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Resumen

Dotar a los robots con el sentido de la percepción destaca como el componente más im-
portante para conseguir máquinas completamente autónomas. Una vez que las máquinas
sean capaces de percibir el mundo, podrán interactuar con él. A este respecto, la lo-
calización y la reconstrucción de mapas de manera simultánea, SLAM (por sus siglas
en inglés) comprende todas las técnicas que permiten a los robots estimar su posición
y reconstruir el mapa de su entorno al mismo tiempo, usando únicamente el conjunto
de sensores a bordo. El SLAM constituye el elemento clave para la percepción de las
máquinas, estando ya presente en diferentes tecnologías y aplicaciones como la conduc-
ción autónoma, la realidad virtual y aumentada o los robots de servicio. Incrementar la
robustez del SLAM expandiría su uso y aplicación, haciendo las máquinas más seguras y
requiriendo una menor intervención humana.

En esta tesis hemos combinado sensores inerciales (IMU) y visuales para incrementar
la robustez del SLAM ante movimientos rápidos, oclusiones breves o entornos con poca
textura. Primero hemos propuesto dos técnicas rápidas para la inicialización del sensor
inercial, con un bajo error de escala. Estas han permitido empezar a usar la IMU tan
pronto como 2 segundos después de lanzar el sistema. Una de estas inicializaciones ha
sido integrada en un nuevo sistema de SLAM visual inercial, acuñado como ORB-SLAM3,
el cual representa la mayor contribución de esta tesis. Este es el sistema de SLAM
visual-inercial de código abierto más completo hasta la fecha, que funciona con cámaras
monoculares o estéreo, estenopeicas o de ojo de pez, y con capacidades multimapa. ORB-
SLAM3 se basa en una formulación de Máximo a Posteriori, tanto en la inicialización como
en el refinamiento y el ajuste de haces visual-inercial. También explota la asociación
de datos en el corto, medio y largo plazo. Todo esto hace que ORB-SLAM3 sea el
sistema SLAM visual-inercial más preciso, como así demuestran nuestros resultados en
experimentos públicos.

Además, hemos explorado la aplicación de técnicas de aprendizaje profundo para
mejorar la robustez del SLAM. En este aspecto, primero hemos propuesto DynaSLAM
II, un sistema SLAM estéreo para entornos dinámicos. Los objetos dinámicos son seg-
mentados mediante una red neuronal, y sus puntos y medidas son incluidas eficientemente
en la optimización de ajuste de haces. Esto permite estimar y hacer seguimiento de los
objetos en movimiento, al mismo tiempo que se mejora la estimación de la trayectoria de
la cámara. En segundo lugar, hemos desarrollado un SLAM monocular y directo basado
en predicciones de profundidad a través de redes neuronales. Optimizamos de manera
conjunta tanto los residuos de predicción de profundidad como los fotométricos de distin-
tas vistas, lo que da lugar a un sistema monocular capaz de estimar la escala. No sufre
el problema de deriva de escala, siendo más robusto y varias veces más preciso que los
sistemas monoculares clásicos.





Abstract

Endowing robots with a perception module arises as the most important component to
create fully autonomous machines. Once machines perceive the world they will be able
to interact with it. In this respect, Simultaneous Localization and Mapping (SLAM)
embraces all techniques which allow robots to simultaneously retrieve their pose and
reconstruct the environment using measurements from a set of on-board sensors. SLAM
constitutes the key component of a machine perception, being already present at different
technologies and applications such as autonomous driving, augmented and virtual reality
or service robots. Increasing its robustness will expand its use to new applications, making
machines more safe and requiring less human intervention.

In this thesis, we have combined inertial (IMU) and visual sensors to increase SLAM
robustness against fast motions, short occlusions or textureless environments. We have
first proposed two techniques to quickly initialize the inertial sensors with very low scale
errors. These have allowed the system to start using the IMU as early as 2 seconds
after launching it, avoiding running less robust pure monocular SLAM for longer periods.
We have integrated it in a new SLAM system, coined ORB-SLAM3, which represents
the major contribution of this thesis. This is the most complete open-source visual-
inertial SLAM system up-to-date, working in monocular or stereo inertial setups, pinhole
and fisheye cameras, and with multi-map capabilities. ORB-SLAM3 fully relies on a
Maximum a Posteriori formulation, from initialization, to refinement and visual-inertial
Bundle Adjustment. It also exploits data-associations, in the short, mid and long-term.
All this together makes ORB-SLAM3 the most accurate visual-inertial SLAM system, as
proven by our results on public datasets.

We have also explored the application of deep learning techniques to improve SLAM
robustness. In this regard, we have first proposed DynaSLAM II, a stereo SLAM system
for dynamic environments. The dynamic objects are segmented by means of a neural
network, and their points and measurements are efficiently included in the Bundle Ad-
justment optimization. This allows us to estimate and track these moving objects as
well as improve the camera trajectory estimation. Second, we have developed a direct
monocular SLAM method based on depth prediction from neural networks. We optimize
together photometric and depth prediction residuals from multiple views, leading to a
scale-aware monocular SLAM that does not suffer from scale drift, being more robust
and several times more accurate than classic monocular systems.





Contents

1 Introduction 1
1.1 Simultaneous Localization and Mapping . . . . . . . . . . . . . . . . . . 1
1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Visual SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Visual-Inertial SLAM . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Dissemination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4.1 Peer-reviewed publications . . . . . . . . . . . . . . . . . . . . . . 8
1.4.2 Licensed software . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Optimization based SLAM 9
2.1 Visual SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Feature based SLAM . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 Direct SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Visual-Inertial SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 IMU integration and residuals . . . . . . . . . . . . . . . . . . . . 14

3 Inertial Initialization 17
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Joint Visual-Inertial initialization . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1 Initial Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.2 Improved Solution . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Inertial-only optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.1 Maximum-a-Posteriori Initialization . . . . . . . . . . . . . . . . . 31
3.3.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 ORB-SLAM3: A full visual-inertial system 41
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3 Visual-Inertial SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3.1 IMU Initialization and scale refinement . . . . . . . . . . . . . . . 44
4.3.2 Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3.3 Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3.4 Robustness to tracking loss . . . . . . . . . . . . . . . . . . . . . 48
4.3.5 Visual-Inertial Loop Closing and Map Merging . . . . . . . . . . . 49

4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

1



4.4.1 Single-session SLAM on EuRoC . . . . . . . . . . . . . . . . . . . 52
4.4.2 Visual-Inertial SLAM on TUM-VI Benchmark . . . . . . . . . . . 54
4.4.3 Computing Time . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 Deep Learning for SLAM 63
5.1 Deep Learning for dynamic environments . . . . . . . . . . . . . . . . . . 63

5.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.1.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.1.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.1.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2 Deep Learning for scale-aware monocular SLAM . . . . . . . . . . . . . . 80
5.2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.2.2 Direct visual odometry with depth prediction . . . . . . . . . . . 82
5.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6 Conclusions and future work 93
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Appendices 97

A Bundle Adjustment 98
A.1 Non-linear optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
A.2 Bundle Adjustment optimization . . . . . . . . . . . . . . . . . . . . . . 99

A.2.1 Schur complement for an efficient solution . . . . . . . . . . . . . 100

B Bundle Adjustment residuals 102
B.1 Camera models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

B.1.1 Pinhole camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
B.1.2 Fisheye camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

B.2 Reprojection residual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
B.2.1 Reprojection residual derivatives . . . . . . . . . . . . . . . . . . 104

B.3 Photometric residual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
B.3.1 Photometric residual derivatives . . . . . . . . . . . . . . . . . . . 106

B.4 Depth-prediction residual . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
B.4.1 Depth-prediction derivatives . . . . . . . . . . . . . . . . . . . . . 109

B.5 Derivatives for inertial-only optimization . . . . . . . . . . . . . . . . . . 110

C Photometric tracking 111

D Matrix Lie Groups 113
D.1 General Matrix Lie groups . . . . . . . . . . . . . . . . . . . . . . . . . . 114

D.1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
D.1.2 Exponential and Logarithmic map . . . . . . . . . . . . . . . . . . 115
D.1.3 Adjoint operator . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
D.1.4 Jacobians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

2



D.2 SO(3): Group of rotations . . . . . . . . . . . . . . . . . . . . . . . . . . 119
D.2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
D.2.2 so(3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
D.2.3 Exponential and Logarithmic map . . . . . . . . . . . . . . . . . . 119
D.2.4 Adjoint operator . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
D.2.5 Derivative of a SO(3) action . . . . . . . . . . . . . . . . . . . . . 120
D.2.6 Jacobian derivation . . . . . . . . . . . . . . . . . . . . . . . . . . 121
D.2.7 Inverse Jacobian derivation . . . . . . . . . . . . . . . . . . . . . 123
D.2.8 SO(3) normalization . . . . . . . . . . . . . . . . . . . . . . . . . 124

D.3 Useful maths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

E Supplementary material for ORB-SLAM3 127
E.1 Reference systems and extrinsic calibration . . . . . . . . . . . . . . . . . 127
E.2 Intrinsic calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

E.2.1 IMU intrinsic parameters . . . . . . . . . . . . . . . . . . . . . . . 129
E.2.2 Camera intrinsic parameters . . . . . . . . . . . . . . . . . . . . . 130

3



4



Chapter 1

Introduction

1.1 Simultaneous Localization and Mapping

Robots and humans have been living together for a while. They have allowed people
to get rid of hard, boring and unsatisfactory tasks, letting humans to focus on more
creative, intellectual and rational jobs. While robots have been successfully used in
industry for repetitive, well defined, and invariant tasks, their lack of an understanding
about the underlying mechanisms which govern the world has limited their application
to more general and unpredictable situations. Some of these potential applications lie
in the transportation industry, like autonomous driving or last-mile delivery. Others
comprehend Augmented and Virtual Reality (AR/VR) or service robots such as those
for cleaning, health-care or security and surveillance. Despite recent developments in
electronics, manufacturing, and electrical energy storing, that are boosting the use of
robots, those have not come with similar improvements in the perception nor self-decision
modules. Robots are still not able to perceive the world as rational beings do, nor to
take important decisions based on this information. As an example, this remains the
main reason why there is still a driver in a car; to endow it with perception and decision
capacities.

This is where Simultaneous Localization and Mapping (SLAM) appears like a key-
stone. SLAM tries to solve the problem of building a map or reconstruction of the
environment and track the robot pose at the same time, using a set of on-board sensors.
This endows robots with sensory capacity, being aware of themselves and their environ-
ment, and enabling human interaction with them. This perceived information may later
be used by decision modules, usually deep-learning based, like Reinforcement Learning
algorithms, to generate an action, adapted to surrounding conditions, aiming to achieve
a preset goal. These two components render a robot fully autonomous.

To achieve this goal, a gold standard SLAM system should stand out in the next
features:

• Localization accuracy: It should be able to estimate the pose of the agent with
low error for different circumstances. It should have a low drift for exploring trajec-
tories, where the robot is continuously visiting new places, and no drift for revisiting
trajectories where the agent moves in already mapped regions.

• Mapping accuracy: The reconstructed environment should be precise and contain
as much information as possible, in order to ease the interaction between the agent
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and the environment. This accuracy should not be limited to geometrical precision,
but also include more abstract information like semantics.

• Robustness: It should be able to deal with a wide-range of motions and environ-
ments (generality), preserving its performance (reliability).

• Efficiency: The system should be computationally efficient, able to work on real-
time, ideally on-board, and also have a limited memory usage.

Depending on the application, SLAM systems will be more oriented and devoted to
one point or another. A SLAM system used for AR/VR should be focused on efficiency,
since it has to run in a light on-board set-up. A vacuum cleaner robot should priori-
tize localization and mapping accuracy, while it does not usually require a low latency.
Furthermore, one used for autonomous driving should perform robustly in all situations
since human lives may depend on it.

In the same way humans heavily depend on their senses to perceive the world, SLAM
systems performance also deeply depends on the used sensors. According to the nature
of the acquired data, sensors may be classified in two groups:

• Proprioceptive sensors, which measure quantities internal to the system, which do
not depend on the environment. These are for example global position measured
with a GPS, wheel velocity measured by an encoder, or linear acceleration and
angular velocity measured by an Inertial Measurement Unit (IMU). This kind of
sensor is typically used for localization accuracy and robustness, and comes with
low computational requirements.

• Exteroceptive sensors, those that acquire data from the environment, which al-
lows reconstructing it and localizing the agent. The most common examples are
monocular, stereo and RGB-D cameras, as well as other sensors like radars, lidar
or event cameras.

Sensors from both groups complement each other. Proprioceptive sensors provide
small measurements at a high frequency, which are quickly processed and used for es-
timating agent pose at a high rate, while exteroceptive sensors measurements usually
contain much more information, which is acquired at a lower rate, but which allows to
reconstruct the environment and compute the agent pose with a higher precision.

During this thesis, both kinds of sensors will be employed. We will be specially
interested in SLAM with only visual sensors, Visual SLAM, which comprises the biggest
group along the SLAM research community. This sensor configuration covers most of the
real-world applications, since most existing devices count with at least one monocular
camera. The goal of Visual SLAM is to use the cameras on-board a mobile agent to build
a map of the environment and compute in real-time the pose of the agent in that map. In
contrast, Visual Odometries (VO) put their focus on computing the agent’s ego-motion,
not on building a map. The big advantage of a SLAM map is that it allows matching
and using in estimation problem previous observations performing three types of data
association (extending the terminology used by [17]):

• Short-term data association, matching map elements obtained during the last
few seconds. This is the only data association type used by most VO systems,
that forget environment elements once they get out of view, resulting in continuous
estimation drift even when the system moves in the same area.
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• Mid-term data association, matching map elements that are close to the camera
whose accumulated drift is still small. These can be matched and used in the
estimation problem in the same way than short-term observations and allow to
reach zero drift when the systems moves in mapped areas. They are the key of the
better accuracy obtained by SLAM systems compared against VO systems with
loop detection.

• Long-term data association, matching observations with elements in previously
visited areas using a place recognition technique, regardless of the accumulated
drift (loop detection) or even if the tracking was lost (relocation). Long term
matchings allow to reset the drift and to correct the loop using pose-graph (PG)
optimization, or more accurately, using Bundle Adjustment (BA). This is the key
of SLAM accuracy in medium and large loopy environments.

In addition to visual SLAM, we will also combine visual sensors with IMUs, which is
named asVisual-Inertial SLAM. IMUs are high frequency, very compact, energetically
efficient and inexpensive sensors, which can be mounted on hand-held or wearable devices.
These features make them suitable for Augmented and Virtual Reality applications for
smart-phones or AR/VR headsets.

Solving the SLAM problem consists in finding the optimal estimates for the agent and
map state given a set of measurements [23, 38]. There exist two approaches for solving
it [17]. The first one is a filter based approach, where SLAM is stated as an optimal
estimation problem where only current agent pose and map variables are optimized,
while previous ones are marginalized out. Under Gaussian noise assumption this leads to
systems based on Kalman Filter (KF) formulation, namely extended KF for quasi linear
systems, unscented KF for non linear systems, or particle filters for non Gaussian noise
models. They have the advantage of not only estimating the system state, but also the
uncertainty of the estimation. Marginalizing previous states have two side effects. First,
it removes the sparse nature of the problem which makes filter approaches scale cubically
(or quadratically for some efficient implementations such as [104]) with the size of the
entire state vector in terms of computational cost. Second, it fixes the linearization point
not being possible to change it later and leading to inconsistencies as early noticed by
[1, 24]. These features make filter based approaches suitable for real-time applications
mainly focused on robot localization.

The second approach is the keyframe based [73] or Bundle Adjustment (BA) op-
timization based solutions, where a set of robot poses and map elements are optimized
together. Independent map elements assumption confers a sparse structure to the under-
lying optimization problem which can be easily exploited, leading to a computational cost
which scales only with the number of optimized poses. To reduce the computational bur-
den, not all robot poses are used, but only a smaller set of them, named as keyframes. In
addition, as the estimation improves iteration after iteration, linearization points are also
updated, making the linear approximation more accurate than filter based approaches.
Comparing both solutions, keyframe based ones offer a more precise solution in terms
of robot localization as reported by [125], as well as a more complete and precise map.
During this thesis we will only focus on optimization based approaches.

3



1.2 Related Work

This related work section is joint work with the rest of the authors of [22]

In this thesis we will be focused on visual and visual-inertial SLAM. Table 1.1 presents
a summary of both groups, showing the main techniques used for estimation and data
association. The qualitative accuracy and robustness ratings included in this table are
based on the results presented in section 4.4, and the comparison between PTAM, LSD-
SLAM and ORB-SLAM reported by [99]

1.2.1 Visual SLAM

Monocular SLAM was first solved in MonoSLAM [34] being later improved in [28, 35].
It used an Extended Kalman Filter (EKF) and Shi-Tomasi points that were tracked in
subsequent images doing a guided search by correlation. Mid-term data association was
significantly improved using techniques that guarantee that the feature matches used are
consistent, achieving hand-held visual SLAM for the first time [30, 31].

In contrast, keyframe-based approaches estimate the map using only a few selected
frames, discarding the information coming from intermediate frames. This allows to
perform the more costly, but more accurate, BA optimization at keyframe rate. The
most representative system was PTAM [73], that split camera tracking and mapping in
two parallel threads. Keyframe-based techniques are more accurate than filtering for
the same computational cost as highlighted by [125], becoming the gold standard in
visual SLAM and Visual-Odometry (VO). Large scale monocular SLAM was achieved at
[126] using sliding-window BA, and at [124] using a double-window optimization and a
covisibility graph.

Building on these ideas, ORB-SLAM [97, 99] uses ORB features, whose descriptor
provides short-term and mid-term data association, builds a covisibility graph to limit
the complexity of tracking and mapping, and performs loop-closing and relocalization
using the bag-of-words library DBoW2 [54], achieving long-term data association. To
date it is the only visual SLAM system integrating the three types of data association,
which we believe is the key to its excellent accuracy.

Direct methods do not extract features, but directly use the pixel intensities in the im-
ages, and estimate motion and structure by minimizing a photometric error. LSD-SLAM,
[45], was able to build large scale semi-dense maps using high gradient pixels. However,
map estimation was reduced to pose-graph, achieving lower accuracy than PTAM and
ORB-SLAM. The hybrid system SVO, [50, 53], extracts FAST features, uses a direct
method to track features and any pixel with nonzero intensity gradient, from frame to
frame, and optimizes camera trajectory and 3D structure using reprojection error. SVO
is extremely efficient, but being a pure VO method, it only performs short-term data
association, which limits its accuracy. Direct Sparse Odometry DSO, [46], is able to
compute accurate camera poses in situations where point detectors perform poorly, en-
hancing robustness in low textured areas or against blurred images. It introduces local
photometric BA that simultaneously optimizes a window of 7 recent keyframes and the
inverse depth of the points. Extensions of this work include stereo [140], loop-closing
using features and DBoW2 [56, 78], visual-inertial odometry [137] and monocular with
depth prediction [145, 146]. Direct Sparse Mapping DSM [154] introduces the idea of
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map reusing in direct methods, showing the importance of mid-term data association. In
all cases, the lack of integration of short, mid, and long-term data association results in
lower accuracy than our SLAM proposal (see section 4.4).

1.2.2 Visual-Inertial SLAM

The combination of visual and inertial sensors provides robustness to poor texture, motion
blur and occlusions, and in the case of monocular systems, makes scale observable. These
features make visual-inertial SLAM the most suitable solution for AR/VR applications,
being therefore a very active field of research in both the academia and industry.

Research in tightly coupled approaches can be traced back to MSCKF [94], where the
EKF quadratic cost in the number of features is avoided by feature marginalization. The
initial system was perfected in [82] and extended to stereo in [102, 103]. The first tightly
coupled visual-inertial odometry system based on keyframes and bundle adjustment was
OKVIS [79, 80], that is also able to use monocular and stereo vision. While these systems
rely on features, ROVIO [12, 13] feeds an EFK with photometric error using direct data
association.

ORB-SLAM-VI, [98], presented for the first time a visual-inertial SLAM system able
to reuse a map with short-term, mid-term and long-term data associations, using them in
an accurate local visual-inertial BA based on IMU preintegration [52, 87]. However, its
IMU initialization technique was too slow, taking 15 seconds, which harmed robustness
and accuracy. In addition, this system only managed pinhole monocular cameras, which
limited its applications. VINS-Mono [108] is a very accurate and robust monocular-
inertial odometry system, with loop-closing using DBoW2 and 4 DoF pose-graph opti-
mization, and map-merging. Feature tracking is performed with Lucas-Kanade tracker,
being slightly more robust than descriptor matching. In VINS-Fusion [110] it has been
extended to stereo and stereo-inertial configurations.

VI-DSO [137] extends DSO to visual-inertial odometry. They propose a bundle ad-
justment which combines inertial observations with the photometric error in selected high
gradient pixels, which renders very good accuracy. As the information in high gradient
pixels is successfully exploited, the robustness in scene regions with poor texture is also
boosted. Their initialization method relies on visual-inertial BA and takes 20-30 seconds
to converge within 1% scale error.

The recent BASALT [136] is a stereo visual-inertial odometry system that extracts
non-linear factors from visual-inertial odometry to use them in BA, and closes loops
matching ORB features, achieving very good to excellent accuracy. Kimera [114] is a
novel outstanding metric-semantic mapping system, but its metric part consists in stereo-
inertial odometry plus loop closing with DBoW2 and pose-graph optimization, achieving
similar accuracy to VINS-Fusion.

1.3 Contributions

This thesis aims to develop solutions for making visual and visual inertial SLAM systems
more robust to real situations. In this sense, our contributions are:

• A joint visual-inertial initialization method [19]: We build on the initialization
method proposed by Martinelli [90] and extended by Kaiser et al. [69], modifying it
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to be more general and efficient. We improve accuracy with several rounds of visual-
inertial bundle adjustment, and robustify the method with novel observability and
consensus tests that discard erroneous solutions. Our results show that our method
is able to initialize in less than two seconds with scale errors around 5%, which can
be further reduced to less than 1% performing visual-inertial bundle adjustment
after ten seconds. This contribution is detailed in section 3.2

• An inertial-only optimization method for IMU initialization [21]: We for-
mulate for the first time Visual-Inertial initialization as an optimal estimation prob-
lem, in the sense of maximum-a-posteriori (MAP) estimation. This allows us to
properly take into account IMU measurement uncertainty, which was neglected in
previous methods that solved sets of algebraic equations or minimized ad-hoc cost
functions using least squares. Our exhaustive initialization tests on EuRoC dataset
show that our proposal outperforms the best methods in the literature, being able
to initialize in 2 seconds in almost any point of the trajectory, with a scale error
lower than 5% on average. This contribution is introduced in section 3.3.

• ORB-SLAM3: A robust visual-inertial system [22]: We propose ORB-SLAM3,
the first system able to perform visual, visual-inertial and multi-map SLAM with
monocular, stereo and RGB-D cameras, using pin-hole and fisheye lens models.
The main contribution from this thesis is a feature-based tightly-integrated visual-
inertial SLAM system that fully relies on Maximum-a-Posteriori (MAP) estimation,
even during the IMU initialization phase. The result is a system that operates ro-
bustly in real time, in small and large, indoor and outdoor environments, and is
two to ten times more accurate than previous approaches. Our detailed exper-
iments show that, in all sensor configurations, ORB-SLAM3 is as robust as the
best systems available in the literature, and significantly more accurate. Notably,
our stereo-inertial SLAM achieves an average accuracy of 3.6 cm on the EuRoC
drone and sub-centimeter accuracy under quick hand-held motions in the room of
TUM-VI dataset, a setting representative of AR/VR scenarios. This contribution
is presented in chapter 4.

• DynaSLAM II: A SLAM system with dynamic objects [9]: The assumption
of scene rigidity is common in visual SLAM algorithms. However, it limits their
applicability in populated real-world environments. We propose DynaSLAM II, a
visual SLAM system for stereo and RGB-D configurations that tightly integrates
multi-object tracking capability. The specific contribution of this thesis is the for-
mulation of a BA where, structure of the static scene and of the dynamic objects is
jointly optimized with the trajectories of both the camera and the moving agents.
We demonstrate that tracking dynamic objects does not only provide rich clues for
scene understanding but is also beneficial for camera tracking. This contribution is
described in section 5.1

• A scale-aware direct monocular odometry using depth predictions [18]:
Pure monocular SLAM has scale ambiguity, being not possible to recover it. We
introduce a monocular scale-aware system, based on depth predictions from a deep
neural network. We propose a tightly-coupled optimization that combines photo-
metric and predicted depth residuals from multiple views and significantly improves
accuracy with respect to monocular solutions, completely removing the scale drift
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issue. This is validated in the KITTI odometry dataset, compared against state-of-
the-art monocular systems and other similar solutions, outperforming them. This
contribution is described in section 5.2

1.4 Dissemination

1.4.1 Peer-reviewed publications

The main results of this thesis have resulted in the following publications:

• Campos, C., Montiel, J. M., & Tardós, J. D.: Fast and robust initialization for
visual-inertial SLAM. In IEEE International Conference on Robotics and Automa-
tion (ICRA), pp. 1288-1294, May 2019

• Campos, C., Montiel, J. M., & Tardós, J. D.: Inertial-only optimization for visual-
inertial initialization. In IEEE International Conference on Robotics and Automa-
tion (ICRA), pp. 51-57, May 2020

• Bescos, B., Campos, C., Tardós, J. D., & Neira, J.: DynaSLAM II: Tightly-coupled
multi-object tracking and SLAM. IEEE Robotics and Automation Letters, 6(3):
5191-5198, July 2021

• Campos, C., Elvira, R., Rodríguez, J. J. G., Montiel, J. M., & Tardós, J. D.:
ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual–Inertial, and
Multimap SLAM. IEEE Transactions on Robotics, published online, May 2021

There is a publication currently under review, submitted to the IEEE International Con-
ference on Robotics and Automation (ICRA) 2022, corresponding to the latest work in
a monocular direct odometry based on depth-predictions.

• Carlos Campos and Juan D Tardós. Scale-aware direct monocular odometry. arXiv
preprint arXiv:2109.10077, 2021.

1.4.2 Licensed software

The University of Zaragoza has licensed to companies in Asia, America and Europe
two software libraries jointly developed during this thesis, for their use in commercial
products:

• Juan D. Tardós, José M. M. Montiel, Carlos Campos, Richard Elvira: Biblioteca
Software ORB-SLAM Stereo-Inertial, Registro General de la Propiedad Intelectual
10/2019/571, 27-Nov-2019. Licensed to a company in China.

• Juan D. Tardós, José M. M. Montiel, Carlos Campos, Richard Elvira, Juan J.
Gómez: Biblioteca Software ORB-SLAM3, Registro General de la Propiedad Int-
electual 10/2021/364, 5-Jul-2021. Licensed to 5 companies in UK, Norway, Ger-
many, Israel and USA

– code: https://github.com/UZ-SLAMLab/ORB_SLAM3

– multimedia: https://www.youtube.com/channel/UCXVt-kXG6T95Z4tVaYlU80Q
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Chapter 2

Optimization based SLAM

In this chapter we present the necessary fundamentals for optimization based visual and
visual-inertial SLAM.

2.1 Visual SLAM

Visual SLAM stands for systems which use information from cameras to solve the local-
ization of the robot and mapping of the environment in real time. Information acquired
from cameras is represented by images I, which are functions from a two dimensional
domain Ω to a subset of the positive real space (for gray scale images), usually [0, 255],
such that:

I : Ω −→ [0, 255] (2.1)

A 3D point x in the world reference frame is projected into the camera according to
a surjective map π : R3 −→ Ω:

u = π(TCW ⊕ x) (2.2)

being u ∈ Ω the map point projection and TCW ∈ SE(3) the rigid body transformation
from world (W) reference frame to camera (C) frame. This is composed of a rotational
part RCW ∈ SO(3) and a translation pCW ∈ R3. TCW allows us to transform 3D points from
world to camera reference, defining the following transformation operator ⊕:

⊕ :SE(3)× R3 −→ R3 (2.3)
T⊕ x −→ Rx + p (2.4)

Along this text, when there is not possible confusion and for clarity sake, we will also
omit the ⊕ operator. In addition, we will indistinctly use ⊕ also for SE(3) compositions,
such that ⊕ : SE(3)×SE(3) −→ SE(3), which is equivalent to usual matrix multiplication.

The most simple way of parametrizing the map is by means of a set of 3D points, also
named as map points or landmarks. Map points can be directly parameterized by its 3D
position x = (x, y, z), or by mean of its inverse depth [29] ρ and its image observation
u ∈ Ω in a reference frame, usually named as host (h) or anchor. In that case, point’s
world coordinates are computed as:

x = TWh ⊕ π−1(u, ρ) (2.5)
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where TWh is the relative transformation from host (h) keyframe to world, and π−1 :
Ω × R −→ R3 stands for the injective inverse function, mapping an image point and its
inverse depth to the respective 3D point at camera reference frame. Map π, and its
inverse π−1, may take different forms depending on the camera model, and it is defined
by its calibration parameters. Along this thesis we will keep an abstract formulation for
π, making it general for any camera model. For details about specific camera models, see
appendix B.1

There exist other ways of parametrizing the geometry of the environment than 3D
points. Some of them make use of other geometry entities like lines [60, 106] or planes
[67, 148]. Other estimate 3D points and use them to build meshes [114], having a more
complete and dense reconstruction but without modifying the underlying representation.
When there is a prior knowledge about objects and entities that may exist in the scene,
it is possible to parametrize all points belonging to the same object with just a SE(3)
transformation, which supposes a big compression [55, 120].

