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Abstract We present the parallel implementation of a constraint-based Local
Search algorithm and investigate its performance on several hardware plat-
forms with several hundreds or thousands of cores. We chose as the basis for
these experiments the Adaptive Search method, an efficient sequential Local
Search method for Constraint Satisfaction Problems (CSP). After preliminary
experiments on some CSPLib benchmarks, we detail the modeling and solving
of a hard combinatorial problem related to radar and sonar applications: the
Costas Array Problem. Performance evaluation on some classical CSP bench-
marks shows that speedups are very good for a few tens of cores, and good up
to a few hundreds of cores. However for a hard combinatorial search problem
such as the Costas Array Problem, performance evaluation of the sequential
version shows results outperforming previous Local Search implementations,
while the parallel version shows nearly linear speedups up to 8,192 cores. The
proposed parallel scheme is simple and based on independent multi-walks with
no communication between processes during search. We also investigated a
cooperative multi-walk scheme where processes share simple information, but
this scheme does not seem to improve performance.
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1 Introduction

For a few decades the family of Local Search methods and Metaheuristics has
been quite successful in solving large real-life problems [13,42,72,47]. Apply-
ing Local Search to Constraint Satisfaction Problems (CSPs) has also been
attracting some interest [25,36,72,48] as it can tackle CSPs instances far be-
yond the reach of classical propagation-based solvers [14,71].

More recently, with mainstream computers turning into parallel machines
with 2, 4, 8 or even 16 cores, the temptation to implement efficient parallel
constraint solvers has become an increasingly developing research field, al-
though early experiments date back to the beginning of Constraint Program-
ming, cf. [71], and used the search parallelism of the host logic language [50].
Most of the proposed implementations have been based on some kind of OR-
parallelism, splitting the search space between different cores and relying on
the Shared Memory Multi-core architecture as the different cores work on
shared data-structures representing a global environment in which the sub-
computations take place. However only very few implementations of efficient
constraint solvers on such machines have ever been reported, for instance [62]
or [23] for a shared-memory architecture with 8 CPU cores. The Comet sys-
tem [72] has been parallelized for small clusters of PCs, both for its Local
Search solver [53] and its propagation-based constraint solver [54]. More recent
experiments have been done up to 12 cores [55]. The PaCCS solver has been
reported [61] to perform well with a larger number of cores, in the range of the
hundreds. For SAT solvers, which can be seen as a special case of finite domain
constraint solvers (with {0, 1} domains), several multi-core parallel implemen-
tations have also been developed for complete solvers [24,43,67], see [52] for
a survey focused on parallel SAT solvers for shared memory machines. SAT
solvers have also been implemented on larger PC clusters; for instance [58]
describes an implementation using a hierarchical shared memory model which
tries to minimize communication between nodes. However, the performance
tends to level after a few tens of cores, with a speedup of 16 for 31 cores, 21
for 37 cores and 25 for 61 cores.

In this paper we address the issue of parallelizing constraint solvers for
massively parallel architectures, with the aim of tackling platforms with sev-
eral thousands of CPUs. A design principle implied by this goal is to abandon
the classical model of shared data structures which have been developed for
shared-memory architectures or tightly controlled master-slave communica-
tion in cluster-based architectures and to first consider either purely indepen-
dent parallelism or very limited communication between parallel processes,
and then to see if we can improve runtime performance using some form of
communication.

In the domain of Constraint Programming, the straightforward approach
of using a propagation-based solver with a global constraint graph shared by
many cores, cannot be the method of choice. Search-space splitting techniques
such as domain decomposition could be interesting, but initial experiments [18]
show that the speedup tends to flatten after a few tens of cores (e.g., speedup
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of 28 with 32 cores and 29 with 64 cores, for an all-solution search of the 17-
queens problem). A recent approach based on a smaller granularity domain de-
composition [63] shows better performance. The results for all-solution search
on classical CSPLib benchmarks are quite encouraging and show an average
speedup with 40 cores of 14 (Resp. 20) with Gecode (Resp. or-tools) as the
base sequential solver. However results are only reported up to 40 cores, except
for the simple 17-queens problem for which a speedup of 70 is observed with
80 cores.

In the domain of combinatorial optimization, the first method that has been
parallelized in large scale is the classical branch and bound method [37] because
it does not require much information to be communicated between parallel
processes: basically the current bound. It has thus been a method of choice
for experimenting the solving of optimization problems using Grid computing,
see for instance [1] and also [20], which use several hundreds of nodes of the
Grid’5000 platform. Good speedups are achieved up to a few hundreds of cores
but interestingly, their conclusion is that the execution time tends to stabilize
afterward. A simple constraint solving method for project scheduling problems
has also been implemented on an IBM Bluegene/P supercomputer [77] up to
1,024 cores, but with mixed results since they reach linear speedups until 512
cores only, with no improvements beyond this limit. Very recently another
optimization method, Limited Discrepancy Search, has been parallelized with
very good results up to a few thousands of cores [57]. An important point is
that the proposed method does not requires communication between parallel
processes and has good load-balancing properties.

Another approach is to consider Local Search methods and Metaheuris-
tics, which can of course be applied to solve CSPs as Constraint Satisfaction
can be seen as a branch of Combinatorial Optimization in which the objective
function to minimize is the number of violated constraints: a solution is there-
fore obtained when the function has value zero. A generic domain-independent
Local Search method named Adaptive Search has been proposed in [25,26]. It
is a Local Search metaheuristic that takes advantage of the structure of the
problem as a CSP to guide the search and it can be applied to a large class
of constraints (e.g., linear and non-linear arithmetic constraints and symbolic
constraints). Moreover it intrinsically copes with over-constrained problems.

In [30] the authors proposed to parallelize this constraint solver based on
Local Search by using an independent multi-start approach requiring very little
communication between processes. Experiments done on an IBM BladeCenter
with 16 Cell/BE SPE cores show nearly ideal linear speedups (i.e., running n
times faster than the sequential algorithms when n cores are used) for a va-
riety of classical CSP benchmarks (Magic-Square, All-Interval series,
Perfect-Square placement, etc.). Could this method scale up to a larger
number of cores, e.g., a few hundreds or even a few thousands? We therefore
developed a parallel MPI-based implementation [19] from the existing sequen-
tial Adaptive Search C-based implementation. This parallel version can run
on any system based on MPI, i.e., supercomputers, PC clusters and Grid sys-
tems. Experiments were performed both on some CSP benchmarks from the
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CSPLib [19] as well as with a hard combinatorial problem, the Costas Ar-
ray Problem [31], which has applications in the telecommunication domain,
concerning radar and sonar frequencies. These experiments were performed
on three different platforms: the HA8000 supercomputer at the University of
Tokyo, the Grid’5000 infrastructure (French national Grid for scientific re-
search), and the JUGENE supercomputer at Jülich Supercomputing Centre
in Germany. These systems represent a varied set of massively parallel ma-
chines, as we do not want to be tied to any specific hardware and want to
draw conclusions that could be, as far as possible, independent of any particu-
lar architecture. Of course, we could not have exclusive use of these machines
and could not use the total number of processors; we report experiments up
to 256 cores on HA8000 and Grid’5000 and up to 8192 cores on JUGENE. It
is, to the best of our knowledge, the first time that experiments up to sev-
eral hundreds and several thousands of cores have been done for non-trivial
constraint-based problems.

