3,471 research outputs found

    Human neuromaturation, juvenile extreme energy liability, and adult cognition/cooperation

    Get PDF
    Human childhood and adolescence is the period in which adult cognitive competences (including those that create the unique cooperativeness of humans) are acquired. It is also a period when neural development puts a juvenile’s survival at risk due to the high vulnerability of their brain to energy shortage. The brain of a 4 year-old human uses ≈50% of its total energy expenditure (TEE) (cf. adult ≈12%). This brain expensiveness is due to (1) the brain making up ≈6% of a 4 year-old body compared to 2% in an adult, and (2) increased energy metabolism that is ≈100% greater in the gray matter of a child than in an adult (a result of the extra costs of synaptic neuromaturation). The high absolute number of neurons in the human brain requires as part of learning a prolonged neurodevelopment. This refines inter- and intraarea neural networks so they become structured with economical “small world” connectivity attributes (such as hub organization and high cross-brain differentiation/integration). Once acquired, this connectivity enables highly complex adult cognitive capacities. Humans evolved as hunter-gatherers. Contemporary hunter-gatherers (and it is also likely Middle Paleolithic ones) pool high energy foods in an egalitarian manner that reliably supported mothers and juveniles with high energy intake. This type of sharing unique to humans protects against energy shortage happening to the immature brain. This cooperation that protects neuromaturation arises from adults having the capacity to communicate and evaluate social reputation, cognitive skills that exist as a result of extended neuromaturation. Human biology is therefore characterized by a presently overlooked bioenergetic-cognition loop (called here the “HEBE ring”) by which extended neuromaturation creates the cooperative abilities in adults that support juveniles through the potentially vulnerable period of the neurodevelopment needed to become such adults

    From Caenorhabditis elegans to the Human Connectome: A Specific Modular Organisation Increases Metabolic, Functional, and Developmental Efficiency

    Full text link
    The connectome, or the entire connectivity of a neural system represented by network, ranges various scales from synaptic connections between individual neurons to fibre tract connections between brain regions. Although the modularity they commonly show has been extensively studied, it is unclear whether connection specificity of such networks can already be fully explained by the modularity alone. To answer this question, we study two networks, the neuronal network of C. elegans and the fibre tract network of human brains yielded through diffusion spectrum imaging (DSI). We compare them to their respective benchmark networks with varying modularities, which are generated by link swapping to have desired modularity values but otherwise maximally random. We find several network properties that are specific to the neural networks and cannot be fully explained by the modularity alone. First, the clustering coefficient and the characteristic path length of C. elegans and human connectomes are both higher than those of the benchmark networks with similar modularity. High clustering coefficient indicates efficient local information distribution and high characteristic path length suggests reduced global integration. Second, the total wiring length is smaller than for the alternative configurations with similar modularity. This is due to lower dispersion of connections, which means each neuron in C. elegans connectome or each region of interest (ROI) in human connectome reaches fewer ganglia or cortical areas, respectively. Third, both neural networks show lower algorithmic entropy compared to the alternative arrangements. This implies that fewer rules are needed to encode for the organisation of neural systems

    Nonlinear brain dynamics as macroscopic manifestation of underlying many-body field dynamics

    Full text link
    Neural activity patterns related to behavior occur at many scales in time and space from the atomic and molecular to the whole brain. Here we explore the feasibility of interpreting neurophysiological data in the context of many-body physics by using tools that physicists have devised to analyze comparable hierarchies in other fields of science. We focus on a mesoscopic level that offers a multi-step pathway between the microscopic functions of neurons and the macroscopic functions of brain systems revealed by hemodynamic imaging. We use electroencephalographic (EEG) records collected from high-density electrode arrays fixed on the epidural surfaces of primary sensory and limbic areas in rabbits and cats trained to discriminate conditioned stimuli (CS) in the various modalities. High temporal resolution of EEG signals with the Hilbert transform gives evidence for diverse intermittent spatial patterns of amplitude (AM) and phase modulations (PM) of carrier waves that repeatedly re-synchronize in the beta and gamma ranges at near zero time lags over long distances. The dominant mechanism for neural interactions by axodendritic synaptic transmission should impose distance-dependent delays on the EEG oscillations owing to finite propagation velocities. It does not. EEGs instead show evidence for anomalous dispersion: the existence in neural populations of a low velocity range of information and energy transfers, and a high velocity range of the spread of phase transitions. This distinction labels the phenomenon but does not explain it. In this report we explore the analysis of these phenomena using concepts of energy dissipation, the maintenance by cortex of multiple ground states corresponding to AM patterns, and the exclusive selection by spontaneous breakdown of symmetry (SBS) of single states in sequences.Comment: 31 page

    A roadmap to integrate astrocytes into Systems Neuroscience.