Recently, leveraging the advancements on compact and implicit representation using
deep-learning models, new parametrizations have been adopted for SLAM. In this sense,
some works [14, 32, 92] propose to use a encoder-decoder structure, where the scene is
encoded in a latent space with a low dimensionality, being possible to estimate it on
real time. Recent work on volumetric neural representation [93] allows using a Multi
Layer Perceptron (MLP) to render very realistic new views of the scene. This has an
immediate application to the SLAM problem, opening a new line of research for the
SLAM community, which has lead to the first results [129]

Other information than geometry, such as semantics, may be used to characterize the
map. In this thesis we will be limited to map representation with 3D points. For this
case, depending on how image information is exploited we find two big visual SLAM
groups which are presented in the following sections.

2.1.1 Feature based SLAM

From each image I, feature based methods extract a set of interest points, also known as
features or keypoints, usually corresponding with corners, which have intensity gradients
in two directions. Exploiting these characteristic points allows to perform robust data
association, as well as making possible place recognition [85] for relocalization and loop
closing based on Bag of Words [54]. Feature based SLAM leads to sparse maps, typically
having a lower computational cost than its counterparts direct methods. These keypoints
may be tracked along different images in two different way:

• Extracting and matching descriptors. Each keypoint and its surrounding pixels
in the image are summed up in an array of binary or real values (i.e. SIFT, SURF
or ORB), which have some nice properties like being translation and rotational
invariant, or robust against luminosity changes. For a pair of descriptors a distance
is defined, thus matching may be performed by finding the descriptors with the
lowest distance along the different images.

• By patch correlation. A patch surrounding each point is tracked along images
by minimizing the intensity difference of all its pixels with respect to the reference
image (i.e. Lucas-Kanade). This allows to exploit more information from the image
since the condition for extracting keypoints may be relaxed and points’ extraction

10



Map Points

Figure 2.1: Factor graph representation for pure visual Bundle Adjustment. Reprojection
or photometric residuals (red boxes) relate map points’ positions and camera poses.

does not need to be done for each frame. However, it is less robust to luminosity
or point of view changes and has a higher computational cost.

In both cases, we end up with a set of matches {uj1 . . .ujn|ui ∈ Ω} for a given 3D point
xj. For each of this matches, a residual error rji,proj based on reprojection error is defined
as:

rji,proj = uji − π(TiW ⊕ xj) (2.6)

This error is the difference in pixels between the estimation π(TiW⊕xj) and the mea-
surement uji . Although we have assumed a xyz parametrization, an equivalent expression
may be derived for inverse depth. Considering all keyframes K, all points P and their
matches, and being Pi the set of points observed from keyframe i, we can define the
following least-square optimization problem:

{TiW,x
j|∀i ∈ K, j ∈ P} = arg min

TiW,xj

∑
i∈K

∑
j∈Pi

ρHub

(∥∥rji,proj∥∥2

Σj
i

)
(2.7)

This least-squares optimization problem is known as Bundle Adjustment (BA), [133],
and it is the main SLAM back-end process which needs to run at keyframe frequency.
This optimization can be stated as a factor graph [77], as represented in figure 2.1, and
under Gaussian noise assumption it is equivalent to finding the state which maximizes
the posterior distribution given the visual matches.

A Mahalanobis norm is used to weight measurements with the inverse of its covariance
matrix Σj

i , usually composed with a robust kernel such as Huber (ρHub). This prevents
quadratically weighting outliers, reducing its influence and rendering the optimization
more robust. Common iterative methods for solving this optimization are Levemberg-
Marquardt and Gauss-Newton, which entails solving a linear system with a symmetric
definite matrix, in such a way that efficient and stable Cholesky decomposition may be
used (See A.1 for more details).

2.1.2 Direct SLAM

The second approach consists in using the image information as it is, without extract-
ing keypoints nor descriptors. A subsampling is performed to obtain points with high
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Figure 2.2: Factor representation for a photometric residual given inverse depth represen-
tation. In contrast with reprojection error and xyz parametrization, host is also included.
This requires derivatives to be computed also with respect to host pose, but this may be
efficiently done from observer derivatives (see section B.3)

intensity gradient, as well as a pyramid representation is built to increase the basin of
convergence. The Bundle Adjustment optimization is built formulating a photometric
cost, which consists in directly comparing intensity values from the image at different ob-
server keyframes and that one of reference (host). This usually implies an inverse depth
parametrization. The photometric residual for point j seen from keyframe i and hosted
at keyframe h is defined as:

rji,photo = Ih(u
j
h)− αhiIi(π(Tih ⊕ π−1(ujh, ρ

j)))− βhi (2.8)

Terms αhi and βhi define a relative affine transformation which is used to remove
the effect of light changes or exposure value between keyframes. This residual can be
extended to patches [46], where instead of comparing the intensity of single pixels, we
use a set Nuj

of surrounding pixels, such that:

rji,photo =
∑

u′∈Nuj

Ih(u
′)− αhiIi(π(Tih ⊕ π−1(u′, ρj)))− βhi (2.9)

Under the assumption that all patch pixels have the same inverse depth and same
geometric derivatives, this does not imply an important increment in the computational
cost, while it makes points to be better conditioned. Regarding the factor graph rep-
resentation, the photometric residual does not only relate observer pose and map point
position, but also host pose, as represented in figure 2.2

With this defined photometric residual, one can build an equivalent optimization
problem to equation 2.7, such that:

{TiW, αi, βi, ρ
j|∀i ∈ K, j ∈ P} = arg min

TiW,αi,βi,ρj

∑
i∈K

∑
j∈Pi

ρHub

(∥∥rji,photo∥∥2

Σj
i

)
(2.10)

Since this formulation may contain much more minima and a smaller basin of con-
vergence compared with feature based BA, a pyramidal implementation is commonly
used. This consists of subsampling the image at different levels, getting lower resolu-
tion images. Optimization stars at the highest level and continues until original image
resolutions. This multistage optimization increases the basin of convergence, not being
necessary to have such a precise initial seed. It is worth noting that this formulation does
not have a matching procedure like that one for featured based SLAM. Instead, the cor-
respondences are found while solving the optimization problem, checking if the intensity
difference, between reference patch and that one corresponding with the reprojection, is
below some threshold.
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This photometric formulation allows in theory to exploit the whole set of pixels from
an image. However, there are some limitations which make it not feasible, such as points
with no image gradient or computational complexity. For these reasons, most direct
SLAM systems do not work with all pixels but with a smaller set of points with high
gradient. This set is larger than that one from featured based systems, leading to a
more complete representation on the environment as we will see in section 5.2, but not
necessarily to a more precise robot localization as shown in section 4.4.

There exist some approaches [78] which use both formulation, using features and high
gradient points, combining reprojection and photometric residuals. While photometric
points allow to exploit more information from the image, features eases data association
and place recognition.

2.2 Visual-Inertial SLAM

Cameras provide very rich information about the environment. However, pure visual
SLAM systems are prone to fail in challenging situations, namely fast motion leading to
motion blur, temporal occlusions or featureless scenes. In addition, there is information,
such as the global pose, scale for monocular sensors, instant acceleration or angular
velocity, which can not be directly retrieved from visual sensors. In this sense, coming
back to the BA equation 2.7, it is worth saying that the optimum for this minimization
is not unique. In fact, once we have found an optimal solution, if we apply an arbitrary
SE(3) transformation to all keyframes and points, the global cost is the same. This is
denoted as gauge freedom, and usually removed by arbitrarily fixing the 6 degrees of
freedom (DoF) of the first keyframe of the map. In particular, for a pure monocular
SLAM system, scale is also not observable, having an extra DoF, which also leads to the
well-known problem of scale drift, as reported by [126]. To remove its gauge freedom one
can fix the distance between the first two keyframes.

All these drawbacks may be mitigated by using an Inertial Measurement Unit (IMU).
This is a proprioceptive sensor which measures the linear acceleration and the angular
velocity in the sensor reference frame, at a much higher frequency than visual sensors.
For short periods, it is possible to accurately estimate the pose and velocity changes
of the robot using just a single IMU. In addition, these measurements allow to render
observable the scale of the map for a monocular camera, as well as the gravity direction.
This reduces the gauge freedom of the problem to just 4 degrees, namely translation and
yaw.

IMU is composed of two sensors, the accelerometer and gyroscope, which do not
measure the true linear acceleration a nor angular velocity ωωω, but quantities ã and ω̃ωω,
which are affected by noises (ηa, ηg), biases (ba,bg) and gravity g. For an instant i
measurements take the following expressions:

ãi = RT
i (ai − g) + bai + ηai ∈ R3

ω̃ωωi = ωωωi + bgi + ηgi ∈ R3 (2.11)

where Ri ∈ SO(3) stands for the rotation from world W to IMU or body reference B at
time i. Biases are assumed to evolve according to random walks ηarw and ηgrw. Given an

13



IMU measurement, two consecutive states relate as:

Ri+1 = RiExp ((ω̃ωωi − bgi ) ∆t)

vi+1 = vi + g∆t+ Ri (ãi − bai )

pi+1 = pi + vi∆t+
1

2
g∆t2 +

1

2
Ri (ãi − bai ) (2.12)

bai+1 = bai + ηarw,i

bgi+1 = bgi + ηgrw,i

Here, Ti = [Ri,pi] ∈ SE(3) stands for the transformation from IMU reference at time
i to world, while vi for its velocity in the world frame at instant i. Exp maps a vector
from the tangent space so(3), isomorphic to R3, to the Lie group SO(3), as explained
in appendix section D.2.3. From these equations, which describe the dynamics of the
system, one can see that state needs to be expanded to also include keyframe velocities
and biases, in addition to camera poses and map points positions from pure visual SLAM.

2.2.1 IMU integration and residuals

Since IMU works at a much higher rate than visual sensors, there will exist several inertial
measurements between each pair of consecutive frames or keyframes. The naive approach
for estimating keyframe j state from keyframe i state would be to iteratively use equations
2.12. However, this expensive procedure should be repeated each time state i is modified,
which is too expensive.

Instead, as proposed by [87] and further developed by [52], IMU measurements may
be summarized in preintegrated terms. These need to be computed just once and may
be efficiently used to recompute state j if state i is modified. These integrated terms are:
∆Rij accounting for rotational change, ∆vij for velocity change, and ∆pij for position
change. They only depend on IMU measurements between time i and j as well as their
biases, and can be used to estimate state j as follows:

Rj ≈ Ri∆Rij(b
g
i )

vj ≈ vi + g∆tij + Ri∆vij(b
g
i ,b

a
i )

pj ≈ pi + vi∆tij +
1

2
g∆t2ij + Ri∆pij(b

g
i ,b

a
i ) (2.13)

baj ≈ bai

bgj ≈ bgi

where ≈ is used to emphasize that right hand sides are affected by measurement and
model noises. With these new expressions, inertial measurements should be reintegrated
only when biases are updated. Instead of doing that and noticing that biases do not
suffer big variations, [87] proposed to use a linear approximation. In this way, when a
bias is updated by δb, the new integrated term can be computed as:

∆pij(b
a
i + δba,bgi + δbg) = ∆pij(b0) +

∂∆pij
∂bai

∣∣∣∣
ba
i

δba +
∂∆pij
∂bgi

∣∣∣∣
bg
i

δbg (2.14)

with equivalent expressions for integrated rotation and velocity. Thanks to this formula-
tion, inertial measurements need to be integrated just once, lately updating preintegrated
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Map Points

Figure 2.3: Factor graph representation for Visual-Inertial Bundle Adjustment. Visual
residuals (red boxes) relates map points positions and body poses, while IMU preinte-
grated residuals (yellow boxes) connect consecutive keyframes states.

terms by mean of previous expressions. Details about how to efficiently compute these
preintegrated terms and their derivatives are provided at [52].

In addition, from (2.13), [52] formulates a set of inertial residuals taking the difference
from the left and right hand side, such that:

rij∆R = Log
(
RT
jRi∆Rij

)
rij∆v = vj − vi − g∆tij −Ri∆vij

rij∆p = pj − pi − vi∆tij −
1

2
g∆t2ij −Ri∆pij (2.15)

rij∆ba = baj − bai

rij∆bg = bgj − bgi

where Log : SO(3) −→ so(3) is the inverse map of Exp, as described in appendix section
D.2.3. All these residuals are three dimensional vectors, and covariances for all of them
are provided at [52], making possible to combine them together with residuals from other
sensors. The foundations of these residuals are deeply related with matrix Lie Groups
theory, whose most used concepts are covered in the appendix D.1. We finally define the
full inertial residual rijI as:

rijI = [rij∆R, r
ij
∆v, r

ij
∆p, r

ij
∆ba , r

ij
∆bg ] (2.16)

and combined with visual measurements, a new optimization problem is found, such that:

{TiW,vi,b
a
i ,b

g
i ,x

j|∀i ∈ K, j ∈ P} =

arg min
TiW,vi,ba

i ,b
g
i ,x

j

∑
i∈K

{∑
j∈Pi

ρHub

(∥∥rji,proj∥∥2

Σj
i

)
+
∥∥ri,i+1
I

∥∥
Σi,i+1
I

}
(2.17)

This problem is named as visual-inertial Bundle Adjustment, and replaces the visual
BA presented in the previous section. Similarly, it can also be represented as a factor
graph, as illustrated in figure 2.3. Since we are solving an iterative optimization problem
(equations 2.7, 2.10 and 2.17) we need an initial seed for all unknowns. For visual
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variables, those unknowns are the two first body poses and an initial set of 3D landmark
positions. Finding these initial guesses is known as visual initialization. On the other
hand, for pure inertial variables such as velocities, biases, scale (for monocular SLAM)
and gravity direction, finding their initial guesses is known as IMU initialization. Both
initializations may be solved together, or vision initialization can be solved first and
then be used to initialized the IMU. Section 3 of this thesis will be devoted to the IMU
initialization.
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Chapter 3

Inertial Initialization

3.1 Introduction

Launching a SLAM system from scratch is one of the trickiest parts since we do not have
any estimation yet, but just measurements. For pure monocular visual SLAM, estimating
the camera motion requires an estimation of the 3D structure, while for initially inferring
the structure we need to have an estimated motion. To solve this problem, named as
visual initialization, there exist several approaches. Assuming a feature based system,
correspondences between points in the first two keyframes may be used to retrieve an
homography model for planar scenes, or fundamental matrix model for the general case,
[99, 131]. These two models encode the motion between both frames, which allows to
triangulate the tracked points, having an initial estimate good enough to make converge
equation 2.7. On the other hand, if a photometric approach is used, there are no initial
correspondences and this procedure may not be applied. Some works like [45, 46] propose
to randomly initialize points’ inverse depth and set both camera poses to origin, and try
to directly solve equation 2.10. Other proposals, [154], take the same approach as features
based methods, and track some points just for initialization purpose.

For visual-inertial SLAM systems, this initial estimation includes new variables which
need to be computed in the inertial initialization. From equation 2.11, we can see that
gravity and IMU biases need to be known to properly compensate the IMU measurements.
In addition, since the IMU obeys the dynamic laws, we need to work with true scale
poses, being necessary to compute scale factor during the initialization step. Finally,
the initial velocity needs also to be computed. Since we need to integrate the IMU
measurements between each pair of keyframes, the IMU estimation is very sensitive to
noise and errors in these parameters. In fact, the IMU model implies a double integration
of the accelerometer measurements, which leads to double integration of these errors. This
makes errors grow quadratically with integration time, thus being necessary a fairly good
initial guess for IMU variables. For optimization based SLAM, initialization is required to
have an initial seed in the basin of convergence of the optimal solution. Equivalent visual-
inertial optimization problem (equation 2.17) is not globally convex and it is plagued with
local minima.

Depending on whether both initializations are solved together or separately, we can
differentiate two approaches. First, we distinguish the joint visual-inertial initial-
ization which solves for all visual and inertial parameters at one step. They are very
appealing as they allow the immediate launch of the visual-inertial SLAM. These meth-
ods are usually built on some strong assumptions, such as noiseless measurements, which
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allow to obtain elegant closed form solutions but limit their application. Solving these
initializations typically consists of solving a set of algebraic equations. Within this group,
we find some ad-hoc solutions. Most of visual-inertial filter based methods like [65] and
[94] assume strong priors, like steady initial state. This reduces the requirement of the
initialization, even making it not necessary, but may invalidate the linearization approxi-
mation for EKF formulation if the actual situation differs from assumption. [48] proposed
an ad hoc multistage solution for aggressive flights with quadrotors, where the initial-
ization algorithm leverages the fact that motion can be directly controlled and thus it is
possible to perform one suitable for this procedure.

A more complete joint visual-inertial initialization, was introduced by [89, 90], who
proposed a closed-form solution to jointly retrieve the scale, gravity, accelerometer bias
and initial velocity, as well as visual features depth. This method was built on the as-
sumption that camera poses can be roughly estimated from IMU readings. The method
tracks several points, required to be seen in all the images, and builds a system of equa-
tions stating that the 3D point coordinates, as seen from any camera pair, should be the
same. This system is solved by linear least squares. This paper also provides a theoretical
analysis of the conditions for the problem to be solvable and presents simulated results.
This work was extended by [69] that builds a similar linear algebraic system which is
solved using non-linear least squares to also find gyroscope bias and to take gravity mag-
nitude into account by means of a constrained optimization. Simulation and real results
showed that it is possible to find accurate initial solutions in less than 3 seconds, with
relative errors around 15% on speed and gravity. Crucially, the original and modified
methods ignore IMU noise properties, and minimize the 3D error of points in space, and
not their reprojection errors, that is the gold-standard in feature-based computer vision.

On the other hand, we have disjoint (loosely-coupled) visual-inertial initial-
ization, where the divide and conquer approach is followed and two separate steps are
performed. First, we solve for the initial motion and structure up to scale, and secondly,
from these estimations and inertial measurements, we find the initial guesses for gravity,
scale and biases. Between both steps, a visual SLAM may be performed, since motion
used to initialize vision may not be enough for making IMU parameters observable. These
methods require fewer assumptions and have a simpler formulation, but come with an
important drawback. The IMU initialization heavily depends on visual initialization and
pure visual SLAM. If the visual part is not able to initialize, or if it gets lost within a
short period of time, the inertial system will not initialize. We also remark that joint
methods do not necessarily imply a faster initialization, since the amount of data (length
of the trajectory) for solving the problem is typically the same as for disjoint methods.
As modern visual-odometry and visual SLAM systems perform local bundle adjustment
and provide trajectories with much higher precision than IMU integration, these solutions
are becoming more and more popular. Along these methods, we highlight the pioneering
proposal by Mur-Artal and Tardós in ORB-SLAM-VI [98], which was later adopted by
Qin et al. in VINS-Mono [107, 108]. In both cases, the inertial parameters are found in
different steps by solving a set of linear equations using least-squares optimization. In
[98] a linear system is built by eliminating the velocities for each frame. However, these
algebraic manipulations make the minimized errors to be meaningless and unrelated to
sensor noise properties. In order to obtain accurate estimations, including accelerometer
bias, the method requires 15 seconds for initialization. In [108] the accelerometer bias is
assumed to be zero, requiring only 2 seconds to initialize, depending on the motion. In
both methods, IMU measurements are manipulated and mixed in the same linear system,
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where the residuals of all equations are considered with the same weight, ignoring sensor
uncertainties. In addition, the different inertial parameters are solved separately in dif-
ferent steps, not all at once, ignoring the correlations between them. All this leads to an
estimation which is not optimal in the sense of Maximum-a-Posteriori (MAP) estimation.

Sometimes, the initialization is also carried out together with the extrinsic calibration,
which consists of finding camera-IMU relative transformation, necessary for fussing vi-
sual and inertial measurements. In this sense, Yang and Shen [149] formulated an online
initialization and calibration, not making use of any pattern, showing a time of conver-
gence of more than 30 seconds, considerably greater than only initialization methods.
Similarly Dong-Si and Mourikis [39] propose an efficient least square formulation which
also estimates the extrinsic calibration, works with a low number of images and features,
but makes the strong assumption that biases are previously known and results are prone
to errors for short initialization times.

In sections 3.2 and 3.3 we respectively present a joint and a disjoint visual-inertial
initialization.

3.2 Joint Visual-Inertial initialization

In this section, we build on the previously mentioned Martinelli-Kaiser solution [90] [69]
(or simply MK-solution), modifying it to be more general, efficient, robust and precise.
This new formulation address the main existing issues from the original work, which we
identify as:

• It assumes that all features are tracked in all frames used for initializing, and that
all tracks provided are correct. In case of spurious tracks, it can provide arbitrarily
bad solutions.

• The initialization accuracy is low, compared to [98]. To improve it, a lot of tracks
and frames are needed, increasing its computational cost, and making it unfeasible
in real time.

• With noisy sensors, trajectories that are close to the unsolvable cases analyzed by
Martinelli [90] give weak observability of some of the variables. The method lacks
robust criteria to decide when an initialization is accurate enough.

The main novelties of our proposed initialization algorithm are:

1. Generality: we generalize the method to use partial tracks and to take into account
the camera-IMU relative pose.

2. Efficiency: we reduce the running time by using a fixed number of m features and
n keyframes carefully chosen, and adopting the preintegration method proposed in
[51, 87].

3. Observability test: after MK-solution, we perform visual-inertial BA with the m
points and n keyframes, and apply a novel observability test to check the accuracy
of the solution. If the test fails, the initialization is discarded.
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4. Consensus test: we try to initialize additional tracked features by triangulating
the 3D point and checking the reprojection error. If enough consensus is found, we
perform a second visual-inertial BA with all points and keyframes, and initialize
the SLAM map with them. Otherwise, the initialization is discarded.

We present exhaustive initialization tests on the EuRoC dataset [16] showing that the
method is able to consistently initialize in less than 2s with a scale error of 5%. This
error converges to 1% performing visual-inertial BA after 10s, when the trajectory is long
enough to give higher observability of all variables.

3.2.1 Initial Solution

3.2.1.1 Feature extraction and tracking

We use the multiscale ORB extractor [117] to find M uniformly distributed points to be
tracked. As points with high resolution are preferable, we only extract ORB points at the
three finest image scales, using a scale factor of 1.2. We have found that the extraction
of FAST features and matching with ORB descriptors is not stable enough to obtain
long tracks, as most of the features were lost in some of the frames. Hence, to solve this
problem, we have performed feature tracking using the pyramidal implementation of the
well known Lucas-Kanade algorithm [86].

However, this tracking is not perfect and could lead to some tracks which are not
correct, particularly in areas of repetitive or low texture or apparent contour, finally
corrupting our solution. To attack this problem, the geometric consistency of these tracks
is checked by finding a fundamental matrix using a RANSAC algorithm. The combination
of FAST keypoints, Lucas-Kanade tracking (KLT), and the fundamental matrix check,
leads to long tracks for a high number of features, as shown in figure 3.1. When some
track is lost or rejected by the RANSAC algorithm, new FAST points are extracted and
start to be tracked, in order to keep a constant number of M tracks. Within this set
of M points, each time we detect that there are at least m tracked points with a track
length of at least l pixels, we launch our initialization method. This first test to decide
whether to attempt initialization or not is called track-length test.

3.2.1.2 Modified Martinelli-Kaiser solution

In this part we extend the method proposed by Martinelli et al. [69, 90] to be able to
deal with features not seen by all cameras, and computing terms in an efficient way using
inertial pre-integration proposed by Lupton and Sukkarieh [87] and latter formulated
in manifolds by Forster et al. [51]. Let m be the number of tracked features used for
initialization, placed at (x1 . . .xm) in the global reference frame, and C = {C1 . . . Cn} the
set of n cameras indexes used for initialization, also referred to as keyframes, which are
chosen to be uniformly distributed along time. Let’s also call Ci = {C1i . . . Cni

} the set
of ni cameras indexes seeing feature i-th, where C1i stands for the first camera seeing
this point. Here we remark that, in contrast to [90], in our formulation not all features
have to be observed by all cameras, and the transformation from camera to body (IMU),
obtained from calibration, is taken into account. Without loss of generality we use as
global reference the first body pose used for initialization.

From figure 3.2, we can write the set of equalities:
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Figure 3.1: Example of obtained tracks. Green for tracks which have been checked
by mean of fundamental matrix; Red for tracks which are inconsistent with computed
fundamental matrix; Blue for tracks which are too short and have not been checked yet.

Figure 3.2: Relationships between two Body (IMU) and Camera poses observing the
same feature.
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p1i
+ R1itBC + λi1iu

i
1i

= pj + RjtBC + λiju
i
j

i = 1 . . .m, ∀j ∈ Ci \ 1i
(3.1)

where:

• pj ∈ R3: position of the j-th body in the global reference frame.

• Rj ∈ SO(3): rotation matrix from j-th body to global reference frame.

• λij: depth of i-th feature at j-th camera reference.

• uij: unitary vector from j-th camera to i-th feature in the global reference frame.
It can be computed as uij = RjRBC cjuij, being cjuij the unitary vector in the j-th
camera reference frame for the i-th feature, which is directly obtained from the
tracked images.

• TBC ≡ [RBC |tBC ]: transformation from Camera to Body (IMU).

Rj and pj can be computed by integrating the inertial measurements. Considering
constant biases during the initialization time and repetitively taking equations 2.12, it
leads to [51]:

R1,j(bg) =

tj−1∏
k=1

Exp((ω̃ωωk − bg)∆t) (3.2)

vj(b) = v1 + g∆t1,j +

tj−1∑
k=1

R1,k(ãk − ba)∆t (3.3)

pj(b) = p1 +

tj−1∑
k=1

(
vk∆t+

1

2
g∆t2 +

1

2
R1,k(ãk − ba)∆t2

)
(3.4)

where:

• Exp stands for the exponential map Exp : R3 → SO(3), as stated in appendix
section D.2.3.

• ãk and ω̃ωωk are k-th acceleration and angular velocity IMU measurement

• b = (ba,bg) are their corresponding accelerometer and gyro biases

• g stands for gravity in the global frame

• vj is the velocity at the j-th body.

• ∆ti,j denotes time difference between i-th and j-th poses.

As stated in section 2.2.1 and following previous work [51, 87], these expressions may
be split into IMU measurement and bias dependent and non-dependent components,
using delta terms ∆R1,j, ∆v1,j, ∆p1,j, which leads to equation 2.13 from section 2.2.1.
Each time biases are modified, we can simply update delta terms, which can be made in
a very efficient way using a linear approximation.
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If during intermediate steps bg changes more than 0.2 rad/sec from the value used
for preintegration, the preintegration is recomputed with this new bias, otherwise, delta
terms are directly updated using their Jacobians w.r.t. biases

(
∂∆R1,j

∂bg , ∂∆v1,j

∂bg , ∂∆v1,j

∂ba ,
∂∆p1,j

∂bg , ∂∆p1,j

∂ba

)
, which can be found in [51]. In this way, we relinearize each time we get

too far from the linearization point. We rewrite equation (3.1) using preintegrated terms:

λi1iu
i
1i
− λijuij − v1∆t1i,j − g

(
∆t21,j −∆t21,1i

2

)
=

∆p1,j −∆p1,1i
+ (∆R1,j −∆R1,1i)tBC

∀i = 1 . . .m, ∀j ∈ Ci \ 1i

(3.5)

Now, we can add the gravity magnitude information. Instead of adding it as a con-
straint of the gravity magnitude by mean of a Lagrange Multiplier formulation or as
done in [69], we prefer to model the gravity by mean of a rotation matrix parametrized
by only two angles (α, β) (rotation around z-axis has no effect) and the constant vector
gI = (0, 0,−g), thus we remain in an unconstrained problem:

g = Exp(α, β, 0)gI (3.6)

Equation (3.5) becomes:

λi1iu
i
1i
− λijuij − v1∆t1i,j = s1i,j(b

g,ba, α, β) (3.7)

where:

s1i,j(b
g,ba, α, β) = Exp(α, β, 0)gI

(
∆t21,j −∆t21,1i

2

)
+

∆p1,j −∆p1,1i
+ (∆R1,j −∆R1,1i)tBC

(3.8)

Neglecting accelerometer bias as in [69], the only unknowns are λij (∀i = 1 . . .m, j ∈
Ci), v1, α, β and bg. Stacking equations for all possible values of i and j we build an
overdetermined sparse linear system, with only three non-zero elements per row, such as:

A(bg)x = s(bg, α, β) (3.9)

where x = (v1, {λij}) is the unknown vector with linear dependence. To jointly find
linear and no-linear dependent parameters, we solve the next unconstrained minimization
problem:

(bg, α, β) , arg min
bg ,α,β

(
min

x
‖A(bg)x− s(bg, α, β)‖2

2

)
(3.10)

Cost function c(bg, α, β) = min
x
‖A(bg)x− s(bg, α, β)‖2

2 is evaluated for each (bg, α, β)

using the following scheme:

1. Update ∆R1,j and ∆p1,j: Using [51], we don’t need to reintegrate all IMU mea-
surements each time that bg changes. We simply update delta terms using their
Jacobians w.r.t. bias. That supposes an important computational saving.
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Figure 3.3: Graph for the first visual-inertial BA. The body poses and points included in
the optimization are the same used in the initial solution.