The rest of this paper is organized as follows: Section 2 gives some context
and background in parallel Local Search, while Section 3 presents the Adaptive
Search algorithm, a constraint-based Local Search method. In Section 4 we
introduce the Costas Array Problem and its performance with the sequential
version of Adaptive Search. Section 5 details the independent parallel version of
Adaptive Search (without communication between concurrent processes) and
shows the performance of several benchmarks, with a deeper analysis for the
Costas Array Problem. Finally, Section 6 introduces the cooperative parallel
scheme and compares results with the independent parallel scheme. We end
the paper with a brief conclusion and some perspectives for future research
directions.

2 Local Search and Parallelism

Parallel implementation of Local Search metaheuristics [42,47] has been stud-
ied since the early 1990’s, when multi-core machines started to become widely
available [60,75]. With the increasing availability of clusters of PCs in the
early 2000’s, this domain became active again [5,29]. Apart from domain-
decomposition methods and population-based methods (such as genetic al-
gorithms), [75] distinguishes between single-walk and multi-walk methods:
Single-walk methods consist of using parallelism inside a single search process,
i.e., parallelizing the exploration of the neighborhood (see for instance [73]
for such a method making use of GPUs for the parallel phase); Multi-walk
methods (parallel execution of multi-start methods) consist of developing con-
current explorations of the search space, either independently or cooperatively
with communication taking place between concurrent processes. Sophisticated
cooperative strategies for multi-walk methods can be devised by using solu-
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tion pools [28], but require shared-memory or emulation of central memory in
distributed clusters, thus having an impact on performance.

A key point is that multi-walk methods allow us to escape from the grip of
Amdahl’s law [6], which says that the maximal speedup expected from the par-
allelization of an algorithm is 1/s where s is the fraction of non-parallelizable
parts of the algorithm. For instance, if a sequential algorithm is 80% paralleliz-
able, then the maximal speedup one can expect by parallelizing this algorithm
is 5, even if 10, 100 or 1,000 cores are used. However multi-walks circumvent
Amdahl’s law since the algorithm is parallelized from the beginning (choice of
the initial configuration) and there is thus no global sequential part. Another
point is that a multi-walk scheme is easier to implement on parallel computers
without shared memory and can lead, in theory, to linear speedup if solutions
are uniformly distributed in the search space and if the method is able to diver-
sify correctly [75]. Interestingly, [2] showed pragmatically that this is the case
for the GRASP Local Search method on a few classical optimization problems
such as quadratic assignment, graph planarization, MAX-SAT, maximum cov-
ering but this experiment was done with a limited number of processors (at
most 28).

Local Search methods have also been used to check the satisfaction of
Boolean formulas in SAT solvers for nearly two decades. Since the pioneer-
ing algorithms such as GSAT and WalkSAT in the mid 1990s, there has been
a trend to integrate more and more Local Search and stochastic aspects in
SAT solvers, in order to cope with ever larger problems [49]. More recently,
algorithms such as the ASAT heuristics or Focused Metropolis Search, which
incorporate even more stochastic aspects, seem to be among the most effective
methods for solving random 3-SAT problems [4]. A few parallel implementa-
tions of Local Search solvers have been done, see for instance [9] and [52],
but limited to multi-core machines (i.e., up to 8 cores). Recently, parallel
extensions of several Local Search SAT solvers have been done on massively
parallel machines up to several hundreds of cores [7,8]. Results show that good
speedups can be achieved on crafted or random instances away from the phase
transition, but that speedups are very limited for problems close to the phase
transition. Moreover it seems that the best sequential solver is not necessarily
the one leading to the best parallel version [8], and communication between
solvers has to be limited to small groups (e.g., 16 solvers) to avoid degrading
performances [7].

In this paper we propose a parallel implementation of a constraint-based
Local Search algorithm designed for large-scale parallelism and that matches
the independent and cooperative approaches. Before investigating the perfor-
mance of the parallel implementation, we introduce in the next section the
sequential Adaptive Search algorithm.
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3 The Adaptive Search Method

Adaptive Search (AS) was proposed in [25,26] as a generic, domain-independent
constraint based Local Search method. This metaheuristic takes advantage of
the structure of the problem in terms of constraints and variables and can
guide the search more precisely than a single global cost function to optimize,
e.g., the number of violated constraints. The sequential version of Adaptive
Search has been developed as a framework library in the C language, and is
available as free software at the URL:

http://cri-dist.univ-paris1.fr/diaz/adaptive/

The parallel extensions are also available at the following URL:
http://sourceforge.net/projects/adaptivesearch/

3.1 Basic Algorithm

The Adaptive Search method is generic, can be applied to a large class of
constraints (linear and non-linear arithmetic constraints, symbolic constraints,
etc.) and naturally copes with over-constrained problems [69]. The input of the
method is a CSP, defined as a triple (X;D;C), where X is a set of variables,
D is a set of domains, i.e., finite sets of possible values (one domain for each
variable), and C a set of constraints restricting the values that the variables can
simultaneously take. For each constraint, an error function needs to be defined:
it gives, for each tuple of variable values (variable assignment), an indication
of how much the constraint is violated. This idea has also been proposed
independently by [36], where it is called “penalty functions”, and then reused
by the Comet system [72], where it is called “violations”. The heuristic of
changing the value of the ”worst variable”, i.e., the variable with the highest
error, is also at the core of ”Extremal Optimization” [15,16], which has been
proposed independently in the early 2000’s 1 and is inspired by the paradigm
of Self-Ordered Criticality in dynamic systems (i.e., sand piles and avalanche
dynamics, etc.). However Extremal Optimization in its original form does not
include any exploration of neighboring configurations (the chosen variable is
given a random value for the next iteration) and such an improvement has
been proposed only very recently [22].

Adaptive Search relies on iterative repair, based on variable and constraint
error information, seeking to reduce the error on the worst variable so far. The
basic idea is to compute the error function for each constraint, then combine
for each variable the errors of all constraints in which it appears, thereby
projecting constraint errors onto the relevant variables. For example, the error
function associated with an arithmetic constraint |X − Y | < c, for a given
constant c ≥ 0, can be defined as max(0, |X − Y | − c). This error will be
projected to variables X and Y , where it will be combined with the errors
originating from other constraints involving those variables. This combination

1 The authors are grateful to Marcus Randall from Bond University for pointing out this
reference and its relation to Adaptive Search.

http://cri-dist.univ-paris1.fr/diaz/adaptive/
http://sourceforge.net/projects/adaptivesearch/
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of errors is problem-dependent (see [25] for details and examples), but it is
usually a simple sum or a sum of absolute values, although it might also be a
weighted sum if constraints are given different priorities. Finally the variable
with the highest error is designated as the “culprit” and its value is modified.
In this second step, the well known min-conflict heuristic [56] is used to select
the value in the variable domain that is the most promising, i.e., the value for
which the total error in the next configuration is minimal. In order to prevent
being trapped in local minima, the Adaptive Search method also includes a
short-term memory mechanism to store configurations to avoid (variables can
be marked Tabu, i.e., “frozen” for a number of iterations). It also integrates
reset transitions to escape stagnation around local minima. A reset consists
of assigning fresh random values to some variables (also randomly chosen).
A reset is guided by the number of variables being marked Tabu. It is also
possible to restart from scratch when the number of iterations becomes too
large (this can be viewed as a reset of all variables but it is guided by the
number of iterations). The basic AS algorithm is described in [25,26], and a
more recent version can be found in [30].

The core ideas of Adaptive Search can be summarized as follow:

– Consider for each constraint a heuristic function that is able to compute
an approximate degree of satisfaction of the goals (the current error on
the constraint);

– Aggregate constraints on each variable and project the error on variables
thus trying to repair the worst variable with the most promising value;

– Keep a short-term memory of bad configurations to avoid looping (i.e.,
some sort of tabu list) together with a reset mechanism.

