
International Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its Applications

Vol. Vol. Vol. Vol. 4444, No., No., No., No. 4444, , , , OctoberOctoberOctoberOctober 2020202010101010

1

A Job-Shop Scheduling Model of Software Development Planning
for Constraint-based Local Search

Irene Barba, Carmelo Del Valle

Dpt. Lenguajes y Sistemas Informáticos, Universidad de Sevilla
{irenebr,carmelo}@us.es

Abstract

Software development planning usually does not take any advantage of planning and

scheduling techniques involving reasoning about time and resources, which are typical in the

manufacturing area. This paper proposes a constraint-based model for the Job Shop

Scheduling Problem to be solved using local search techniques. The model can be used to

represent a multiple software process planning problem when the different (activities of)

projects compete for limited staff. The main aspects of the model are: the use of integer

variables which represent the relative order of the operations to be scheduled, and two global

constraints, alldifferent (all the variable values are forced to be different from the others) and

increasing (the variable values are forced to be greater than the previous ones in the

sequence), for ensuring feasibility. The AllDifferent and Increasing constraints enforce the

conjunction of one binary constraint, the not-equal constraint and the greater constraint

respectively, for every pair of variables. By analyzing the set of all relations at the same time,

both global constraints offer greater filtering power, enhancing the constraint model and the

efficiency in the resolution of the problem. An interesting property of the model is that cycle

detection in the schedules is implicit in the satisfaction of the constraints. In order to test the

proposed model, a parameterized local search algorithm has been used, with a neighborhood

similar to the Nowicki and Smutnicki one, which has been adapted in order to be suitable for

the proposed model.

Keywords: job shop scheduling, local search, constraint satisfaction problems, software

development processes.

1. Introduction

Software development has been modeled using a wide range of approaches. They vary
according to the focus of the analysis and they address successfully the whole development
process depending on how it is carried out. Many of the software management tools use
temporal information and ignore in some ways the resources to be used, considering them
unlimited, since they are based on PERT and CPM analysis. These may not be adequate in
different situations, for example when smaller multiple projects are developed and projects
compete for limited staff [13].

Business Process Management (BPM) [21] includes methods, techniques, and tools to
support the design, enactment, management, and analysis of operational business processes.
Nowadays, there exists an increasing interest on the part of the organization in managing its
business processes since they need to adapt to the new commercial conditions, as well as to
respond to competitive pressures, considering the business environment and the evaluation of
their information systems. The software development can be modeled as a business process,
so BPM tools seem to be a good approach to deal with all the aspects that entail the software
development process, including the software development planning.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51383711?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

International Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its Applications

Vol. Vol. Vol. Vol. 4444, No., No., No., No. 4444, , , , OctoberOctoberOctoberOctober 2020202010101010

2

The area of Scheduling [2] includes problems in which it is necessary to determine an
execution plan for a set of tasks related by precedence constraints. The execution of each task
requires the use of one or more resources so that the tasks may compete for limited resources.
In general, the objective is to find a feasible plan so that both precedence and resource
constraints are satisfied, optimizing an objective function related to, in most cases, temporal
measures, as the completion time of the last executed task (makespan) or the total weighted
tardiness. In some projects, resource allocation patterns [17] are defined to express elaborate
and fine-grained authorization control, such as separation of duty, history-based, case
handling, and role-based resource allocation patterns.

The current work is focus on the Job Shop Scheduling Problem (JJSP)[10], which is a
specific problem of Scheduling where the tasks are grouped by jobs that establish precedence
relations among them. Another particularity of the JJSP is that the execution of each task only
requires one resource. Besides the job shop approach, there are several scheduling models,
such as: flow shop[6], where each job contains exactly one operation for every machine and
all jobs go through all the machines in the same order; open shop [5], where there are not
ordering constraints on tasks; the Resource-Constrained Project Scheduling Problem
(RCPSP) [12], where there are a set of renewable resources, such as machines or personnel,
which are available at any time in limited numbers of unit and each task, in general, needs
several resources to be executed.

Other interesting issues deal with modeling tasks and resources. In the first case, there
exists the multi-mode project scheduling approach, where each task can be executed in
several operation modes, each one requiring, in general, different resources with different
durations or costs. On the other hand, multi-capacity resources allow to model that tasks
would require some quantity of resources without distinguishing between them.

Different scheduling approaches can be used to model and represent different kinds of
software development process. Specifically, a job shop approach, traditional in
manufacturing, may represent an important aid for the Software Development Planning since
it can manage the interactions between projects and resources in a natural way and enables to
consider minimizing different goals, as development time (makespan) and cost, while
satisfying all the temporal and resource constraints. With this aim, a job shop scheduling
model is presented in this paper, so that it can represent a multiple software project to be
planned. The equivalence of terms used from both areas is in such a way that jobs correspond
to single software projects, and resources can represent each person or software development
team working in the projects.

