7 research outputs found

    Data Flow ORB-SLAM for Real-time Performance on Embedded GPU Boards

    Get PDF
    The use of embedded boards on robots, including unmanned aerial and ground vehicles, is increasing thanks to the availability of GPU equipped low-cost embedded boards in the market. Porting algorithms originally designed for desktop CPUs on those boards is not straightforward due to hardware limitations. In this paper, we present how we modified and customized the open source SLAM algorithm ORB-SLAM2 to run in real-time on the NVIDIA Jetson TX2. We adopted a data flow paradigm to process the images, obtaining an efficient CPU/GPU load distribution that results in a processing speed of about 30 frames per second. Quantitative experimental results on four different sequences of the KITTI datasets demonstrate the effectiveness of the proposed approach. The source code of our data flow ORB-SLAM2 algorithm is publicly available on GitHub

    Precise and Robust Visual SLAM with Inertial Sensors and Deep Learning.

    Get PDF
    Dotar a los robots con el sentido de la percepción destaca como el componente más importante para conseguir máquinas completamente autónomas. Una vez que las máquinas sean capaces de percibir el mundo, podrán interactuar con él. A este respecto, la localización y la reconstrucción de mapas de manera simultánea, SLAM (por sus siglas en inglés) comprende todas las técnicas que permiten a los robots estimar su posición y reconstruir el mapa de su entorno al mismo tiempo, usando únicamente el conjunto de sensores a bordo. El SLAM constituye el elemento clave para la percepción de las máquinas, estando ya presente en diferentes tecnologías y aplicaciones como la conducción autónoma, la realidad virtual y aumentada o los robots de servicio. Incrementar la robustez del SLAM expandiría su uso y aplicación, haciendo las máquinas más seguras y requiriendo una menor intervención humana.En esta tesis hemos combinado sensores inerciales (IMU) y visuales para incrementar la robustez del SLAM ante movimientos rápidos, oclusiones breves o entornos con poca textura. Primero hemos propuesto dos técnicas rápidas para la inicialización del sensor inercial, con un bajo error de escala. Estas han permitido empezar a usar la IMU tan pronto como 2 segundos después de lanzar el sistema. Una de estas inicializaciones ha sido integrada en un nuevo sistema de SLAM visual inercial, acuñado como ORB-SLAM3, el cual representa la mayor contribución de esta tesis. Este es el sistema de SLAM visual-inercial de código abierto más completo hasta la fecha, que funciona con cámaras monoculares o estéreo, estenopeicas o de ojo de pez, y con capacidades multimapa. ORB-SLAM3 se basa en una formulación de Máximo a Posteriori, tanto en la inicialización como en el refinamiento y el ajuste de haces visual-inercial. También explota la asociación de datos en el corto, medio y largo plazo. Todo esto hace que ORB-SLAM3 sea el sistema SLAM visual-inercial más preciso, como así demuestran nuestros resultados en experimentos públicos.Además, hemos explorado la aplicación de técnicas de aprendizaje profundo para mejorar la robustez del SLAM. En este aspecto, primero hemos propuesto DynaSLAM II, un sistema SLAM estéreo para entornos dinámicos. Los objetos dinámicos son segmentados mediante una red neuronal, y sus puntos y medidas son incluidas eficientemente en la optimización de ajuste de haces. Esto permite estimar y hacer seguimiento de los objetos en movimiento, al mismo tiempo que se mejora la estimación de la trayectoria de la cámara. En segundo lugar, hemos desarrollado un SLAM monocular y directo basado en predicciones de profundidad a través de redes neuronales. Optimizamos de manera conjunta tanto los residuos de predicción de profundidad como los fotométricos de distintas vistas, lo que da lugar a un sistema monocular capaz de estimar la escala. No sufre el problema de deriva de escala, siendo más robusto y varias veces más preciso que los sistemas monoculares clásicos.<br /

    Monocular Visual Odometry for Fixed-Wing Small Unmanned Aircraft Systems

    Get PDF
    The popularity of small unmanned aircraft systems (SUAS) has exploded in recent years and seen increasing use in both commercial and military sectors. A key interest area for the military is to develop autonomous capabilities for these systems, of which navigation is a fundamental problem. Current navigation solutions suffer from a heavy reliance on a Global Positioning System (GPS). This dependency presents a significant limitation for military applications since many operations are conducted in environments where GPS signals are degraded or actively denied. Therefore, alternative navigation solutions without GPS must be developed and visual methods are one of the most promising approaches. A current visual navigation limitation is that much of the research has focused on developing and applying these algorithms on ground-based vehicles, small hand-held devices or multi-rotor SUAS. However, the Air Force has a need for fixed-wing SUAS to conduct extended operations. This research evaluates current state-of-the-art, open-source monocular visual odometry (VO) algorithms applied on fixed-wing SUAS flying at high altitudes under fast translation and rotation speeds. The algorithms tested are Semi-Direct VO (SVO), Direct Sparse Odometry (DSO), and ORB-SLAM2 (with loop closures disabled). Each algorithm is evaluated on a fixed-wing SUAS in simulation and real-world flight tests over Camp Atterbury, Indiana. Through these tests, ORB-SLAM2 is found to be the most robust and flexible algorithm under a variety of test conditions. However, all algorithms experience great difficulty maintaining localization in the collected real-world datasets, showing the limitations of using visual methods as the sole solution. Further study and development is required to fuse VO products with additional measurements to form a complete autonomous navigation solution