Note that we are tackling constraint satisfaction problems as optimization
problems, that is, we want to minimize the global error (representing the
violation of constraints) to value zero. Therefore finding a solution means that
we actually reach the bound (zero) of the objective function to minimize.

3.2 Refining Adaptive Search

3.2.1 Plateaux

In [26], a simple but very effective improvement of the original algorithm was
proposed. In AS, when a variable is selected and all alternative values for this
variable give a global cost worse than the current one, this variable is tagged as
“Tabu” for a given number of iterations. However what should be done when
there is no improvement, but only equal-valued moves? In that case, a plateau
is found in the global cost function landscape, and the question is to either
follow this plateau or not. A simple idea is to introduce a probability p for
doing this. With good tuning (e.g., probability of 90% to 95% of following a
plateau) this boosts the performance of the algorithm by an order of magnitude
on some problems such as Magic-Square.
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3.2.2 Reset

When too many variables become Tabu, there is a risk of “freezing” the con-
figuration and of getting trapped around a local minimum. The AS method
thus needs a diversification operator to avoid such cases. This is done by per-
forming a (partial) reset, i.e., by assigning fresh values to a given percentage
of the problem variables. This percentage is a parameter of the algorithm, in
many examples it is around 20%-25%. A reset is triggered by the total number
of variables being marked Tabu at a given iteration. This value (which can be
seen as the maximal length of the Tabu list) is problem-dependent, but usually
very small with respect to the number of variables, as it is common in Tabu
search.

This process of resetting randomly the values of a given percentage of the
variables is the generic default reset mechanism of AS, but the reset procedure
can also be customized if needed to become dedicated to a given problem, e.g.,
resetting not randomly but with some given heuristics. We use this ability for
efficiently solving the Costas Array Problem.

3.2.3 Randomness

Using a reliable pseudo-random number generator is essential for Local Search
algorithms. For sequential methods, using generic random functions provided
by standard libraries is often good enough. However, the need for better ran-
dom functions (i.e., more uniform) already appeared in stochastic optimization
methods such as Particle Swarm Optimization (PSO) [76]. Therefore, when
designing a massively parallel method with several hundreds or thousands of
stochastic processes running at the same time, one has to carefully choose the
random seed of each process.

To ensure equity, we chose to generate the seed used by each process via a
pseudo-random number generator based on a linear chaotic map. This method
shows robust properties of distribution and has been implemented for crypto-
graphic systems like Trident [59].

3.3 Performance

The performance of Adaptive Search (both sequential and parallel versions) is
described in [30,19] for some classical benchmarks from CSPLib [38]:

– The All-Interval Series problem (prob007 in CSPLib);
– The Perfect-Square placement problem (prob009 in CSPLib);
– The Magic-Square problem (prob019 in CSPLib).

We used for these benchmarks the code from the AS distribution available
at the URL given in Section 3, with the following parameters :
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– All-Interval: tabu tenure = 1, number of tabu elements accepted before
reset = 1 and then 25% of variables are reset, probability of escaping from
a plateau = 66%

– Perfect-Square: tabu tenure = 2, number of tabu elements accepted
before reset = 1 and then 5% of variables are reset, probability of escaping
from a plateau = 100%

– Magic-Square: tabu tenure = 1, number of tabu elements accepted before
reset = 1.2∗(dimension of the square) and then 25% of variables are reset,
probability of escaping from a plateau = 6%

These problems have been chosen because they present a fairly diverse
choice: while the Perfect-Square and All-Interval problems are now
tractable with efficient propagation-based solvers, they do not suit Local Search
methods well but could nevertheless be solved in reasonable time. Conversely,
it is well-known that Magic-Square is very difficult for propagation-based
solvers (instances of size greater than 20 cannot be solved in a reasonable time)
while Local Search performs much better [41]. The situation is similar for our
last benchmark problem (to be presented in section 4), the Costas Array
problem, which has been qualified to show ”the limits of propagation” in [68].
Of course, many more problems could have been chosen from CSPlib, and we
do not claim that our experiments are exhaustive, but they represent, in our
opinion, a fairly diverse choice of search problems and it is thus interesting to
observe the different parallel behaviors.

Note that although these benchmarks are academic, they involve signifi-
cantly large combinatorial search spaces when larger instances are considered.
For instance, a Magic-Square grid 400×400 is modeled by 160,000 variables
with domains of size 160,000. Since we represent, in Local Search, the vari-
ables of the Magic Square problem with an implicit permutation (which avoids
the need for an all-different constraints), this produces a search space of
160,000!, i.e., about 10763175 configurations in practice. The current sequential
AS version of Magic-Square problem can find a solution to the 400 × 400
instance in about 2 hours on average on a 2.2GHz single core machine. On
similar hardware, classical propagation-based constraint solvers cannot solve
this problem for instances any larger than 20× 20.

As regards other Local Search solvers, the 2003 version of AS was compet-
itive with systems such as Comet for simple benchmarks (e.g., All-Interval
or Magic-Square), according to timings given in [72]. As a very limited
but more recent comparison, Table 1 compares the performance of AS with
the Comet 2.1.1 system on a few basic CSPLib benchmarks provided in the
distribution of Comet. Timings are in seconds and taken for both solvers on
a PC with a Core2 Duo E7300 processor at 2.66 GHz, and are the average of
100 executions for AS and of 50 executions for Comet. Of course it should be
noticed that Comet is a complete and very versatile system while Adaptive
Search is just a C-based library, nevertheless we may point out that Adaptive
Search is about two orders of magnitude faster than Comet, although better
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performance could probably be achieved with a more refined Comet program
(we used the programs in the standard distribution of Comet).

Benchmark Comet 2.1.1 AS speedup

Queens n=20000 96.2 2.2 44.5
Queens n=30000 215.0 4.9 43.6
Queens n=40000 382.0 8.8 43.3
Queens n=50000 599.0 13.9 43.2

Magic Square 30x30 56.5 0.3 166.0
Magic Square 40x40 199.0 0.5 375.0
Magic Square 50x50 609.0 1.2 516.0

Magic Square 100x100 21586.0 20.2 1069.0

Table 1: Execution times and speedups of Adaptive Search vs Comet

4 The Costas Arrays Problem

Let us describe a hard combinatorial problem originating from radar and sonar
applications, the Costas Array Problem or CAP. This problem is challeng-
ing for Constraint Programming and propagation-based constraint solvers can
only solve small instances of this problem [68] and therefore it is an interesting
benchmark for parallelization.

4.1 Problem Description

A Costas array is an n × n grid containing n marks
such that there is exactly one mark per row and per
column and the n(n − 1)/2 vectors joining the marks
are all different. We give here an example of Costas
array of size 5. It is convenient to see the Costas Array
Problem (CAP) as a permutation problem by consid-
ering an array of n variables (V1, . . . , Vn) which forms
a permutation of {1, 2, . . . , n}. The Costas array in the

figure opposite can thus be represented by the array [3, 4, 2, 1, 5].