2. Compute A(bg) and s(bg, α, β) and build the linear system.

3. Solve x = A(bg)\s(bg, α, β) using conjugate gradient, which is very efficient for
sparse systems like this.

4. Compute c(bg, α, β) = ‖A(bg)x− s(bg, α, β)‖2
2.

The computational cost of evaluating c(bg, α, β) comes, first, from solving a sparse
system with no more than 3 + n × m unknowns and 3 × (n − 1) × m equations and,
second, from integrating inertial measurement along the initialization time, which is only
computed once.

To optimize c(bg, α, β) and find the correct gyro bias and gravity direction we use
Levenberg–Marquardt algorithm, where Jacobians of the cost function are computed
numerically. As result, not only IMU initialization parameters are found (g, bg and
v1) but also the position of tracked points (λijuij). We highlight that not all M tracked
features have been used during this initialization, but only a small set of m features,
aiming to reduce computational complexity. However, the solutions found after this step
may not be accurate enough to launch the system, and further intermediate stages are
required, as explained in next sections.

3.2.2 Improved Solution

3.2.2.1 First BA and observability test

After finding the initial parameters (g, bg, v1, {λij}) we build a visual-inertial BA problem
with the same n body poses and m points from the previous step (see figure 3.3). This
optimization contains reprojection errors and IMU residuals leading to a similar problem
to equation 2.17. We set the z axis in the estimated gravity direction. All body poses
have six optimizable variables (φ, t) ∈ se(3) except the first one, which has only two (pitch
and roll) since translation and yaw have been fixed in order to remove the four gauge
freedoms inherent to the visual inertial problem. Body velocities are also included in the
optimization, and they evolve according to the inertial measurements. Initial estimations
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Figure 3.4: Example of Hessian matrix for an initial map with 5 keyframes (KF) and 20
map points (MP). One can distinguish different blocks, outlined with dashed lines. In
the top-left part, we have the diagonal blocks of each keyframe (red), blocks relating con-
secutive keyframes, due to the IMU measurements (blue), and blocks relating keyframes
and IMU biases (pink). In the bottom-right part, there are only the diagonal blocks of
the map points (orange). Out-of-diagonal terms relate map points with the keyframes
that observe them (brown). In this example all cameras observe all features.

for each vertex are added using results from the MK-solution. In addition, accelerometer
bias ba is included in this optimization, but similarly to bg it is assumed to be constant for
all frames. Previous bg estimation from MK-solution step is included by means of a prior,
as well as ba is forced to be close to zero. We call this optimization first BA or simply
BA1. Analytic expression for Jacobians, found in [51], are used for IMU residuals, while
Jacobians for the reprojection error have been derived analytically, taking into account
that we are optimizing body pose and not camera pose (See appendix B.2).

Usually this optimization provides a better initialization solution. However, if the
motion performed gives low observability of the IMU variables, the optimization can
converge to arbitrarily bad solutions. For example this happens in case of pure rotational
motion or non-accelerated motions [90]. In order to detect these failure cases we propose
an observability test, where we analyze the uncertainty associated to estimated variables.
This could be done by analyzing the covariance matrix of the estimated variables and
checking if its singular values are small enough. However, this would require to invert
the information matrix, i.e. the Hessian matrix from first BA, which is a square matrix
of size (3m + 6 + 9n − 4), being computationally too expensive. Instead, we perform
the observability test imposing a minimal threshold to all singular values of the Hessian
matrix associated to our first BA. The Hessian can be built from the Jacobian matrices
associated to each edge in the graph from figure 3.3, as explained next.

Suppose we have {1 . . . p} states, and denote {e1 . . . eq} the set of q measurements
which appear in the first BA. Let’s call Ei the set of measurements where state i is
involved. The Hessian block matrix for states i and j, taking a first order approximation
(see appendix A.1), can be built as follows:
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Figure 3.5: Singular values of the information matrix for a successful initialization and a
failure case on the EuRoC V103 sequence. The successful case has a RMSE ATE error
of 3.16 % in the initialization trajectory, and corresponds to a translation and rotation
motion. The failure case has an error of 64.99 % and corresponds to an almost pure
rotational motion. We draw the observability threshold used tobs = 0.1

Hi,j ≈
∑

e∈Ei∩Ej

JTi,eΩeJj,e (3.11)

where Ωe stands for the information matrix of the e measurement, and Ji,e for the Ja-
cobian of the e measurement w.r.t. i-th state. In order to have a non-zero (i, j) block
matrix, there must to be an edge between i and j node in the graph (measurement
depending on both variables) as shown in figure 3.4.

Applying the SVD decomposition to H and looking at the smallest singular value one
can determine if the performed motion guarantees observability of all the IMU variables.
Hence, we discard all initializations where the smallest Hessian singular value falls be-
low a threshold denoted by tobs. If this observability test is not passed, we discard the
initialization attempt. Examples of a successful and a rejected case are shown in figure
3.5.

3.2.2.2 Consensus test and second BA

As we have noted before, not all M tracked features have been used in MK-solution and
first BA steps, but only m features. To take advantage of these extra unused tracked
points, we propose to perform a consensus test in order to detect initializations which
have been performed using spurious data, such as bad tracked features.

First, the 3D point position of each unused track is triangulated between the two most
distant frames which saw the point, minimizing the reprojection error [131]. Only tracks
with parallax greater than 0.01 radians are used. Then we re-project each 3D point into
all the frames which observe it, compute the residual re-projection error, and perform a
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Table 3.1: Parameters of our initialization algorithm

Total number of tracks M 200
Track-length test (in pixels) l 200
Tracks used for MK-solution m 20
Keyframes used for MK-solution n 5
Observability test : Singular value threshold tobs 0.1
Consensus test : Inlier threshold tcons 90%

χ2(95%) test with 2ni − 3 degrees of freedom, where ni is the number of frames which
observe this point. The consensus test is performed counting the percentage of inliers: if
it is bigger than a threshold tcons we consider that the proposed solution is accurate, if
not, we discard the initialization attempt.

If the consensus test is successful, we perform a second BA (or simply BA2 ) including
the m points used in the initial solution plus all the points which have been triangulated
and detected as inliers, having a total of M ′ points. The graph for this optimization is
similarly built than in case of BA1 but with more points.

3.2.2.3 Map initialization

After this second BA, the keyframe poses are accurate enough, but we only have a few
points to initialize the map. Before launching the whole visual-inertial SLAM system,
we triangulate new points aiming to densify the point cloud and to ease the posterior
tracking operation. Since we already have the keyframe poses, we extract ORB features
in each keyframe and perform an epipolar search in each other, using the ORB descriptor.
All these new points, together with theM ′ points from BA2, are promoted to map points,
and the n frames used for initialization are promoted to map keyframes. The covisiblity
graph [99] of this new map is also created, taking into account the observations of points.

3.2.3 Experiments

The most important parameters of our method are shown in table 3.1. Our implemen-
tation uses ORB-SLAM visual-inertial [98] with its three threads for tracking, mapping
and loop closing. Initialization is performed in a parallel thread, thus it has no effect
in the real time tracking thread. For MK-solution we use Eigen C++ library, while for
graph optimization of BA1 and BA2 we use g2o C++ library [77]. Experiments have
been run in V1 dataset from EuRoC [16] using a Intel Core i7-7700 computer with 32
GB of memory.

3.2.3.1 Results

EuRoC dataset provides stereo images and synchronized IMU measures for three dif-
ferent indoor environments, with different complexity. We have tested our method for
environment V1 from EuRoC at three difficulty levels. We run two different experiments.

In a first experiment, we try to initialize as often as possible in real time. Along
the whole trajectory, every time the tracking thread has m tracks with length l, if the
initialization thread is idle, a new initialization attempt is launched. We measure the
RMS ATE and its scale error with respect to the ground-truth. To measure scale factor,
and thus scale error, we align the initialization and ground-truth trajectories using a
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Figure 3.6: Experiment on EuRoC V101 dataset. In blue, ground truth trajectory; in
green, estimated initialization trajectories whose RMSE ATE error is lower than 5%; in
red, those with a bigger error. On the left, found trajectories without applying any test.
On the right, trajectories which passed observability and consensus tests. Our method
was able to find 511 correct initializations along the whole trajectory, running in real
time.

7DoF Horn alignment, such that for an instant t, the estimated p̂(t) and ground-truth
pGT(t) trajectories are related by:

p̂(t) = T⊕ pGT(t) where T ∈ Sim(3) (3.12)

We proceed in a similar way for ATE, but using a SE(3) alignment.
Figure 3.6 shows initializations found for trajectory V101 before and after the observ-

ability and consensus test. We show in red trajectories which have a RMSE ATE [128]
error bigger than 5% of the initialization trajectory length. We can see in that figure
that our initialization algorithm successfully estimates the trajectory along almost all the
sequence, and both proposed test efficiently reject worst found solutions.

In table 3.2 we show the main numerical results of these experiments with the three V1
sequences. RMSE ATE [128] is expressed in percentage over the length of the initialization
trajectory. Below each sequence name we show successful initializations over the total
number. First thing to notice is the large number of initialization attempts. For example,
in sequence V101 which lasts 130 seconds, up to 728 initializations are computed, and
511 of them have passed the observability and consensus test. The table shows that
the original Martinelli-Kaiser solution obtains average scale errors between 32.9% and
156.7% on these sequences. This error can be reduced until 8.8% to 24.5% applying the
two rounds of visual-inertial BA proposed here. More interestingly, applying the novel
observability and consensus tests, inaccurate initializations are consistently rejected, and
the average scale error is reduced to around 5% for all sequences, a very significant
improvement over the original method. The ATE error is also drastically reduced after
both tests. Considering the initialization time we see an evident difference between
V101, that requires initialization trajectories of 2.2 seconds in average, and V102 and
V103 where 1 second is enough. In these two last sequences motion is faster and the
track-length test is satisfied in less time than in the first sequence, where the quadrotor
is flying at low speed.
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Regarding the computational cost, the average CPU required to solve the initialization
is less than 85ms for sequences V102 and V103, and around 121ms for V101, due to the
longer preintegration period. In all cases, the MK-solution step takes around 75% of the
total initialization CPU time.

Table 3.2: Results of exhaustive initialization tests over the three V1 EuRoC sequences.

V1 EuRoC Dataset
After

track-length test
After Observ
+ Cons. test

Seq.
Name

RMSE
ATE (%)

Scale
error (%)

RMSE
ATE (%)

Scale
error (%)

CPU
time (ms)

Trajectory
time (s)

MK-solution 9.176 32.998 7.749 25.104 95.082 2.235
V101

(511/728)
MK-solution

+ BA1 3.977 10.719 2.352 6.471 104.114 2.235

MK-solution
+ BA1&2 3.270 8.816 2.036 5.496 120.983 2.235

MK-solution 12.025 156.751 6.760 48.926 60.285 0.968
V102

(101/395)
MK-solution

+ BA1 6.338 25.252 2.541 7.195 70.963 0.968

MK-solution
+ BA1&2 5.149 20.341 1.935 5.497 84.443 0.968

MK-solution 47.928 128.008 6.634 21.691 62.160 1.070
V103

(71/336)
MK-solution

+ BA1 71.774 28.160 2.475 6.836 73.301 1.070

MK-solution
+ BA1&2 71.068 24.556 1.870 5.259 84.676 1.070

In table 3.3 we show computational times for our method which uses preintegration
with first order bias correction from [51]. Compared with using the original formulation
from Martinelli and Kaiser, computing time is reduced by 60%.

In a second experiment, we launch visual-inertial ORB-SLAM [98] and we retrieve the
RMSE ATE and the scale error just after the proposed initialization, and after performing
full visual-inertial BA at 5 seconds and 10 seconds from the first keyframe timestamp.
We can see in table 3.4 that all three sequences converge to scale error smaller than 1%
after 10 seconds, confirming that our initialization method is accurate enough to launch
visual-inertial SLAM. Compared with the initialization method proposed in [98], our
method requires trajectories of 1 or 2 seconds instead of 15 seconds, uses less CPU time,
and is able to successfully initialize in sequence V103, where the previous method failed.

Table 3.3: Comparison of running time for MK Solution+BA1+BA2 repeating IMU
integration in each iteration and using preintegration with first order bias correction [51].

V101 EuRoC Dataset
CPU time (ms)

Mean Std Max
Reintegrating each time 301.302 91.974 678.886

Using first order correction 120.983 27.609 214.989
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Table 3.4: Results of VI-SLAM using our initialization (average errors on five executions
are shown).

V1 EuRoC Dataset
After

initialization After BA 5s After BA 10s

Seq.
Name

RMSE
ATE
(m)

Scale
error
(%)

RMSE
ATE
(m)

Scale
error
(%)

RMSE
ATE
(m)

Scale
error
(%)

V1_01_easy 0.0183 4.99 0.0200 1.85 0.0170 0.84
V1_02_medium 0.0364 7.38 0.0076 3.67 0.0162 0.71
V1_03_difficult 0.0043 4.80 0.0129 2.50 0.0120 0.27

3.3 Inertial-only optimization

Our work from previous section 3.2 on IMU initialization renders the original method
from Kaiser et al. usable, obtaining on the public EuRoC dataset [16] successful visual-
inertial initializations in 2 seconds with scale error around 5%. However, for some studied
sequences, this method can barely work in 20% of the trajectory. Such a low initialization
recall can be a problem for AR/VR or drone applications where the system is desired to
be launched immediately. For this reason, in this section, we explore the use of disjoint
or loosely coupled visual inertial initialization methods.

Thus, we propose a novel algorithm by formulating the initialization as an optimal
estimation problem, in the sense of Maximum-a-Posteriori (MAP) estimation. For this,
we build on the excellent work of Forster et al. [51] that allows to preintegrate IMU
readings and, taking into account the probabilistic characterization of sensor noises and
properly compute the covariances of the preintegrated terms. Assuming that the error of
the monocular SLAM trajectory is negligible compared with the IMU errors, we derive
a very efficient MAP estimator for inertial-only parameters, and use it to initialize a
visual-inertial SLAM system. The main contributions of our work are:

• The formulation of the visual-inertial initialization as an inertial-only optimal esti-
mation problem, in the sense of MAP estimation, taking properly into account the
probabilistic model of IMU noises.

• We solve for all inertial parameters at once, in a single step, avoiding the incon-
sistencies derived from decoupled estimation. This makes all estimations jointly
consistent.

• We do not make any assumptions about initial velocity or attitude, being the
method suitable for any initialization case.

• We do not assume any IMU parameter to be zero, instead we code the known
information about them as probabilistic priors that are exploited by our MAP
estimation.

In the next sections we present the theory and in-depth details behind our proposal.
Later, we evaluate and compare it against the best examples of joint and disjoint initial-
ization methods, proving to outperform them.
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3.3.1 Maximum-a-Posteriori Initialization

As it has been stated in section 2.2, the gold-standard method for feature-based visual-
inertial SLAM is visual-inertial Bundle Adjustment (VI-BA), that takes properly into
account the noise properties in all the sensors, and obtains a maximum-a-posteriori joint
estimation of all variables. This estimation problem is equivalent to the optimization
solved at equation 2.17. The main limitation of VI-BA is that it requires a good initial
seed to quickly converge and avoid getting stuck in local minima, due to its strong non-
linear nature. Our previously presented initialization, and the disjoint from Mur and
Tardos [98] based on least-squares optimization showed that VI-BA largely improves the
initial solutions.

Here, our main goal is going a step further and use also MAP estimation in the
initialization, making proper use of sensor noise models. Our novel initialization method
is based on the following ideas:

• Despite the non-linear nature of BA, Monocular SLAM (or visual odometry) is
mature and robust enough to obtain very accurate initial solutions for structure
and motion, with the only caveat that their estimations are up-to-scale.

• The uncertainty of visual SLAM trajectory is much smaller than the IMU uncer-
tainties and can be ignored while obtaining a first solution for the IMU variables.
So, we perform inertial-only MAP estimation, taking the up-to-scale visual SLAM
trajectory as constant.

• Inspired on the work of [126], we adopt a parametrization that explicitly represents
and optimizes the scale factor of the monocular SLAM solution.

• Differently from [98] [108], we jointly optimize all the IMU variables in one step, tak-
ing into account the cross-covariances between the preintegrated terms for position,
and linear and angular velocities [51].

Our initialization method can be split in three steps:

1. Vision-only MAP estimation: Initialize and run monocular ORB-SLAM [99]
for a short period (typically 2 s) using BA to obtain a vision-only MAP estimation
up-to-scale. At the same time, compute IMU preintegrations between keyframes
and their covariances [51].

2. Inertial-only MAP estimation: Inertial-only optimization to align the IMU tra-
jectory and ORB-SLAM trajectory, finding the scale, keyframes’ velocities, gravity
direction and IMU biases.

3. Visual-inertial MAP estimation: Use the solution from the previous step as
seed for a full VI-BA to obtain the joint optimal solution.

After the initialization, we launch ORB-SLAM Visual-Inertial [98], that performs local
VI-BA. We have observed that scale estimation accuracy can be further improved after
5-10 seconds performing a full VI-BA or, with much lower computational cost, repeating
the inertial-only optimization.

The three initialization steps are further detailed next.
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3.3.1.1 Vision-only MAP Estimation

We initialize pure monocular SLAM, using the same procedure as in ORB-SLAM to find
the initial motion. Matching of FAST points, using ORB descriptor, is performed between
two initial frames. Fundamental matrix and homography models are found and scored
[99]. That one with a higher score is used to find the initial motion and triangulate the
features. Once the structure and motion are initialized, we do pure monocular SLAM for
2 seconds. The only difference from ORB-SLAM is that we enforce keyframe insertion
at a constant higher frequency (4Hz to 10Hz). In that way, IMU preintegration between
keyframes has low uncertainty, since integration times are very short. After this period,
we have an up-to-scale map composed of ten keyframes and hundreds of points, that has
been optimized using BA by the ORB-SLAM mapping thread.

The up-to-scale keyframe poses are transformed to the body (or IMU) reference using
visual-inertial calibration. These body poses are denoted as T̄0:k = [R, p̄]0:k, where
Ri ∈ SO(3) is rotation matrix from i-th body to world reference, and p̄i ∈ R3 is its
up-to-scale position.

3.3.1.2 Inertial-only MAP Estimation

The goal of this step is to obtain an optimal estimation of the inertial parameters, in
the sense of MAP estimation, using the up-to-scale trajectory obtained by vision. As
we don’t have a good guess of the inertial parameters, using at this point a full VI-BA
would be too expensive and prone to get stuck in local minima. An intermediate solution
would be to marginalize out the points to obtain a prior for the trajectory and its (fully
dense) covariance matrix, and use it while optimizing the IMU parameters. We opt for a
more efficient solution, considering the trajectory as fixed, and perform an inertial-only
optimization. The inertial parameters to be found are:

Xk = {s,Rwg,b, v̄0:k} (3.13)

where s ∈ R+ is the scale factor of the vision-only solution, Rwg ∈ SO(3) is the gravity
direction, parameterized by two angles, such that gravity in world reference frame is
expressed as g = RwggI, with gI = (0, 0, G)T being G the magnitude of gravity, b =
(ba,bg) ∈ R6 are the accelerometer and gyroscope biases, and v̄0:k ∈ R3 the up-to-scale
body velocities from first to last keyframe.

We prefer to use up-to-scale velocities v̄i, instead of true ones vi = sv̄i, since it eases
obtaining an initial guess. Biases are assumed constant for all involved keyframes as
initialization period is just 1-2 seconds, and random walk would have almost no effect.
It is worth noting that this formulation takes into account gravity magnitude from the
beginning, as opposed to [108] and [98] that require a separate step to fix its value.

In our case, the only measurements used come from IMU, and are summarized in the
IMU preintegrated terms defined in [51]. We denote by Ii,j the preintegration of inertial
measurements between i-th and j-th keyframes, and by I0:k the set of IMU preintegrations
between successive keyframes in our initialization window.

With the state and measurements defined, we can formulate a MAP estimation prob-
lem, where the posterior distribution is:

p(Xk|I0:k) ∝ p(I0:k|Xk)p(Xk) (3.14)
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where p(I0:k|Xk) is the likelihood distribution of the IMU measurements given the IMU
states, and p(Xk) the prior for the IMU states. Considering independence of measure-
ments, the likelihood can be factorized as:

p(I0:k|Xk) =
k∏
i=1

p(Ii−1,i|s,gdir,b,vi−1,vi) (3.15)

To obtain the MAP estimator, we need to find the parameters which maximize the
posterior distribution, that is equivalent to minimize its negative logarithm, thus:

X ∗k = arg max
Xk

p(Xk|I0:k) = arg min
Xk

(
− log(p(Xk))

−
k∑
i=1

log (p(Ii−1,i|s,gdir,b,vi−1,vi))

)
(3.16)

Assuming Gaussian error for IMU preintegration and prior distribution, the MAP
problem is equivalent to:

X ∗k = arg min
Xk

(
‖rp‖2

Σp
+

k∑
i=1

‖rIi−1,i
‖2

ΣIi−1,i

)
(3.17)

where rp and Σp are the residual of the prior and its covariance, while rIi−1,i
are the

residuals of the integrated IMU measurements between consecutive keyframes, as defined
in equation 2.15, and ΣIi−1,i

its covariance.
In this optimization, vision reprojection errors do not appear, only inertial residuals.

As IMU measurements do not suffer from data association errors, the use of robust
cost function, like the Huber norm, does not make sense, since it would slow down the
optimization.

These inertial residuals can be rewritten making then dependent on initialization state
Xk = {s,Rwg,b, v̄0:k} as follows,

rIi,j = [r∆Rij
, r∆vij , r∆pij ] (3.18)

r∆Rij
= Log

(
∆Rij(bg)TRT

i Rj

)
r∆vij = RT

i (sv̄j − sv̄i −RwggI∆tij)−∆vij(bg,ba)

r∆pij = RT
i

(
sp̄j − sp̄i − sv̄i∆tij −

1

2
RwggI∆t

2
ij

)
−∆pij(b

g,ba)

Since we assume that biases can be considered constant during the initialization win-
dow, IMU residuals do not include random walk for biases. We assume that the residuals
follow Gaussian distributions, and their covariances can be computed as proposed in [51].

As we are optimizing in a manifold for gravity direction, we need to define a retraction
to update the its estimation during the optimization. In this sense, we update it according
to:

Rnew
wg = Rold

wgExp(δαg, δβg, 0) (3.19)
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Figure 3.7: Underlying graph representation of the inertial-only optimization problem.
Yellow boxes represent IMU residuals, while the purple one represents prior information
for accelerometer bias. Dashed lines point out that keyframe poses are assumed to be
perfectly known up-to-scale from visual SLAM.

where Exp is the SO(3) exponential map as explained in appendix section D.2.3.
In addition, to guarantee that scale factor remains positive during optimization we

define its update as:
snew = sold exp (δs) (3.20)

Biases and velocities are updated additively. If we define δgdir = (δαg, δβg), inertial
parameters updates, used during optimization, are (δs, δgdir, δb

g, δba, {δv̄i}). Derivatives
for IMU residuals w.r.t. these parameters can be found in the appendix B.5.

The final optimization problem, represented in figure 3.7, is implemented and solved
using g2o C++ library [77], using analytic derivatives and Levenberg-Marquardt algo-
rithm.

As it is well known in the literature, gravity and accelerometer bias tend to be coupled,
being difficult to distinguish both of them in most cases. To avoid, or at least mitigate,
that problem, some techniques neglect accelerometer bias during the initialization assum-
ing a zero value [108], while others wait for a long time to guarantee that it is observable
[98]. Here we adopt a sound and pragmatic approach: we include ba as a parameter to be
optimized, but adding a prior residual for it: rp = ‖ba‖2

Σp
. If the motion performed does

not contain enough information to estimate the bias, the prior will keep its estimation
close to zero. If the motion makes ba observable, its estimation will converge towards its
true value. A prior for bg is not needed as it is always well observable from keyframe
orientations and gyroscope readings.

Since we have to solve a non-linear optimization problem, we need an initial guess for
inertial parameters. Hence, we initialize biases equal to zero, while gravity direction is
initialized along the average of accelerometer measurements, as accelerations are usually
much smaller than gravity.

The scale factor needs to be initialized sufficiently close to its true value to guarantee
convergence, but we do not have any initial guess. Taking advantage of our very efficient
inertial-only optimization (5ms), we launch the optimization with three initial scale val-
ues, that correspond to median scene depth of 1, 4 and 16 meters, keeping the solution
that provides the lowest residual as defined in equation 3.17. Our results show that, using
this range of scale values, our method is able to converge in a wide variety of scenes.

Once the inertial-only optimization is finished, the frame poses and velocities and the
3D map points are scaled with the value of s found, and rotated to align the z axis with
the estimated gravity direction. Biases are updated and IMU preintegration is repeated
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Map Points

Figure 3.8: First visual-inertial Bundle Adjustment. Here, reprojection errors are also
included, represented with red boxes, linking keyframes and map points.

with the new bias estimations, aiming to reduce future linearization errors.

3.3.1.3 Visual-Inertial MAP Estimation

Inertial-only optimization provides an accurate enough estimation to be used as a seed
for a first joint visual-inertial Bundle Adjustment, ensuring its convergence. In this opti-
mization, shown in figure 3.8, pure inertial parameters like gdir and s do not appear, but
they are implicitly included in keyframe poses. Compared with [19], this step replaces
the BA1&2 steps. In fact, the optimization is exactly the same, it only differs in the
initial seed, which previously was computed solving a linear system, and now is com-
puted by means of a MAP estimator. A similar optimization is also done in VINS-Mono
initialization, before launching VI odometry.

We remark that all initialization steps are performed in a parallel thread, without
having any effect on the real time tracking thread. Once the optimization is finished, the
system is already initialized, and we switch from visual to visual-inertial SLAM.

3.3.2 Experimental Results

To analyze the capability to initialize under different sensor trajectories, we run an ex-
haustive initialization test. We launch an initialization every 0.5 seconds (one out of 10
frames) in every trajectory of the EuRoC dataset, what results on testing 2248 different
initialization trajectories. To compare, we run the same exhaustive test with our previous
joint initialization method [19] and the loosely coupled initialization of VINS-Mono [108],
using the software provided by the authors. As a baseline, we also try to initialize using
only visual-inertial bundle adjustment with the same initial guesses for gravity direction,
velocities and biases, and the same three initial values for scale our proposal uses, keeping
the solution with smaller residual.

The performance is measured in terms of the scale error before and after applying full
VI-BA. We also report the duration of the initialization trajectory, denoted as tInit, as
well as the total time, tTot, until a successful initialization is achieved. For all methods, if
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a bad initialization is detected, a new one is attempted with the next batch of available
data. This, together with the time needed for visual initialization, makes tTot ≥ tInit.

Results are summarized in table 3.5. The first two blocks compare our method with
our previous joint initialization method [19], based on the work of Martinelli [90] and
Kaiser et al. [69], improved by VI-BA and two rejection tests. The proposed initialization
beats the joint initialization by a wide margin, both in accuracy and needed time, being
able to initialize in less than 4 seconds with scale error of 5.29%, using trajectories of
2.16 seconds on average. The method of [19] was able to obtain a scale error only slightly
worse, but it was at the expense of a tTot of 13 seconds, owing to the high rejection rate
of the proposed tests. The baseline VI-BA initialization, using the same trajectories and
initial guesses, obtains an average scale error of 13.82%, which is even higher than the
11.69% error obtained by just applying our inertial-only optimization, which is also much
more efficient (5 ms per run, compared with 133 ms, as shown in table 3.6).

The last blocks compare our method with the loosely-coupled initialization of VINS-
Mono [108]. To ease comparison, we have configured our system to run with similar-sized
trajectories (tInit) of around 1.25 seconds. With these shorter trajectories, our method
beats the baseline VI-BA initialization doubling its accuracy and more than doubling
the accuracy of VINS-Mono initialization, with a tTot 0.31 seconds higher. This slightly
higher tTot is the result of the visual initialization used in our system, that one from ORB-
SLAM, which in difficult sequences can struggle to success. We remark that reducing the
scale error by using longer initialization trajectories, i.e. increasing tInit, may not be easy
for VINS-Mono. Since this system is not prepared to work as a pure visual odometry
system, visual and inertial initializations have to be solved simultaneously for the same
set of frames, and increasing time for inertial initialization would also increase the visual
initialization time. This entails that points have to be tracked along more frames, which
may be not feasible in case of camera rotation or fast motion.

For VINS-Mono, there is sharp contrast between the 22.05% scale error found in our
exhaustive initialization tests and the low RMS ATE error reported in [108] (in the range
of 0.080-0.320m) when the whole trajectories are processed. This may be explained
because when launched from the beginning, the initialization is performed while the
drone is taking off, which entails big accelerations, making inertial parameters more
observable, while in our experiment, initialization is performed along the whole sequence
where other motions that give lower observability are present. Moreover, since VINS-
Mono marginalizes old states, not fixing them as our SLAM system does, this initial
error can be further reduced as the drone progresses.

In figure 3.9, we plot the scale factor distribution for every studied method, along
the whole EuRoC dataset. Results before visual-inertial BA show that all methods tend
to underestimate the true scale. This bias is worse in VINS-Mono initialization, where
there is a high number of initial solutions whose scale is close to zero. In contrast, the
bias is much lower for inertial-only optimization at 4 Hz, that uses 2.15 s trajectories,
whose mean is close to one. After visual-inertial BA, the bias almost disappears, having
all methods a distribution with mean close to one, but with different variances, being
VINS-Mono with 1s trajectories the worst and our inertial-only optimization with 2 s
trajectories the best.