In a wider perspective, in planning problems, related to scheduling ones, the tasks to be
executed are not established a priori, so it is necessary to select and to order a set of tasks
from a set of alternatives, in order to achieve an objective defined in advance. Some of the
extensions to scheduling, such as alternative resources and process alternatives, lead to
models that are closer to planning [18]. Also, the AI planning community has done several
efforts to extend classical planning techniques to treat resources and time constraints.
Currently, there is an increasing interest in integrating the application of Artificial
Intelligence (AI) Planning and Scheduling (P&S) techniques since real-world problems
involve both of them [1]. It includes the effective application of AI P&S techniques to the
production and execution of models of organizations (business process management). There
are several points where AI P&S tools can be effectively applied to the business process
management.

Business Process Management (BPM) and AI Planning and Scheduling are two disciplines
with many parallels, but which have largely been pursued by disjoint communities. Currently,
there is a growing interest in the application of AI Planning and Scheduling techniques to

International Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its Applications

Vol. Vol. Vol. Vol. 4444, No., No., No., No. 4444, , , , OctoberOctoberOctoberOctober 2020202010101010

3

automate tasks of real world problems, such as the production and execution of models of
organization.

There are many views of the BPM Life Cycle, one of them [21] can be represented by
Figure 1.

As follows, the different stages of BPM Life Cycle are presented, relating them to AI
Planning and Scheduling applications:

• Process Design: This stage involves designing, modeling, simulating, etc. the
organization processes. It is basically a human activity, though supported by
computer-based tools to record and display the process model, run simulations, etc.
In [15], the user can introduce the knowledge in a workflow modeling tool. After
that, real models can be automatically generated using a planner that integrates
planning and scheduling.

• System Configuration: In the process design phase, only a template of a BP is
elaborated and, usually, this template does not contain many details that are
necessary for the execution phase. In the system configuration phase, first, the
customer must specify information about the product or service required. Secondly, a
schedule must be generated, taking into account the information given by the
customer, such as the target end date, dependencies between tasks or task durations.
Then, the resources are assigned to tasks for the appropriate time slots (scheduling),
considering the finite capacity and/or non-sharable resources and, generally, taking
into account the optimization of one or more objective functions, such as process
duration, robustness, cost, etc. The resulting plan may contain alternative branches
that are pruned as information is gathered and decisions made during enactment.

• Process Enactment: In this phase, the previously obtained plan is carried out. The
activities have to be coordinated to ensure correct sequencing and that compatible
variants of the activities are performed. At the same time, resources will be involved
in enacting multiple processes and instances of the same process. When the same
resource is required by several tasks at the same time, generally, rules for prioritizing
tasks must act on the conflict. Due to the finite capacity of the resources, different
processes can interfere with each other.

• Diagnosis: As execution proceeds, the enactment information must be analyzed due
to the possible appearance of unexpected incidents, such us unavailability of
resources, real task durations different from expected ones, fails, etc. Minor incidents
may require updating of the plan. More significant differences may require great

Figure 1. BPM life cycle

International Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its Applications

Vol. Vol. Vol. Vol. 4444, No., No., No., No. 4444, , , , OctoberOctoberOctoberOctober 2020202010101010

4

changes in the plan, even a re-planning, considering, in general, the optimization of
one or more objective functions. On the other hand, the execution information of a
business process can be very useful to improve many aspects, such as the detection
of bottlenecks and potential fraudulent loopholes in the business process.

In this work, a model and a resolution method for the Job Shop Scheduling Problem are
proposed, and they can be applied, between others, to the System Configuration phase of the
business process management. In future works, the current approach is intended to be
generalized to other scheduling and planning problems, so that they can be applied in the
other cycle phases.

On the other hand, Constraint Programming (CP) has evolved in the last decade to a
mature field due to, among others, the use of different generic and interchangeable procedures
for inference and search, which can be used for solving different types of problems [3, 16].
Although a separation of models and algorithms is desirable for reusability issues, there is an
influence between them that must be taken into account when a good behavior of the whole
resulting method is pursued. Most models that have been used in CP have been tested using
complete algorithms, and they are not equally suitable for other algorithmic approaches such
as local search [23]. Constraint-based techniques have been used successfully to solve a wide
scope of applications related to scheduling and planning problems.

This paper proposes a Constraint Satisfaction Problem (CSP) model for the Job Shop
Scheduling Problem (JSSP) to be solved using local search techniques, that is, it defines the
variables which determine a solution, the related constraints of the problem involving those
variables, and some possible neighborhoods. The problem has been solved by different
authors using local search [10, 14, 22], but the novelty consist of the proposed model, based
on including the ordering of the operations directly in the variables and constraints of the
CSP, so that further definitions and developments of the main components of local search
algorithms would take advantage of this representation.

For such techniques, a very important issue is the defined neighborhood, that is, the set of
candidates to which the walk may continue from the current solution. For JSSP, one of the
best methods was proposed by Nowicki and Smutnicki [14], whose neighborhood was more
constrained than other previous approaches. An adaptation and an extension of this
neighborhood are proposed in this work, in order to be suitable for the defined CSP model.