4.1.1 Background

Historically, Costas arrays were developed in the 1960’s to compute a set of
sonar and radar frequencies avoiding noise [27]. A very complete survey on
Costas arrays can be found in [32]. The problem of finding a Costas array of
size n is very complex since the required time grows exponentially with n. In
the 1980’s, several algorithms were proposed to build a Costas array given n
(methods to produce Costas arrays of order 24 to 29 can be found in [11,34,35,
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66]), such as the Welch construction [39] and the Golomb construction [40], but
these methods cannot built Costas arrays of size 32 and some higher non-prime
sizes. Nowadays, after many decades of research, it remains unknown whether
there exist any Costas arrays of size 32 or 33. Another difficult problem is
to enumerate all Costas arrays for a given size. Using the Golomb and Welch
constructions, Drakakis et al. present in [35] all Costas arrays for n = 29. They
show that among the 29! permutations, there are only 164 Costas arrays, and
23 unique Costas arrays up to rotation and reflection. Indeed if the number of
solutions for a given instance size n increases from n = 1 to n = 16, it then
decreases from n = 17 onwards, reaching 164 for n = 29. Only a few solutions
(and not all) are known for n = 30 and n = 31.

The Costas Array Problem has been proposed as a challenging combinato-
rial problem by Kadioglu and Sellmann in [48]. They propose a Local Search
metaheuristic, Dialectic Search, for constraint satisfaction and optimization,
and show its performance for several problems. Clearly this problem is too
difficult for propagation-based solvers, even for medium size instances (i.e.,
with n around 18− 20). Let us finally note that we do not sustain that using
Local Search is better than constructive methods in order to solve the CAP:
rather, we consider the CAP as a very good benchmark for testing Local Search
and constraint-based systems and to investigate how they scale up for large
instances and parallel execution.

Rickard and Healy [65] studied a stochastic search method for CAP and
concluded that such methods are unlikely to succeed for n > 26. Although
their conclusion is true for their stochastic method, it cannot be extended
to all stochastic searches: Their method uses a näıve restart policy which is
too basic, since they trigger a restart as soon as they find a plateau. Thus
to find a solution, their algorithm must perform a perfect run decreasing the
global cost at each iteration. However such runs are very unlikely for problems
such as CAP where a tiny set of solutions is stranded amidst a huge search
space. They also used an approximation of the Hamming distance between
configurations in order to guide the search, which they admit not to be a
very good indicator. In the same paper, the authors studied the distribution
of solutions in the search space and showed that clusters of solutions tend
to spread out from n > 17, which supports our finding that an independent
multi-walk approach reaches linear speedup for high values of n, as presented
in Section 5.

4.1.2 Basic Model

The CAP can be modeled as a permutation problem by considering an array
of n variables V = (V1, . . . , Vn) which forms a permutation of {1, 2, . . . , n},
i.e., with an implicit all-different constraint over Vi. A variable Vi is equal
to j iff there is a mark at column i and row j. To take into account constraints
on vectors between marks (which must be different) it is convenient to use the
so-called difference triangle [33].
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This triangle contains n− 1 rows, each row corresponding to a distance d.
The dth row of the triangle is of size n−d and contains the differences between
any two marks at a distance d, i.e., the values Vi+d−Vi for all i = 1, . . . , n−d.

Ensuring that all vectors are different comes down to ensure the triangle
contains no repeated values on any given row (i.e., all-different constraint
on each row). Below is the difference triangle for the Costas array given as
example in Section 4, which corresponds to the permutation V = (3, 4, 2, 1, 5)
if we order columns and rows from the bottom left corner:

3 4 2 1 5
d = 1 1 -2 -1 4
d = 2 -1 -3 3
d = 3 -2 1
d = 4 2

In AS, the way to define a constraint is done via error functions. At each
new configuration, the difference triangle is checked to compute the global cost
and the cost of each variable Vi. Each row d of the triangle is checked one by
one. Inside a row d, if a pair (Vi, Vi+d) presents a difference which has been
already encountered in the row, the error is reported as follows: increment the
global cost and the cost of both variables Vi and Vi+d by ERR(d) (a strictly
positive function). For a basic model we can use ERR(d) = 1 (to simply count
the number of errors). Obviously a solution is found when the global cost
equals 0. Otherwise AS selects the variable with the highest total error and
tries to improve it.

4.1.3 Optimized Model

In the basic model, the function ERR(d) can be a constant (e.g., ERR(d) = 1)
but a better function is ERR(d) = n2 − d2 which “penalizes” more errors
occurring in the first rows (those containing more differences). The use of this
function instead of ERR(d) = 1 improves the computation time (around 17%).

Moreover, a remark from Chang [21] makes it possible to focus only on
distances d ≤ b(n − 1)/2c. In our example, it is only necessary to check the
two first rows of the triangle (i.e., d = 1 and d = 2). This represents a further
gain in computation time (around 30%).

Another source of optimization concerns the reset phase. Recall that AS
maintains a Tabu list to avoid to be trapped in local minima and, when too
many variables become Tabu, the current configuration is perturbed to escape
the current local minimum. We found that good results can be obtained with
the following parameters: as soon as one variable is marked Tabu, reset 5% of
the variables. Whereas this default behavior of AS is general enough to escape
any local minimum, it sometimes “breaks” some important parts of the current
configuration (but conversely, if we want to preserve too many variables, we
can be trapped in the local minimum). AS allows the user to define his own
reset procedure: when a reset is needed, this procedure is called to propose
a pertinent alternative configuration. Our customized reset procedure tries 3
different perturbations from the current configuration:
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1. Select the most erroneous variable Vm. Consider each sub-array starting
or ending by Vm and shift it (circularly) from 1 cell to the left and to the
right.

2. Add a constant “circularly” (i.e., modulo n to maintain the permutation)
to each variable. The current implementation tries the 4 following con-
stants: 1, 2, n− 2, n− 3 (but middle values n/2, n/2− 1, n/2 + 1 revealed
themselves to be also pertinent).

3. Left-shift from 1 cell the sub-array from the beginning to a (randomly cho-
sen) erroneous variable different from Vm. In the current implementation
we test at most 3 erroneous variables.

All perturbations are considered one by one in order to find a perturbation
able to escape the local minimum. For this detection, the global cost of the
perturbation is compared to the global cost of the current configuration (ie.
the configuration of the local minimum). Thus, as soon as the global cost of a
perturbation is strictly inferior to the current global cost, the local minimum is
considered as escaped and AS continues with this (perturbed) configuration.
On average, this works in 32% of the cases (independently from n). Other-
wise, all perturbations are tested exhaustively and the best (i.e., whose global
cost is minimal, ties being broken randomly) is selected. This dedicated reset
procedure provides a speedup factor of about 3.7 and is thus very effective.

4.2 Performance of Sequential Execution

In [48], Kadioglu and Sellmann propose a novel and interesting Local Search
metaheuristic called Dialectic Search (DS). Beyond classical CSP benchmarks,
they show that their metaheuristic performs well on the Costas Array Problem
and compare DS with a tabu search algorithm using the quadratic neighbor-
hood implemented in Comet. The comparison was done for instances 13 to 18
and revealed that DS is between 2 and 3 times faster than Comet on Costas
Array Problem. It is thus very interesting to compare our AS implementation
with DS. Table 2 compares the results from [48] to the performance of AS
on the same machine, a now outdated Pentium-III 733 MHz. Timings are in
seconds and represent the average of 100 executions.

Problem DS AS speedup

CAP 15 1.31 0.24 5.46
CAP 16 7.74 0.97 7.98
CAP 17 53.40 7.58 7.04
CAP 18 370.00 44.49 8.32

Table 2: Execution times and speedups of Adaptive Search vs Dialectic Search

As the paper on DS does not provide any data other than execution time,
we are unable to compare the number of iterations, local minima, etc. This
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table clearly shows that AS outperforms DS on the Costas Array Problem: for
small instances AS is five times faster but the speedup seems to grow with the
size of the problem, reaching a factor 8.3 for n = 18.