Finally, considering the computing times in table 3.6, inertial-only optimization is
extremely efficient, taking around 5 ms per run, rotating and scaling points, frames and
velocities takes 11 ms, and full VI-BA requires 132 ms. The inertial-only optimization
time is much lower than the time required by the Martinelli-Kaiser closed-form solution,
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Figure 3.9: Experimental distribution of the scale factor (ratio between estimated and
true scales) obtained by the different initialization methods along all sequences of the
EuRoC dataset, before and after visual-inertial BA. A total of 2248 initializations have
been launched.

which is around 60 ms [19]. Compared with the baseline VI-BA which requires three
runs with different scales for a total 400 ms, our complete method only takes 160 ms, and
doubles the scale accuracy.

Once verified that our inertial-only optimization performs better than previous initial-
ization methods, we have made a second experiment which consists in launching ORB-
SLAM Visual-Inertial [98] using our new initialization. As in [19], we perform two visual-
inertial bundle adjustment 5 and 10 seconds after initialization. We check three different
sequences of EuRoC dataset, with different difficulty degrees, running 5 experiments for
each one. We align both SLAM and GT trajectories, and Absolute Trajectory Error
(ATE) is measured.

Results from table 3.7 show that ORB-SLAM VI reaches in sequences V1_01 and
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Table 3.6: Computing time of our method for the exhaustive initialization experiment
in sequence V1_02.

Step mean (ms) median (ms) max (ms)
Inertial-Only 3×5.24 3×4.92 3×6.39
Map update 11.18 11.25 13.98

Visual-Inertial BA 132.78 136.43 198.07
Total 159.68 163.92 228.24

Table 3.7: Results for ORBSLAM-VI with the proposed initialization (median values
on five executions are shown) compared with results reported for original ORBSLAM-VI
[98] and VINS-Mono in [110].

ORBSLAM-VI
+ our

initialization

ORBSLAM-VI
[98]

VINS-Mono
[110]

Seq. Name Scale
error (%)

RMSE
ATE (m)

Scale
error (%)

RMSE
ATE (m)

RMSE
ATE (m)

V1_01 0.4 0.023 0.9 0.027 0.060
V1_02 0.3 0.026 0.8 0.024 0.090
V1_03 1.7 0.059 - - 0.180

V1_02 similar accuracy levels using the proposed initialization and the original initial-
ization from [98]. In addition, sequence V1_03, which previously could not be processed,
because the original initialization failed, can now be successfully processed. This is be-
cause the new initialization takes just 2 seconds, being possible to immediately use the
IMU, avoiding tracking loss during subsequent fast motions. Our results show that the
combination of our initialization method with ORB-SLAM VI gives a very robust system
that is significantly more accurate than VINS-Mono.

3.4 Discussion

In section 3.2 we have proposed a fast joint monocular-inertial initialization method,
based on the work of [90] and [69]. We have adapted it to be more general, allowing
incomplete feature tracks, and more computationally efficient using the IMU preintegra-
tion method from [51]. Our results show that the original Martinelli-Kaiser technique
does not provide a good enough initialization in most practical scenarios leading to large
unpredictable errors, hence we have proposed two novel tests to detect bad initializations
and two visual-inertial BA steps to improve the solution. These techniques have proven
to be worth it to reduce scale error down to 5% and reject all bad initializations, despite
this could lead to a lower recall. Solutions found after those steps are good enough to
launch Visual-Inertial ORB-SLAM and converge to very accurate maps. In summary, we
have developed a fast method for joint initialization of monocular-inertial SLAM, using
trajectories of 1 to 2 seconds, that is much more accurate and robust than the original
technique [69], with a maximum computational cost of 215ms.

Aiming at a more efficient initialization method with a higher recall, we have proposed
a disjoint visual-inertial initialization. The proposal, stated as a MAP estimation prob-
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lem, has shown to be more accurate than the top-performing methods in the literature,
including our previous proposal, for the same initialization trajectory length, with a very
low computing time. This confirms that optimal estimation theory is able to make a
proper use of the probabilistic models of sensor noises, obtaining more accurate results
than solving linear systems of equations or using non-weighted least squares. Full visual-
inertial BA is a very non-linear problem, plagued with local minima. We have split it in
a fully observable up-to-scale visual problem, followed by an inertial-only optimization
phase that can be solved very efficiently, producing an initial guess that alleviates the
local minima problem.

As future work we would like to study the possibility of making inertial-only opti-
mization information self-aware. This means not to use a fixed initialization time, but
an adaptive trajectory length which would depend on the estimated information of in-
ertial parameters. On the other hand, initialization trajectories may contain motions
with low information (IMU almost steady, not excited) along with more aggressive mo-
tions. Instead of using the entire trajectory, taking only parts of the trajectory with
higher information could be interesting to reduce the computational time and improve
the convergence of the optimization.
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Chapter 4

ORB-SLAM3: A full visual-inertial
system

In this chapter, we present ORB-SLAM3, the first system able to perform visual, visual-
inertial and multi-map SLAM with monocular, stereo and RGB-D cameras, using pin-hole
and fisheye lens models.

The first main novelty is a feature-based tightly-integrated visual-inertial SLAM sys-
tem that fully relies on Maximum-a-Posteriori (MAP) estimation, even during the IMU
initialization phase. The result is a system that operates robustly in real time, in small
and large, indoor and outdoor environments, and is two to ten times more accurate than
previous approaches.

The second main novelty is a multiple map system that relies on a new place recog-
nition method with improved recall. Thanks to it, ORB-SLAM3 is able to survive long
periods of poor visual information: when it gets lost, it starts a new map that will be
seamlessly merged with previous maps when revisiting mapped areas. Compared with vi-
sual odometry systems that only use information from the last few seconds, ORB-SLAM3
is the first system able to reuse in all the algorithm stages all previous information. This
allows us to include in bundle adjustment co-visible keyframes that provide high parallax
observations, boosting accuracy, even if they are widely separated in time or if they come
from a previous mapping session.

Our experiments show that, in all sensor configurations, ORB-SLAM3 is as robust
as the best systems available in the literature, and significantly more accurate. Notably,
our stereo-inertial SLAM achieves an average accuracy of 3.6 cm on the EuRoC drone
and 9mm under quick hand-held motions in the room of TUM-VI dataset, a setting
representative of AR/VR scenarios. For the benefit of the community we make public
the source code [20].

In this chapter, we will focus on the novelties and work related with the visual-inertial
SLAM, which is the contribution of this thesis, while those related with the multimap
system will be just mentioned or even skipped, since they come from work by Elvira et
al. [41]

4.1 Introduction

Intense research on Visual Simultaneous Localization and Mapping systems (SLAM) and
Visual Odometry (VO), using cameras alone or in combination with inertial sensors, has
produced during the last two decades excellent systems, with increasing accuracy and
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robustness. As presented in section 2.1, modern systems rely on Maximum a Posteriori
(MAP) estimation, which in the case of visual sensors corresponds to Bundle Adjustment
(BA), either geometric BA that minimizes feature reprojection error, in feature-based
methods, or photometric BA that minimizes the photometric error of a set of selected
pixels, in direct methods.

With the recent emergence of VO systems that integrate loop-closing techniques, the
frontier between VO and SLAM is more diffuse. A complete discussion of most significant
VO/SLAM systems may be found in section 1.2.

In this work we build on ORB-SLAM, [97, 99], and ORB-SLAM Visual-Inertial, [98],
the first visual and visual-inertial systems able to take full profit of short-term, mid-
term and long-term data association, as exlpained in section 1.2.1, reaching zero drift in
mapped areas. Here we go one step further providing multi-map data association,
which allows us to match and use in BA map elements coming from previous mapping
sessions, achieving the true goal of a SLAM system: building a map that can be used
later to provide accurate localization.

The most important contribution is the ORB-SLAM3 library itself, the most complete
and accurate visual, visual-inertial and multi-map SLAM system to date (see table 1.1).
The main novelties of ORB-SLAM3 are:

• A monocular and stereo visual-inertial SLAM system that fully relies on
Maximum-a-Posteriori (MAP) estimation, even during the IMU (Inertial Measure-
ment Unit) initialization phase. The initialization method proposed was previously
presented in [21], here we extend it to the stereo case and use it to refine the scale
and gravity direction once system is initialized.

• A monocular and stereo visual-inertial SLAM system, built on top of ORB-
SLAM VI, and extended to rectified and non-rectified stereo cameras. After a
thorough evaluation in public datasets, results show that the monocular and stereo
visual-inertial systems are extremely robust and significantly more accurate than
other visual-inertial approaches, even in sequences without loops.

• ORB-SLAM Atlas [41], the first complete multi-map SLAM system able to han-
dle visual and visual-inertial systems, in monocular and stereo configurations.

• An abstract camera representation making the SLAM code agnostic of the
camera model used, and allowing to add new models by providing their projection,
un-projection and Jacobian functions. We provide the implementations of pinhole
[134] and fisheye [70] models.

All these novelties, together with a few code improvements make ORB-SLAM3 the
new reference visual and visual-inertial open-source SLAM library, being as robust as the
best systems available in the literature, and significantly more accurate, as shown by our
experimental results in section 4.4. We also provide comparisons between monocular,
stereo, monocular-inertial and stereo-inertial SLAM results that can be of interest for
practitioners.

4.2 System Overview

ORB-SLAM3 is built on ORB-SLAM2 [97] and ORB-SLAM-VI [98]. It is a full multi-
map and multi-session system able to work in pure visual or visual-inertial modes with
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Figure 4.1: Main system components of ORB-SLAM3. This figure was original from [41]
and adapted to our system

monocular, stereo or RGB-D sensors, using pin-hole and fisheye camera models. Fig-
ure 4.1 shows the main system components, that are parallel to those of ORB-SLAM2
with some significant novelties, that are summarized next:

• Atlas is a multi-map representation composed of a set of disconnected maps. There
is an active map where the tracking thread localizes the incoming frames, and is
continuously optimized and grown with new keyframes by the local mapping thread.
We refer to the other maps in the Atlas as the non-active maps. The system builds
a unique DBoW2 database of keyframes that is used for relocalization, loop closing
and map merging.

• Tracking thread processes sensor information and computes the pose of the cur-
rent frame with respect to the active map in real-time, minimizing the reprojection
error of the matched map features. It also decides whether the current frame be-
comes a keyframe. In visual-inertial mode, the body velocity and IMU biases are
estimated by including the inertial residuals in the optimization. When tracking is
lost, the tracking thread tries to relocate the current frame in all the Atlas’ maps.
If relocated, tracking is resumed, switching the active map if needed. Otherwise,
after a certain time, the active map is stored as non-active, and a new active map
is initialized from scratch.

• Local mapping thread adds keyframes and points to the active map, removes
the redundant ones, and refines the map using visual or visual-inertial bundle ad-

43



justment, operating in a local window of keyframes close to the current frame.
Additionally, in the inertial case, the IMU parameters are initialized and refined by
the mapping thread using our novel MAP-estimation technique.

• Loop and map merging thread detects common regions between the active map
and the whole Atlas at keyframe rate. If the common area belongs to the active
map, it performs loop correction; if it belongs to a different map, both maps are
seamlessly merged into a single one, that becomes the active map. After a loop
correction, a full BA is launched in an independent thread to further refine the map
without affecting real-time performance.

4.3 Visual-Inertial SLAM

ORB-SLAM-VI was the first true visual-inertial SLAM system capable of map reusing.
However, it was limited to pinhole and monocular cameras, and its initialization was too
slow, failing in some challenging scenarios. In this work, we build on ORB-SLAM-VI
providing a fast an accurate IMU initialization technique, and an open-source SLAM
library capable of monocular-inertial and stereo-inertial SLAM, with pinhole and fisheye
cameras.

4.3.1 IMU Initialization and scale refinement

As introduced in chappter 3 the goal of this step is to obtain good initial values for
the inertial variables: body velocities, gravity direction, and IMU biases. Some systems
like VI-DSO, [137], try to solve from scratch visual-inertial BA, sidestepping a specific
initialization process, obtaining slow convergence for inertial parameters (up to 30 sec-
onds). For ORB-SLAM3 we propose to use our previous work, based on an inertial-only
optimization and detailed in section 3.3, to initialize the IMU. This initialization con-
sists in solving an optimization problem equivalent to figure 4.2c, where only inertial
parameters are optimized. This contrasts with pure visual BA, figure 4.2a, where only
visual measurements are considered for camera pose and map point estimation, as well
as visual-inertial BA, figure 4.2b, where IMU measurements are also included to estimate
gravity direction, camera velocities and true scale poses.

First, we have easily extended it to the stereo-inertial initialization by fixing the scale
factor to one and taking it out from the inertial-only optimization variables. Having a
known scale boosts its convergence, leading to a lower number of iterations. In addition,
it also removes the need of optimizing with three scale initial guesses as we did for the
monocular case. This also entails an important computational cost reduction.

Second, in some specific cases, when slow motion does not provide good observability
of the inertial parameters, the initialization may fail to converge to accurate solutions.
If this error is not corrected by Local Bundle Adjustment before some keyframes get
out of the optimization window, it will lead to a scale offset in the whole map. To get
robustness against this situation, we propose a novel scale refinement technique, based
on a modified inertial-only optimization, where all inserted keyframes are included but
scale and gravity direction are the only parameters to be estimated (figure 4.2d). Notice
that in that case, the assumption of constant biases would not be correct. Instead, we use
the values estimated from mapping, and we fix them. This optimization, which is very
computationally efficient, is performed in the Local Mapping thread every ten seconds,
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until the map has more than 100 keyframes or more than 75 seconds have passed since
initialization.

4.3.2 Tracking

For tracking we adopt the scheme proposed in [98] and extend it to the stereo-inertial
case. At ORB-SLAM3, visual-inertial tracking consists of estimating at frame rate the
body state, composed by pose, velocity and biases, while map points remain fixed. This
can be split into two steps,

• Pose prediction, instead of using an ad-hoc constant velocity model, we directly
use integrated inertial measurements to predict current frame pose using equations
2.13. We project the local map [99] into this estimated pose and look for ORB
matches with a window search around the projection point smaller than the pure
visual case.

• State optimization. Given visual and inertial measurements we build a simpli-
fied visual-inertial optimization where only the states of the last two frames are
optimized, while map points remain fixed.

Visual and inertial errors appearing in the state optimization for the monocular-
inertial case have been introduced in sections 2.1 and 2.2. Here we describe the necessary
modifications for the stereo-inertial case. At ORB-SLAM3 we consider two stereo cases
(See appendix E). First, for a pinhole rectified stereo (rs) camera [131] we fuse left and
right camera observations in an equivalent 3 components residual which describes the
whole stereo observation. Given point j observed from camera i, this can be written as:

rji,rs =

[
uL

j
i

uR
j
i

]
− πrs(xji ) =

 uL
j
i

vL
j
i

uR
j
i

−
 fxx

j
i/z

j
i + cx

fyy
j
i /z

j
i + cy

fx(x
j
i − b)/zji + cx

 (4.1)

where the position for point j at camera i reference, xji , is computed as:

xji = (xji , y
j
i , z

j
i )
T = TCB ⊕TiW ⊕ xj (4.2)

where TiW stands for the i-th Body position, (u, v) are the horizontal and vertical obser-
vations of 3D point in the image plane, and b stands for the stereo baseline only along
the x camera axis. More details about this residual, including its derivatives w.r.t body
pose and point position are given in appendix B.2. The second case corresponds to a
non-rectified stereo camera (nrs), which is used for fisheye lenses to avoid rectification
issues due to large field of view, but could be also used for pinhole cameras. In this case,
left and right observations are treated as two monocular observations, uL

j
i and uR

j
i , of

the same point. Concatenating both leads to the following residual:

rji,nrs =

[
uL

j
i

uR
j
i

]
− πnrs(TiW,x

j) =

[
uL

j
i

uR
j
i

]
−
[
πm(TCLB ⊕TiW ⊕ xj)
πm(TCRB ⊕TiW ⊕ xj)

]
(4.3)

Relative transformations TCLB and TCRB between cameras and body (IMU) are sup-
posed to be known and provided with the calibration. πm stands for the monocular
projection, pinhole or fisheye.
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Figure 4.3: Visual-Inertial tracking factorgraph. Two last frames are optimized together
while map points remain fixed. Previous frame state is marginalized out at the end of
tracking to have a new prior for next optimization.

With these stereo errors and IMU residuals previously introduced in section 2.2, we
can build the state optimization as done by [98]. This optimization, represented in fig-
ure 4.3, consists of refining states from the last two frames, to make possible to include
IMU measurements. While map points contribute to the final cost by means of repro-
jection error, they remain fixed during minimization. At the end of this optimization,
the previous frame is marginalized, leading to a prior residual that will be used for the
next optimization. This process is repeated until mapping or loop-closing threads update
the map. At this moment, the linearization point from marginalization is not valid any-
more. Hence, we perform this optimization but with respect to the last keyframe, which
has been effectively updated, as proposed at [98]. Then, we continue with the normal
procedure optimizing the last two frames states (figure 4.3)

4.3.3 Mapping

Mapping is the back-end process which performs all map modifications, optimizing map
elements(map points and keyframes), as well as creating and removing them. This process
is required to run at keyframe frequency, usually 1-5Hz. For this reason, trying to solve the
optimization from equation 2.17 for the whole map would be intractable. Two approaches
may be found in the visual-inertial literature, the first one comprises marginalizing old
variables and was firstly stated by [80]. They proposed a set of heuristics to marginalize
old variables and discard measurements aiming to keep the sparse structure of point block,
which is the key for an efficient optimization. This solution may be close to optimal but
prevents from reusing variables and fixes the linearization point. The second approach,
proposed by [98], is to fix old variables, being possible to use and refine them later if
the same region is visited. This is not optimal in the statistical sense, but entails a big
improvement by setting mid-term data associations, which is the key for accurate non
exploratory visual-inertial SLAM. At ORB-SLAM3 we follow this later approach and we
show in section 4.4 how our system outperforms existing visual-inertial system.

The back end optimization is similar to that one from [98] and it is summarized in
figure 4.4. We use as optimizable variables a sliding window of the N last keyframes and
their observed points. We also include covisible keyframes but keeping them fixed. The
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Figure 4.4: Factor graph representation of visual-inertial Local Bundle Adjustment.

optimizable window size is set to 10. However, if the number of tracked map points is
high (150 points or more) and keyframes are being created at a lower rate, we have more
time to perform this optimization and we double its size.

4.3.4 Robustness to tracking loss

In pure visual SLAM or VO systems, temporal camera occlusion and fast motions result
in losing track of visual elements, getting the system lost. ORB-SLAM pioneered the use
of fast relocation techniques based on bag-of-words place recognition, but they proved
insufficient to solve difficult sequences in the EuRoC dataset [97]. Our visual-inertial
system enters into visually lost state when less than 15 point maps are tracked, and
achieves robustness in two stages:

• Short-term lost : the current body state is estimated from IMU readings, and map
points are projected in the estimated camera pose and searched for matches within
a large image window. The resulting matches are included in visual-inertial opti-
mization. In most cases this allows recovery of visual tracking. Otherwise, after 5
seconds, we pass to the next stage.

• Long-term lost : A new visual-inertial map is initialized as explained above, and it
becomes the active map. Two competing processes are launched in parallel, multi-
map relocalization and new map initialization. If relocalization is successful, we
perform pure visual tracking and IMU preintegration for 1 second, and perform
a simplified inertial-only optimization, fixing scale and gravity terms, obtaining
estimations for velocities and biases, and launch again Visual-Inertial SLAM. If a
new map is initialized before relocalization succeeds, the mapping proceeds with
the new map. If the system gets lost before 15 seconds after IMU initialization, the
map is discarded. This prevents the accumulation of inaccurate and meaningless
maps.

48



4.3.5 Visual-Inertial Loop Closing and Map Merging

Short-term and mid-term data-associations between a frame and the active map are
routinely found by the tracking and mapping threads by projecting map points into the
estimated camera pose and searching for matches in an image window of just a few pixels.
To achieve long-term data association for relocation and loop detection, ORB-SLAM3
uses the DBoW2 bag-of-words place recognition system [54, 96]. This method has been
also adopted by most recent VO and SLAM systems that implement loop closures (Table
1.1). Here we present the novelties at ORB-SLAM3 for the visual-inertial case, which are
also works of this thesis, and its differences with respect to the pure visual case by Elvira
et al. [41].

The place recognition module detects candidate keyframes (c) for the active keyframe
(a), based on bag-of-words similarities. If the candidate keyframe belongs to the same
map, it is a loop candidate, if not, it is a map merging candidate. A first alignment of
pointclouds from both keyframes results in a relative transformation Tac ∈ SE(3). In case
the IMU is not initialized in the active map, the matching transformation also includes
the scale change Tac ∈ Sim(3). We highlight this rarely happens, since the initialization
only takes two seconds.

At this stage, we can use inertial information to discard potential false positives. Since
gravity direction is observable for a visual-inertial system, it is not possible to have drift
in scale nor pitch and roll. In this sense, we define the following transformation:

TWW′ = TWaTacTcW′ (4.4)

and we take the logarithm of its rotational part and check that rotations around x and y
are below some threshold. If this condition is not fulfilled, we discard that candidate.

After a candidate has been validated, correction needs to be propagated to the re-
maining map, performing a first pose-graph optimization (PGO). This consists of finding
the absolute body poses given a set of relative transformations {∆Tij}. At visual SLAM
these relative measurements may come from three different situations. First, loop closing
or map merging constraints as a result of place recognition and point cloud alignment.
Second, covisibility constraints, relating keyframes with a high number of common ob-
servations. Third, spanning tree constraints [99], to make sure the graph is connected.
In addition, for the inertial case, we add an extra constraint which relates consecutive
keyframes where there exists an inertial integrated measurement between them. For each
one of these relative measurements between keyframes i and j, we define the following
residual:

rij = LogSE(3)(TWi∆TijTjW) ∈ R6 (4.5)

Contrary to the pure visual case [126], where 7 or 6 DoF exist for respectively monoc-
ular and stereo cases, in visual-inertial estimation we only have 4. DoFs for scale, roll
and pitch are observable [71]. This is directly reflected in the pose-graph optimization,
updating keyframe poses only with these 4 DoF, as proposed by [108]. This supposes
an important reduction on the number of optimizable variables, and therefore in the
computational cost.

In pure visual SLAM, a final full bundle adjustment is performed after the PGO, to
improve map accuracy. In visual-inertial SLAM, keyframe states consist on 15 variables,
instead of only 6, giving a much higher computational cost, since time scales cubically
with the number of variables. However, the drift of our visual-inertial SLAM is much
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Figure 4.5: Factor graph representation for the merging. Inertial measurements are
included only in the welding area, where there are observations from points belonging to
both maps.

lower than in the visual case, and we can safely skip the costly full bundle adjustment,
as it does not provide a remarkable improvement.

When a successful place recognition produces multi-map data association, after PGO
we perform a visual-inertial Bundle Adjustment involving welding parts from both maps,
whose equivalent factor graph is represented in figure 4.5. Poses, velocities and biases
of the active keyframe a and its 5 last temporal keyframes are included as optimizable.
These variables are related by IMU preintegration terms. For the candidate map, we
proceed similarly, including poses, velocities and biases of the candidate keyframe c and
its 5 temporal neighbours, as shown in Figure 4.5. For the candidate map, the keyframe
immediately before the local window is included but fixed, while for the active map the
similar keyframe is included with fixed IMU terms, but its pose remains optimizable, to
avoid overconstraints. All points seen by all these keyframes, and the keyframes’ poses
observing these points are also optimized. All the keyframes and points are related by
means of reprojection error.

4.4 Experimental Results

The evaluation of the whole system is split in:

• Single session experiments in EuRoC [16]: each of the 11 sequences is processed to
produce a map, with the four sensor configurations: Monocular, Monocular-Inertial,
Stereo and Stereo-Inertial.

• Performance of monocular and stereo visual-inertial SLAM with fisheye cameras,
in the challenging TUM VI Benchmark [121].

• Multi-session experiments in both datasets.
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As usual in the field, we measure accuracy with RMS ATE [127], aligning the estimated
trajectory with ground truth using a Sim(3) transformation in the pure monocular case,
and a SE(3) transformation in the rest of sensor configurations. Scale error is computed
using s from Sim(3) alignment, as |1−s|. All experiments have been run in an Intel Core
i7-7700 CPU, at 3.6GHz, with 32 GB memory, using only CPU.

4.4.1 Single-session SLAM on EuRoC

Table 4.1 compares the performance of ORB-SLAM3 using its four sensor configurations
with the most relevant systems in the state-of-the-art. Our reported values are the
median after 10 executions. As shown in the table, ORB-SLAM3 achieves in all sensor
configurations more accurate result than the best systems available in the literature, in
most cases by a wide margin.

In monocular and stereo configurations our system is more precise than ORB-SLAM2
due to the better place recognition algorithm that closes loops earlier and provides more
mid-term matches. Interestingly, the next best results are obtained by DSM that also
uses mid-term matches, even though it does not close loops.

In monocular-inertial configuration, ORB-SLAM3 is five to ten times more accurate
than MCSKF, OKVIS and ROVIO, and more than doubles the accuracy of VI-DSO and
VINS-Mono, showing again the advantages of mid-term and long-term data association.
Compared with ORB-SLAM VI, our novel fast IMU initialization allows ORB-SLAM3
to calibrate the inertial sensor in a few seconds and use it from the very beginning, being
able to complete all EuRoC sequences, and obtaining better accuracy. As shown in figure
4.6, ORB-SLAM3 mono-inertial is not only able to process V103 sequence from the very
beginning, but it also performs better than any other system. Regarding scale drift, as
defined in [152], we see estimation is unbiased and its error is always below 1.5%. We also
remark that on average, our monocular-inertial configuration has a better performance
than any other stereo or stereo inertial, with the only exception of our own stereo-inertial
system.

In stereo-inertial configuration, ORB-SLAM3 is four times more accurate than VINS-
Fusion and Kimera. It’s accuracy is only approached by the recent BASALT that, being
a native stereo-inertial system, was not able to complete sequence V203, where some
frames from one of the cameras are missing. Comparing our monocular-inertial and
stereo-inertial systems, the latter performs better in most cases. Only for one Machine
Hall (MH5) sequence a lower accuracy is obtained. We hypothesize that greater depth
scene for MH sequences may lead to less accurate stereo triangulation and hence a less
precise scale.

To summarize performance, we have presented the median of ten executions for each
sensor configuration. For a robust system, the median represents accurately the behavior
of the system. But a non-robust system will show high variance in its results. This can
be analyzed using figure 4.7 that shows with colors the error obtained in each of the
ten executions. Comparison with the figures for DSO, ROVIO and VI-DSO published in
[137] confirms the superiority of our method.

In pure visual configurations, the multi-map system adds some robustness to fast
motions by creating a new map when tracking is lost, that is merged later with the global
map. This can be seen in sequences V103 monocular and V203 stereo that could not be
solved by ORB-SLAM2 and are successfully solved by our system in most executions. As
expected, stereo is more robust than monocular thanks to its faster feature initialization,
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Figure 4.6: Top view of estimated trajectory for V103 difficult sequence using mono-
inertial ORB-SLAM3. Results plotted with software from [152]

with the additional advantage that the real scale is estimated.
However, the big leap in robustness is obtained by our novel visual-inertial SLAM sys-

tem, both in monocular and stereo configurations. With regard to inertial configurations,
the stereo-inertial system comes with a very slight advantage, particularly in the most
challenging V203 sequence. Comparing visual and visual-inertial configuration, figure 4.7
points out the greater stability of inertial solutions. The randomness of SLAM lies in
some existing random processes, such as RANSAC, as well as processor scheduling for
multi-thread systems, which leads to slightly different estimations. For the visual case,
this has influence in which points are projected, which visual matches are found or what
keyframes are included in the local bundle adjustment, affecting final results. However,
using an IMU sensor drastically mitigates this effect. First, IMU provides measurements
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Figure 4.7: Colored squares represent the RMS ATE for ten different execution in each
sequence of the EuRoC dataset.

which do not depend on the estimation and always relate the same variables, i.e. two
consecutive keyframes. Second, it produces a more accurate frame estimation for track-
ing, where map points projection is performed, leading to a more repetitive set of visual
measurements. These two points surprisingly reduce the system randomness as shown in
figure 4.7. We can conclude that inertial integration not only boosts accuracy, reducing
the median ATE error compared to pure visual solutions, but it also endows the system
with excellent robustness, having a much more stable performance.

4.4.2 Visual-Inertial SLAM on TUM-VI Benchmark

The TUM-VI dataset [121] consists of 28 sequences in 6 different environments, recorded
using a hand-held fisheye stereo-inertial rig. Ground-truth for the trajectory is only
available at the beginning and at the end of the sequences, which for most of them
represents a very small portion of the whole trajectory. Many sequences in the dataset
do not contain loops. Even if the starting and ending point are in the same room, point
of view directions are opposite and place recognition cannot detect any common region.
Using this ground-truth for evaluation amounts to measuring the accumulated drift along
the whole trajectory. In fact, the RMS ATE error computed after GT alignment is about
half the accumulated drift for large exploratory datasets: slides, magistrales and outdoors.

We extract 1500 ORB points per image in monocular-inertial setup, and 1000 points
per image in stereo-inertial, after applying CLAHE equalization to address under and
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over exposure found in the dataset. For outdoors sequences, our system struggles with
very far points coming from the cloudy sky, that is very visible in fisheye cameras. These
points may have slow motion that can introduce drift in the camera pose. For preventing
this, we discard points further than 20 meters from the current camera pose, only for
outdoors sequences. A more sophisticated solution would be to use an image segmentation
algorithm to detect and discard the sky.

