5 research outputs found

    Complexity of Some Geometric Problems

    Get PDF
    We show that recognizing intersection graphs of convex sets has the same complexity as deciding truth in the existential first-order theory of the reals. Comparing this to similar results on the rectilinear crossing number and intersection graphs of line segments, we argue that there is a need to recognize this level of complexity as its own class

    Reasoning about topological and cardinal direction relations between 2-dimensional spatial objects

    Get PDF
    Increasing the expressiveness of qualitative spatial calculi is an essential step towards meeting the requirements of applications. This can be achieved by combining existing calculi in a way that we can express spatial information using relations from multiple calculi. The great challenge is to develop reasoning algorithms that are correct and complete when reasoning over the combined information. Previous work has mainly studied cases where the interaction between the combined calculi was small, or where one of the two calculi was very simple. In this paper we tackle the important combination of topological and directional information for extended spatial objects. We combine some of the best known calculi in qualitative spatial reasoning, the RCC8 algebra for representing topological information, and the Rectangle Algebra (RA) and the Cardinal Direction Calculus (CDC) for directional information. We consider two different interpretations of the RCC8 algebra, one uses a weak connectedness relation, the other uses a strong connectedness relation. In both interpretations, we show that reasoning with topological and directional information is decidable and remains in NP. Our computational complexity results unveil the significant differences between RA and CDC, and that between weak and strong RCC8 models. Take the combination of basic RCC8 and basic CDC constraints as an example: we show that the consistency problem is in P only when we use the strong RCC8 algebra and explicitly know the corresponding basic RA constraints

    Spatial reasoning with RCC8 and connectedness constraints in Euclidean spaces

    Get PDF
    The language RCC8 is a widely-studied formalism for describing topological arrangements of spatial regions. The variables of this language range over the collection of non-empty, regular closed sets of n-dimensional Euclidean space, here denoted RC+(R^n), and its non-logical primitives allow us to specify how the interiors, exteriors and boundaries of these sets intersect. The key question is the satisfiability problem: given a finite set of atomic RCC8-constraints in m variables, determine whether there exists an m-tuple of elements of RC+(R^n) satisfying them. These problems are known to coincide for all n ≥ 1, so that RCC8-satisfiability is independent of dimension. This common satisfiability problem is NLogSpace-complete. Unfortunately, RCC8 lacks the means to say that a spatial region comprises a ‘single piece’, and the present article investigates what happens when this facility is added. We consider two extensions of RCC8: RCC8c, in which we can state that a region is connected, and RCC8c0, in which we can instead state that a region has a connected interior. The satisfiability problems for both these languages are easily seen to depend on the dimension n, for n ≤ 3. Furthermore, in the case of RCC8c0, we show that there exist finite sets of constraints that are satisfiable over RC+(R^2), but only by ‘wild’ regions having no possible physical meaning. This prompts us to consider interpretations over the more restrictive domain of non-empty, regular closed, polyhedral sets, RCP+(R^n). We show that (a) the satisfiability problems for RCC8c (equivalently, RCC8c0) over RC+(R) and RCP+(R) are distinct and both NP-complete; (b) the satisfiability problems for RCC8c over RC+(R^2) and RCP+(R^2) are identical and NP-complete; (c) the satisfiability problems for RCC8c0 over RC+(R^2) and RCP+(R^2) are distinct, and the latter is NP-complete. Decidability of the satisfiability problem for RCC8c0 over RC+(R^2) is open. For n ≥ 3, RCC8c and RCC8c0 are not interestingly different from RCC8. We finish by answering the following question: given that a set of RCC8c- or RCC8c0-constraints is satisfiable over RC+(R^n) or RCP+(R^n), how complex is the simplest satisfying assignment? In particular, we exhibit, for both languages, a sequence of constraints Φ_n, satisfiable over RCP+(R^2), such that the size of Φ_n grows polynomially in n, while the smallest configuration of polygons satisfying Φ_n cuts the plane into a number of pieces that grows exponentially. We further show that, over RC+(R^2), RCC8c again requires exponentially large satisfying diagrams, while RCC8c0 can force regions in satisfying configurations to have infinitely many components