Let us also remark that [48] also compares DS with the first (2001) version
of AS [25] on Magic-Square with instances from 20x20 to 50x50, show-
ing that both methods have similar results. However when using the timings
from [26], the second (2003) version of Adaptive Search is about 15 to 40 times
faster than Dialectic Search on the same reference machine.

Following a CP model by Barry O’Sullivan, the Costas Array Problem has
also been used as a benchmark in the Constraint Programming community, in
particular in the MiniZinc challenge2. However, if solvers such as Gecode or
the propagation-based engine of Comet can solve small instances up to CAP
18 in a few tens of seconds, medium size instances become clearly difficult
and larger size instances are out of reach. For instance a CP Comet program3

needs more than 6 hours to solve CAP 19, while AS finds a solution in under
one minute (on the same machine). A Gecode program4 will be a bit faster
but still needs more than 3 hours to solve CAP 19 (on the same machine).
Simonis [68] reports on the performance of an improved model with refined
propagation, which takes one minute to solve CAP 18 and a bit less than on
hour to solve CAP 19 (on an unspecified machine).

5 Independent Multi-Walks

The independent multi-walk scheme consists of simultaneously running an
instance of the algorithm under consideration on each core, without any com-
munication during the search except at the very end: the first process reaching
a solution sends an order to the others to stop their run and quit. Some non-
blocking tests are involved every c iteration to check whether there is a message
indicating that some other process has found a solution, in which case the cur-
rent process terminates properly. Note however that several processes can find
a solution “at the same time”, i.e., during the same c-block of iterations. Thus,
those processes send their statistics (among which the execution time) to the
process 0 which will then determine which one was actually the fastest.

The parallelization of the Adaptive Search method was done with two
different implementations of the MPI standard, depending on the machine:
OpenMPI on HA8000 and Grid’5000, and an extension of MPICH2 on JU-
GENE.

Four testbeds were used to perform our experiments:

– HA8000, the Hitachi supercomputer of the University of Tokyo with a
total number of 15,232 cores. This machine is composed of 952 nodes, each
of which is composed of 4 AMD Opteron 8356 (Quad core, 2.3GHz, 512KB

2 http://www.g12.csse.unimelb.edu.au/minizinc/challenge2011/
3 written by Laurent Michel, personal communication.
4 http://www.hakank.org/gecode/costas_array.cpp

http://www.g12.csse.unimelb.edu.au/minizinc/challenge2011/
http://www.hakank.org/gecode/costas_array.cpp


Large Scale Parallelism for CBLS 15

of L2-cache/core and 2MB of L3-cache/CPU, bus frequency 1000MHz)
with 32GB of memory. Nodes are interconnected with a Myrinet-10G net-
work with a full bisection connection, attaining 5GB/sec in both directions.
HA8000 has achieved a peak performance of 140Tflops, but we only had
access to a subset of its nodes as users may only use a maximum of 64 nodes
(1,024 cores) in normal service. HA8000 is running the RedHat Enterprise
Linux distribution (RedHat 5).

– Grid5000 [17], the French national Grid for the research, which contains
8,596 cores deployed on 11 sites distributed in France. We used two subsets
of the computing resources of the Sophia-Antipolis node: Suno, composed
of 45 Dell PowerEdge R410 with 2 CPUs each (Intel Xeon E5520, Quad-
core, 2.26GHz, 8MB of L2-cache/core, bus frequency at 1060MHz), thus
a total of 360 cores with 32GB of memory, and Helios, composed of 56
Sun Fire X4100 with 2 CPUs each (AMD Opteron 275, Dual-core, 2.2GHz,
1MB of L2-cache/core, bus frequency at 400MHz), thus a total of 224 cores,
with an access to 4GB of memory. Peak performance are 985GFlops for
Helios and 3.25TFlops for Suno.

– JUGENE, the IBM Bluegene/P supercomputer at the Jülich Supercom-
puting Centre in Germany. JUGENE is composed of 73,728 nodes with 4
CPUs each, bringing a total of 294,912 cores available. CPUs used by the
Bluegene/P are 32-bit Power PC 450 CPUs (Mono-core, 850MHz, 8MB
of L3-cache) with 2GB of memory. Compute nodes are linked through a
3D torus network with a theoretical bandwidth of 5.1GB/s. The overall
peak performance reaches 1PFlops. JUGENE is running a SUSE Linux
Enterprise distribution (SLES 10).

Notice also that despite our account on HA8000 allowing us to use up to
1,024 cores, the largest part of the experiments on this machine were carried
out right after the March 11, 2011 earthquake in Japan, where electricity
consumption restrictions allowed us to use only 256 cores for at most one
hour.

5.1 Performance on Classical CSP Benchmarks

Parallel performance of a multi-walk version of AS are detailed in [19], which
reports about executions up to 256 cores on HA8000 and on the Grid’5000 plat-
form. Table 3 summarizes these results, considering the All-Interval Series
(prob007 in CSPLib), the Perfect-Square placement problem (prob009 in
CSPLib), and the Magic-Square problem (prob019 in CSPLib). The same
code has been ported and executed on the different machines, timings are
given in seconds and are the average of 50 runs, except for MS 400 on HA8000
where it is the average of 20 runs.

We run experiments on Magic-Square and All-Interval where the in-
stance size n is respectively 400 and 700. Notice that an instance for Perfect-
Square cannot be encoded by a number only, since it consists of a set of
squares of different size. Then we run our experiments on Perfect-Square
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on the instance number 154 from CSPLib, known to be an instance of medium
difficulty [12].

Platform Problem Time on speedup on k cores
1 core 16 32 64 128 256

HA8000
MS 400 6282.0 10.6 20.6 31.7 41.3 54.1

Perfect 154 42.7 15.0 29.5 44.6 49.1 57.0
A-I 700 638.0 8.19 14.8 17.8 23.4 27.7

Suno
MS 400 5362.0 8.4 22.8 32.6 41.3 52.8

Perfect 154 106.0 15.1 23.0 46.1 70.7 106.0
A-I 700 662.0 10.1 15.8 19.9 23.9 28.3

Helios
MS 400 6565.0 13.2 20.6 31.0 44.0 -

Perfect 154 139.7 15.8 24.5 46.6 77.2 -
A-I 700 865.8 9.1 14.9 23.5 27.3 -

Table 3: Speedups on HA8000, Suno and Helios

We can observe that speedups are more or less equivalent on the three
testbeds. Only in the case of Perfect-Square are the results significantly
different for 128 and 256 cores. In those cases Grid’5000 has much better
speedups than on HA8000. This is certainly because execution time is getting
too small (less than one second) and therefore some other aspects interfere
(OS background processes, system calls, . . .). Indeed, other explanations do
not match: the cache memory size is not involved here since Helios and Suno
nodes have the same behavior despite their different cache size, and there are
few differences between cache sizes of HA8000 and Grid’5000 Helios nodes.
Besides, the executable sizes are not involved either since each executable is
just about 50KB on all architectures.

As we can see from the results we obtained, the parallelization of the
method is effective on both the HA8000 and the Grid’5000 platforms, achiev-
ing speedups of about 30 with 64 cores, 40 with 128 cores and more than 50
with 256 cores. Of course speedups depend on the benchmarks and here, the
bigger the benchmark, the better the speedup. One can observe the stabiliza-
tion point is not yet obtained for 256 cores, even if speedups do not increase as
fast as the number of cores, i.e., are getting further away from linear speedup.