Table 4.2: TUM VI Benchmark [121]: RMS ATE (m) for regions with available ground-
truth data.

Mono-Inertial Stereo-Inertial

Seq. VINS-
Mono

ORB-
SLAM3 OKVIS ROVIO BASALT ORB-

SLAM3
Length
(m) LC

corridor1 0.63 0.04 0.33 0.47 0.34 0.01 305 X
corridor2 0.95 0.02 0.47 0.75 0.42 0.02 322 X
corridor3 1.56 0.02 0.57 0.85 0.35 0.01 300 X
corridor4 0.25 0.10 0.26 0.13 0.21 0.10 114
corridor5 0.77 0.01 0.39 2.09 0.37 0.01 270 X

magistrale1 2.19 0.40 3.49 4.52 1.20 1.14 918 X
magistrale2 3.11 0.64 2.73 13.43 1.11 0.32 561 X
magistrale3 0.40 5.20 1.22 14.80 0.74 1.09 566
magistrale4 5.12 0.14 0.77 39.73 1.58 0.16 688 X
magistrale5 0.85 1.41 1.62 3.47 0.60 0.77 458 X
magistrale6 2.29 2.11 3.91 X 3.23 0.76 771
outdoors1 74.96 60.65 X 101.95 255.04 33.9 2656
outdoors2 133.46 14.24 73.86 21.67 64.61 14.14 1601
outdoors3 36.99 49.37* 32.38 26.10 38.26 48.18 1531
outdoors4 16.46 19.02 19.51 X 17.53 7.23 928
outdoors5 130.63 17.71 13.12 54.32 7.89 8.36 1168 X
outdoors6 133.60 14.51 96.51 149.14 65.50 8.31 2045
outdoors7 21.90 9.18 13.61 49.01 4.07 4.84 1748 X
outdoors8 83.36 25.26 16.31 36.03 13.53 11.02 986
room1 0.07 0.01 0.06 0.16 0.09 0.01 146 X
room2 0.07 0.02 0.11 0.33 0.07 0.01 142 X
room3 0.11 0.01 0.07 0.15 0.13 0.01 135 X
room4 0.04 0.01 0.03 0.09 0.05 0.01 68 X
room5 0.20 0.04 0.07 0.12 0.13 0.01 131 X
room6 0.08 0.01 0.04 0.05 0.02 0.01 67 X
slides1 0.68 0.85 0.86 13.73 0.32 0.50 289
slides2 0.84 0.90 2.15 0.81 0.32 0.31 299
slides3 0.69 1.02 2.58 4.68 0.89 0.39 383

Ours are median of three executions.
For other systems, we provide values reported at [122]
* : One out of three runs has not been successful
LC: Loop Closing may exist in that sequence

The results obtained are compared with the most relevant systems in the literature in
table 4.2, that clearly shows the superiority of ORB-SLAM3 both in monocular-inertial
and stereo-inertial. The closest systems are VINS-Mono and BASALT, that are es-
sentially visual-inertial odometry systems with loop closures, and miss mid-term data
associations.
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Figure 4.8: Comparative of ORB-SLAM3, VINS-Mono and Basalt at corridor1, a medium
size indoors scenario. Starting (green pentagon) and ending points are in the same
room. Trajectories have been aligned with the ground-truth at the starting point (green
pentagon).

Figure 4.9: Top view map reconstruction, estimated trajectory and covisibility graph for
our stereo-inertial solution at corridor1 TUM-VI sequence.
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Figure 4.10: Comparative of ORB-SLAM3, VINS-Mono and Basalt at outdoors1 dataset,
a 2.6 km long trajectory. Starting (green pentagon) and ending points are in the same
room

Analyzing more in detail the performance of our system, it gets lowest error in small
and medium indoor environments, room and corridor sequences, with errors below 10 cm
for most of them. In these trajectories, the system is continuously revisiting and reusing
previously mapped regions, which is one of the main strengths of ORB-SLAM3. Also,
tracked points are typically closer than 5m, what makes easier to estimate inertial pa-
rameters, preventing them from diverging. This is also the reason why our monocular
and stereo-inertial systems get very similar results at these sequences. Figure 4.8 shows
the trajectories for the best monocular and stereo inertial systems in corridors1 dataset.
Camera travels along corridor (x axis) while visiting different rooms along it, as shown
in our reconstruction in figure 4.9. Both, VINS-Mono and Basalt struggle to detect mid-
term associations, which leads to a duplicated corridor and a final drift of 0.6m and 0.3m
respectively. In contrast, both ORB-SLAM3 inertial configurations have negligible drift,
with errors below 0.04m.

In magistrale indoors sequences, that are up to 900m long, most tracked points are
relatively close, and monocular-inertial ORB-SLAM3 obtains errors around 1m except
in one sequence that goes close to 5m. Similarly, our stereo-inertial system gives er-
rors around 1m or less. In contrast, in some long outdoors sequences, the scarcity of
close visual features may cause divergence of the inertial parameters, notably scale and
accelerometer bias, which leads to errors in the order of 10 to 60 meters for our monocular-
inertial SLAM. This is evident from figure 4.10a, and affects also VINS-Mono, as it was
mentioned in results from [121]. Using a stereo camera in these situations provides a
big improvement, since it constraints the scale estimation and avoids accelerometer bias
drift. For ORB-SLAM3, stereo reduces the error by 50% on average, in contrast with
other stereo systems where error remains high. We conclude that ORB-SLAM3 is the
best performing system in the outdoor sequences for both configurations.

This dataset also contains three really challenging slides sequences, where the user
descends though a dark tubular slide with almost total lack of visual features. In this
situation, a pure visual system, at least ORB-SLAM, would be lost, but our visual-
inertial system is able to process the whole sequence with competitive error, even if
no loop-closures can be detected. Interestingly, VINS-Mono and BASALT, that track
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Table 4.3: RMS ATE (m) obtained by ORB-SLAM3 with four sensor configurations in
the room sequences, representative of AR/VR scenarios (median of 3 executions).

Seq. Mono Stereo Mono-
Inertial

Stereo-
Inertial

room1 0.042 0.077 0.009 0.008
room2 0.026 0.055 0.018 0.012
room3 0.028 0.076 0.008 0.011
room4 0.046 0.071 0.009 0.008
room5 0.046 0.066 0.036 0.010
room6 0.043 0.063 0.006 0.006
Avg. 0.039 0.068 0.014 0.009
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Figure 4.11: Comparative of ORB-SLAM3, VINS-Mono and Basalt at room1 dataset, a
typical indoors AR/VR scenario.

features using Lucas-Kanade, obtain in some of these sequences better accuracy than
ORB-SLAM3, that matches ORB descriptors. This could be pointing out that Lucas-
Kanade successes to track some features while we are not able to match ORB points (see
video).

Finally, the room sequences can be representative of typical AR/VR applications,
where the user moves with a hand-held or head-mounted device in a small environment.
For these sequences ground-truth is available for the entire trajectory. Table 4.2 and figure
4.11 show that ORB-SLAM3 is significantly more accurate that competing approaches in
both configurations. The results obtained using our four sensors configurations are com-
pared in table 4.3. The better accuracy of pure monocular compared with stereo is only
apparent: the monocular solution is up-to-scale and is aligned with ground-truth with
7DoF, while stereo provides the true scale, and is aligned with 6DoF. Using monocular-
inertial, we further reduce the average RMS ATE error below 2 cm, also obtaining the true
scale. Finally, our stereo-inertial SLAM brings error below 1 cm, making it an excellent
choice for AR/VR applications.

We have also performed some multi-session experiments on the TUM-VI dataset.
Figure 4.12 shows the result after processing several sequences inside the TUM building1.

1Videos of this and other experiments can be found at https://www.youtube.com/channel/
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Figure 4.12: Multi-session stereo-inertial result with several sequences from TUM-VI
dataset (front, side and top views).

Figure 4.13: Multi-session stereo-inertial. In red, the trajectory estimated after single-
session processing of outdoors1. In blue, multi-session processing of magistrale2 first, and
then outdoors1.
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In this case, the small room sequence provides loop closures that were missing in the
longer sequences, bringing all errors to centimeter level. Although ground truth is not
available outside the room, comparing the figure with the figures published in [122] clearly
shows our point: our multi-session SLAM system obtains far better accuracy that existing
visual-inertial odometry systems. This is further exemplified in Figure 4.13. Although
ORB-SLAM3 ranks higher in stereo inertial single-session processing of outdoors1, there
is still a significant drift (≈ 60 m). In contrast, if outdoors1 is processed after magistrale2
in a multi-session manner, this drift is significantly reduced, and the final map is much
more accurate.

4.4.3 Computing Time

Table 4.4 summarizes the running time of the main operations performed in the tracking
and mapping threads, showing that our system is able to run in real time at 50 frames and
3-4 keyframes per second for monocular configurations. Tracking for stereo configurations,
including stereo rectification for EuRoC dataset, can process 30 frames and 7 keyframes
per second. The inertial part takes negligible time during tracking and, in fact can
render the system more efficient as the frame rate could be safely reduced. In the mapping
thread, the higher number of variables per keyframe has been compensated with a smaller
number of keyframes in the inertial local BA, achieving better accuracy, with a slightly
lower running time. As the tracking and mapping threads work always in the active
map, multi-mapping does not introduce significant overhead. ORB-SLAM3 in all its
configurations largely works on real-time for common camera frame rates (<30Hz). In
blue, we have highlighted time reductions in ORB-SLAM3 v1.0, with respect to times
published in [22] that were obtained with previous version ORB-SLAM3 v0.4 beta. We
can observe a consistent reduction in BA cost for all sensors configurations. For pure
visual SLAM this reduction is around 10%, while for visual-inertial configurations it goes
from 20% to 30%. The major change between both versions was removing dependencies
on opencv matrices in pose and map point representation, avoiding castings and reducing
dynamic memory allocations. Poses are now represented using Sophus2 library, while all
algebraic computations are performed using Eigen3 matrices.

Although it would be interesting, we do not compare computational time against
other systems, since this would require a lot of work which is beyond the scope of this
thesis. For a detailed timing analysis of some previous methods, we refer readers to [37].

4.5 Discussion

Building on ORB-SLAM2 [97] and ORB-SLAM-VI [98], we have presented ORB-SLAM3,
the most complete open-source library for visual, visual-inertial and multi-session SLAM,
with monocular, stereo, RGB-D, pin-hole and fisheye cameras. Our main contributions,
apart from the integrated library itself [20], are the fast and accurate IMU initialization
technique, as well as the multi-session map-merging functions.

Our experimental results show that ORB-SLAM3 is the first visual and visual-inertial
system capable of effectively exploiting short-term, mid-term, long-term and multi-map

UCXVt-kXG6T95Z4tVaYlU80Q
2https://github.com/strasdat/Sophus
3https://eigen.tuxfamily.org
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data associations, reaching an accuracy level that is beyond the reach of all studied
existing systems. Our results also suggest that, regarding accuracy, the capability of
using all these types of data association overpowers other choices such as using direct
methods instead of features, or performing keyframe marginalization for local BA, instead
of assuming an outer set of static keyframes as we do.

The main failure case of ORB-SLAM3 is low-texture environments. This may be
partially overcome using the IMU for short periods of time. Direct methods are more
robust to low-texture, but are limited to short-term [46] and mid-term [154] data associ-
ation. On the other hand, matching feature descriptors successfully solves long-term and
multi-map data association, but seems to be less robust for tracking than Lucas-Kanade,
that uses photometric information. An interesting line of research could be developing
photometric techniques adequate for the four data association problems.

About the four different sensor configurations, there is no question, stereo-inertial
SLAM provides the most robust and accurate solution. Furthermore, the inertial sensor
allows to estimate pose at IMU rate, which is orders of magnitude higher than frame
rate, being a key feature for some use cases. For applications where a stereo camera
is undesirable because of its higher bulk, cost, or processing requirements, you can use
monocular-inertial without missing much in terms of robustness and accuracy. Only keep
in mind that pure rotations during exploration would not allow to estimate depth.

In applications with slow motions, or without roll and pitch rotations, such as a car
in a flat area, IMU sensors can be difficult to initialize. In those cases, if possible, use
stereo SLAM. Otherwise, recent advances on depth estimation from a single image with
CNNs offer good promise for reliable and true-scale monocular SLAM [145, 146], at least
in the same type of environments where the CNN has been trained, as we will see in the
next chapter.
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Chapter 5

Deep Learning for SLAM

Most SLAM approaches assume a static scene and can only handle small fractions of
dynamic content by labeling them as outliers to such static model. Whilst the static
premise holds for some robotic applications, it limits its use in populated situations for
autonomous driving, service robots or AR/VR. IMU, besides rendering observable scale
and gravity direction, provides some robustness against dynamic objects since it allows
to distinguish between ego motion and surrounding objects movement. However, there
are situations where use of IMU is not possible or entails some problems. This is the case
for autonomous-driving scenarios, where the vehicle does not perform a 6DoF motion,
reducing the observability of the inertial parameters and hindering their initialization.
For these IMU denied situations, recent deep learning based methods have emerged as
an effective solution, being currently explored by the community.

In this chapter we demonstrate the application of deep learning techniques to SLAM
problems which can not be solved by means of classical methods. First, in section 5.1, we
present DynaSLAM II, a stereo and RGB-D SLAM system for dynamic environments,
able to track and estimate dynamic objects. This is a joint work, where the contribution
of this thesis is the formulation of a novel Bundle Adjustment for including dynamic ob-
jects. Second, in section 5.2, we present a scale-aware direct monocular odometry,
based on neural network depth prediction. In contrast with existing solutions, we formu-
late a multi-view depth-photometric Bundle Adjustment with depth measurements from
all observer keyframes as well as a truncated robust cost function which prevents from
incorporating inconsistent depth observations. This significantly improves accuracy with
respect to classical monocular methods, removing scale-drift and making scale observable.

5.1 Deep Learning for dynamic environments

5.1.1 Introduction

This introduction is joint work adapted from [9].
The problem of dealing with dynamic objects in SLAM has been widely targeted in

recent years. The biggest part of the literature tackles this problem by detecting moving
regions within the observed scene and rejecting such areas for the SLAM problem [6,
84, 130, 142]. Some works process the image streams outside of the localization pipeline
by translating the images that show dynamic content into realistic images with only
static content [7, 8, 10]. On the other hand, a small but growing part of the robotics
community has addressed this issue by incorporating the dynamics of moving objects into
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the problem [64, 83, 147, 151]. Whereas the two first groups mostly focus on achieving
an accurate ego-motion estimation from the static scene, the objective of the last group
is twofold: they do not only solve the SLAM problem but also provide information about
the poses and trajectories of other dynamic agents.

Understanding surrounding dynamic objects is of crucial importance for the fron-
tier requirements of emerging applications within AR/VR or autonomous navigation.
Whereas it is tolerable to rule out minor movements in quasi-static environments, most
scenarios including autonomous driving, multi-robot collaboration and AR/VR require
explicit motion information of the surroundings to aid in decision-making and scene un-
derstanding. For example, in VR, dynamic objects need to be explicitly tracked to allow
the interaction of virtual objects with real-world moving instances. In autonomous driv-
ing scenarios, a car must not only localize itself but must also reliably perceive other
vehicles and passers-by to avoid collisions.

The vast majority of the literature that specifically addresses this issue detects moving
objects and tracks them separately from the SLAM formulation by using traditional multi-
target tracking approaches [4, 112, 115, 138, 141]. Their accuracy highly depends on the
camera pose estimation, which is susceptible to failure in complex dynamic environments
where the presence of reliable static structure is not guaranteed. In recent years, the
robotics community has made its first steps towards addressing object tracking jointly
with SLAM, adding an extra layer of complexity to the problem. These systems are
often tailored for special use cases and several priors are exploited to constraint the space
solutions: road planar structure and planar object movement in driving scenarios [147],
or even the use of object 3D models [62].

At this point, we take the opportunity to introduce DynaSLAM II. DynaSLAM II is
an RGB-D and stereo SLAM system for dynamic scenes which simultaneously estimates
the poses of the camera, the map and the trajectories of the scene moving objects. The
contributions of this thesis to DynaSLAM II are:

• A cost-efficient bundle adjustment solution with new measurements between cam-
eras, points and dynamic objects.

• A decoupled optimization for bounding boxes to find out a common reference across
objects of the same class.

• Our experiments demonstrate that camera motion estimation and multi-object
tracking can be mutually beneficial.

5.1.2 Related Work

This related work is joint work adapted from [9].

5.1.2.1 Loosely-Coupled Multi-Object Tracking and SLAM

The traditional manner of addressing 3D multi-object tracking implies detecting and
tracking the moving objects separately from the SLAM formulation [4, 112, 115, 138,
141]. Among them, Wang et al. [138] derived the Bayes formula of the SLAM with
tracking of moving objects and provided a solid basis for understanding and solving this
problem. Wangsiripitak et al. [141] proposed the parallel implementation of SLAM with
a 3D object tracker: the SLAM provides the tracker with information to register map
objects, and the tracker allows to mark features on objects. Rogers et al. [112] applied
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an Expectation Maximization technique to a graph based SLAM approach and allowed
landmarks to be dynamic. More recently, Barsan et al. [4] presented a stereo-based dense
mapping algorithm for urban environments that simultaneously reconstructs the static
background and the moving objects. There is a new work by Rosinol et al. [115] that
reconciles visual-inertial SLAM and dense mesh tracking, focusing mostly on humans,
that shows impressive results in simulation. The main drawback of these approaches is
that their accuracy is highly correlated with that of the camera pose estimation. That is,
if the camera pose estimation fails, which is quite likely in complex dynamic environments,
multi-object tracking also directly fails.

The idea of simultaneously estimating camera motion and multiple moving objects
motion originated from the SLAMMOT work [139]. They established a mathematical
framework to integrate a filtering-based SLAM and moving object tracking demonstrat-
ing that it satisfied navigation and safety requirements in autonomous driving. Later
on, works using RGB-D cameras followed up this idea to densely reconstruct static in-
doors scenes along with moving objects using pixel-wise instance segmentation, showing
impressive results [118, 119, 143]. Since it is of crucial importance for dense approaches
to obtain accurate segmentation, Mask-Fusion [119] and MID-Fusion [143] refine it by
assuming that human-made objects are convex.

5.1.2.2 Tightly-Coupled Multi-Object Tracking and SLAM

Among the feature-based approaches, as is ours, few aim to merge information from static
and dynamic objects into a single framework to boost estimation accuracy. Henein et al.
[61] were among the first ones to tightly combine the problems of tracking dynamic objects
and the camera ego motion. However, they only reported experiments on synthetic data
showing limited real results. Li et al. [83] use a CNN trained in an end-to-end manner
to estimate the 3D pose and dimensions of cars, which is further refined together with
camera poses. The use of data-driven approaches often provides excellent accuracy in 6
DoF object pose estimation, but also a loss of generality and thus, they can only track cars.
Huge amounts of data would be required to track generic objects with their approach.
The authors of CubeSLAM [147] showed impressive results with only a monocular camera
by making use of a 3D bounding box proposal generation based on 2D bounding boxes
and vanishing points. They assume that objects have a constant velocity within a hard-
coded duration time interval and exploit object priors such as car sizes, road structure
and planar non-holonomic object wheel motion models. Moreover, they only track objects
whose 3D bounding box is observable, i.e., only once two or more faces of the cuboid-
shape object are seen. On the other hand ClusterSLAM [63] proposes a SLAM back-
end with no scene priors to discover individual rigid bodies and compute their motions
in dynamic environments. Since it acts as a back end instead of as a full system, its
performance relies heavily on the landmark tracking and association quality. The same
authors recently developed the full system ClusterVO [64], which models the object points
with a probability of object belonging to deal with segmentation inaccuracies. Given that
they assume no priors, they obtain good tracking results in indoor and outdoor scenes,
but with an inaccurate estimation of the 3D bounding boxes. VDO-SLAM [151] is a
recent work that uses dense optical flow to maximise the number of tracked points on
moving objects. They implement a bundle adjustment with cameras, objects and points
that gives good results but is computationally complex to run in real time.
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5.1.2.3 A Common Reference for each Object Class

Some approaches in the current literature do consider the tracking of dynamic objects
to be complete with the tracking of dynamic feature points. Examples of these works
are ClusterSLAM [63] and VDO-SLAM [151]. However, we believe that it is also of key
importance to find a common spatial reference for objects of the same semantic class, as
well as an estimate of their dimensions and space occupancy.

Alternatively, the basis of CubeSLAM [147] and of the work by Li et al. [83] is the
discovery of object 3D bounding boxes. Only once bounding boxes are discovered, are
objects tracked along frames. That is, if the camera viewing angle does not allow to
estimate an object bounding box (partial view), the object tracking does not take place.
Whereas this is not a problem for Li et al. [83] because CNNs are by nature robust to
partial views of objects, CubeSLAM struggles to initialize bounding boxes from views of
occluded objects.

In light of these advances, it is apparent that the feature-based SLAM community is
searching for the best optimization formulation to combine cameras, objects and struc-
ture points. In our proposal, we use a tightly-coupled bundle adjustment formulation
with new measurements between cameras, objects and points giving special attention to
its computationally complexity and number of parameters involved without introducing
hard-coded priors. For this, we integrate instance semantic priors together with sparse
image features. This formulation allows the estimation of both the camera, the map
structure and the dynamic objects to be mutually beneficial at a low computational
cost. On the other hand, part of the current literature focuses on the estimation of the
point cloud structure of dynamic objects and of the trajectory of a random object refer-
ence [63, 64, 151], whereas another part of the literature seeks to find a common reference
for objects of the same class as well as a more informative occupancy volume [83, 147].
We intend to carry out these two tasks independently in order to leverage the benefits of
both and not suffer their disadvantages.

5.1.3 Method

DynaSLAM II builds on the popular ORB-SLAM2 [97]. It takes synchronized and cali-
brated stereo/RGB-D images as input, and outputs the camera and the dynamic-object
poses for each frame, as well as a spatial/temporal map containing the dynamic objects.
For each incoming frame, pixel-wise semantic segmentation is computed and ORB fea-
tures [117] are extracted and matched across stereo image pairs. We first associate the
static and dynamic features with the ones from the previous frame and the map assuming
a constant velocity motion for both the camera and the observed objects. Object instances
are then matched based on the dynamic feature correspondences. The static matches are
used to estimate the initial camera pose, and the dynamic ones yield the object’s SE(3)
transform. Finally, the camera and objects trajectories, as well as the objects bounding
boxes and 3D points are optimized over a sliding window with marginalization and a soft
smooth motion prior. The different contributions and building blocks of DynaSLAM II
are explained in the following subsections.
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5.1.3.1 Notation

We would like to point out that there are two types of dynamic objects in terms of their
nature and influence on visual SLAM:

1. The former type consists of objects that inherently possess the capability to move
(people, animals and vehicles). We name these objects a priori dynamic or movable.
While the SLAM sensor observes them, they can either move or remain static.

2. The latter type consists though of objects that are moving while the visual SLAM
sensor observes them regardless of their semantic class. We name them moving
objects.

.
Regarding the scene geometry we will use the following notation: a stereo/RGB-D

camera i has a pose Ti
CW ∈ SE(3) in the world coordinates W at time i (see Fig. 5.1).

The camera i observes

1. static 3D map points, index l, xlW ∈ R3, and

2. dynamic objects, index k, with pose Tk,i
WO ∈ SE(3) and linear and angular velocity

vki ,w
k
i ∈ R3 at time i, in the object reference frame.

Each observed object k contains dynamic-object points xj,kO ∈ R3.

5.1.3.2 Object Data Association

Object Data Association was mainly developed by Berta Bescós within this joint work.
We keep this section in this thesis since it may be necessary to understand the following
parts

For each incoming frame the below procedure is followed:

1. Pixel-wise semantic segmentation is computed and ORB features [117] are extracted
and matched across stereo pairs. We hypothesize that dynamic features are those
belonging to a priori dynamic instances, regardless of their motion.

2. We first associate the static features with the ones from the previous frame and the
map to initially estimate the camera pose, following the ORB-SLAM implementa-
tion.

3. A parallel instance-to-instance matching between consecutive frames is built with
the Munkres algorithm [95] using the 2D bounding boxes Intersection over Union
as cost.

4. Next, dynamic features are associated with the dynamic points from the local map
in two different ways:

(a) if the map objects velocity is known, the matches are searched by reprojection
assuming an inter-frame constant velocity motion. The instance matching
results are used to discover outliers.

(b) if the objects velocity is not initialized or not enough matches are found fol-
lowing (a), we constrain the brute force matching to those features belonging
to the most overlapping instance in consecutive frames.
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Figure 5.1: Notation used to model the dynamic structure. The cameras i and i + 1
observe the dynamic object k ( ) and the static structure ( ). The objects with poses
Tk,i

WO and Tk,i+1
WO are the same moving body at consecutive observations ( ).

5. A higher level association between instances and objects is also required. If most
of the new instance key points are matched with points belonging to one same map
object, the instance is attributed the same object track id.

6. If an instance corresponding to an a priori dynamic class contains more than seven
unobserved key points whose stereo 3D projection is close to the camera (less than
55 times the stereo baseline), a new object instance is created. Key points are then
assigned to the corresponding object.

Note that our framework handles occlusions that last less than two seconds. This
threshold can be extended though if needed: our framework handles occlusions if the
object velocity remains constant or almost constant. Because of this feature, extending
the threshold might not always lead to better results if the velocity of the tracked object
changes in this window.

The SE(3) pose of the first object of a track is initialized with the center of mass of
the 3D points and with the identity rotation. To predict the poses of further objects from
a track, we use a constant velocity motion model and refine the object pose estimate by
minimizing the matches reprojection error.

The reprojection error formulation in multi-view geometry problems for a camera i
with pose Ti

CW ∈ SE(3) and a 3D map point l with coordinates xlW ∈ R3 in reference W
with a stereo key point correspondence uli = [u, v, uR] ∈ R3 is:

ei,lrepr = uli − πi(Ti
CWx

l
W), (5.1)

where πi is the reprojection function for a rectified stereo/RGB-D camera that projects a
3D point in the camera coordinates into the camera frame pixel. Unlike this formulation,
which is valid for static representations, we propose to restate the reprojection error as:

ei,j,krepr = uji − πi(Ti
CWT

k,i
WOxj,kO ), (5.2)
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Figure 5.2: Relationship between the number of parameters that is required when objects
are used and when points belonging to objects are tracked independently (No objects).

where Tk,i
WO ∈ SE(3) is the inverse pose of the object k in the world coordinates when the

camera i is observing it, and xj,kO ∈ R3 represents the 3D coordinates of the point j in its
object reference k with observation in the camera i uji ∈ R3. This formulation enables us
to optimize either jointly the poses of the cameras and of the different moving objects,
as well as the positions of their 3D points.

5.1.3.3 Object-Centric Representation

Given the extra complexity and mainly the extra number of parameters that the task of
tracking moving objects implies on top of the SLAM ones, it is of high importance to
keep this number as reduced as possible to maintain a real-time performance. Modeling
dynamic points as repeated 3D points by forming independent point clouds as in usual
dynamic SLAM implementations results in a prohibitive amount of parameters. Given a
set of Nc cameras, No dynamic objects with Nop 3D points each observed in all cameras,
the number of parameters needed to track dynamic objects becomes N = 6Nc+Nc×No×
3Nop as opposed to N = 6Nc + No × 3Nop in conventional static SLAM representations.
This number of parameters becomes prohibitive for long –and not so long– operations
and deployment. If the concept of objects is introduced, 3D object points become unique
and can be referred to their dynamic object. Therefore it is the pose of the object that is
modelled along time and the number of required parameters shifts to N ′ = 6Nc + Nc ×
6No + No × 3Nop. Fig. 5.2 shows the parameter compression ratio defined as N ′

N
for 10

objects. This modelling of dynamic objects and points brings great savings in the number
of utilized parameters.

5.1.3.4 Bundle Adjustment with Objects

Bundle Adjustment (BA) is known to provide accurate estimates of camera poses and
sparse geometrical reconstruction, given a strong network of matches and good initial
guesses. We hypothesize that BA might bring similar benefits if object poses are also
jointly optimized (Fig. 5.3). Static map point 3D locations xlW and camera poses Ti

CW are
optimized by minimizing the reprojection error with respect to the matched key points uli
(Eqn. 5.1). Similarly, for dynamic representations, object points xj,kO , camera poses Ti

CW

and object poses Tk,i
WO can be refined by minimizing the reprojection error formulation in

Eqn. 5.2.
In our implementation, a keyframe can be inserted in the map for two different reasons:
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Figure 5.3: BA factor graph representation with dynamic objects.

1. the camera tracking is weak, which is measured with the number of tracked static
points.

2. the tracking of any scene object is weak, which is measured with the number of
tracked points from the given object.

The reasons for the former are the same ones than in ORB-SLAM. The latter though
happens if a dynamic instance with a relatively large amount of features has few points
tracked in the current frame. The following optimization scenarios can then appear:

• If a keyframe is inserted only because the camera tracking is weak, the local BA
optimizes the currently processed keyframe, all the keyframes connected to it in the
covisibility graph, and all the map points seen by those keyframes, following the
implementation of ORB-SLAM.