The rest of the paper is organized as follows. First, Section 2 presents a formulation of the
JSSP. After that, Section 3 includes the main ideas of constraint programming, including local
search algorithms. Then, Section 4 describes the proposed model. Next, in Section 5 some
experimental results are shown and analyzed. Finally, Section 6 presents some conclusions
and future work.

2. Problem Definition

The Job Shop Scheduling Problem [2, 10] may be formulated as follows. There exists a set

of n jobs J1,…, Jn and a set of m machines M1,…, Mm. Each job Ji consists of a sequence of ni
operations opi1,…, opi,ni , which must be processed in this order. Each operation opij must be

processed for pij time units, without preemption, on machine { }1,...,ij mM Mµ ∈ . Each

machine can only process one operation at a time. So, two types of constraints are defined,
the precedence constraints among the operations of each job, and the resource constraints
which force to select a permutation order of the operations that use each machine. These last
constraints are the source of the NP-hard complexity of JSSP [6].

International Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its Applications

Vol. Vol. Vol. Vol. 4444, No., No., No., No. 4444, , , , OctoberOctoberOctoberOctober 2020202010101010

5

The typical objective, used in this work, is to find a feasible solution, minimizing the

makespan, { }max 1..max i n iC C== , where Ci is the completion time of job Ji, i.e. the

completion time of opi,ni.
Figure 2 shows the disjunctive graph representation for a simple example of the problem,

with n = 3 and ni = 3, i∀ . In a disjunctive graph G = (V,C,D), there is a set V of nodes which
correspond to the operations of the job-shop, a set C of directed arcs corresponding to the
precedence constraints, and a set D of undirected arcs which connect the operations that use
the same machine. A solution to the problem consists of fixing a direction for the undirected
arcs, being feasible if there are no cycles.

3. Constraint Programming

Constraint Programming (CP) has been evolved in the last decade to a mature field

because, among others, of the use of different generic and interchangeable procedures for
inference and search, which can be used for solving different types of problems [16]. On the
other hand, constraint-based techniques have been used successfully to solve a wide scope of
applications related to scheduling and planning problems, including the JJSP. A Constraint
Satisfaction Problem (CSP) is defined by a set of variables, the set of domains of values for
each variable and a set of constraints. Each constraint involves some variables and specifies
the allowable combinations of values for them. A solution is defined by an assignment of
values to all the variables, being feasible if it does not violate any constraint. Constraint
Optimization Problems (COPs) require a solution that optimizes an objective function.

There exists a wide scope of mechanisms used to solve CSPs and COPs, which can be
classified as search or consistency algorithms [16]. Search algorithms are based on the
exploration of the solution space to find a solution or to prove that there is no solution. It is
possible to differentiate between systematic algorithms and local search algorithms:
systematic algorithms generally explore a search tree which is based on the possible values
for each of the variables of the CSP problem. On the other hand, local search algorithms, in
general, perform an incomplete exploration of the search space by repairing infeasible
complete assignments or trying to improve the objective value. On the other hand,
Consistency algorithms consist on removing inconsistent values from the domain variables.
One way to accomplish this is evolving from the initial problem towards equivalent problems
whose solution space is smaller, so it is easier to solve. Once a problem is modeled by a CSP,
a generic or specialized CSP solver can be used in order to obtain the required solution.

Most solving algorithms for CSPs proposed in the CP area are complete, and lastly local
search is being considered as promising for solving large instances of complex problems [23],
where complete algorithms fail. The constraints from the CSP model may be used for

Figure 2. A disjunctive graph for a job shop problem

International Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its Applications

Vol. Vol. Vol. Vol. 4444, No., No., No., No. 4444, , , , OctoberOctoberOctoberOctober 2020202010101010

6

guarantying feasibility of the solutions explored, or even using their possible (degree of)
violation as a guide for the search. Most of ideas associated to local search algorithms in other
areas can be used for solving CSPs, or in our case, for COPs.

Local search algorithms move iteratively through the set of feasible solutions. For those
movements, a neighborhood for the current solution is determined in each iteration as a set of
the solutions that can be selected as the next solution, and that can be obtained from the
current solution with small changes. Depending on the method of choosing the next solution
from neighborhood and the criteria for stopping the iterative sequence of movements,
different algorithms can be defined [8]. In order to test the proposed model, a basic tabu
search algorithm [7] has been used, containing the main components that have been proved
useful in local search, as described in Section 4.4.

4. Our Proposal

4.1. The CSP Model

As stated before, a CSP is defined by a set of variables V, a set of domains of values for
each variable D and a set of constraints that involve the variables C. Typical CSP models for
the JSSP state the start times stij of the operations opij as the variables of the CSP [4], and the
constraints are divided in two groups, precedence constraints (, 1ij ij i jst p st ++ ≤) and resource
constraints (ij ij kl kl kl ijst p st st p st+ ≤ ∨ + ≤ , opij and opkl using the same machine). Our
proposed CSP model is based on using the CSP variables to establish the execution order of
the operations of the JSSP, resulting in a simple model.

Let ΠJ be a JSSP with a set J of n jobs, a set M of m machines, and a set O of #ops
operations. The proposed model has the following components:

• Each operation opij is represented as an integer variable of the CSP vij, therefore the
set of variables is { },1 ,1ij iV v i n j n= ≤ ≤ ≤ ≤ .

