Tk1 = (Set 7Tl) odo Thozoffices C 0 © Timovies
ﬂc,? = (set Tl'1) odo Tepisodes c 0 0 Tseasons
ﬂﬂg = (set 771) 0§ O Tseasons C do Tseries
ﬂf4 = (5et 71'2) odo T reviews g do T shows
fk5 = 0 0 Tmovies C do T shows
fk6 = 0 0 Tseries © 0 O Tshows
TK7 = (set Tl'1) 060 Tawards S 60 Tplayeds
fkg = (set T oM O ﬂl) O Tplayeds C 6 o Tactors
fk9 = (SEt (772 X id) ° 7"1) odo Tplayeds C 0 ° Tshows

Here, we have introduced table names for readability and for comparison to the
expected result shown in pseudo-SQL in Section 2. The result consists of 10 tables:
3 derived from the actor subschema and 7 from show. Additionally, 9 constraints
are obtained from which 8 were introduced during transformation. Constraint fk9
results from the propagation of the original constraint imdb_inv. Note that without
invocation of the simplify rewrite system, the synthesized constraints would not be
so concise. For example, without rewrite, an initial fragment of the fk2 constraint
would be:

k2 = (((set m1) o domg) C dom) o ((assocl—id) X id)
o (id x (assocl—1id)) o (id x (assocl—1id)) o ((assocr—id) X id)
o (id x (assocr—id)) o (id x (assocr—id))) o (id X 7 ) o T 0 Ty © ...

Note that in general, simplification can not be postponed until after rewriting, since
rules that match on constraints expect them to be in simplified form.

To validate the result we can insert information into the database and observe
the constraint checking result. For example, we can add information about the role
of an actor in a movie:

> db’ — addActorsPlayed db (("Jet Li", (2001, "The One")),"Lawless")
> check imdbResult db’
Fualse

12
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The constraint correctly fails since neither the name of the actor nor the show exist.
We should add that information first:

> db’ — addShow db (2001, "The One")

> db" «— addActor db’ "Jet Li"

> db"" «— addActorsPlayed db” (("Jet Li", (2001, "The One")),"Lawless")
> check imdbResult db"

True

Now the constraint check succeeds.

7 Related work

A large number of approaches has been proposed for mapping XML to relational
databases [7,6,2,4], but usually without taking constraints into account. Lee et
al [15] first addressed the issue of constraint preservation. Their CPI algorithm
deals with referential integrity and some cardinality constraints, which are stored in
an annotated DTD graph. When the graph is serialized to an SQL schema, various
SQL constraints are generated along with the tables. In contrast to our approach,
this graph-based algorithm does not deal with arbitrary constraints, it is specific for
hierarchical-relational mapping, and it lacks type-safety and formal justification.

A notion of XML Functional Dependency (XFD) was introduced by Chen et
al [8], based on path expressions. Mapping algorithms are provided that propagate
XFDs to the target relational schema and exploit XFDs to arrive at a schema with
less redundancy. Davidson et al [13] present an alternative constraint-preserving ap-
proach, also using path expressions. In contrast, our constraints are not restricted to
relational integrity constraints. We have expressed constraints as point-free func-
tions, which can be converted automatically to and from structure-shy programs
including path expressions [12].

Barbosa et al [4] discuss generation of constraints on relational schemas that
make XML-relational mappings information preserving, i.e. isomorphic. Non-
structural constraints on the initial XML schema are not taken into account. Con-
straints and conversion functions are expressed in (variations on) Datalog, which
can be (manually) rewritten to normal form in a mechanical way.

Berdaguer et al. [5] employ a type annotation mechanism to capture constraints.
As aresult, a smaller class of possible constraints is covered. Nevertheless, the anno-
tation mechanism allows for a compositional treatment of constraint-aware schema
transformation. Rather than path expressions or labels, our approach employs
strongly-typed boolean functions to capture constraints. This has the advantage
of being more expressive, and allowing a fully compositional treatment. Also note
that our approach is not limited to hierarchical-relational mappings, as it can be
used for schema transformation in general.

8 Concluding remarks

Contributions We have contributed a treatment of constraint-aware schema
transformation to a line of research on the application of data refinement and point-
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free program transformation to problems of coupled transformation of data schemas,
data instances, and queries [20,1,9,11,12,5]. In particular:

* we have shown how data refinement theory [20] can be enhanced to include types
constrained by boolean predicates, which amounts to extending the work of [19];

e we have enhanced refinement rules for hierarchical-relational mapping [1,5] such
that appropriate constraints are introduced on target types, turning some refine-
ments into isomorphisms;

e we have extended rewrite systems for two-level transformation [9] and coupled
transformation [11] to include the propagation, introduction, and simplification
of constraints. Moreover, we have shown that value-level rewriting needs to be
done during type-level rewriting, because type-level rewrite rules may trigger on
types with normalized constraints only;

* we have demonstrated the use of the extended rewriting systems for mapping
XML schemas to SQL schemas where referential integrity constraints are gener-
ated automatically for the target schema. The approach taken in this paper is an
alternative to the approach of [5], which was limited to constraints representable
with a particular labeling trick while we deal with constraints in general.

Several directions of future work are envisioned.

Constraints as co-reflexive relations We have modeled constraints as boolean
functions. Another approach is to model constraints as co-reflexive relations. One
advantage of the alternative approach is that it would allow us to use a relational
proof system [17] during rewriting to check whether the actual constraint of a redex
implies the constraint required by a rule with constrained source datatype.

Integration We want to integrate the treatment of constraints presented here
with the front-ends and name-preservation developed in the context of the label-
based treatment [5]. Likewise, we want to integrate a rewrite system for structure-
shy queries of [12] such that we can deal with structure-shy constraints.
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