    Get PDF
    Systems neuroscience is still mainly a neuronal field, despite the plethora of evidence supporting the fact that astrocytes modulate local neural circuits, networks, and complex behaviors. In this article, we sought to identify which types of studies are necessary to establish whether astrocytes, beyond their well-documented homeostatic and metabolic functions, perform computations implementing mathematical algorithms that sub-serve coding and higher-brain functions. First, we reviewed Systems-like studies that include astrocytes in order to identify computational operations that these cells may perform, using Ca2+ transients as their encoding language. The analysis suggests that astrocytes may carry out canonical computations in a time scale of subseconds to seconds in sensory processing, neuromodulation, brain state, memory formation, fear, and complex homeostatic reflexes. Next, we propose a list of actions to gain insight into the outstanding question of which variables are encoded by such computations. The application of statistical analyses based on machine learning, such as dimensionality reduction and decoding in the context of complex behaviors, combined with connectomics of astrocyte-neuronal circuits, is, in our view, fundamental undertakings. We also discuss technical and analytical approaches to study neuronal and astrocytic populations simultaneously, and the inclusion of astrocytes in advanced modeling of neural circuits, as well as in theories currently under exploration such as predictive coding and energy-efficient coding. Clarifying the relationship between astrocytic Ca2+ and brain coding may represent a leap forward toward novel approaches in the study of astrocytes in health and disease

    Structural Properties of the Caenorhabditis elegans Neuronal Network

    Get PDF
    Despite recent interest in reconstructing neuronal networks, complete wiring diagrams on the level of individual synapses remain scarce and the insights into function they can provide remain unclear. Even for Caenorhabditis elegans, whose neuronal network is relatively small and stereotypical from animal to animal, published wiring diagrams are neither accurate nor complete and self-consistent. Using materials from White et al. and new electron micrographs we assemble whole, self-consistent gap junction and chemical synapse networks of hermaphrodite C. elegans. We propose a method to visualize the wiring diagram, which reflects network signal flow. We calculate statistical and topological properties of the network, such as degree distributions, synaptic multiplicities, and small-world properties, that help in understanding network signal propagation. We identify neurons that may play central roles in information processing and network motifs that could serve as functional modules of the network. We explore propagation of neuronal activity in response to sensory or artificial stimulation using linear systems theory and find several activity patterns that could serve as substrates of previously described behaviors. Finally, we analyze the interaction between the gap junction and the chemical synapse networks. Since several statistical properties of the C. elegans network, such as multiplicity and motif distributions are similar to those found in mammalian neocortex, they likely point to general principles of neuronal networks. The wiring diagram reported here can help in understanding the mechanistic basis of behavior by generating predictions about future experiments involving genetic perturbations, laser ablations, or monitoring propagation of neuronal activity in response to stimulation

    Approximate Invariance of Metabolic Energy per Synapse during Development in Mammalian Brains

    Get PDF
    During mammalian development the cerebral metabolic rate correlates qualitatively with synaptogenesis, and both often exhibit bimodal temporal profiles. Despite these non-monotonic dependencies, it is found based on empirical data for different mammals that regional metabolic rate per synapse is approximately conserved from birth to adulthood for a given species (with a slight deviation from this constancy for human visual and temporal cortices during adolescence). A typical synapse uses about glucose molecules per second in primate cerebral cortex, and about five times of that amount in cat and rat visual cortices. A theoretical model for brain metabolic expenditure is used to estimate synaptic signaling and neural spiking activity during development. It is found that synaptic efficacy is generally inversely correlated with average firing rate, and, additionally, synapses consume a bulk of metabolic energy, roughly during most of the developmental process (except human temporal cortex ). Overall, these results suggest a tight regulation of brain electrical and chemical activities during the formation and consolidation of neural connections. This presumably reflects strong energetic constraints on brain development

    Multimodal imaging of human brain activity: rational, biophysical aspects and modes of integration

    Get PDF
    Until relatively recently the vast majority of imaging and electrophysiological studies of human brain activity have relied on single-modality measurements usually correlated with readily observable or experimentally modified behavioural or brain state patterns. Multi-modal imaging is the concept of bringing together observations or measurements from different instruments. We discuss the aims of multi-modal imaging and the ways in which it can be accomplished using representative applications. Given the importance of haemodynamic and electrophysiological signals in current multi-modal imaging applications, we also review some of the basic physiology relevant to understanding their relationship
    corecore