• The domain of each variable vij is D(vij) = [1..#ops], ijv V∀ ∈ .
• The set C of constraints contains two types of items:

1. Precedence Constraints: The value of each variable vij has to be less than
the value of all the variables corresponding to the following operations in the
same job: ij ikv v< , ,ij ikv v∀ such that j < k. In order to improve the efficiency
and to obtain a clearer model, a new constraint (increasing) has been used
between the operations of each job. It is defined on a sequence of variables
{v1, v2,…, vn} and it is equivalent to the satisfaction of the conditions v1 < v2
< … < vn.

2. Resource Constraints: In order to satisfy that each machine can process
only one operation at the same time, all the variable values are forced to be
different from the others (alldifferent constraint is used), i.e., each solution is
a permutation of the set {1, 2, …, #ops}.

An interesting property of the model, using the increasing and alldifferent constraints, is
that cycle detection in the disjunctive graph is implicit in the satisfaction of the constraints, so
no solution of the CSP will contain cycles.

A solution for the constrained problem, in which a value for each CSP variable is given, is
a permutation of 1..#ops variables and can be represented by an ordered sequence of
operations S. With this sequence, an "earliest start schedule" is associated by planning the
operations in the order induced by the sequence, resulting in a JSSP solution. S(m) is denoted
as the ordered sequence of operations that are executed on the machine m in the order fixed

International Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its Applications

Vol. Vol. Vol. Vol. 4444, No., No., No., No. 4444, , , , OctoberOctoberOctoberOctober 2020202010101010

7

by the solution represented by S. Figure 3 shows a solution for the problem of Fig. 2. First,
the value for each variable is shown and below is the corresponding solution S, where the
position a in the sequence represents the value of the variable S[a] (vij = a ≡ S[a] = opij). Also,
the ordered sequences corresponding to each machine are shown. Finally, Fig. 3 shows a
JSSP solution where all the arcs in the graph are directed according to the fixed order in S.
Notice that there can be several solutions of the CSP problem that lead to the same schedule,
for example the solution S = {op21, op31, op32, op11, op12, op13, op22, op33, op23} for the problem
of Fig. 2 leads to the same schedule that the solution shown in Fig. 3.

From now on, PM(v) and SM(v) are used to refer to the predecessor and successor
variables of v on its machine, and similarly PJ(v) and SJ(v) on its job. PM(PM(v)) is denoted
by PM2(v) (the same for SM(v)) and so on. Moreover, m(v) is denoted as the machine in
which the operation corresponding to the variable v has to be executed.

4.2. Cycle Detection

A solution for the problem consists of establishing directions for the undirected arcs in the

disjunctive graph (Section 2), being feasible provided that there is no cycles. A cycle for a
solution in the disjunctive graph is a closed directed (simple) path, with no repeated vertices
other than the starting and ending vertices.

Figure 4 shows two cycles on the disjunctive graph presented in section 2. In Fig. 4.a it
can be seen a cycle that contains four operations and involves two jobs, meanwhile Fig. 4.b
contains six operations of three jobs.

A cycle can be seen as a sequence of operations that contains two types of edges:
• Precedence edges: are fixed by the problem.
• Resource edges: are given by the decisions made to solve the problem.

Figure 3. Example of a feasible solution

International Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its Applications

Vol. Vol. Vol. Vol. 4444, No., No., No., No. 4444, , , , OctoberOctoberOctoberOctober 2020202010101010

8

All the possible cycles that can be formed in the graph involve, at least, two machines and

four operations, two belonging to one job, and two belonging to another job, such as it is
shown in the figure 5. In this figure it is possible to see a cycle formed by four operations,
two belonging to J1 (op1i and op1j) and two belonging to J2 (op2k and op2l). In the sequence of
operations appears, at least, two precedence edges, that connect operations using different
machines. All the operations that appear in the figure can be executed on different machines,
so the machines involved in this cycle can be between 2 and 4. It is important to clarify that
op1j and op2k do not have to be executed in the same machine (the same for op1i and op2l).

Theorem 1. Any solution of the CSP, with the proposed model, will contain no cycles.
Proof. Let op1i, op1j , op2k and op2l be four operations with the followings characteristics:
• op1i and op1j belong to J1, i < j, so v1i < v1j (Increasing constraint on J1).
• op2k and op2l belong to J2, k < l, so v2k < v2l (Increasing constraint on J2).
These relations are established by the problem. Regarding to the relation between the

operations op2k and op1j of different jobs, established by a solution for the problem, there can
be two possibilities:

1. v2k < v1j : The relation between op1i and op2l can be:
a. v1i < v2l (Figure 6.1a). In this case, there are four possible ordered sequences

and none of them contain cycles:
i. v1i < v2k < v2l < v1j: There is no cycle, because of the increasing

constraint in J1.

op11 op12 op13

op21 op22 op23

op31 op32 op33

op11 op12 op13

op21 op22 op23

op31 op32 op33

(a) Cycle containing 4 operations (b) Cycle containing 6 operations

Figure 4. Examples of cycles

op1i op1j

op2l

...