As these experiments show that every speedup curve tends to flatten at
some point, it suggests that there might be some sequential aspect with Lo-
cal Search methods (or at least with AS) for those problems and that the
improvement given by the multi-start aspect might reach some limit when in-
creasing the number of parallel cores. This aspect of course depends on the
energy landscape generated by the cost function. Moreover, this might be the-
oretically explained by the fact that, as we use structured problem instances
and not random instances, solutions may be not uniformly distributed in the
search space but are regrouped in clusters, as was shown for solutions of the
SAT problems near the phase transition in [51]. We will however see in the
following section that there exist other problems like CAP for which linear
speedups can be achieved even far beyond 256 cores.
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5.2 Performance on the Costas Array Problem

We now present results of the parallel experiments for CAP. The following
tables detail the execution times on HA8000 (Table 4), Grid’5000 (on Suno in
Table 5, results on Helios are similar), and JUGENE (Table 7).

Each timing of the average, median, time and maximal times are computed
from 50 runs of each benchmark, and given in seconds. Table 7 also contains the
population standard deviation. We can see that with more cores, the maximal
time decreases quite a lot and thus the runtime variation amplitude (i.e., the
difference between minimal and maximal times) decreases drastically. More-
over the median time is always below the average time, meaning we have fast
runs more often than slow ones. Also, the median time presents a speedup at
least as good as the average time: for instance for n = 20 on HA8000, the
speedup w.r.t sequential time that is achieved using 256 cores is 170 for the
average time and 210 for the median time.

Interestingly, one can observe that for large instances of CAP on JUGENE
(Table 7), the value of the standard deviation is close to the mean value.
This could be explained by the fact that the runtime distribution for a large
instance of CAP is very close to an exponential distribution, cf. Figure 2
and Figure 4 in Section 5.3 for graphical examples, or see [70] for a detailed
statistical analysis of the runtime distributions and their approximations by
probability distributions. Indeed, it is a well-known property of the exponential
distribution that the mean and standard deviation are equal. Also observe that
having the median value smaller than the mean value is again a property of
exponential distributions.

Size 1 core 32 cores 64 cores 128 cores 256 cores

18

avg 6.76 0.25 0.23 0.24 0.26
med 4.25 0.18 0.18 0.20 0.23
min 0.23 0.00 0.00 0.00 0.00
max 22.81 1.07 0.90 0.94 0.78

19

avg 54.54 1.84 1.00 0.72 0.55
med 43.74 1.45 0.76 0.57 0.44
min 0.51 0.0 0.03 0.02 0.01
max 212.96 6.62 5.24 3.48 2.22

20

avg 367.24 13.82 8.66 3.74 2.18
med 305.79 11.53 5.06 2.36 1.44
min 9.51 0.05 0.03 0.03 0.06
max 1807.78 54.26 36.98 23.87 9.21

21

avg - 160.42 81.72 38.56 16.01
med - 114.06 53.04 30.68 10.12
min - 1.63 2.13 1.49 0.73
max - 654.79 335.66 145.59 93.13

22

avg - 501.23 249.73 128.47 60.80
med - 450.45 178.85 99.62 55.90
min - 0.23 0.35 0.26 1.58
max - 1550.25 935.51 406.15 196.26

Table 4: Execution times (in sec.) for CAP on HA8000
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Size 1 core 32 cores 64 cores 128 cores 256 cores

18

avg 5.28 0.16 0.083 0.056 0.038
med 0.11 0.07 0.04 0.03
min 0.01 0.00 0.00 0.00 0.00
max 20.73 0.64 0.34 0.19 0.13

19

avg 49.5 1.37 0.59 0.41 0.219
med 1.09 0.38 0.33 0.155
min 0.67 0.02 0.01 0.00 0.02
max 279 9.41 2.74 1.82 1.12

20

avg 372 12.2 5.86 2.67 1.79
med 10.6 4.63 2.01 1.16
min 4.45 0.14 0.07 0.00 0.01
max 1456.00 50.60 26.00 19.20 8.50

21

avg 3743 171 51.4 34.9 17.2
med 108.00 38.50 21.80 10.80
min 265.00 5.56 0.24 0.27 1.05
max 10955.00 893.00 235 173 63.30

22

avg - 731 381 200 103
med - 428.00 286.00 135.00 69.50
min - 24.70 13.10 5.23 2.17
max - 6357.00 1482.00 656.00 451.00

Table 5: Execution times (in sec.) for CAP on Grid’5000 (Suno)

Table 6 shows in a concise manner the speedups obtained with respect
to sequential execution on HA8000 and Grid’5000 for small and medium in-
stances, i.e., 18 ≤ n ≤ 20. For small instances (n = 18), since computation
times of parallel executions on many cores are below 0.5 second, they are
maybe not significant because of interactions with operating system opera-
tions. For medium instances (n = 19 and n = 20) speedup are close to linear,
and we reach a speedup of 226 w.r.t. sequential execution for n = 19 on Suno
with 256 cores.

Platform Problem Time on speedup on k cores
1 core 32 64 128 256

HA8000
CAP 18 6.76 27.00 29.40 28.20 26.00
CAP 19 54.54 29.60 54.50 75.70 99.20
CAP 20 367.20 26.60 42.40 98.20 168.00

Suno
CAP 18 5.28 33.00 63.60 94.30 139.00
CAP 19 49.50 36.10 83.90 121.00 226.00
CAP 20 372.00 30.50 63.50 139.00 208.00

Helios
CAP 18 8.16 34.00 74.20 136.00 -
CAP 19 52.00 22.60 59.80 130.00 -
CAP 20 444.00 31.00 58.20 98.20 -

Table 6: Speedups for small and medium instances of CAP

Table 7 shows the results on JUGENE for larger instances (n = 21, n = 22 and
n = 23) and we present in a concise manner the speedups for the large instances
in Table 8. Reference time for speedups are not sequential executions since it
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Size 512 cores 1,024 cores 2,048 cores 4,096 cores 8,192 cores

21

avg 43.66 27.86 10.21 5.97 2.84
med 30.31 23.67 5.56 4.47 2.07
min 0.85 1.46 0.27 0.13 0.19
max 274.69 108.14 93.89 21.98 12.92

std dev 47.07 22.65 14.48 5.43 2.50

22

avg 265.12 148.80 76.24 36.12 20.00
med 166.47 79.63 63.24 28.00 13.41
min 1.34 1.95 0.81 0.60 0.30
max 1831.96 638.34 277.96 154.89 84.66

std dev 302.30 155.06 63.51 33.90 17.62

23

avg - - 633.09 354.69 170.38
med - - 522.68 213.22 124.67
min - - 2.41 9.32 4.94
max - - 3527.80 1873.07 748.29

std dev - - 605.33 404.80 156.66

Table 7: Execution times (in sec.) for CAP on JUGENE

becomes prohibitive (e.g., more than one hour for CAP21). Thus behaviors on
all three platforms are similar and exhibit ideal speedups, i.e., linear speedups
w.r.t. the base reference times.