    Distributed Robotic Vision for Calibration, Localisation, and Mapping

    Get PDF
    This dissertation explores distributed algorithms for calibration, localisation, and mapping in the context of a multi-robot network equipped with cameras and onboard processing, comparing against centralised alternatives where all data is transmitted to a singular external node on which processing occurs. With the rise of large-scale camera networks, and as low-cost on-board processing becomes increasingly feasible in robotics networks, distributed algorithms are becoming important for robustness and scalability. Standard solutions to multi-camera computer vision require the data from all nodes to be processed at a central node which represents a significant single point of failure and incurs infeasible communication costs. Distributed solutions solve these issues by spreading the work over the entire network, operating only on local calculations and direct communication with nearby neighbours. This research considers a framework for a distributed robotic vision platform for calibration, localisation, mapping tasks where three main stages are identified: an initialisation stage where calibration and localisation are performed in a distributed manner, a local tracking stage where visual odometry is performed without inter-robot communication, and a global mapping stage where global alignment and optimisation strategies are applied. In consideration of this framework, this research investigates how algorithms can be developed to produce fundamentally distributed solutions, designed to minimise computational complexity whilst maintaining excellent performance, and designed to operate effectively in the long term. Therefore, three primary objectives are sought aligning with these three stages

    Visual slam in dynamic environments

    Get PDF
    El problema de localización y construcción visual simultánea de mapas (visual SLAM por sus siglas en inglés Simultaneous Localization and Mapping) consiste en localizar una cámara en un mapa que se construye de manera online. Esta tecnología permite la localización de robots en entornos desconocidos y la creación de un mapa de la zona con los sensores que lleva incorporados, es decir, sin contar con ninguna infraestructura externa. A diferencia de los enfoques de odometría en los cuales el movimiento incremental es integrado en el tiempo, un mapa permite que el sensor se localice continuamente en el mismo entorno sin acumular deriva.Asumir que la escena observada es estática es común en los algoritmos de SLAM visual. Aunque la suposición estática es válida para algunas aplicaciones, limita su utilidad en escenas concurridas del mundo real para la conducción autónoma, los robots de servicio o realidad aumentada y virtual entre otros. La detección y el estudio de objetos dinámicos es un requisito para estimar con precisión la posición del sensor y construir mapas estables, útiles para aplicaciones robóticas que operan a largo plazo.Las contribuciones principales de esta tesis son tres: 1. Somos capaces de detectar objetos dinámicos con la ayuda del uso de la segmentación semántica proveniente del aprendizaje profundo y el uso de enfoques de geometría multivisión. Esto nos permite lograr una precisión en la estimación de la trayectoria de la cámara en escenas altamente dinámicas comparable a la que se logra en entornos estáticos, así como construir mapas en 3D que contienen sólo la estructura del entorno estático y estable. 2. Logramos alucinar con imágenes realistas la estructura estática de la escena detrás de los objetos dinámicos. Esto nos permite ofrecer mapas completos con una representación plausible de la escena sin discontinuidades o vacíos ocasionados por las oclusiones de los objetos dinámicos. El reconocimiento visual de lugares también se ve impulsado por estos avances en el procesamiento de imágenes. 3. Desarrollamos un marco conjunto tanto para resolver el problema de SLAM como el seguimiento de múltiples objetos con el fin de obtener un mapa espacio-temporal con información de la trayectoria del sensor y de los alrededores. La comprensión de los objetos dinámicos circundantes es de crucial importancia para los nuevos requisitos de las aplicaciones emergentes de realidad aumentada/virtual o de la navegación autónoma. Estas tres contribuciones hacen avanzar el estado del arte en SLAM visual. Como un producto secundario de nuestra investigación y para el beneficio de la comunidad científica, hemos liberado el código que implementa las soluciones propuestas.<br /

    Real-Time Multi-Fisheye Camera Self-Localization and Egomotion Estimation in Complex Indoor Environments

    Get PDF
    In this work a real-time capable multi-fisheye camera self-localization and egomotion estimation framework is developed. The thesis covers all aspects ranging from omnidirectional camera calibration to the development of a complete multi-fisheye camera SLAM system based on a generic multi-camera bundle adjustment method
    corecore