...

opab opcd vab < vcd

op1i op1j op2l

means

op2k

op2k

Figure 5. A cycle in a disjunctive graph

International Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its Applications

Vol. Vol. Vol. Vol. 4444, No., No., No., No. 4444, , , , OctoberOctoberOctoberOctober 2020202010101010

9

ii. v2k < v1i < v1j < v2l: There is no cycle, because of the increasing
constraint in J2.

iii. v2k < v1i < v2l < v1j: There is no cycle, because of 1.
b. v2l < v1i (Figure 6.1b). There is only one possible ordered sequence: v2k < v2l
< v1i < v1j, without cycle because of 1.

2. v1j < v2k: The relation between op1i and op2l can be:
a. v1i < v2l (Figure 6.2a). There is only one possible ordered sequence: v1i < v1j
< v2k < v2l, without cycle because of 2a.

b. v2l < v1i (Figure 6.2b). This case is not allowed, because the sequence would
be v1i < v1j < v2k < v2l < v1i (there would be a cycle) and this is not allowed
because of the increasing constraint in both jobs.

The symmetric proof is valid for the operations op2l and op1i.

4.3. Neighborhoods

op1i op1j

op2l

...

...

op1i op1j

op2lop2k

op2k

(1a)

op1i op1j

op2l

...

...

op2l op1i op1j

op2k

op2k

(1b)

op1i op1j

op2l

...

...

op1i op1j op2l

op2k

op2k

(2a)

op1i op1j

op2l

...

...

op1i op1j op2l

op2k

op2k

(2b)

Figure 6. Cases for the proof of theorem 1

International Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its Applications

Vol. Vol. Vol. Vol. 4444, No., No., No., No. 4444, , , , OctoberOctoberOctoberOctober 2020202010101010

10

For JSSP, most of the successful approaches use neighborhood based on reversing critical
operations (increasing their durations imply a larger makespan) that must be processed on the
same machine. One of the best methods was proposed by Nowicki and Smutnicki [14], whose
neighborhood was more constrained than other previous approaches. The movements allowed
were to reverse two adjacent critical operations belonging to the same critical block (a
sequence of critical operations on the same machine) so that one of them is not an internal
operation in the block, excluding the swap between the first two operations of the first block
when the second one is internal, and the swap between the last two operations of the last
block when the first is internal.

A family of neighborhoods for the proposed model is defined, in which the basic idea is to
make a swap between the values of two variables corresponding to operations of the same
machine, i.e., between the relative order of those operations in a solution, trying to change the
order of operations belonging to a critical path of a solution S (CP(S) from now), based on the
Nowicki and Smutnicki (NS from now) neighborhood.

For a variable v, σ(v) is defined as the set of the variables w satisfying the following
condition: the swap between v and w in S (denoted as swap(v,w,S)) causes a swap between v
and PM(v) on m(v) and this is the only swap caused on m(v). The variables w that meet this
condition are those between PM2(v) (not included) and PM(v) (included) in S. It can be seen
that the swaps between v and variables that appear before PJ(v) in S lead to unsatisfiable
solutions. Then, σ(v), when v is not the first in its job and has, at least, two predecessors on its
machine, is defined as:

{ }2() | max((), ()) ()v w V PJ v PM v w PM vσ = ∈ < ≤

If PJ(v) and PM2(v) do not exist, the outer lower bound is 0. On the other hand, if only one

of them exists, the outer lower bound is established by it. Lastly, all the variables which have
the smallest value on their machine (i.e., which are executed first) do not have any possible
swaps (σ =ø).

In Fig. 7 different cases of possible swaps are shown. In Fig. 7.a, PJ(v) appears before
PM2(v), then the outer lower bound of the range of possibilities is established by PM2(v). In
Fig. 7.b, PM2(v) is before PJ(v), then it is given by PJ(v). In Fig. 7.c, PJ(v) is after PM(v), so
no swap for v can be realized.

In order to reduce and set a maximum number of neighbors for a solution, a parameter δ is
defined, as the maximum number of possible swaps for a variable v, from PM(v) toward
variables appearing before it in S. It must be noticed that δ has to be greater than 1 so that the
algorithm can reach any possible solution, taking into account the proposed model. According
to this parameter, the set of considered swaps for a variable is defined as:

{ }2() | max(() , (), ()) ()v w V PJ v PJ v PM v w PM vδσ δ= ∈ − < ≤

A family of neighborhoods, 1N

δ

λ , depending on the possible variables to swap, has been
defined. For λ= 0, the idea is to swap variables that are at the beginning or at the end of a
critical block (CB from now, CB(v) for the CB of a variable v), except the beginning of the
first CB or the end of the last CB, similar to NS neighborhood. These variables are given by
the set V0(S):

{ }0 () () | ((())) (())V S v CP S v SM first CB v v last CB v= ∈ = ∨ =

International Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its Applications

Vol. Vol. Vol. Vol. 4444, No., No., No., No. 4444, , , , OctoberOctoberOctoberOctober 2020202010101010

11

where first(CB(v)) and last(CB(v)) are the first and the last operations of CB(v),
respectively. V0(S) contains the possible variables to be swapped in 10N

δ
({ }10 0(, ,) | () ()N swap v w S v V S w vδ

δσ= ∈ ∧ ∈).