• If a keyframe is inserted only because an instance tracking is weak, a new object
with new object points is created. This keyframe does not introduce new static
structure, and if the rest of dynamic objects have a stable tracking, new objects for
these tracks are not created. In such case the local BA optimizes the pose, velocity
and object points of this object and the camera along a 2 seconds temporal tail.

• Finally, if a keyframe is inserted because both camera and object tracking is weak,
camera poses, map structure, object poses, velocities and points are jointly opti-
mized.

To avoid non-physically feasible object dynamics, a smooth trajectory is forced by
assuming a constant velocity in consecutive observations. The linear and angular velocity
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of an object k at observation i are respectively denoted as vki ∈ R3 and wk
i ∈ R3. We

define the following error term:

ei,kvcte =

(
vki+1 − vki
wk
i+1 −wk

i

)
(5.3)

An additional error term is needed to couple the object velocities and poses with
their corresponding 3D points. This term can be seen in Eqn. 5.4, where ∆Ti,i+1

Ok
is the

pose transformation that the object k undergoes in the time interval ∆ti,i+1 between
consecutive observations i and i+ 1:

ei,j,kvcte,XYZ =
(
Tk,i+1

WO −Tk,i
WO ∆Ti,i+1

Ok

)
xj,kO (5.4)

The term ∆Ti,i+1
Ok

is defined from the linear and angular velocity of the object k at
time i (vki and wk

i ) as in Eqn. 5.5, where we use the exponential map Exp : R3 → SO(3)
as defined in appendix section D.2:

∆Ti,i+1
Ok

=

(
Exp(wk

i ∆ti,i+1) vki ∆ti,i+1

01×3 1

)
(5.5)

The derivative of the term ei,j,kvcte,XYZ in Eqn. 5.4 with respect to the angular velocity
is approximated as follows. Let us apply an additive perturbation δwk

i to the object
angular velocity, such that:

∂ei,j,kvcte,XYZ

∂δwk
i

= − ∂

∂δwk
i

[(
Rk,i

WOExp((wk
i + δwk

i )∆ti,i+1) Rk,i
WOvki ∆ti,i+1 + tk,iWO

01×3 1

)
xj,kO

]
(5.6)

= −Rk,i
WO

∂

∂δwk
i

[
Exp((wk

i + δwk
i )∆ti,i+1)xj,kO

]
(5.7)

≈ −Rk,i
WO

∂

∂δwk
i

[
Exp(wk

i ∆t)Exp(Jr(w
k
i ∆t)δw

k
i ∆t)x

j,k
O

]
(5.8)

where we have used the first order approximation, where the term Jr is the right Jacobian
of SO(3) (see Appendix section D.2.6) and relates additive increments in the tangent
space to multiplicative increments applied on the right-hand side. Assuming that the
term Jr(w

k
i ∆t)δw

k
i ∆t is small, we can rewrite the second term as:

Exp(wk
i ∆t)Exp(Jr(w

k
i ∆t)δw

k
i ∆t) ≈ Exp(wk

i ∆t)(I + [Jr(w
k
i ∆t)δw

k
i ∆t]×), (5.9)

where [·]× is the skew operator that transforms a vector in R3 into a skew symmetric
matrix. Derivative takes next form:

∂ei,j,kvcte,XYZ

∂δwk
i

≈ −Rk,i
WOExp(wk

i ∆t)∆t
∂

∂δwk
i

(
[Jr(w

k
i ∆t)δw

k
i ]×xj,kO

)
(5.10)

Skew matrix multiplication by a vector is equivalent to cross product and we know
derivative of cross product can be expanded as:

d

dt
(a× b) =

da

dt
× b + a× db

dt
(5.11)
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In our case, this leads to:

∂ei,j,kvcte,XYZ

∂δwk
i

= −Rk,i
WOExp(wk

i ∆t)∆t
(

[Jr]col1 × xj,kO , [Jr]col2 × xj,kO , [Jr]col3 × xj,kO

)
(5.12)

Derivatves with respect to linear velocity can be straightforward derived. Coming back
to the general optimization problem, we define the following BA for a set of cameras in
the optimizable local window K with each camera i observing a set of map pointsMP i
and an object set Oi containing each object k the set of object points OPk:

min
θ

∑
i∈K

(
∑
l∈MPi

ρ (‖ei,lrepr‖2
Σl

i
) +

∑
k∈Oi

(ρ (‖ei,kvcte‖2
Σ∆t

)

+
∑
j∈OPk

(ρ(‖ei,j,krepr‖2
Σj

i

) + ρ (‖ei,j,kvcte,XYZ‖2
Σ∆t

)))), (5.13)

where ρ is the robust Huber cost function to downweigh outlier correspondences and Σ is
the covariance matrix. In the case of the reprojection error Σ is associated to the scale of
the key point in the camera i observing the points l and j respectively. For the two other
error terms Σ is associated to the time interval between two consecutive observations of
an object, i.e., the longer time the more uncertainty there is about the constant velocity
assumption. The parameters to be optimized are θ = {Ti

CW,T
k,i
WO ,x

l
W,x

j,k
O ,vki ,w

k
i }.

Fig. 5.4 shows the boolean Hessian matrix (H) of the problem described. The Hessian
can be built from the Jacobian matrices associated to each edge in the factor graph. In
order to have a non-zero (i, j) block matrix, there must be an edge between i and j node
in the factor graph. Notice the difference in the sparsity patterns of the map points and
the object points. The size of the Hessian matrix is dominated by the number of map
points Nmp and object points, which in typical problems is several orders of magnitude
larger than the number of cameras and objects. Applying Schur complement trick and
solving the system has a run-time complexity of O(N3

c +N2
cNmp+NcNoNop), where either

the second or third term will dominate the cost depending on the number of static and
dynamic points.

5.1.3.5 Bounding Boxes

We propose to decouple the estimation of the trajectories and the bounding boxes of
the dynamic objects. The former provides the system tracking with rich clues for ego-
motion estimation, and the conjunction of both are useful to understand the dynamics
of the surroundings. The output of the data association and the BA stages contains the
camera poses, the structure of the static scene and the dynamic objects, and the 6 DoF
trajectory of one point for each object. This one point is the center of mass of the object
3D points when it is first observed. Even though the center of mass changes along time
with new points observations, the object pose that is tracked and optimized is referred
to this first center of mass. To have a full understanding of the moving surroundings,
it is of high importance to know the objects dimensions and space occupancy. Tackling
the two problems independently allows to track dynamic objects from the first frame in
which they appear independently of the camera-object view point.

We initialize an object bounding box by searching two perpendicular planes that fit
roughly the majority of the object points. We hypothesize that many man-made objects
can approximately fit a 3D bounding box. In the case in which only one plane is found,
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Figure 5.4: Hessian matrix for 5 keyframes (KFs), 1 object with 10 object points (OPs)
and 10 static map points (MPs).

we add a prior on the rough dimensions of the non-observable direction that is related
to the object class. This procedure is done within a RANSAC scheme: we choose the
computed 3D bounding box that has the largest IoU of its image projection with the
CNN 2D bounding box. This bounding box is computed once for every object track.

To refine the bounding box dimensions and its pose relative to the object tracking
reference, an image-based optimization is performed within a temporal window. This
optimization seeks to minimize the distance between the 3D bounding box image projec-
tion and the CNN 2D bounding box prediction. Also, to constraint the solution space in
case the view of an object makes this problem non-observable (e.g., a car observed from
the back), a soft prior about the object dimensions is included. Since this prior is tightly
related to the object class, we believe that adding this soft prior does not mean a loss of
generality. Finally, the initial bounding box pose is set as a prior so that the optimization
solution remains close.

One can see in Fig. 5.5 the effect of the different errors and priors we use in our
optimization. First, all three objects (Figs. 5.5a, 5.5b and 5.5c) yield the same 2D image
projection so, unless an object is observed in at least three frames at different view points,
more constraints are required to render the problem observable. Second, forcing the 3D
points to be near the found planes constraints most cases. Third, a prior about the
object’s dimensions is needed, otherwise, cases such as the ones in Figs. 5.5b and 5.5c are
not fully constrained.

5.1.4 Experiments

In this section we detail the experiments carried out to test DynaSLAM II. It is divided in
two main blocks: one that assesses the effect of tracking objects on the estimation of cam-
era motion (section 5.1.4.1), and one that analyzes the multi-object tracking performance
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Figure 5.5: Examples of camera and bounding box configurations.

seq ORB-SLAM2 [97] DynaSLAM [6] VDO-SLAM [151] Ours
ATE
(m)

RPEt
(m/f)

RPER
(°/f)

ATE
(m)

RPEt
(m/f)

RPER
(°/f)

ATE
(m)

RPEt
(m/f)

RPER
(°/f)

ATE
(m)

RPEt
(m/f)

RPER
(°/f)

0000 1.32 0.04 0.06 1.35 0.04 0.06 - 0.05 0.05 1.29 0.04 0.06
0001 1.95 0.05 0.04 2.42 0.05 0.04 - 0.12 0.04 2.31 0.05 0.04
0002 0.95 0.04 0.03 1.04 0.04 0.03 - 0.04 0.02 0.91 0.04 0.02
0003 0.74 0.07 0.04 0.78 0.07 0.04 - 0.09 0.04 0.69 0.06 0.04
0004 1.44 0.07 0.06 1.52 0.07 0.06 - 0.11 0.05 1.42 0.07 0.06
0005 1.23 0.06 0.03 1.22 0.06 0.03 - 0.10 0.02 1.34 0.06 0.03
0006 0.19 0.02 0.04 0.19 0.02 0.04 - 0.02 0.05 0.19 0.02 0.04
0007 2.47 0.05 0.07 2.69 0.05 0.07 - - - 3.10 0.05 0.07
0008 1.40 0.08 0.04 1.29 0.08 0.04 - - - 1.68 0.10 0.04
0009 4.00 0.06 0.05 3.55 0.06 0.05 - - - 5.02 0.06 0.06
0010 1.68 0.07 0.04 1.84 0.07 0.04 - - - 1.30 0.07 0.03
0011 0.97 0.04 0.03 1.05 0.04 0.03 - - - 1.03 0.04 0.03
0013 1.18 0.04 0.05 1.18 0.04 0.05 - - - 1.10 0.04 0.04
0014 0.13 0.03 0.08 0.13 0.03 0.08 - - - 0.12 0.03 0.08
0018 0.89 0.05 0.03 1.00 0.05 0.03 - 0.07 0.02 1.09 0.05 0.02
0019 2.31 0.05 0.03 2.35 0.05 0.03 - - - 2.25 0.05 0.03
0020 16.80 0.11 0.07 1.10 0.05 0.04 - 0.16 0.03 1.36 0.07 0.04
mean 2.33 0.055 0.046 1.45 0.051 0.045 - 0.084 0.036 1.54 0.053 0.043

Table 5.1: Egomotion comparison on the KITTI tracking dataset. Results of sequences
without egomotion are not shown.

(section 5.1.4.2).

5.1.4.1 Visual Odometry

For the visual odometry experiments we have chosen the KITTI tracking (Table 5.1) and
raw (Table 5.2) datasets [57]. They contain several gray-scale and RGB stereo sequences
of urban and road scenes recorded from a car perspective with circulating vehicles and
pedestrians, as well as its GPS data.

Tables 5.1 and 5.2 detail comparisons of our system’s performance against ORB-
SLAM2 and our previous work DynaSLAM [6]. We also provide some qualitative sam-
ples of our algorithm for these datasets in figure 5.6. ORB-SLAM2 is the base SLAM
system on which we build DynaSLAM II, and does not specifically address dynamic ob-
jects. DynaSLAM adds ORB-SLAM2 the capability to detect the features belonging to
dynamic objects and classes but uniquely ignores them and does not track them. Both
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seq ORB-SLAM2 [97] DynaSLAM [6] ClusterSLAM [63] ClusterVO [64] Ours
ATE
(m)

RPEt
(m)

RPER
(rd)

ATE
(m)

RPEt
(m)

RPER
(rd)

ATE
(m)

RPEt
(m)

RPER
(rd)

ATE
(m)

RPEt
(m)

RPER
(rd)

ATE
(m)

RPEt
(m)

RPER
(rd)

0926-0009 0.83 1.85 0.01 0.81 1.80 0.01 0.92 2.34 0.03 0.79 2.98 0.03 0.85 1.87 0.01
0926-0013 0.32 1.04 0.01 0.30 0.99 0.01 2.12 5.50 0.07 0.26 1.16 0.01 0.29 0.93 0.00
0926-0014 0.50 1.22 0.01 0.60 1.62 0.01 0.81 2.24 0.03 0.48 1.04 0.01 0.48 1.35 0.01
0926-0051 0.38 1.16 0.00 0.46 1.17 0.00 1.19 1.44 0.03 0.81 2.74 0.02 0.44 1.14 0.00
0926-0101 2.97 13.63 0.03 3.52 15.14 0.03 4.02 12.43 0.02 3.18 12.78 0.02 4.33 15.02 0.04
0929-0004 0.62 1.38 0.01 0.56 1.36 0.01 1.12 2.78 0.02 0.40 1.77 0.02 0.64 1.41 0.01
1003-0047 20.49 32.59 0.08 2.87 5.95 0.02 10.21 8.94 0.06 4.79 6.54 0.05 3.03 6.85 0.02

mean 3.73 7.55 0.02 1.30 4.00 0.01 2.91 5.10 0.04 1.53 4.14 0.02 1.44 4.08 0.01

Table 5.2: Egomotion comparison on the KITTI raw dataset.

DynaSLAM I and II use instance semantic priors. However, DynaSLAM I uses them to
ignore information belonging to dynamic objects and DynaSLAM II uses them to track
the different dynamic objects in the scene and have additional clues for the camera ego
motion estimation. The difference in the results of ORB-SLAM2 and DynaSLAM gives
an idea of how dynamic each sequence is. Theoretically, if dynamic objects are represen-
tative in the scene and they are in circulation, DynaSLAM has better performance, as
can be seen in sequences 0020 and 1003-0047 in Tables 5.1 and 5.2 respectively. However,
if dynamic objects are representative in the scene but not in motion, e.g., parked cars,
DynaSLAM shows a larger trajectory error. This happens because the features belonging
to the static nearby vehicles, useful for pose estimation, are not used. This is seen for
example in the sequence 0001 in Table 5.1. Besides that, DynaSLAM II achieves a perfor-
mance better than both ORB-SLAM and DynaSLAM in these two types of scenarios in
many of the evaluated sequences. On the one hand, when dynamic instances are moving,
DynaSLAM II estimates the velocity of the corresponding objects and provide the BA
with rich clues for camera pose estimation when the static representation is not sufficient.
This occurs when dynamic objects occlude nearby scene regions and thus static features
only provide valuable hints for accurately estimating the camera rotation. Note that, we
have not evaluated the estimated speed of the vehicle because there is no ground truth
for this. On the other hand, when dynamic classes instances are static, DynaSLAM II
tracks their features estimating that their velocity is close to zero, i.e., object points
act much like static points. However, our camera tracking performance is seen slightly
degraded compared to ORB-SLAM since we allow for more flexibility when estimating
the dynamic-object motion status.

Tables 5.1 and 5.2 present our ego motion results compared to those of state-of-the-art
systems that also track dynamic objects in a joint SLAM framework. ClusterSLAM [63]
acts as a back end rather than a SLAM system and is highly dependent on the cam-
era poses initial estimates. ClusterVO [64] and VDO-SLAM [151] are SLAM systems
as ours with the multi-object tracking capability. The former can handle stereo and
RGB-D data, whereas the latter only handles RGB-D. The reported errors are given
with different metrics so that we can directly use the values that the authors provide.
DynaSLAM II achieves in all sequences a lower translational relative error (RPEt) than
that of VDO-SLAM. However, VDO-SLAM usually achieves a lower rotational pose error
(RPER). Since far points are the ones that provide the richest clues for rotation estima-
tion, we believe that this difference in accuracy does not depend on the object tracking
performance and is therefore due to the underlying camera pose estimation algorithm and
sensor suite. Regarding the performance of ClusterVO, it achieves an accuracy which is
in most sequences quite similar to ours.
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(a) KITTI03

(b) KITTI04

(c) KITTI06

(d) KITTI18

(e) KITTI20

Figure 5.6: Qualitative results with the KITTI tracking dataset. On the left, 3D bounding
box and the speed of the objects are inferred in the image. Static and dynamic key points
are in green and red respectively. On the right, joint estimation of the camera ego motion
(green car), the sparse static 3D map (black points) and the trajectories of the dynamic
objects. The cyan keyframes allow to optimize the map dynamic structure, whereas the
blue ones only optimize the camera pose and the static structure.

5.1.4.2 Multi-Object Tracking

Once the utility of tracking dynamic objects for ego motion estimation is demonstrated,
we have chosen again the KITTI tracking [57] and Oxford Multimotion [66] datasets
to validate our multi-object tracking results. On the KITTI dataset, dynamic-object
trajectories and 3D bounding boxes are provided thanks to expensive manual annotations
on LIDAR point clouds.
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sequence 0003 0005 0010 0011 0018 0019 0020
object id (class) 1 (car) 31 (car) 0 (car) 0 (car) 35 (car) 2 (car) 3 (car) 63 (car) 72 (car) 0 (car) 12 (car) 122 (car)

ATE [m] 0.69 0.51 0.95 1.05 1.25 1.10 1.13 0.86 0.99 0.56 1.18 0.87
RPEt [m/m] 0.34 0.26 0.40 0.43 0.89 0.30 0.55 1.45 1.12 0.45 0.40 0.72
RPER [°/m] 1.84 13.50 2.84 12.51 16.64 9.27 20.05 48.80 3.36 1.30 6.19 5.75

2D TP (%) 50.00 28.96 81.63 72.65 53.17 86.36 53.33 35.26 29.11 63.68 42.77 34.90
MOTP [%] 71.79 60.30 73.51 74.78 65.25 74.81 70.94 63.50 62.59 78.54 76.77 78.76

BV TP (%) 39.34 14.48 70.41 61.66 19.05 67.05 21.75 29.48 29.43 43.78 37.64 34.51
MOTP [%] 56.61 46.84 47.60 50.74 31.95 45.47 41.45 45.69 55.48 45.00 49.29 48.05

3D TP (%) 38.53 11.45 68.37 52.28 6.35 62.12 16.84 26.48 29.43 31.84 36.23 29.02
MOTP [%] 48.20 34.20 40.28 47.35 26.02 34.80 35.80 33.89 39.81 46.15 40.81 44.43

Table 5.3: Objects motion comparison on the KITTI tracking dataset.

First of all, we would like to draw the attention of the reader to Fig. 5.6 to have a
look at our qualitative results on this dataset. The bounding boxes of the two purple cars
on the left are well estimated despite their partial view. This scene is also challenging
because the other two front cars are far from the camera and yet are correctly tracked.

In the last decade Bernardin et al. [5] introduced the CLEARMOTmetrics to allow for
objective comparison of tracker characteristics, focusing on their precision in estimating
object locations, their accuracy in recognizing object configurations and their ability to
consistently label objects over time. Whereas these metrics are well established in the
computer vision and robotics communities and provide valuable insights about the per-
frame performance of trackers, they do not take into account the quality of the tracked
object trajectories. We suggest that to correctly evaluate multi-object tracking within a
SLAM framework, one needs to report the CLEAR MOT metric MOTP 1 as well as the
common trajectory error metrics. Most related works on SLAM and multi-object tracking
only report the CLEAR MOT metric MOTP [64, 83, 147] and besides that, the authors
of VDO-SLAM [151] uniquely report the relative pose error of all objects trajectories of
one sequence as a single ensemble. We think that, to facilitate comparison, this metric
should be instead reported for individual trajectories.

Table 5.4 shows an evaluation of all object detections in the KITTI tracking dataset
with the KITTI 3D object detection benchmark. This allows us to directly compare our
multi-object tracking results to those of state-of-the-art similar systems (Table 5.4). The
CNNs of Chen et al. [26] and specially of Li et al. [83] achieve excellent results thanks
to the single-view network accuracy itself and the multi-view refinement approach of the
latter one, to the detriment of a generality loss. On the other hand, the accuracy of
Barsan et al. [4] and Huang et al. [64] in detecting bounding boxes is remarkable but very
sensitive to object truncation and occlusion. Our results show that we handle objects
truncation and occlusion with a minor loss in precision. However, less bounding boxes
are usually discovered. Our intuition is that our system feature-based nature renders
this step specially challenging, opposite to the work by Barsan et al. [4], which computes
dense stereo matching.

To evaluate our estimation of object trajectories, in Table 5.3 we have chosen the 12
longest sequences of the KITTI tracking dataset whose 2D detections are neither occluded
nor truncated, and whose height is at least of 40 pixels. These chosen objects are labeled
with their ground-truth object id. For each of these ground truth trajectories we look for
the most overlapping bounding boxes in our estimations (the overlapping has to be of at
least 25 %). In the case of the trajectory metrics (ATE and RPE) and the 2D MOTP, this

1MOTP stands for multiple object tracking precision. It is the predictions precision computed with
any given cost function over the number of TPs.
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MOTPBV MOTP3D
Easy Moderate Hard Easy Moderate Hard

[26] 81.34 % 70.70 % 66.32 % 80.62 % 70.01 % 65.76 %
[83] 88.07 % 77.83 % 72.73 % 86.57 % 74.13 % 68.96 %
[4] 71.83 % 47.16 % 40.30 % 64.51 % 43.70 % 37.66 %
[64] 74.65 % 49.65 % 45.62 % 55.85 % 38.93 % 33.55 %
Ours 64.69 % 58.75 % 58.36 % 53.14 % 48.66 % 48.57 %

Table 5.4: MOTP evaluation on the KITTI tracking dataset. The categories Easy, Mod-
erate and Hard are based on the 2D bounding boxes height, occlusion and truncation
level.

System Ego Camera Obj. 1 Obj. 2 Obj. 3 Obj. 4
MVO [66] 0.93 0.36 0.64 0.45 5.94

ClusterVO [64] 0.62 0.24 0.45 0.24 4.69
Ours 0.21 0.41 0.37 1.09 0.28

Table 5.5: ATE [m] for multi-object tracking and egomotion in swing-
ing_4_unconstrained (Oxford Multimotion dataset).

overlapping is computed as the IoU of the 3D bounding boxes projected over the current
frame. For the other two evaluations (BV and 3D), the overlapping is computed as the
IoU of the bounding boxes in bird view and in 3D respectively. This evaluation gives an
idea of our framework tracking performance and our bounding boxes quality. Regarding
the true positives percentage, we can see that objects are tracked for the majority of their
trajectory. Missing detections occur because the objects lay far from the camera and the
stereo matching does not provide enough features for a rich tracking. Note that, the
passersby tracking accuracy is lower than that of the cars due to their non-rigid shape
(seq. 0017). The trajectory errors of the cars are acceptable but they are far from the
ego-motion estimation performance. Our intuition is that our algorithm feature-based
nature renders the bounding box estimation specially challenging. A larger amount of
3D points would always provide richer clues for object tracking.

Finally, to underline the robustness and generality of the presented approach and
not to only focus on an outdoor driving scenario where constant velocity models are
pretty convenient, we have also evaluated the multi-object tracking performance of Dy-
naSLAM II on the swinging_4_unconstrained sequence from the Oxford Multimotion
dataset [66]. This sequence is recorded with a RGB-D and a stereo camera in an indoor
environment with four textured boxes hanging from the ceiling and balancing with non-
constant velocities. The egomotion and tracking results of DynaSLAM II and of other
similar systems on this dataset can be observed in Table 5.5. Our system achieves a
significantly higher accuracy for ego motion estimation than compared methods, while
objects tracking seems to be more robust with a lower highest error. Experiments also
evince that using a soft constant velocity prior for object motion does not restrict our ap-
proach to tailored cases. Comparison against VDO-SLAM has been omitted since there
exists no feasible way to compute the RPE for object tracking on this dataset.
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Sequence Building block Time [ms]

KITTI tracking 0003
Tracking thread 80.10 ± 0.78

Local BA 61.37 ± 6.70
Bounding Boxes BA 0.07 ± 0.01

KITTI tracking 0020
Tracking thread 94.56 ± 1.27

Local BA 65.03 ± 17.72
Bounding Boxes BA 0.60 ± 0.05
[83] [151] [63] [64] Ours

fps 5.8 5 - 8 7 8 10 - 12

Table 5.6: DynaSLAM II average computational time.

5.1.4.3 Timing Analysis

To complete our proposal evaluation, Table 5.6 shows the average computational time
for its different building blocks. The timing of DynaSLAM II is highly dependent on the
number of objects to be tracked. In sequences like KITTI tracking 0003 there are only
two objects at a time as maximum and runs thus at 12 fps. However, the sequence 0020
can have up to 20 objects at a time and its performance is seen slightly compromised,
but still achieves a real time performance at ∼ 10 fps. We do not include within these
numbers the computational time of the semantic segmentation CNN since it depends on
the GPU power and CNN model complexity. Algorithms such as YOLACT [15] can run
in real time and provide high-quality instance masks.

Finally, the last rows of Table 5.6 collect the average timing results for systems that
jointly perform SLAM and multi-object tracking in the KITTI dataset. DynaSLAM II
is the only system that can provide at present a real-time solution.

5.1.5 Discussion

We have proposed an object-level SLAM system with novel measurement functions be-
tween cameras, objects and 3D map points. This allows us to track dynamic objects and
tightly optimize the trajectories of self and surroundings to let both estimations be mutu-
ally beneficial. We decouple the problem of object tracking from that of bounding boxes
estimation and, differently from other works, we do not make any assumptions about the
objects motion, pose or model. Our experiments show that DynaSLAM II achieves a
state-of-the-art accuracy at real time performance, which renders our framework suitable
for a large number of real world applications.

The feature-based core of our system limits its ability to discover accurate 3D bound-
ing boxes, and also to track objects with low texture. Fully exploiting the dense visual
information would certainly push these limits forward. We would also like to explore the
–even more– challenging task of multi-object tracking and SLAM with only a monocular
camera. This is an interesting direction since dynamic-object tracking can provide rich
clues about the scale of the map.
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5.2 Deep Learning for scale-aware monocular SLAM

In the last few years, advances in machine learning have shaken the entire computer vision
community. Compared with classical methods, learning based solutions have proved to be
outstanding in some tasks like object detection, scene representation or monocular depth
prediction. These have direct application to the Simultaneous Localization and Mapping
(SLAM) problem which have been and continue to be studied by the community.

With respect to single-view depth prediction, proposed Convolutional Neural Net-
works (CNN) are able to accurately estimate pixelwise depth for images close to the
training domain. Having such an estimation allows pure monocular SLAM/odometries
[46, 99] to estimate the true scale of the map, as stereo [97] or visual-inertial [22] systems
do. In addition, it mitigates and removes most important pure monocular issues like scale
drift [126] or need of an ad-hoc map initialization process. Furthermore, for autonomous
driving situations, using a monocular-inertial odometry may not be feasible. Vehicles do
not perform 6DoF motion, making inertial parameters, such as IMU biases or scale, have
low or null observability.

In this work we leverage these latest advancements and propose a direct monocular
odometry pipeline, to tightly integrate information from intensity images and depth pre-
diction inferred from existing CNNs, building a scale-aware system. Using only as inputs
the intensity image and the predicted depth allows us to use a large set of existing neu-
ral networks, increasing the applicability of our proposal. Next, we enumerate the main
contributions of our work,

• A novel tightly-coupled optimization for photometric and depth prediction measure-
ments. In contrast with previous work [132, 145, 146], depth prediction residuals are
formulated independently of the intensity image and are included for all observer
frames, not only the first one (host/anchor). This allows us to use image points with
lower intensity gradient and fully exploit depth prediction measurements, without
an increment in computational cost.

• A robust optimization which makes use of Truncated Least Square (TLS) cost [144]
for depth-prediction residual. This prevents considering inconsistent depth mea-
surements during optimization.

• A general system that can be used with any existing or future depth prediction
neural network, performing better than the similar solution from DF-VO [150].

5.2.1 Related Work

Scene scale depth remains ambiguous from monocular images and can not be directly
recovered from a single camera. However, it is clear that there exists some relation
between intensity image and image depth. Given a large enough dataset, learning based
methods are able to learn this relation, allowing us to infer pixel’s depth from gray scale
images.

One of the first successful works on single-view depth estimation was presented by
Eigen et al. [40]. They proposed a CNN with two components, one for the global
structure of the image, and the other one to recover fine details, being trained in a semi-
supervised way. Latter work from Godard et al. [58] extended the used of CNNs for
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Figure 5.7: Our reconstructed point-cloud and estimated sparse depth map from visual
odometry for KITTI00

this task with some important improvements. They formulated different loss functions
which allowed unsupervised training, extending the applicability of this approach. More
recent work CAM-Convs [47] from Fácil et al. generalizes the solution to different camera
calibrations. They present a new kind of convolution which sidesteps the need of training
from scratch a new network when camera parameters are modified. In this work we will
use an evolution of [58], coined as monodepth2 [59]. This presents some improvement
regarding occlusion and outliers detection, and its implementation is publicly available2.

The first time depth prediction from a CNN was used for SLAM or odometry was at
CNN-SLAM [132] by Tateno et al, where consecutive frames were aligned using photomet-
ric and depth prediction measurements. Once obtained these relative transformations,
the entire set of keyframe poses was optimized in a pose-graph fashion. More recent
solutions include DVSO [145] and D3VO [146] by Yang et al. Both are carefully designed
to make them work specifically with DSO [46], which is used as the odometry system as
well as for the neural-network supervised training. At DVSO a neural network is trained
to estimate not only pixel’s depth, but also the disparity in the virtual right camera,
which is also used as an odometry input to discard inconsistent points. At D3VO, depth
prediction uncertainty, relative pose and brightness transformations between consecutive
frames are also computed. This allows to accordingly weight measurements and include
pose-graph constraint in the photometric Bundle Adjustment. This approach obtains
outstanding results which are similar, if not better, than state-of-the-art stereo solutions.