Platform Problem Reference time speedup on k×reference cores
(#cores) k=2 (#cores) k=4 (#cores) k=8 (#cores)

HA8000
CAP 21 160.40 (32) 1.96 (64) 4.16 (128) 10.00 (256)
CAP 22 501.20 (32) 2.01 (64) 3.90 (128) 8.24 (256)

Suno
CAP 21 171 (32) 3.32 (64) 4.90 (128) 9.94 (256)
CAP 22 731.00 (32) 1.92 (64) 3.66 (128) 7.09 (256)

Helios
CAP 21 153.00 (32) 1.51 (64) 4.17 (128) -
CAP 22 1218.00 (32) 2.34 (64) 5.53 (128) -

JUGENE
CAP 21 27.86 (1,024) 2.78 (2,048) 4.66 (4,096) 9.80 (8,192)
CAP 22 148.80 (1,024) 1.95 (2,048) 4.11 (4,096) 7.44 (8,192)
CAP 23 633.09 (2,048) 1.78 (4,096) 3.71 (8,192) -

Table 8: Speedups for large instances of CAP

For n = 21 on Suno we have a 218 times speedup on 256 cores w.r.t.
sequential execution. Concerning n = 22, as sequential computation takes
many hours, we limit our experiments on all machines to executions on 32 cores
and above. Therefore we will only give timings from 32 to 256 cores on HA8000
and Grid’ 5000 machines. On JUGENE, we were able to run experiments from
512 to 8,192 cores. This is graphically depicted with Figure 1 on a log-log scale.
We can see that on all platforms, execution times are halved when the number
of cores is doubled, thus achieving ideal or nearly ideal speedup. To the best of
our knowledge, this is the first result on large-scale parallelism for CSP which
achieves linear speedups over thousands of cores.
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Fig. 1: Speedups for CAP 21/22/23 on JUGENE

5.3 A More In-Depth Analysis

Since [75,74], it is believed that combinatorial problems can enjoy a linear
speedup when implemented in parallel by independent multi-walks. However
this has been proven only under the assumption that the probability of finding
a solution in a given time t follows an exponential law, that is, if the runtime
behavior follows an exponential distribution (non-shifted). This behavior has
been conjectured to be the case for Local Search solvers for the SAT problem
in [44,45], and shown experimentally for the GRASP metaheuristics on some
combinatorial problems [2], but it is not always the case for constraint-based
Local Search on structured problems. Indeed, [70] shows that the runtime dis-
tribution can be exponential (e.g., Costas Array) but also sometimes log-
normal (e.g., Magic-Square) or shifted exponential (e.g., All-Interval),
in which cases the parallel speedup cannot be linear and the parallel speedup
is asymptotically bounded. As mentioned earlier, a (pure) exponential runtime
distribution may lead to a linear parallel speedup in theory, while a shifted
exponential or lognormal will not.

The classical explanation for an exponential runtime behavior is the fact
that the solutions are uniformly distributed in the search space, (and not
regrouped in solution clusters [51]) and that the random search algorithm is
able to sample the search space in a uniform manner. For the CAP instances,
we could thus explain these linear speedups due to the good distribution of
solutions over the search space for n > 17 as shown in [65] (although the
number of solutions decreases beyond n = 17) and the fact that AS is able to
diversify correctly.
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Let us now look more precisely at the experimental runtime behavior of
CAP instances and detail how it follows an exponential runtime distribution.
Up to now we focused on the average execution time in order to measure
the performance of the method, but a more detailed analysis could be done
by looking at the runtime distribution. In [3,64], a method is introduced to
represent and compare execution times of stochastic optimization methods by
using so-called time-to-target plots, in which the probability of having found
a solution as a function of the elapsed time is measured. The basic idea is to
fix a given value (target) to the objective function to optimize and to deter-
mine the probability to reach this value for a given runtime t (hence the name
time-to-target). Thus for any combinatorial optimization algorithm and any
given target value for the objective function, the time-to-target plot can be
constructed from the runtime results of the algorithm, i.e., more precisely from
the cumulative distribution of the runtime (considered as a random variable),
which gives the probability to reach a target value in a time less or equal to t.
Observe that, for the CSPs, the objective function to minimize is the number
of violated constraints and thus the target value to achieve is obviously zero,
meaning that a solution is found. It is then easy to check if runtime distribu-
tions can be approximated by a (shifted) exponential distribution of the form:
1 − e−(x−µ)/λ, where µ is the shift and λ is the scale parameter. Figures 2
and 3 present the time-to-target plot for CAP 21 over 32 cores on HA8000
with its associated quantile-quantile plot obtained by plotting the quantiles of
the data of the empirical distribution (red points) against the quantiles of the
theoretical distribution, i.e., the exponential distribution (blue dashed line),
see [3] for a detailed explanation of this construction. Approximations of the
positive and negative standard deviation are shown in purple dashed line. If
quantile-quantile data represented by red points remain between (or near) the
two standard deviation lines, it means that our empirical runtime distribution
can be approximated by a shifted exponential distribution. Such runtime dis-
tribution plot and quantile-quantile plot are similar for CAP 21 over 64, 128
and 256 cores, and also for other large size instances.

Figure 4 presents together several time-to-target plots for CAP 21 in order
to compare runtime distributions over 32, 64, 128 and 256 cores on HA8000.
Points represent execution times (obtained over 200 runs) and lines correspond
to the best approximation by an exponential distribution. It can be seen that
the actual runtime distributions are very close to exponential distributions.
Moreover, time-to-target plots also give a clear visual comparison between
instances of the same method running with different numbers of cores. For
instance we can see that there is an around 50% chance to find a solution
within 100 seconds using 32 cores, but around 75%, 95% and 100% chance
respectively with 64, 128 and 256 cores.
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Fig. 2: Time-to-Target plot for CAP 21 over 32 cores
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Fig. 4: Time-to-Target plots for CAP 21 over 32, 64, 128 and 256 cores

6 Cooperative Multi-Walks

In order to take full advantage of the execution power of massively paral-
lel machines, we have to seek a new way to further increase the benefit of
parallelization, i.e., to try to reach linear speedups for problems which are
sub-linear, such as Magic-Square or All-Interval. In the context of Local
Search, we can consider a more complex parallel scheme, with communication
between processes in order to reach better performance by favoring processes
that seem to be closer to a solution (i.e., whose current global cost value is
low) versus processes which are far away from it. So we aim at providing inter-
process communication in order to exchange little information and let some
processes decide to trigger a restart depending on the state of the others. This
fits in the framework of dependent cooperative multi-walks. A good candidate
for the information to exchange between processes is the value of the current
cost of each process, as it is small in size (only one integer) and it is a heuristic
which approximates the speed to reach a solution.

6.1 COST and ITER algorithms

The basic idea of the method with communicating Local Search processes is
as follows:
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– Every c iterations a process sends to other processes (for algorithm COST)
the cost of its current best total configuration and (for algorithm ITER)
also the number of iterations used to obtained it.

– Every c iterations each process also checks messages from other processes,
and for each message with (for algorithm COST) a lower cost or (for algo-
rithm ITER) a lower cost and a lower number of iterations, lower than its
own – meaning it is further away from a solution from the metric perspec-
tive – it can decide to stop its current computation and make a random
restart. This will be done following a given probability p.

Note that communication is implemented with asynchronous sends and re-
ceives. We use a log2(n) binary spanning tree to define node neighbours, in
order to limit the aggregate communication requirements which could other-
wise become very significant with a large number of processes: as it stands we
have O(n) send-receive pairs. A process propagates the maximum of its own
cost and the received cost values, by forwarding it to its neighbours.

Therefore the two key parameters are c, the number of iterations between
messages and p, the probability to make a restart. The COST and ITER algo-
rithms do not differ very much; intuitively, the ITER algorithm incorporates
a more precise measurement (a process is considered better than another one
if it has reached a better cost in a smaller number of iterations).

6.2 Experimental results

In order to investigate the behavior of the COST algorithm and of the ITER
algorithm, we used the Helios cluster of Grid’5000, from 32 cores up to 128.