Due to the proposed model and the tabu search, it is possible to reach a solution which an
empty neighborhood. In order to overcome this problem and get more diversification during
the search, other more general neighborhoods 1N

δ

λ ¸, different from NS proposal, have been
defined depending on a parameter λ. For λ> 0, it is allowed to swap internal variables of CBs,
more internal as λ is increasing. The set of possible variables to swap, is now given by:

{ }1() () | (((())) ((()))) # () / 2V S v CP S v SM first CB v v PM last CB v CB vλ λ λ λ+= ∈ = ∨ = ∧ ≤

Then, the neighborhood 1N
δ

λ ¸ is defined as
{ }1 (, ,) | () ()N swap v w S v V S w vδ

λ λ δσ= ∈ ∧ ∈ . In order to allow swaps between all the
non-critical operations (belonging or not to CP), another neighborhood has been defined:

{ }2 (, ,) | ()N swap v w S v V w vδ

δσ= ∈ ∧ ∈ .
The swap between v and w has the following consequences:
1. Swap between the execution order of v and PM(v), executed on the same machine,

which does not depend on w (change in m(v)).
2. If w ≠ PM(v), i.e. m(w) ≠ m(v), other changes will be given. If SM(w) < v, then the

execution orders of all the operations w’ satisfying m(w’) = m(w) and w < w’ < v will
be changed. Specifically, the relative order of all these operations are moved forward
on their machine (change in m(w)).

vPM(v)PM2(v)PJ(v)...

...

S

(a) Possible swap(v) when PJ(v)<PM2(v)

vPM(v)PJ(v)PM2(v)...

...

S

(b) Possible swap(v) when PM2(v)<PJ(v)

vPJ(v)PM(v)......S

...

(c) Any possible swap(v) when PM(v)<PJ(v)

Figure 7. Possible swaps for a variable v

International Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its Applications

Vol. Vol. Vol. Vol. 4444, No., No., No., No. 4444, , , , OctoberOctoberOctoberOctober 2020202010101010

12

According to this, two types of movements can be given. First, the swap between variables

corresponding to operations executed on the same machine, only one swap in S(m(v)) is given
(Fig. 8.a). Secondly, the swap between variables corresponding to operations executed on
different machines, that leads to a swap in S(m(v)) and several swaps in S(m(w)), one for each
direct or indirect successor on the machine of w that is between w and v in S (Fig. 8.b). In Fig.
8 the neighbor for S is referred as S’.

4.4. The Parameterized Algorithm

Considering the defined neighborhoods, a local search algorithm has been developed

(Algorithm 1). Although any initial solution can be used, the choice of better initial solutions
usually allows to obtain better results, as it is found for the NS method [11]. In this way, for
the experiments of the next section, the INSA algorithm [14] has been used. As indicated in
Subsection 4.1, a schedule can be represented by different solutions of the model. Thereby,
for selecting the actual initial solution a random procedure is used from the schedule obtained
by the INSA algorithm.

According to the evolution of the search, different neighborhoods are used in order to
select the next movement, which will correspond to a feasible solution. In each iteration, a
movement to the best neighbor of 10N

δ is attempted (λ= 0), but, if the neighborhood is empty
or all their members are in the tabu list, a more extended neighborhood is searched, by
increasing λ. If ¸ reaches the allowed maximum value without finding a suitable next solution

S(m(v))

... w ...v

S'(m(v))

S ...

... ...v w

S' ... v ...w...

... ...w v

(a) Swap between variables corresponding to operations executed in
the same machine

S(m(v))PM(v) v

S(m(w)) ... w SM(w)

... w ...SM(w) SM2(w) ... v ...

S'(m(v))

S'(m(w))

... v ...SM(w) ... w ...

S

S'

... ...

... ...

... ...v PM(v)

... wSM(w)

SM2(w)

SM...(w)

SM...(w)

SM...(w)SM2(w)

SM...(w)SM2(w)

(b) Swap between variables corresponding to operations executed in
different machines

Figure 8. Swap between variables

International Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its Applications

Vol. Vol. Vol. Vol. 4444, No., No., No., No. 4444, , , , OctoberOctoberOctoberOctober 2020202010101010

13

to visit, the more general neighborhood 2N
δ is used, and now the neighbor is selected

randomly. 2N
δ is also used when the algorithm has not found a better solution for a number K

of iterations. In this case, the algorithm returns to the best solution found so far.
Besides that, most of the computational cost of local search algorithms are due to the

evaluation of neighbors. In order to reduce its amount, several approaches have been
proposed, such as that of Taillard [20], which evaluates the neighbors using a lower bound
estimation of the makespan in constant time, instead of calculating it exactly. In the proposed
algorithm, the selection of candidates is made in two steps. First, the best swap between two
critical operations is selected using the Taillard estimation of the expected makespan. After
that, a variable is selected from the δ possibilities, choosing the one with the greatest
improvement in its slack because of the change.