2https://github.com/nianticlabs/monodepth2
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At DF-VO [150] a more general approach is followed. Depth prediction neural network
and its respective odometry are decoupled, being both independently developed. This
allows to combine that odometry with any existing or future depth prediction module,
gaining flexibility.

In this work we follow a similar approach to DF-VO, in contrast with DVSO or
D3VO where the depth prediction module and the odometry system are tightly related.
Differently from DF-VO, which also estimates optical flow between consecutive images,
our proposal only requires predicted depth as input, keeping our solution even more
general. Below we present our proposal.

5.2.2 Direct visual odometry with depth prediction

Map data for our odometry consists of map points and keyframes. Map points are
represented using an inverse depth parametrization [29]. For the first observer keyframe,
named as host or anchor, we keep azimuth and elevation fixed, having only inverse depth ρ
as optimizable parameter [46]. A keyframe will be parametrized with its pose T ∈ SE(3)
and its brightness affine transformation (a, b). For tracking purposes, we define a temporal
active window consisting of the last Na = 5 keyframes. All points seen from these
keyframes will define the set of active map points, which are those probably observed
from current frame. We also define a larger optimization window, consisting of the
No = 7 last keyframes. These will be optimized in a back-end photometric-depth Bundle
Adjustment along with map points seen or hosted by them.

In the following points we will describe in detail our proposal. First, at 5.2.2.1, we
explain how map points and keyframes are created and removed. We continue with frame
photometric tracking, at point 5.2.2.2. Finally, at 5.2.2.3, we present our novel multi-view
and tightly-coupled photometric-depth optimization.

5.2.2.1 Map point and Keyframe management

In contrast with pure monocular approaches, having a single-view depth estimation al-
lows to initialize points just from one view. This is also especially important for map
initialization, since we can boost our system with a single frame, as stereo odometries do.
The keyframe where the point is initialized will be set as the anchor or host keyframe.
When a new keyframe is inserted, we initialize points in image regions where there ex-
ist no observations. To this end, we compute the mean µ and standard deviation σ of
intensity values at each cell along a 16× 32 grid in the image. For each cell, we extract
points whose gradient is above µ + fσ, where f is an adaptive factor. We make several
extractions, starting with a high f value and decreasing it until we have at least 2000
hosted or observed points in the current keyframe. Each time we extract a new point, we
mask its neighbors within a 5× 5, window to avoid extracting overlapping points.

We also perform a map point culling process. In this way, a map point can be removed
for three reasons:

1. When a map point has been created outside of the active window and it has less
than 2 observations. This removes points which are difficult to track.

2. When the mean photometric residual of its observations is higher than 9 intensity
values. This removes probably bad estimated points.
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3. When it has at least one observation and its inverse depth information, quantified
with Hessian block from previous BA, drops below some threshold. In this sense
even a point with several observations may contain little information. This is the
case when its geometric derivatives (very far points) or image gradient (textureless
points) are small, or they are orthogonal to each other (see appendix B.3).

For keyframe creation we follow a simple heuristic: when the number of inliers in
frame tracking (see section 5.2.2.2) drops below 70%, a new keyframe is created. Each
time a keyframe is inserted, all active points are assumed to be observed. It is the
photometric-depth optimization which will manage and discard outlier observations, as
explained in 5.2.2.3. When a keyframe gets out of the active window and more than 80%
observed and hosted points have at least 3 observations, we discard that keyframe since
we consider it contains too redundant information.

5.2.2.2 Photometric Tracking

This task consists in estimating the current frame estate, relative pose and brightness
affine transformation with respect to the last keyframe, named as reference keyframe.
We will follow a procedure similar to DSO [46].

For this goal, when the reference keyframe is updated, we first build a sparse depth
map, D : ΩD −→ R, by projecting active points into reference image Ω and dilating them
to get a denser set ΩD ⊂ Ω. Since map points are created from a single view, projected
points may have from one (low accuracy) to multiple (high accuracy) observations. In
contrast with DSO and to take into account this disparate amount of information and
accordingly weight each projected point, we propose to weight them using the information
value of its inverse depth, computed from the last photometric-depth bundle adjustment.
This limits the influence of recently created points with higher uncertainty while points
with more observations and better conditioned will dominate the solution.

We remark we build this depth map D from our estimated point cloud instead of
directly using the predicted depth map from the neural network. Since our estimated
points have been refined combining photometric and depth-prediction residuals they are
much more precise than network output. Once map D is built, we solve the following
optimization problem:

arg min
{T,a,b}i,ref

∑
u∈ΩD

ρHub (‖Iref(u)− e−ai,ref{Ii(π(Ti,refπ
−1(u, D(u))))− bi,ref}

∥∥2
)

(5.14)

where images are defined as I : Ω −→ [0, 255] and π : R3 −→ Ω and π−1 : Ω × R −→ R3

are the camera projection map and its inverse. Unknowns to be found are Ti,ref ∈
SE(3) transformation from reference keyframe to current frame and {ai,ref, bi,ref} for its
relative brightness affine transformation as explained in [46]. Relative motion is initialized
assuming a constant velocity model, while affine parameters are set to values from the
last frame. In addition, we use a Huber robust norm to downweight outlier observations.
We run this optimization in a multiscale fashion, starting at the coarsest scale level (we
use five scales with scale factor 2) and going down until the original image resolution. We
optimize with Levenberg-Marquardt until convergence at each level, with a maximum
of 20 iterations per level, since this optimization is very efficient. If we detect that
the optimization has not converged in the coarsest level, usually due to big rotations,
we update the initial attitude estimate with small rotations. We keep the solution which
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provides the lowest mean photometric residual. Along this optimization we do not include
depth residuals which avoids running the depth-prediction depth-prediction at frame rate,
bringing an important computaational saving.

Instead of solving (5.14), we follow the more efficient inverse compositional approach as
presented in [2], also adopted in DSO. Details about this approach are given in appendix
C.

5.2.2.3 Photometric-Depth optimization

Each time a new keyframe is inserted, we run a windowed optimization for the last
No = 7 keyframes, denoted as K. Variables to be optimized are keyframe poses and
affine parameters inside the optimizable window, as well as inverse depth from all their
observed points P = {P1 ∪ · · · ∪ PNo}. All observations for these points are included
while observer and host keyframes outside the optimization window remain fixed. For
this optimization we include two kinds of residuals, with a tunable parameter k weighting
between them, leading to the following optimization problem:

arg min
{Ti,ρj}i,j

∑
i∈K

∑
j∈Pi

ρHub

(∥∥rji,photo∥∥2
)

+ k ρTLS

(∥∥rji,depth∥∥2
)

(5.15)

A simplified factor graph representation for this optimization problem is given in figure
5.8.

Figure 5.8: Factor graph representation for photometric-depth BA. Only one point, its
host and one observer keyframe are shown for simplicity.

The first residual, rji,photo, is the photometric one, which relates point j and observer
keyframe i as follows:

rji,photo =
∑

uj
h

′∈Nuj

Ih

(
ujh
′
)
− bh −

eah

eai

(
Ii

(
uji
′
)
− bi

)
(5.16)

such that
uji
′
= π

(
xji
′
)

with xji
′
= Tihπ

−1
(
ujh
′
, ρj
)

(5.17)

where ρj is the inverse depth and ujh
′
are the image coordinates of neighbor pixels in

the host for point j. We use the same patch Nuj
as proposed at DSO [46] which allows

fast vectorized computation. In contrast with DSO, where the Ti update is performed in
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the local reference, we prefer to apply it on the global reference. This makes derivatives
with respect to the host and observer frame only differ on sign, as shown in the appendix
section B.3.1, resulting in a computational reduction. The drawback of this formulation
is derivatives depend on distance to origin, which may cause stability issues when far from
it. To remove this, we apply a translation offset to the entire set of keyframes, bringing
the last keyframe to the origin. Since keyframes involved in optimization are spatially
close, this issue disappears. Once solved the optimization, we take all keyframe poses
back to the original reference. We use a Huber kernel to linearly weight outliers, with its
threshold set to 9 for pixel.

The second residual accounts for depth prediction measurements. From the neural
network, we have an inverse depth estimation Di

NN : Ω −→ R+ for a given keyframe i. For
each point j observed from keyframe i we define the following depth prediction error:

rji,depth = Di
NN(uji )− ρji s.t. ρji = [xji ]

−1
z (5.18)

where xji and uji can be computed similar to (5.17). [·]z takes the z component. For this
error we do not use a patch of pixels, since depth map is usually much more smooth than
intensity image and close pixels usually contain redundant depth information.

In addition, we use a Truncated Least Square (TLS) cost function [144], also known as
threshold cost [88]. When the depth prediction residual is above a threshold, its gradient
vanishes, which may be seen as setting its weights to zero, removing its influence. There
are two reasons for using this TLS cost. First, when photometric and depth prediction
measurements do not agree, we rely on the former and neglect the later which is more
prone to inconsistencies. Second, for each map point we have prediction-depth residuals
from each observer keyframe, which may not be consistent between them. Prediction
accuracy may depend on the point of view, on the region of the image where the prediction
is made or on how far the point is. Using a TLS robust cost function allows to activate
only depth measurements which are consistent between them or agree with photometric
information. The threshold of this TLS cost function is set to 0.01 m−1. We also define
the depth prediction residual for the host keyframe, which takes a simpler form:

rjh,depth = Dh
NN(ujh)− ρj (5.19)

This residual proves to be very useful to constraint points with lower photometric
information. We remark we are including depth prediction residuals for all observer
keyframes, which contrasts with [145, 146], where only host depth measurement is con-
sidered. Including this error does not suppose a big computational cost increment, since
a lot of terms may be reused from photometric residual (see appendix B.4).

Affine parameters a and b are prone to drift during optimization and they also add
extra degrees of freedom to the optimization problem. To avoid this, in addition to these
residuals, we add a strong prior to keep them close to zero. As for photometric tracking,
this optimization is solved in a multiscale way. However, since previous optimizations
have been run for keyframes and map points, estimates are close to minima. Thus, it is
not necessary to start the optimization from the coarsest level. Instead, we start at the
third finest level, which gives a basin of convergence of 4 pixels.

Once solved the optimization, we discard outlier observations based on two criteria.
First, if the average photometric residual for pixels in Nuj

is over a threshold, 9 intensity
values in our implementation, we discard it. Second, if the number of pixels in Nuj

with
a high residual (15 intensity values or more in our implementation) is greater than 40%,
we discard that observation.
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Comparing how photometric and depth prediction residuals are combined together
we find differences with previous works. At CNN-SLAM [132], depth prediction residual
is not explicitly used. Instead, the photometric residual is made dependent on the depth
map prediction. DF-VO [150] solves a PnP problem, using predicted depth. Other
methods like DVSO [145] or D3VO [146] convert the inverse depth prediction to an
equivalent stereo observation, defining a photometric error for the virtual stereo system.
For all these approaches, the residual and its derivatives depend on intensity image and
its gradient, which is more prone to contain noise and is much less smooth than predicted
depth gradients. In addition, it restricts the use of predicted depth to regions with high
visual texture.

In figure 5.9, we plot photometric, depth prediction and total costs for some map
points during photometric-depth BA. In figure 5.9d, predicted depth cost (orange) has
multiple minima since not all predicted depths are consistent. However, the lowest one
also corresponds with one photometric minimum (blue), leading to a clear absolute mini-
mum in the total cost (green). Adding predicted depth also increases convergence region
of the total cost (Fig. 5.9b). In some cases, all depth predictions and photometric mea-
surements are consistent with an equivalent minimum, as shown in figure 5.9c. As we
have previously stated, for low gradient points or repetitive regions, whose photomet-
ric cost may be plagued with multiples shallow minima, predicted depth increases the
convergence region for point’s depth (Fig. 5.9a).

5.2.3 Results

We evaluate our proposal on KITTI odometry [57], a self-driving oriented dataset. This
includes some of the sequences where monodepth2 has been trained as well as others with
similar characteristics not used for training, following the Eigen split proposal [40]. This
contains challenging sequences for pure monocular odometries since there exist almost
pure turns which lead to big scale drift. In addition, it has a low frame rate (10 fps)
which makes tracking more difficult, and has important luminosity changes which may
cause brightness affine parameters to easily diverge.

We compare our system against monocular DSO [46], monocular and stereo versions of
ORB-SLAM [97, 99], with the loop-closing thread deactivated, for a more fair comparison,
and also against DF-VO [150] a monocular odometry based on depth prediciton. We
measure the RMSE of Absolute Trajectory Error (ATE) [128] which are reported at table
5.7. Compared with pure monocular systems, our method based on depth prediction has
an accuracy 5 times higher than ORB-SLAM and 9 times higher than DSO. Compared
with the similar system DF-VO, which is the closest system to ours also using depth
prediction, our proposal achieves a higher accuracy for 7 out of 11 sequences, with a lower
average error. We use bold characters for better results among this comparison. Using
a stereo system gives better performance than our system, with a 57% error reduction.
We also detect that our method has quite diverse behaviour, being very dependent on
the sequence type. The best results are obtained for sequences moving along urban
environments with close building at both sides, as sequences 00, 02, 04, 06, 07, 08. Other
urban sequences like 03, 05 or 10, with further buildings and more vegetation produce
worse results. For highway environments, namely sequence 01, our system does not get
good results at all, with stereo ORB-SLAM being the only system able to obtain low error.
We hypothesize that these differences may be due to training dataset distribution, where
more urban environments are used, while highway sequences are much less frequent.
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Figure 5.9: Optimization cost w.r.t. ρj for different situations

Several results of our proposal are shown in figure 5.10. Major source of error for
monocular odometries, scale drift, has completely disappeared leading to much more
accurate results. More detailed results for sequence 00 are presented in figure 5.11. We
highlight that despite the lack of a loop closing module in our solution, we achieve zero
drift for most of this sequence, as shown in figure 5.11a, where multiple paths along the
same streets can barely be differentiated. In this sense, regarding figure 5.11b, we can
see that our proposal accumulates most of the error in a small section of the trajectory
at the end of the sequence. In fact, this part corresponds with a non-urban environment,
where both sides of the road are covered with vegetation, leading to less accurate results
from monodepth2 as previously hypothesized. If this last part were not considered, the
RMS ATE would be much closer to the median ATE, equal to 4.63m. An example of the
reconstructed point cloud, as well as the sparse depth map used for frame tracking (see
section 5.2.2.2) are shown in figure 5.7, top page. More detailed point clouds are shown
in figure 5.12

For a more precise solution, a more complex neural network could be used as other
methods do, but the solution would be less general. At DVSO paper [145], they report
results obtained with its odometry (DSO) using monodepth2 for the depth prediction, ob-
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Figure 5.10: Some sample trajectories at KITTI dataset coloured by ATE error
with respect to ground-truth. Graphics from evo software https://github.com/
MichaelGrupp/evo
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Table 5.7: RMSE ATE (m) errors for KITTI odometry dataset.

ORB-SLAM
mono

(No LC)
DSO* DF-VO

[150] Ours
ORB-SLAM

stereo
(No LC)

KITTI00 77.19 113.18 11.34 7.10 3.99
KITTI01 110.12 - 484.86 25.38 1.38
KITTI02 34.32 116.81 21.16 14.12 8.82
KITTI03 0.90 1.39 2.04 1.71 0.25
KITTI04 0.72 0.42 0.86 0.29 0.22
KITTI05 36.29 47.46 3.63 7.51 2.18
KITTI06 52.61 55.62 2.53 4.05 1.81
KITTI07 17.04 16.72 1.72 2.41 1.43
KITTI08 56.42 111.08 5.66 10.43 3.22
KITTI09 55.74 52.23 10.88 9.15 3.26
KITTI10 8.44 11.09 3.72 3.40 0.88
Avg.† 30,54 52.6 6.35 6,02 2.60
*: Results for DSO are extracted from [150]

†: KITTI01 is not used for average to ease comparison between methods
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Figure 5.11: Comparative results for KITTI00 dataset. Loop closing thread has been
deactivated for ORB-SLAM solutions. Notice the huge scale drift of pure monocular
solution, which is overcome with our solution based on depth prediction.

taining results with an accuracy close to ours. On the other hand, D3VO gets impressive
results, but they do not report results using depth prediction from other neural networks
and their implementation is not open-source and cannot be adopted in our work.

In addition, for the supervised training of these two works, they use a stereo version of
DSO, which computes a very accurate true scale point cloud for high gradient points. Its
neural networks learn to estimate very precisely this kind of points, which are also used
along their odometries based on DSO. Coupling the odometry and the depth prediction
in this way probably reduces the generality, which is one of our goals, but leads to very
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Figure 5.12: Close looks for reconstructed point clouds.

accurate results.

5.2.4 Discussion

In this work we have presented a direct monocular odometry based on depth prediction
from neural networks. We have shown that combining multi-view depth prediction and
photometric residuals in a single optimization makes scale observable, removes scale-drift
and leads to a much more accurate estimation than pure monocular solutions. Using
a truncated robust cost (TLS ) for depth residuals allows us to consider only consistent
measurements, making our optimization robust against spurious depth data. Our solu-
tion only requires the predicted depth estimation from the neural network, making our
solution very general and enabling to integrate it along with most of existing networks.
Using monodepth2 [59] as it is, we have evaluated our system in multiple sequences and
compared against monocular SLAM and DF-VO, system similar to ours. Our system
gets results 5 to 9 times more precise than monocular solutions and is more accurate
than DF-VO for 64% of the sequences. The experiments demonstrate the validity of our
proposal.

As future work we identify updating this odometry to a complete SLAM system, with
a covisible and not temporal optimization window, which would boost its performance.
This would entail some unsolved challenges for long term SLAM since images, depth
prediction and its gradients and pyramidal decomposition should be stored in memory.
In addition, including a loop-closing module would also be a big improvement. Making it
work directly on images, without using features, is also an open problem. The generality

90



of our approach opens the way to use other depth neural networks as well as other
datasets.
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Chapter 6

Conclusions and future work

6.1 Conclusions

This thesis aims to increase the robustness of Simultaneous Localization and Mapping
(SLAM), making it able to deal with a wider variety of situations. For this goal, we have
explored different sensor configurations, with especial interest in visual-inertial setups,
proposing new methods to make the most of them. We have also made use of deep-
learning tools to solve some SLAM related problems which may not be solved in a classic
geometric way, such as SLAM in dynamic-environments or monocular scale-aware SLAM.

First, we have focused on initializing visual-inertial SLAM, aiming to find faster and
more accurate solutions than existing ones. In section 3, we have presented two different
inertial initialization techniques. The first one, section 3.2, was a joint visual-inertial
initialization which computes the 3D landmarks, camera poses and inertial parameters
in a single step. Since some simplifications are needed to find a closed form solution, we
have proposed two observability and consensus checks to discard inaccurate results. This
allowed us to find motions with consistent scale errors lower than 5%, using trajectories of
2 seconds or less. These tests remove all bad solutions but lead to lower recall, being only
able to initialize in some parts of the trajectory. In section 3.3, we have explored the use
of disjoint visual-inertial initialization, where first vision parameters are found, and later
the inertial sensor (IMU) is initialized. We have formulated the entire initialization as a
Maximum A Posteriori estimation problem, proposing a novel inertial-only optimization
which properly deals with the measurements uncertainties. This method has proved to
be more efficient, accurate and with a higher recall than any other solution in the state-
of-the-art. This confirms that solving first vision (up to scale) and taking into account
IMU uncertainty is crucial to obtain quick and precise visual-inertial solutions. Having
such a fast initialization allows using IMU from the very beginning.

Second, in section 4, building on the well known ORB-SLAM2 system, we have de-
veloped ORB-SLAM3, a new real-time, multi-map and visual-inertial SLAM system.
Currently this is the most complete open source SLAM system, which expands new op-
portunities for the research community. We have used and further developed our disjoint
IMU initialization method, not only for launching ORB-SLAM3, but also to refine the
scale and gravity direction after initialization, in a very efficient way. We have extended
previous work to the monocular and stereo inertial configurations, for pinhole and fisheye
cameras, covering the most used sensor setups. Our exhaustive and detailed experiments
have demonstrated that ORB-SLAM3 is the most precise system, specially within inertial
configurations. Our stereo-inertial SLAM gets errors below 1cm for typical small AR/VR
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scenarios. Furthermore, compared to competing methods, it is one order of magnitude
more precise for medium size scenarios, where the camera is revisiting common regions
and mid-term data association may be exploited.

Finally, we have also explored the use of deep learning techniques to improve the
robustness of SLAM for dynamic environments and monocular configurations. First, in
section 5.1, we have introduced DynaSLAM II, a stereo feature-based SLAM system.
We first segment dynamic objects by means of the deep neural network Mask-RCNN,
and instead of neglecting them, we incorporate their points and measurements to the
estimation problem, formulating an efficient Bundle Adjustment where dynamic objects’
pose and velocity are optimized. We also present a procedure to compute dynamic objects’
bounding boxes, which enhance the volumetric understanding of the scene. All these
together makes DynaSLAM II a robust and efficient system for dynamic environments,
showing that ego-motion estimation may also benefit from dynamic objects. Second,
in section 5.2, we have explored the application of depth-prediction neural networks to
monocular odometry. We have proposed a direct method which combines multiview
photometric and depth-prediction residuals, in a tightly coupled optimization. Using
robust cost functions, we can discard inaccurate depth prediction residuals while keeping
those consistent between them and with photometric measurements. Including also the
depth prediction measurements allows to include points with lower photometric gradient.
This leads to a monocular system which does not suffer from scale drift, being several
times more precise than monocular systems, while getting closer to stereo accuracy.

All the work developed in this thesis goes in the same direction, increasing SLAM
robustness.

Conclusiones

Esta tesis tiene como objetivo el incremento de la robustez de la localización y reconstruc-
ción simultánea de mapas (SLAM, por sus siglas en inglés) que le haga capaz de lidiar
con una mayor variedad de situaciones. Con este fin, hemos explorado distintas config-
uraciones de sensores, con especial interés en los equipos visual-inerciales, proponiendo
nuevos métodos para sacarles el máximo provecho. También hemos usado herramientas
de aprendizaje profundo para resolver algunos de los problemas que no pueden ser re-
sueltos mediante geometría clásica, como el SLAM en entornos dinámicos o estimación
de escala para SLAM monocular.

Primero, nos hemos centrado en la inicialización del SLAM visual-inercial, con el
objetivo de encontrar soluciones más rápidas y precisas que las que ya existen. En
la sección 3, hemos presentado dos técnicas diferentes de inicialización. La primera,
sección 3.2, era una inicialización conjunta visual-inercial que calcula en un único paso
la posición 3D de los puntos, la posición de las cámaras y los parámetros inerciales.
Ya que se asumen algunas simplificaciones para la obtención de una expresión cerrada,
hemos propuesto dos comprobaciones de observabilidad y consenso para descartar los
resultados inadecuados. Esto nos permite encontrar de manera consistente soluciones
con un error de escala por debajo del 5% usando trayectorias de 2 segundos de duración.
Las comprobaciones propuestas eliminan todas las soluciones malas pero conllevan una
exhaustividad baja, siendo únicamente capaz de inicializar en determinadas partes de
la trayectoria. En la sección 3.3, hemos explorado el uso de una inicialización visual-
inercial disjunta, donde se obtienen primero los parámetros visuales para posteriormente
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inicializar el sensor inercial (IMU). Hemos formulado la inicialización como un problema
de estimación de Máximo a Posteriori, proponiendo una nueva optimización únicamente
inercial que considera adecuadamente las incertidumbres de medida. Este método ha
demostrado ser más eficiente y con una mayor exhaustividad que el estado del arte.
Esto confirma que resolver primero la visión (a un factor de escala) y tener en cuenta
las incertidumbres inerciales es crucial para una rápida y precisa solución. Tener una
inicialización así de rápida y exhaustiva permite empezar a usar la IMU antes.

Segundo, en la sección 4, construido en el popular sistema ORB-SLAM2, hemos de-
sarrollado ORB-SLAM3, un nuevo sistema SLAM en tiempo real, multimapa y visual-
inercial. Actualmente, este es el sistema SLAM de código abierto más completo, el cual
abre nuevas oportunidades para la comunidad investigadora. Hemos usado nuestra inicial-
ización de la IMU disjunta previamente desarrollada no solo para inicializar ORB-SLAM3,
sino también para refinar de manera muy eficiente la escala y dirección de gravedad una
vez inicializado el sistema. Hemos extendido el trabajo previo para hacerlo funcionar
con cámaras monoculares y estéreo, tanto para lentes estenopeica como de ojo de pez,
cubriendo la mayor parte de sensores utilizados. Nuestros detallados y minuciosos exper-
imentos han demostrado que ORB-SLAM3 es el sistema más preciso, especialmente en
sus configuraciones inerciales. Nuestro sistema de SLAM estéreo-inercial obtiene errores
por debajo del centímetro para escenas típicas de realidad virtual y aumentada. Además,
comparado con métodos similares, nuestro sistema es un orden de magnitud más preciso
en entornos de tamaño medio, donde la cámara revisita zonas comunes y la asociación
de datos a medio plazo puede ser explotada. Finalmente, hemos explorado el uso de
técnicas de aprendizaje profundo para la mejora de la robustez del SLAM en entornos
dinámicos y en configuraciones monoculares. Primero, en la sección 5.1, hemos presen-
tado DynaSLAM II, un sistema SLAM estéreo basado en puntos característicos. Primero
segmentamos los objetos dinámicos mediante la red profunda Mask-RCNN y en lugar de
descartarlos, incorporamos sus puntos al problema de estimación, formulando un ajuste
de rayos eficiente donde la posición y velocidad de los objetos dinámicos son optimizadas.
También presentamos un procedimiento para calcular el volumen ocupado por el objeto
dinámico. Todo esto hace de DynaSLAM II un sistema robusto y eficiente para entornos
dinámicos. En segundo lugar, en la sección 5.2, hemos explorado la aplicación de redes
de predicción de profundidad para odometría monocular. Hemos propuesto un método
directo que combina errores fotométricos y de predicción de profundidad desde distintas
vistas, en una misma optimización. Usando funciones de coste robusto se pueden descar-
tar las predicciones de profundidad incongruentes mientras se mantienen las consistentes
con la fotometría y con el resto de predicciones. El añadir errores de predicción de pro-
fundidad también permite incluir puntos con menor gradiente fotométrico. Todo esto da
lugar a un sistema monocular que no sufre deriva de escala, varias veces más preciso que
los sistemas monoculares, con una precisión que se acerca a la de sistemas estéreo.

Como se puede ver todo el trabajo desarrollado en esta tesis va en la misma dirección:
incrementar la robustez de los sistemas SLAM.

6.2 Future work

SLAM is a very active field of research, with a lot of ongoing and future work, being still
an open problem. In this thesis we have covered some of the most relevant topics, with
especial interest in robustness. In this respect, we identify as work to be done the next
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points ordered by relevance,

• More complete geometric map representations. We have seen that ORB-SLAM3
gets very impressive results in terms of trajectory accuracy, with sub-centimeter
precision for stereo-inertial setup in room-size environments. However, as a feature
based method, map representation is very sparse and can be merely used for robot
localization. In this sense, a dense representation would allow a higher interaction
with the environment. Recent works on neural implicit representation are very
promising [93, 101], offering a compact, dense and differentiable representation,
potentially allowing dense SLAMwith a small memory and computational footprint.
How to integrate these methods along the SLAM pipeline, reformulate the Bundle
Adjustment, as well as making them computationally efficient for real time SLAM
are the biggest challenges.

• Include semantic information along with the map. In section 5.1, we have classified
objects as dynamic and non-dynamic, but this classification could be further devel-
oped, leading to a full semantic SLAM. Relations between different objects could
be included in the estimation problem.

• Visual-inertial SLAM for dynamic and non-rigid scenarios. When most of the scene
is dynamic, visual sensors are not enough to distinguish between scene and ego
motion. For non-rigid environments, specially for non-isometric deformation, some-
thing similar happens. Including an inertial sensor in dynamic and non-rigid SLAM
would help to decouple the scene motion/deformation and the ego motion.

• Multi-IMU visual-inertial SLAM. Combining more than one IMU in the same setup
could bring some important benefits. Two non-aligned IMUs could increase the ob-
servability of the inertial parameters, reducing initialization complexity and making
it faster. They could also reduce the signal-noise ratio of the IMU measurements,
which could be also achieved with a single better IMU. It would be interesting to
study the most efficient spatial distributions of these IMUs to get the less redundant
information.