Table 9 presents the average on 50 runs of the execution time of the prob-
lems Magic-Square 200 and All-Interval 700, from 32 to 128 cores, run-
ning the COST and ITER algorithms with different values for the parameter
p. Concerning the c parameter, it is clear that if c is too small the performance
will decrease (too many restarts) and if it is too large then it will not have
much influence on the computation. We found that the best trade-off is to
adjust c according to the problem in order to have communication once or a
few times per second, considering that we have an average sequential runtime
of several hundreds of seconds. This will give c = 1000 for Magic-Square
200 and c = 100 for All-Interval 700. The overhead of communication is
thus negligible when such value for c is chosen. Please note that a value p = 0
leads to the same behavior as the independent multi-walk algorithm (with no
communication), since even if communication is performed, the received cost
value is never considered and does not impact each process decision to restart.
It thus makes it possible to compare the cooperative multi-walk algorithm
with the previous independent multi-walk algorithm.

Let us firstly note that the COST and ITER algorithms do not differ much
in their results. However ITER is better on Magic-Square, especially for
higher values of p, which can be easily explained because it performs less
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Problem Param Time on Time on k cores (COST) Time on k cores (ITER)
1 core 32 64 128 32 64 128

p = 0 628.07 19.13 14.60 11.03 18.17 14.67 11.59
p = 0.1 628.07 19.64 15.25 12.46 20.38 14.95 12.73

MS 200 p = 0.3 628.07 22.56 18.00 14.88 19.95 16.61 12.25
p = 0.5 628.07 32.77 25.86 17.50 24.14 19.54 13.17
p = 1 628.07 79.23 88.43 84.20 56.15 49.89 47.13
p = 0 865.8 58.83 38.70 31.52 52.31 38.53 28.70
p = 0.1 865.8 55.79 38.00 31.16 58.58 34.60 31.14

AI 700 p = 0.3 865.8 69.51 41.85 30.02 57.94 40.60 29.71
p = 0.5 865.8 60.50 40.97 30.32 55.91 39.54 31.06
p = 1 865.8 74.01 43.95 30.03 60.55 34.84 32.61

Table 9: Execution times with COST & ITER algorithms (in seconds)

restarts than COST and in this case performing restarts amounts to worse
performance.

Secondly, the results are quite different depending on the problem: For
Magic-Square, communication only slightly affects performance for a prob-
ability of restarting p < 0.5. But when we monitored the number of restarts,
we saw a sharp increase of this number related to the increasing value of p:
there are almost no restarts for p < 0.5, but there is an average of 43 for
p = 1. Thus, in this case, favoring a restart if another process has a better
cost value does not improve the average execution time at all and indeed, it
actually decreases performance w.r.t. the independent multi-walk scheme. For
All-Interval, communication does not have much impact on performance
nor on the number of resets/restarts which are on average between 4 and 5
(with a standard deviation of 5). Results are basically similar to those obtained
with the independent multi-walk scheme.

It is thus difficult with these simple communication schemes to achieve
better performance than the initial method with no communication. This can
be explained by the fact that the metric used to indicate that one Local Search
engine instance is better than another, which is in our case the current value
of the cost function, is not very reliable to compare execution process between
them, even if it shows to be efficient in the execution process itself. The value
is an heuristic value and is thus not as reliable an information as would be,
for instance, the value of the bound that could be communicated between
processes in a parallel Branch & Bound algorithm.

Let us illustrate this problem with some data collected during experiments
of parallel executions. Figure 5.a shows the evolution of the cost function of
the current configurations examined on some processes within a 64-core exe-
cution by the parallel Adaptive Search algorithm on the Magic-Square 400
benchmark, as computation is performed and the number of iterations grows.
In this experiment, process 42 is the fastest to find an answer. Nonetheless
it is clear that the two other processes are indeed decreasing the cost func-
tion faster but either need a reset/restart (Process 9) or will continue with
a low cost without reaching a solution (Process 49). This is maybe not very
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Fig. 5: Evolution of costs

clear from Figure 5.a because the Y-axis (cost value) represents multiple of
108 and thus both process 42 and 49 seem to reach a cost value of zero, but
indeed only process 42 does so, after about 15000 iterations. Figure 5.b shows
a similar experiment on the All-Interval 700 benchmark. Here the value of
the cost function fluctuates even more, as every process needs a few resets.
Process 10 is the fastest to reach a solution, but it is not clear to foresee it
from the successive values of the cost of the configurations examined during
the computation.
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To conclude, it is important to note that the two (simple) algorithms with
communication of the cost value that we have considered (COST & ITER
algorithms) actually do not achieve better results than the independent multi-
walk scheme. It is also interesting to link these results to the experiments
described in [7] for parallel SAT with the Sparrow solver [10], the best local
search SAT solver in the 2011 SAT competition. These experiments compare
parallel algorithms with and without cooperation, although communication is
performed in a different manner than the one proposed here: parallel processes
communicate their configurations at each restart (restart is an important fea-
ture for SAT local search) and the Prob NormalizedW heuristics [9] is used
for aggregating those configurations and defining a good restart configuration,
supposedly better than a random restart. This paper shows, in a different
problem domain and with a different solver, that it is difficult to perform bet-
ter than the independent multi-walk version, both in capacity solving (number
of instance solved) and with respect to the PAR-10 metrics [46].

7 Conclusion and Future Work

We presented a parallel implementation of a constraint-based Local Search
algorithm, the Adaptive Search method with both independent and cooper-
ative multi-walk variants. Experiments have been carried out using CSPLib
benchmarks as well as a real-life problem, the Costas Array Problem, which
has applications in telecommunications. Performance evaluation on four dif-
ferent parallel architectures (two supercomputers and two clusters of a Grid
platform) shows that the method achieves speedups better than 50 with 256
cores on classical CSP benchmarks, which is good but far from linear speedup.
More interesting is the Costas Array Problem, for which execution times are
halved when the number of cores is doubled and thus linear speedups have been
observed up to 8,192 cores. We presented in this paper a novel model and solv-
ing process for the Costas Array Problem in the Adaptive Search framework,
which is very efficient sequentially (nearly an order of magnitude faster than
previous approaches) and which scales very well in parallel. It seems therefore
that the simple paradigm of independent multi-walks is a good candidate for
taking advantage of the computing power of massively parallel machines for
hard combinatorial problems. Up to our knowledge, this is the first result on
large-scale parallelism for CSP or Local Search reaching linear speedups over
thousands of cores.

We also made an attempt to extend the independent multi-walk parallel
scheme by using simple cooperation and communication between processes.
The key idea is to force processes which are further away from optimal solutions
(i.e., for which the best value obtained of the objective function obtained so
far is worse than that of the best of the parallel processes) to restart their
search trajectory. Although modulated by a probability parameter aimed at
controlling the restarts, these schemes force too many processes to restart too
soon, i.e., to abandon otherwise possibly promising search trajectories, and
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thus cannot achieve better performance than the basic independent multi-walk
scheme (on average).

Further work and experiments are thus still needed to define a parallel
method with inter-process communication that could outperform the initial
basic independent multi-walk method. Our current work is focusing on a com-
munication mechanism which implies 1) a number of restarts as low as pos-
sible if we want the parallel execution to benefit from the parallelization of
the Adaptive Search algorithm; 2) a reduction in the sequential aspect of
the resolution by re-using some common computations or by recording pre-
vious interesting crossroads during the resolution, from which a restart can
be operated; 3) sharing such information with asynchronous but coordinated
inter-process transfers.
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