5. Experimental Results

ILOG JSolver [9] has been used for implementing the Algorithm 1, and for managing the
constraints of the problem. As stated before, the algorithm has several parameters, δ, K
(maximum number of iterations without improving the solution), and the tabu list size (TLS),
that may affect its behavior, and its tuning represents a non-trivial problem. Since the main
interest of this work is not the competitiveness of the algorithm proposed, but the CSP model
which is defined, a scenario for some comparative results was chosen, in which the algorithm
would be executed for a fixed number of 10000 iterations, which were selected randomly
from the results of the INSA algorithm. For such situation, the value of K was chosen to be
1000. For selecting δ and TLS, the algorithm was run on a reduced set of instances for δ from

International Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its Applications

Vol. Vol. Vol. Vol. 4444, No., No., No., No. 4444, , , , OctoberOctoberOctoberOctober 2020202010101010

14

2 to 5 and from TLS from 5 to 10. The best results on the minimal and average makespan of
the best solution after 10000 iterations were found for δ = 2 and TLS = 6. The best results for
δ = 2 can be explained by the fact that for higher values of δ, there is more probability for
finding a variable w such that the swap between v and w will be feasible, which would
enforce the diversification strategy too much.

Table 1 shows the results of the algorithm for a larger set of JSSP benchmarks, taken from

the OR-library, and some harder instances from Taillard [19]. For each JSSP instance, the
table shows some statistics about the algorithm used in this work: the relative error of the best
solution from the 100 restarts (BRE%) with respect to the best known solution (UB, which is
not proved optimal for the values indicated by *), the mean relative error (MRE%) and the
standard deviation of relative error (SDRE%). Also, the mean computational time for running
the algorithm is given (RT). As reference, the results obtained by the NS algorithm is shown
in two situations: in the original form, that takes into account several factors, and after 10000
iterations. As expected, the algorithm is not fully competitive (as well as it has been
developed in Java, many of its components are not optimized) with that of Nowicki and
Smutnicki, considered as one of the best methods for solving the JSSP. Instead, the results
shown must be taken as a reference for further improvements of the algorithm or for different
approaches that can use the model, which is the main contribution of this paper.

6. Conclusions and Future Work

This paper proposes a CSP model for the Job Shop Scheduling Problem to be solved using

local search techniques. The model can be used to represent a multiple software process

Table 1. Results on a set of JSS instances

 Proposed Model NS
Instance n m UB BRE% MRE% SDRE% RT BRE% RT BRE%104 RT104

FT10 10 10 930 2.25 3.95 0.96 8.72 0 0.68 0 0.25
ABZ7 20 15 656 9.90 13.98 2.16 64.40 2.28 4.62 3.20 0.84
LA02 10 5 655 0.45 3.80 1.83 3.02 0 0.10 0 0.11
LA19 10 10 842 2.49 6.25 1.82 10.52 0.11 0.83 0.11 0.35
LA21 15 10 1046 5.16 8.23 1.05 18.76 0.86 0.86 0.86 0.42
LA24 15 10 935 3.85 6.56 1.13 18.72 1.39 1.33 1.50 0.45
LA25 15 10 977 7.26 11.24 1.84 20.65 1.12 1.39 2.04 0.45
LA27 20 10 1235 6.96 12.07 2.03 30.73 1.94 1.27 1.94 0.51
LA29 20 10 1152 8.42 12.57 2.22 33.24 3.13 3.40 4.51 0.48
LA36 15 15 1268 7.09 11.42 1.25 38.61 0.79 3.66 2.76 0.62
LA37 15 15 1397 9.09 14.59 2.30 41.80 1.50 2.74 3.29 0.78
LA38 15 15 1196 5.85 8.09 0.99 41.72 1.84 2.75 2.59 0.65
LA39 15 15 1233 7.94 10.44 0.90 41.04 0.89 3.50 1.62 0.79
LA40 15 15 1222 7.03 10.28 1.02 36.52 1.64 2.40 2.13 0.62
TA02 15 15 1244 6.35 10.49 1.64 36.47 2.73 2.83 2.73 0.70
TA18 20 15 1396* 12.60 15.25 1.32 57.82 3.65 4.64 5.73 0.97
TA26 20 20 1645* 9.36 13.14 1.34 93.66 3.10 10.64 3.28 1.58
TA32 30 15 1795* 14.20 17.84 1.30 116.93 3.12 18.36 6.85 1.44

International Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its Applications

Vol. Vol. Vol. Vol. 4444, No., No., No., No. 4444, , , , OctoberOctoberOctoberOctober 2020202010101010

15

planning problem when the different (activities of) projects compete for limited staff. The
main aspects of the model are the use of integer variables which represent the relative order of
the operations to be scheduled and two types of global constraints for ensuring feasibility.
Also, a neighborhood for this model has been defined based on an adaptation of Nowicki and
Smutnicki one. The main focus is not on the competitiveness of the algorithm which is
proposed, but on the definition of the CSP model. This can be used directly by different
algorithms based on local search or evolutionary strategies, so that they can be applied for
solving real planning and re-planning problems.