    Qualitative Spatial Reasoning with Holed Regions

    Get PDF
    The intricacies of real-world and constructed spatial entities call for versatile spatial data types to model complex spatial objects, often characterized by the presence of holes. To date, however, relations of simple, hole-free regions have been the prevailing approaches for spatial qualitative reasoning. Even though such relations may be applied to holed regions, they do not take into consideration the consequences of the existence of the holes, limiting the ability to query and compare more complex spatial configurations. To overcome such limitations, this thesis develops a formal framework for spatial reasoning with topological relations over two-dimensional holed regions, called the Holed Regions Model (HRM), and a similarity evaluation method for comparing relations featuring a multi-holed region, called the Frequency Distribution Method (FDM). The HRM comprises a set of 23 relations between a hole-free and a single-holed region, a set of 152 relations between two single-holed regions, as well as the composition inferences enabled from both sets of relations. The inference results reveal that the fine-grained topological relations over holed regions provide more refined composition results in over 50% of the cases when compared with the results of hole-free regions relations. The HRM also accommodates the relations between a hole-free region and a multi-holed region. Each such relation is called a multi-element relation, as it can be deconstructed into a number of elements—relations between a hole-free and a singleholed region—that is equal to the number of holes, regarding each hole as if it were the only one. FDM facilitates the similarity assessment among multi-element relations. The similarity is evaluated by comparing the frequency summaries of the single-holed region relations. The multi-holed regions of the relations under comparison may differ in the number of holes. In order to assess the similarity of such relations, one multi-holed region is considered as the result of dropping from or adding holes to the other region. Therefore, the effect that two concurrent changes have on the similarity of the relations is evaluated. The first is the change in the topological relation between the regions, and the second is the change in a region’s topology brought upon by elimination or addition of holes. The results from the similarity evaluations examined in this thesis show that the topological placement of the holes in relation to the hole-free region influences relation similarity as much as the relation between the hole-free region and the host of the holes. When the relations under comparison have fewer characteristics in common, the placement of the holes is the determining factor for the similarity rankings among relations. The distilled and more correct composition and similarity evaluation results enabled by the relations over holed regions indicate that spatial reasoning over such regions differs from the prevailing reasoning over hole-free regions. Insights from such results are expected to contribute to the design of future geographic information systems that more adequately process complex spatial phenomena, and are better equipped for advanced database query answering

    Qualitative Spatial Reasoning with Holed Regions

    Get PDF
    The intricacies of real-world and constructed spatial entities call for versatile spatial data types to model complex spatial objects, often characterized by the presence of holes. To date, however, relations of simple, hole-free regions have been the prevailing approaches for spatial qualitative reasoning. Even though such relations may be applied to holed regions, they do not take into consideration the consequences of the existence of the holes, limiting the ability to query and compare more complex spatial configurations. To overcome such limitations, this thesis develops a formal framework for spatial reasoning with topological relations over two-dimensional holed regions, called the Holed Regions Model (HRM), and a similarity evaluation method for comparing relations featuring a multi-holed region, called the Frequency Distribution Method (FDM). The HRM comprises a set of 23 relations between a hole-free and a single-holed region, a set of 152 relations between two single-holed regions, as well as the composition inferences enabled from both sets of relations. The inference results reveal that the fine-grained topological relations over holed regions provide more refined composition results in over 50% of the cases when compared with the results of hole-free regions relations. The HRM also accommodates the relations between a hole-free region and a multi-holed region. Each such relation is called a multi-element relation, as it can be deconstructed into a number of elements—relations between a hole-free and a singleholed region—that is equal to the number of holes, regarding each hole as if it were the only one. FDM facilitates the similarity assessment among multi-element relations. The similarity is evaluated by comparing the frequency summaries of the single-holed region relations. The multi-holed regions of the relations under comparison may differ in the number of holes. In order to assess the similarity of such relations, one multi-holed region is considered as the result of dropping from or adding holes to the other region. Therefore, the effect that two concurrent changes have on the similarity of the relations is evaluated. The first is the change in the topological relation between the regions, and the second is the change in a region’s topology brought upon by elimination or addition of holes. The results from the similarity evaluations examined in this thesis show that the topological placement of the holes in relation to the hole-free region influences relation similarity as much as the relation between the hole-free region and the host of the holes. When the relations under comparison have fewer characteristics in common, the placement of the holes is the determining factor for the similarity rankings among relations. The distilled and more correct composition and similarity evaluation results enabled by the relations over holed regions indicate that spatial reasoning over such regions differs from the prevailing reasoning over hole-free regions. Insights from such results are expected to contribute to the design of future geographic information systems that more adequately process complex spatial phenomena, and are better equipped for advanced database query answering
    corecore