260 research outputs found

    Memoisation for Constraint-Based Local Search

    Full text link

    Dynamic Demand-Capacity Balancing for Air Traffic Management Using Constraint-Based Local Search: First Results

    Full text link
    Using constraint-based local search, we effectively model and efficiently solve the problem of balancing the traffic demands on portions of the European airspace while ensuring that their capacity constraints are satisfied. The traffic demand of a portion of airspace is the hourly number of flights planned to enter it, and its capacity is the upper bound on this number under which air-traffic controllers can work. Currently, the only form of demand-capacity balancing we allow is ground holding, that is the changing of the take-off times of not yet airborne flights. Experiments with projected European flight plans of the year 2030 show that already this first form of demand-capacity balancing is feasible without incurring too much total delay and that it can lead to a significantly better demand-capacity balance

    Parallel constraint-based local search on the HA8000 supercomputer (abstract)

    Get PDF
    We present a parallel implementation of a constraint-based local search algorithm and investigate its performance re- sults on hardware with several hundreds of processors

    Large-scale parallelism for constraint-based local search: the costas array case study

    Get PDF
    International audienceWe present the parallel implementation of a constraint-based Local Search algorithm and investigate its performance on several hardware plat-forms with several hundreds or thousands of cores. We chose as the basis for these experiments the Adaptive Search method, an efficient sequential Local Search method for Constraint Satisfaction Problems (CSP). After preliminary experiments on some CSPLib benchmarks, we detail the modeling and solving of a hard combinatorial problem related to radar and sonar applications: the Costas Array Problem. Performance evaluation on some classical CSP bench-marks shows that speedups are very good for a few tens of cores, and good up to a few hundreds of cores. However for a hard combinatorial search problem such as the Costas Array Problem, performance evaluation of the sequential version shows results outperforming previous Local Search implementations, while the parallel version shows nearly linear speedups up to 8,192 cores. The proposed parallel scheme is simple and based on independent multi-walks with no communication between processes during search. We also investigated a cooperative multi-walk scheme where processes share simple information, but this scheme does not seem to improve performance

    A framework for constraint based local search using ESSENCE

    Get PDF
    Structured Neighbourhood Search (SNS) is a framework for constraint-based local search for problems expressed in the Essence abstract constraint specification language. The local search explores a structured neighbourhood, where each state in the neighbourhood preserves a high level structural feature of the problem. SNS derives highly structured problem-specific neighbourhoods automatically and directly from the features of the ESSENCE specification of the problem. Hence, neighbourhoods can represent important structural features of the problem, such as partitions of sets, even if that structure is obscured in the low-level input format required by a constraint solver. SNS expresses each neighbourhood as a constrained optimisation problem, which is solved with a constraint solver. We have implemented SNS, together with automatic generation of neighbourhoods for high level structures, and report high quality results for several optimisation problems

    Parallel local search for solving Constraint Problems on the Cell Broadband Engine (Preliminary Results)

    Full text link
    We explore the use of the Cell Broadband Engine (Cell/BE for short) for combinatorial optimization applications: we present a parallel version of a constraint-based local search algorithm that has been implemented on a multiprocessor BladeCenter machine with twin Cell/BE processors (total of 16 SPUs per blade). This algorithm was chosen because it fits very well the Cell/BE architecture and requires neither shared memory nor communication between processors, while retaining a compact memory footprint. We study the performance on several large optimization benchmarks and show that this achieves mostly linear time speedups, even sometimes super-linear. This is possible because the parallel implementation might explore simultaneously different parts of the search space and therefore converge faster towards the best sub-space and thus towards a solution. Besides getting speedups, the resulting times exhibit a much smaller variance, which benefits applications where a timely reply is critical

    Constraint-Based Local Search for Inventory Control Under Stochastic Demand and Lead Time

    Get PDF
    In this paper, we address the general multiperiod production/inventory problem with nonstationary stochastic demand and supplier lead time under service-level constraints. A replenishment cycle policy is modeled. We propose two hybrid algorithms that blend constraint programming and local search for computing near-optimal policy parameters. Both algorithms rely on a coordinate descent local search strategy; what differs is the way this strategy interacts with the constraint programming solver. These two heuristics are first, compared for small instances against an existing optimal solution method. Second, they are tested and compared with each other in terms of solution quality and run time on a set of larger instances that are intractable for the exact approach. Our numerical experiments show the effectiveness of our methods

    Large-Scale Parallelism for Constraint-Based Local Search: The Costas Array Case Study

    Get PDF
    Abstract We present the parallel implementation of a constraint-based Local Search algorithm and investigate its performance on several hardware platforms with several hundreds or thousands of cores. We chose as the basis for these experiments the Adaptive Search method, an efficient sequential Local Search method for Constraint Satisfaction Problems (CSP). After preliminary experiments on some CSPLib benchmarks, we detail the modeling and solving of a hard combinatorial problem related to radar and sonar applications: the Costas Array Problem. Performance evaluation on some classical CSP benchmarks shows that speedups are very good for a few tens of cores, and good up to a few hundreds of cores. However for a hard combinatorial search problem such as the Costas Array Problem, performance evaluation of the sequential version shows results outperforming previous Local Search implementations, while the parallel version shows nearly linear speedups up to 8,192 cores. The proposed parallel scheme is simple and based on independent multi-walks with no communication between processes during search. We also investigated a cooperative multi-walk scheme where processes share simple information, but this scheme does not seem to improve performance
    • …
    corecore