As future work, the algorithm and neighborhood should be improved for solving more
efficiently the JSSP. Also, the proposed model is expected to be adapted for other similar
sequencing problems in a direct way.

On the other hand, it is expected to extend the software development process to other
(more generic or specific) models and to adapt the corresponding (planning and/or)
scheduling models and solving algorithms. Some interesting issues to be tackled are multi-
mode tasks, multi-capacity resources, multi-objective optimization or uncertainty.
Furthermore, it is intended to analyze widely the points where AI P&S tools can be
effectively applied to the production and execution of models of organizations (business
process management).

Acknowledgments

This work has been partially funded by the Consejería de Innovación, Ciencia y Empresa
of Junta de Andalucía (P08-TIC-04095) and by the Spanish Ministerio de Ciencia e
Innovación (TIN2009-13714) and the European Regional Development Fund
(ERDF/FEDER).

References

[1] M. Boddy, A. Cesta, and S. Smith, ICAPS-04 Workshop on Integrating Planning into Scheduling, AAAI Press,

2004.

[2] P. Brucker and S. Knust, Complex Scheduling, Springer, 2006.

[3] R. Dechter, Constraint Processing, Morgan Kaufmann Publishers, 2003.

[4] R. Dechter, I. Meiri, and J. Pearl, “Temporal constraint networks”, Artificial Intelligence, 1991, 49, pp. 61-95.

[5] U. Dorndorf, E. Pesch, T. Phan-Huy, “Solving the open shop scheduling problem”, Journal of Scheduling 4
(3), pp. 157-174, 2001

[6] M. R. Garey, D. S. Johnson, and R. Sethi, “The complexity of flowshop and jobshop scheduling”, Math. Oper.
Res., 1976, 1(2), pp. 117-129.

[7] F. Glover and M. Laguna, Tabu Search, Blackwell Scientific Publishing, Oxford, England, 1993.

[8] H. H. Hoos and T. Stutzle, Stochastic Local Search. Foundations and Applications, Morgan Kaufmann, 2005.

[9] ILOG, “Ilog JSolver”, 2003.

[10] A. Jain and S. Meeran, “Deterministic job-shop scheduling: Past, present, and future”, European Journal of
Operational Research, 1999, 113 (2), pp. 390-434.

[11] A. Jain, B. Rangaswamy, and S. Meeran, “New and Stronger Job-Shop Neighborhoods: A Focus on the
Method of Nowicki and Smutnicki (1996)”, Journal of Heuristics, 2000, 6, pp. 457-480.

[12] R. Kolisch and A. Drexl, “Local for multi-mode resource-constrained project”. IIE Transactions (Institute of
Industrial Engineers), 29(11), pp. 987-999, 1997.

[13] C. A. Leonhard, and J. S. Davis, “Job-Shop Development Model: A Case Study”, IEEE Software, 1995, 12
(2), pp. 86-92.

[14] E. Nowicki and C. Smutnicki, “A fast taboo search algorithm for the job-shop problem”, Management
Science, 1996, 42(6), pp. 797-813.

International Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its Applications

Vol. Vol. Vol. Vol. 4444, No., No., No., No. 4444, , , , OctoberOctoberOctoberOctober 2020202010101010

16

[15] M. D. R-Moreno, D. Borrajo, A. Cesta and A. Oddi, “Integrating planning and scheduling in workflow
domains”, Expert Systems with Applications 33, 2007, pp. 389-406.

[16] F. Rossi, P. van Beek, and T. Walsh, Handbook of Constraint Programming, Elsevier, 2006.

[17] N. Russell, W.M.P. van der Aalst, A.H.M. ter Hofstede, D. Edmond, “Workflow Resource Patterns:
Identification, Representation and Tool Support”. In: Pastor, Ó., Falcao e Cunha, J. (eds.) CAiSE 2005.
LNCS, vol. 3520, Springer, Heidelberg, 2005

[18] D. Smith, J. Frank, and A. Jónsson, “Bridging the gap between planning and scheduling”. Knowledge
Engineering Review, 15(1), pp. 47–83, 2000.

[19] E. Taillard, “Benchmarks for basic scheduling problems”, European Journal of Operational Research, 1993,
64, pp. 278-285.

[20] E. Taillard, “Parallel Taboo Search Techniques for the Job-Shop Scheduling Problem”, ORSA Journal on
Computing, 1994, 16(2), pp. 108-117.

[21] W. M. P. van der Aalst, A.H.M. Hofstede and M. Weske, “Business Process Management: A survey”,
Business Process Management: International Conference, BPM 2003, 2003: Proceedings.

[22] R. Vaessens, E. Aarts, and J. Lenstra, “Job-shop scheduling by local search”, INFORMS Journal on
Computing, 1994, 8, pp. 302-317.

[23] P. Van Hentenryck and L. Michel, Constraint-Based Local Search, The MIT Press, 2005.