Finally, making ORB-SLAM3 open-source we provide the research community with
the most complete state-of-the-art visual-inertial SLAM system. It can be used by re-
searchers as a baseline for comparison and new tools can be built on top of it. We wish
the community to push ORB-SLAM3 beyond its limits, showing its limitations and fail-
ure cases, pointing out where more research effort is needed. This will definitely help to
advance SLAM to new horizons.
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Appendix A

Bundle Adjustment

A.1 Non-linear optimization

In Bundle Adjustment we have a state vector x, whose components relate between them
by mean of measurements (residuals) vectors {r1(x) . . . rn(x)}, defining the squared errors
{c1(x) . . . cn(x)} such that ci(x) = rTi ri. Our problem can be stated as finding the state
x which minimizes c(x), the sum of all squared errors:

c(x) =
∑
l

cl(x) =
∑
l

1

2
rTl (x)rl(x) =

∑
l

∑
k

1

2
r2
l,k(x) (A.1)

This optimization problem is known as least-squares problem. Residuals are weighted
with the inverse of the measurement covariance matrix Σl. Here, for clarity sake we have
assumed an identity matrix. If we take a second order approximation of c(x) around the
current estimate x0, we get:

c(x0 + ∆x) ≈ c(x0) +
∂c

∂x

∣∣∣∣
x0

∆x +
1

2
∆xT

∂2c

∂x2

∣∣∣∣
x0

∆x (A.2)

Taking the first derivative with respect to the update ∆x and setting it to zero to find
the singular points (maximum or minimum), we get:

∂c

∂x

∣∣∣∣
x0

+
∂2c

∂x2

∣∣∣∣
x0

∆x = 0 (A.3)

which is the well-known normal equation. If we particularize for our least-squares prob-
lem, the first and second derivative of c(x) are computed as:(
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(A.5)

These define the gradient vector b and the Hessian matrix H, such that:

b =
∂c

∂x
=
∑
l

(
∂rl
∂x

)T
rl =

∑
l

Jlrl (A.6)
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H =
∂2c

∂x2
≈
∑
l

(
∂rl
∂x

)T
∂rl
∂x

=
∑
l

JTl Jl (A.7)

For the Hessian matrix, we have made the assumption that the second term in (A.5) is
negligible with respect to the first one, which is usually true when close to the minimum.
This approximation avoids computing second derivatives of residual vectors rl. We also
remark that H is symmetric by definition.

This renders the optimization problem equivalent to solving the following normal
equation:

∆x = −H−1b (A.8)

Both gradient and Hessian are computed at current estimate x0. Once ∆x has been
found, we update the current estimate as x0 = x0 + ∆x, where + stands for the usual
sum for variables belonging to euclidean spaces, while it stands for increment in the
tangent space for non-euclidean variables (see appendix D).

Equation A.8 is iteratively solved, recomputing b and H whilst the linearization point
is updated. This leads to the Gauss-Newton optimization algorithm, which is the gold
standard for non-linear least squares optimization. When the Hessian is rank deficient or
the estimate is far away from the minimum and second order approximation is inaccurate,
this method may fail. Instead of solving equation A.8, a damped least-squares method
is used, which interpolates between Gauss-Newton and gradient descent. This is known
as Levenberg-Marquardt and should be used when the Hessian matrix is ill-conditioned
or residual error is high. This method uses a regularized version of the Hessian matrix,
which is equivalent to solving the following equation:

∆x = −(H + λI)−1b (A.9)

where λ is the damping factor which controls its behaviour. When λ is big compared
with the Hessian spectral norm, we have a gradient descent method, whilst being small
it is equivalent to Gauss-Newton optimization. The Levenberg-Marquardt algorithm
describes how to update λ depending on the cost increase/decrease.

Under Gaussian noise assumption (with residuals affected by Gaussian noise), it can be
shown that solving this non-linear least-square problem is equivalent to find the Maximum
Likelihood estimate of the state vector, which has a strong statistical meaning.

A.2 Bundle Adjustment optimization

In the Bundle Adjustment problem (see sections 2.1 and 2.2), residuals usually depend
on a small number of optimizable variables. This makes Jl = ∂rl/∂x term to have a very
sparse structure which may be exploited to compute the also sparse Hessian Hl, such that
H =

∑
l Hl (See figure A.1). One should notice that the Hessian component (H)ij will

be different from zero only if there exists a measurement which relates i and j variables.
These optimizations can be represented by means of factor graphs [36, 68], which depict
the variable interaction in a very intuitive way. They have been extensively used along
this thesis.

For the specific case of visual SLAM we can split our vector state as x = (xc,xp),
where xc stands for cameras or keyframes parameters and xp for points parameters. By
accumulating all residuals’ Hessians Hl we get a Hessian matrix H as depicted in central
part of figure A.1. We can identify three blocks:
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For a single residual Full system Reduced camera system

1.

2.

Gradient

Jacobian
&

residual

Hessian

Figure A.1: Non-zero components are grey coloured. Left: Given a visual residual
depending only on keyframe i and point j variables, we can use its residual rl and Jacobian
Jl to compute its sparse gradient bl and Hessian Hl. Center: Accumulating for all
residual, we get a sparse Hessian matrix H and a dense gradient vector b which define
the complete system Hx = −b. Right: Instead of solving the complete system, we apply
the Schur complement to obtain the reduced camera system. We solve it for the keyframe
variables and later obtain the point variables by back-substitution.

• Hcc stands for the camera-camera block. When using a xyz parameterization, this
block is diagonal by blocks (as assumed in figure A.1), since a camera only shares
residuals with itself. However, if an inverse depth parameterization is used, with
an anchor or host keyframe, this block will have off-diagonal terms.

• Hcp = HT
pc are camera-point blocks. The sparsity of these blocks depends on how

meshed is the covisibility graph. For Structure from Motion, where points may be
observed from all cameras, they are dense. However, for SLAM applications, where
points are only observed from a small set of keyframes, these blocks are sparse, as
assumed in figure A.1.

• Hpp stands for the point-point block. Since a point only shares residuals with
cameras but not with other points, this block is diagonal. If xyz parameterization,
it contains 3× 3 blocks along the diagonal. This fact will be exploited to efficiently
compute the Hessian inverse.

A.2.1 Schur complement for an efficient solution

For SLAM applications, the number of points’ parameters, Np, is much larger than the
number of keyframes’ parameters, Nc. Typically we optimize hundreds or thousands of
points while only a few tens of keyframes. Directly solving equation A.8 would yield a high
computational cost, O((Nc+Np)

3). However, we have seen thatHpp has a diagonal layout
that can be taken advantage of using inversion by blocks. In fact, an efficient solution
can be easily derived using the matrix inversion lemma [133], obtaining a reduced camera
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system where only camera variables are involved:

∆xc = −H∗cc
−1b∗c (A.10)

with:

H∗cc = Hcc −HcpH
−1
pp Hpc (A.11)

b∗c = bc −HcpH
−1
pp bp (A.12)

where H∗cc is known as the Schur complement of Hcc. The diagonal structure of Hpp

allows us to bypass most of the cost of this reduced system construction. Computing
H−1
pp has a O(Np) cost, while computing the matrix product HcpH

−1
pp Hpc takes less than

O(N2
cNp) considering it is not fully dense. This yields an important cost reduction with

respect to original solution since Np � Nc. Once solved the reduced system, we can
retrieve point parameters as:

xp = −H−1
pp (bp −Hpcxc) (A.13)

This has a O(NpNc) cost. Altogether, using the Schur complement trick, we have reduced
the Bundle Adjustment cost from O((Nc + Np)

3) to O(N2
cNp), which is a substantial

reduction since Np � Nc. The biggest cost comes from building the reduced camera
system, while the exact cost will depend on how meshed is the covisibility graph, i.e.
how dense matrices H∗cc and Hcp are. Building the optimization problem has also an
important cost that can not be neglected.
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Appendix B

Bundle Adjustment residuals

In this appendix we introduce the most important residuals used for Bundle Adjustment.
We first present some camera models and their projection functions to later compute their
derivatives, necessary for the optimization. Next, we introduce the two most common
visual residuals used for BA, namely reprojection and photometric residuals, and we
compute their derivatives. To cover the two point parameterizations, xyz and inverse
depth, the former will be used for reprojection residual while the latter for photometric
residual. We finally present depth prediction residuals from section 5.2 as well as inertial
preintegrated terms used for section 3.3.

B.1 Camera models

We analyze here different camera models, mainly interested in their projection functions
π : R3 −→ Ω as well as their derivatives with respect to the 3D point position x in the
camera reference.

B.1.1 Pinhole camera

The projection function for a distortionless pinhole camera is:

u = π(x) =

(
fxx/z + cx
fyy/z + cy

)
(B.1)

where x stands for the 3D point coordinates in the camera reference. We immediately
obtain the derivative wrt the 3D point:

∂π(x)

∂x
=

(
fx/z 0 −fxx/z2

0 fy/z −fyy/z2

)
(B.2)

B.1.2 Fisheye camera

The projection function for a fisheye camera, using the Kannala-Brandt model [70] is:

u = π(x) =

(
fxx

′/z + cx
fyy
′/z + cy

)
(B.3)
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where the following intermediate terms are used:

x̄ = x/z

ȳ = y/z

r =
√
x̄2 + ȳ2

θ = atan(r)

θd = θ(1 + k1θ
2 + k2θ

4 + k3θ
6 + k4θ

8)

x′ = θdx/r

y′ = θdy/r

z′ = z (B.4)

We compute now derivatives with respect to the 3D point x at camera reference:

∂π(x)

∂x
=
∂π(x)

∂x′
∂x′

∂x
(B.5)

where ∂π(x)/∂x′ is the Jacobian of the pinhole camera, while the 3 × 3 matrix ∂x′/∂x
needs to be computed. For simplicity, we will use index notation, such that x =
(x1, x2, x3). In this sense, for the third component we have:

∂x′i
∂xj

= δij for i = 3 (B.6)

while for the first two:

∂x′i
∂xj

=
∂θd
∂xj

xi
r

+ θd

(
∂xi
∂xj

1

r
− xi
r2

∂r

∂xj

)
=
∂θd
∂θ

∂θ

∂r

∂r

∂xj

xi
r

+ θd

(
δij
r
− xi
r2

∂r

∂xj

)
for i = 1, 2 (B.7)

The intermediate derivatives are computed as:

∂θd
∂θ

= 1 + 3k1θ
2 + 5k2θ

4 + 7k3θ
6 + 9k4θ

8

∂θ

∂r
=

1

1 + r2

∂r

∂xj
=

1

r

(
x̄
∂x̄

∂xj
+ ȳ

∂ȳ

∂xj

)
(B.8)

B.2 Reprojection residual

For keyframe i observing point j, we define the reprojection error:

rji,proj = uji − π(xji ) ∈ R2 with xji = TiW ⊕ xj (B.9)

where xji denotes j point position in the i camera reference. This error may be seen
as the difference in pixels between the predicted projection π(xji ) and the measurement
uji . Projection map π may take any expression, and particularly those presented in the
previous section B.1.
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B.2.1 Reprojection residual derivatives

Assuming a xyz representation, this residual will depend on the observer keyframe pose
TiW = [RiW, tiW] and the global j point position xj. Next, we compute the derivatives with
respect to them.

B.2.1.1 Derivatives w.r.t. point position

For global point position xj we obtain the following expression:

∂rji,proj
∂xj

= − ∂π(x)

∂x

∣∣∣∣
xj
i

∂TiW ⊕ xj

∂xj

= − ∂π(x)

∂x

∣∣∣∣
xj
i

∂(RiWx
j + tiW)

∂xj

∂rji,proj
∂xj

= − ∂π(x)

∂x

∣∣∣∣
xj
i

RiW ∈ R2×3 (B.10)

where ∂π(x)
∂x

∣∣∣
xj
i

has been derived in the previous section.

B.2.1.2 Derivatives w.r.t. observer pose

Poses TiW belong to Lie group SE(3), which is a smooth manifold, locally but not globally
Euclidean, as explained in appendix D. This implies that we can not directly compute the
derivative with respect to absolute pose. Instead, we apply a small update ξ = (ξφ, ξt) in
the local reference (left hand side of the pose), and we compute derivatives with respect to
it. ξφ stands for the rotational part whilst ξt stands for the translation update, obtaining:

∂rji,proj
∂ξ

= − ∂π(x)

∂x

∣∣∣∣
xj
i

∂(Exp(ξ)⊕TiW ⊕ xj)

∂ξ

∣∣∣∣
ξ=0

= − ∂π(x)

∂x

∣∣∣∣
xj
i

∂(Exp(ξ)⊕ xji )

∂ξ

∣∣∣∣∣
ξ=0

(B.11)

The exponential map (See appendix section D.1.2) for SE(3) is defined as follows
[123]:

Exp(ξ) =

(
Exp(ξφ) V(ξφ)ξt

0 1

)
∈ SE(3) (B.12)

If ξ is a small update, as it is in our case, we can approximate the SO(3) exponential
map as (See equation D.32):

Exp(ξφ) ≈ I + [ξφ]× (B.13)

and (see [123]):
V(ξφ) ≈ I− 1/2[ξφ]× (B.14)
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where [·]× is the skew operator from R3 to so(3), as defined in equation D.28. With these
approximations, we can finally compute derivatives such that:

∂rji,proj
∂ξ

= − ∂π(x)

∂x

∣∣∣∣
xj
i

∂((I + [ξφ]×)xji + (I− 1/2[ξφ]×)ξt)

∂ξ

∣∣∣∣∣
ξ=0

= − ∂π(x)

∂x

∣∣∣∣
xj
i

 ∂[ξφ]×(xji − 1/2ξt)

∂ξφ

∣∣∣∣∣
ξ=0

,
∂(I− 1/2[ξφ]×)ξt

∂ξt

∣∣∣∣
ξ=0


∂rji,proj
∂ξ

= − ∂π(x)

∂x

∣∣∣∣
xj
i

(
−[xji ]×, I

)
∈ R2×6 (B.15)

where we have used ∂[ξ]×x/∂ξ = −[x]× (See appendix section D.2.5 for derivation).
Given a camera model, an explicit expression may be found for equation B.15, probably
leading to some computational saving since simplifications may exist.

For visual-inertial case, where the pose TiW to be optimized corresponds with the IMU
body B, a transformation TBC between body and camera is required. In this case, we have:

∂rji,proj
∂ξ

= − ∂π(x)

∂x

∣∣∣∣
xj
i

∂(TCB ⊕ Exp(ξ)⊕ xjBi)

∂ξ

∣∣∣∣∣
ξ=0

= − ∂π(x)

∂x

∣∣∣∣
xj
i

RCB
∂(Exp(ξ)⊕ xjBi)

∂ξ

∣∣∣∣∣
ξ=0

= − ∂π(x)

∂x

∣∣∣∣
xj
i

RCB
(
−[xjBi ]×, I

)
(B.16)

where xjBi stands for the 3D point position in the i body reference. Equivalent expression
but with point coordinates in camera reference could be derived using the adjoint matrix
AdTCB . In the particular case when RCB is the identity, we retrieve the previous expression
B.15, as expected.

B.3 Photometric residual

The second visual residual is the photometric error. This can be seen as the difference
of intensity values between image pixels which should correspond to the same 3D point.
For a map point j observed from frame i we can define the following rji,photo photometric
error:

rji,photo = Ih(u
j
h)− bh −

eah

eai
(Ii(u

j
i )− bi) ∈ R (B.17)

where:

• Ih, Ii: Images at host h and i observer frames.

• ujh,u
j
i : Point projection at host and i observer frames. We remark ujh is constant

since we follow parameterization from [46] instead of [29], while uji = π(xji ) it is
not.
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• ah, bh, ai, bi: Affine brightness parameters for host and i observer frames, as defined
in [46], and necessary for luminosity changes.

Here we will use an inverse depth parametrization for the 3D map point. Thereby, xj

can be computed as a function of the unitary vector x̄jh in the host/anchor (h) reference
pointing to the point, and the inverse depth ρj in the h reference, such that xjh = x̄jhρ

j−1.
This finally yields:

uji = π(xji ) = π(Tih ⊕ (x̄jhρ
j−1

)) = π(ρj
−1

Rihx̄
j
h + tih) (B.18)

where Tih = [Rih, tih] stands for transformation from host to i observer frame. Tih =
TiW⊕T−1

hW . The problem of equation B.18 lies in the division by the inverse depth, which
leads to stability issues for far points. One way to solve this consists in leveraging the
fact that π(x) = π(cx). In this way, we can scale xji with ρj, such that:

uji = π(ρjxji ) = π(ρj[Tih ⊕ (x̄jhρ
j−1

)]) = π(Rihx̄
j
h + ρjtih) (B.19)

where inverse depth ρj does not appear dividing. Hence, we will use expression B.19 for
computing equation B.17 and its derivatives in the following sections.

We have that this photometric residual depends on point inverse depth ρj, host ThW

and observer TiW poses, as well as their affine parameters ah, bh, ai, bi. We will need to
compute the derivatives with respect to each of them to build our photometric Bundle
Adjustment.

B.3.1 Photometric residual derivatives

In this section we derive Jacobians for each of the optimizable variables.

B.3.1.1 Derivatives w.r.t. affine brightness parameters

We start with the brightness affine parameters ah, bh, ai, bi. It can be immediately found
that:

∂rji,photo
∂ah

=− eah

eai
(Ii(u

j
i )− bi)

∂rji,photo
∂bh

=− 1

∂rji,photo
∂ai

=−
∂rji,photo
∂ah

∂rji,photo
∂bi

=
eah

eai

(B.20)

(B.21)

(B.22)

(B.23)

B.3.1.2 Derivatives w.r.t. point inverse depth

Now, we derive Jacobians for inverse depth ρj, such that applying chain rule we obtain:

∂rji,photo
∂ρj

= −e
ah

eai
∂Ii(u

j
i )

∂ρj

= −e
ah

eai
∂Ii
∂u

∣∣∣∣
uj
i

∂π(x)

∂x

∣∣∣∣
ρjxj

i

∂(Rihx̄
j
h + ρjtih)

∂ρj
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∂rji,photo
∂ρj

= −e
ah

eai
∂Ii
∂u

∣∣∣∣
uj
i

∂π(x)

∂x

∣∣∣∣
ρjxj

i

tih ∈ R (B.24)

where ∂Ii/∂u ∈ R2 stands for the image gradient, while the derivative of the projection
map has been already derived.

B.3.1.3 Derivatives w.r.t. frame poses

In contrast with equation B.15, where the pose update was applied in the local reference
frame (right hand side of the pose), here, we decide to apply it in the global reference
frame, which will lead to some computational saving. In particular, when computing
the Hessian, several terms will only defer on sign, making its construction much more
efficient. First, we compute with respect to host pose:

∂rji,photo
∂ξh

= −e
ah

eai
∂Ii
∂u

∣∣∣∣
uj
i

∂π(x)

∂x

∣∣∣∣
ρjxj

i

∂(ρjxji )

∂ξh

∣∣∣∣∣
ξ=0

(B.25)

where:

∂(ρjxji )

∂ξh

∣∣∣∣∣
ξ=0

= ρj
∂(Tih ⊕ xjh)

∂ξh

∣∣∣∣∣
ξ=0

= ρj
∂(TiW ⊕ (ThW ⊕ Exp(ξh))

−1 ⊕ xjh)

∂ξh

∣∣∣∣∣
ξ=0

= ρj
∂(TiW ⊕ Exp(−ξh)⊕TWh ⊕ xjh)

∂ξh

∣∣∣∣∣
ξ=0

= ρj
∂(Exp(−AdTiWξh)⊕ xji )

∂ξh

∣∣∣∣∣
ξ=0

= −ρj(I3| − [xji ]×)AdTiW ∈ R3×6

This finally leads to:

∂rji,photo
∂ξh

= ρj
eah

eai
∂Ii
∂u

∣∣∣∣
uj
i

∂π(x)

∂x

∣∣∣∣
ρjxj

i

(I3| − [xji ]×)AdTiW ∈ R6 (B.26)

First, we have used the following property Exp(ξ)−1 = Exp(−ξ) (See equation D.33
for derivation). Second, we have leverage the adjoint matrix AdX (see section D.1.3):

Exp(a)⊕X = X⊕ Exp(b) −→ a = AdXb (B.27)

For T = [R, t] ∈ SE(3), the adjoint matrix takes following expression [123]:

AdT =

[
R [t]×R
0 R

]
(B.28)

Now, we compute the derivative with respect to observer frame. In the same way, we
write:

∂rji,photo
∂ξi

= −e
ah

eai
∂Ii
∂u

∣∣∣∣
uj
i

∂π(x)

∂x

∣∣∣∣
xj
i

∂(ρjxji )

∂ξi

∣∣∣∣∣
ξ=0

(B.29)
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where:

∂(ρjxji )

∂ξi

∣∣∣∣∣
ξ=0

= ρj
∂(Tih ⊕ xjh)

∂ξh

∣∣∣∣∣
ξ=0

= ρj
∂(TiW ⊕ Exp(ξi)⊕TWh ⊕ xjh)

∂ξh

∣∣∣∣∣
ξ=0

= ρj
∂(Exp(AdTiWξi)⊕ xji )

∂ξh

∣∣∣∣∣
ξ=0

= ρj(I3| − [xji ]×)AdTiW (B.30)

finally leading to:

∂rji,photo
∂ξi

= −ρj e
ah

eai
∂Ii
∂u

∣∣∣∣
uj
i

∂π(x)

∂x

∣∣∣∣
xj
i

(I3| − [xji ]×)AdTiW ∈ R6 (B.31)

Derivatives for both frames only differ on sign, which greatly simplifies computations.
However, a problem arises in its linear dependence with respect to the absolute position
tiW, by means of the adjoint matrix. For frames far from the origin, this may cause
problems. To avoid this, all keyframes may be translated to a new reference close to the
origin.

If a pattern of neighbors is used, as explained in section 2.1.2, instead of a scalar
residual, we will have a vector of residuals. For simplicity, as proposed in [46], we will
assume that geometrical parts of the Jacobians (B.24), (B.26) and (B.31) are constant
for all pixels in the patch. We will only consider different the photometric derivative,
∂Ii
∂u

∣∣
uj
i
.

B.3.1.4 Derivatives with local update

If instead of applying the update in the world reference, we apply it in the camera
reference, derivatives for both frames would not have so similar expressions, and more
computations would be required to compute Hessian. In fact, for equations B.25 and
B.29, the only changes would be in the last terms, such that:

∂(ρjxji )

∂ξh

∣∣∣∣∣
ξ=0

= ρj
∂(TiW ⊕ (Exp(ξh)⊕ThW)

−1 ⊕ xjh)

∂ξh

∣∣∣∣∣
ξ=0

= ρj
∂(Exp(−AdTih

ξh)⊕ xji )

∂ξh

∣∣∣∣∣
ξ=0

= −ρj(I3| − [xji ]×)AdTih
∈ R3×6 (B.32)

∂(ρjxji )

∂ξi

∣∣∣∣∣
ξ=0

= ρj
∂(Exp(ξi)⊕TiW ⊕TWh ⊕ xjh)

∂ξh

∣∣∣∣∣
ξ=0

= ρj(I3| − [xji ]×) (B.33)
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We can see that host and observer derivatives not only defer in sign, but also the former
is multiplied by AdTih

, while the latter is not. This leads to more different components
along the camera i and camera h Hessian block, making its computation more expensive.
The advantage is that AdTih

is well bounded, since distance between host and observer
does not take very big values.

B.4 Depth-prediction residual

As described in section 5.2, we define the depth-prediction residual for point j seen from
keyframe i as:

rji,depth = Di
NN(uji )− ρji = where ρji = [xji ]

−1
z (B.34)

B.4.1 Depth-prediction derivatives

B.4.1.1 Derivatives w.r.t. point inverse depth

For obtaining these derivatives, most important computations may be recovered from
photometric residual derivatives. Following same procedure than for equation B.24, we
immediately get:

∂rji,depth
∂ρj

=
∂Di

NN

∂u

∣∣∣∣
uj
i

∂π(x)

∂x

∣∣∣∣
ρjxj

i

tih −
∂ρji
∂ρj

(B.35)

We now compute ∂ρji/∂ρj as:

∂ρji
∂ρj

=
∂[xji ]

−1
z

∂xji

∂xji
∂ρji

= (0, 0,−[xji ]
−2
z )

∂
(
Rihx̄

j
h/ρ

j + tih
)

∂ρj

=

(
ρji
ρj

)2

[Rihx̄
j
h]z

finally leading to:

∂rji,depth
∂ρj

=
∂Di

NN

∂u

∣∣∣∣
uj
i

∂π(x)

∂x

∣∣∣∣
ρjxj

i

tih −
(
ρji
ρj

)2

[Rihx̄
j
h]z (B.36)

B.4.1.2 Derivatives w.r.t. keyframes pose

First, with respect to the host pose. Immediately from equation B.31 it follows:

∂rji,depth
∂ξh

= −ρj ∂D
i
NN

∂u

∣∣∣∣
uj
i

∂π(x)

∂x

∣∣∣∣
ρjxj

i

(I3| − [xji ]×)AdTiW −
∂ρji
∂ξh

(B.37)

Now, we compute ∂ρji/∂ξh, and following same procedure than for equation B.30:

∂ρji
∂ξh

=
∂[xji ]

−1
z

∂xji

∂xji
∂ξh

= (0, 0, [xji ]
−2
z )(I3| − [xji ]×)AdTiW
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This finally leads to:

∂rji,depth
∂ξh

= −
(
ρj
∂Di

NN

∂u

∣∣∣∣
uj
i

∂π(x)

∂x

∣∣∣∣
ρjxj

i

+ (0, 0, ρji
2
)

)
(I3| − [xji ]×)AdTiW (B.38)

For the observer, we proceed in a similar way, leading to:

∂rji,depth
∂ξi

= ρj
∂Di

NN

∂u

∣∣∣∣
uj
i

∂π(x)

∂x

∣∣∣∣
ρjxj

i

(I3| − [xji ]×)AdTiW −
∂ρji
∂ξi

(B.39)

where:
∂ρji
∂ξi

=
∂[xji ]

−1
z

∂xji

∂xji
∂ξi

= −(0, 0, [xji ]
−2
z )(I3| − [xji ]×)AdTiW

which finally leads to:

∂rji,depth
∂ξi

=

(
ρj
∂Di

NN

∂u

∣∣∣∣
uj
i

∂π(x)

∂x

∣∣∣∣
ρjxj

i

+ (0, 0, ρji
2
)

)
(I3| − [xji ]×)AdTiW (B.40)

Once again, derivatives with respect to the host and observer only differ on sign, as
for the photometric error.

B.5 Derivatives for inertial-only optimization

Necessary derivatives for IMU preintegrated residual can be found at [51]. Here we only
provide derivatives for residuals used in the inertial-only optimization, defined in section
3.3, equation 3.18, which also depend on scale s and gravity direction gdir.

In this sense, using the scale update δs as defined at equation 3.20, we obtain the
next derivative:

∂r∆Rij

∂δs
= 03×1 (B.41)

∂r∆vij

∂δs
= RT

Wi (v̄j − v̄i) s exp(δs) (B.42)

∂r∆pij

∂δs
= RT

Wi

(
p̄j − p̄i − v̄i∆tij

)
s exp(δs) (B.43)

All these expressions are evaluated for δs = 0. Derivatives for the gravity direction
update δgdir, as defined in equation 3.19, are obtained as follows:

∂r∆Rij

∂δgdir
= 03×2 (B.44)

∂r∆vij

∂δgdir
= −RT

WiRwgG∆tij (B.45)

∂r∆pij

∂δgdir
= −1

2
RT

WiRwgG∆t2ij (B.46)

where:

G =

 0 −G
G 0
0 0

 (B.47)
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Appendix C

Photometric tracking

Here we present in more detail the tracking algorithm used for section 5.2.
Our goal is finding the optimal parameters p = [Ti,ref, ai, bi] which align reference ref

and current i images, in the sense that the photometric error is minimized. We use an
inverse compositional approach, as proposed in [2], where we optimize for an update in
the reference frame, and inversely update the tracked frame.

In other words, given a reference image Iref : Ω −→ R and its estimated sparse depth
map D : Ωd −→ R, and given also the current image Ii, we want to compute parameters p,
or equivalently, an increment ∆p = (ξ, δa, δb) on it, which minimizes the next expression:

ε =
1

2

∑
u∈Ωd

[
e−δa (Iref(W(u, ξ))− δb)− e−ai (Ii(W(u,T))− bi)

]2 (C.1)

We see how the update is applied in the reference frame instead of current frame i.
Ωd ⊂ Ω stands for the region of the image where the estimated depth map is defined,
as explained in section 5.2.2.2. For clarity we use T = Ti,ref. The warp map W which
transforms image points from reference to i is computed as:

ui = W(u,T) = π(xi) = π(T⊕xref) = π(T⊕π−1(u, D(u))) with W(u, 0) = u (C.2)

Taking a linear approximation for ε:

ε =
1

2

∑
u∈Ωd

Iref(u)− e−ai(Ii(ui)− bi) +

[
∇Iref

∂W

∂ξ

∣∣∣∣
0

, −Iref(u) , −1

] ξ
δa
δb


2

(C.3)

=
1

2

∑
u∈Ωd

[Iref(u)− e−ai(Ii(ui)− bi)︸ ︷︷ ︸
r(u,p)

+J(u)∆p]2 (C.4)

=
1

2

∑
u∈Ωd

[
r2(u,p) + ∆pTJT (u)J(u)∆p + 2r(u,p)J(u)∆p

]
(C.5)

We remark that J(u) depends only on reference frame pixels u and it may be precomputed
and stored as long as the reference frame is not updated. This is the big computational
saving of the inverse compositional approach. Now we take derivative of ε with respect
to ∆p, such that:

∂ε

∂∆p
=
∑
u∈Ωd

r(u,p)JT (u) +
∑
u∈Ωd

JT (u)J(u)∆p (C.6)

= g + H∆p (C.7)
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and we set it to zero to find the minimum (if Hessian is positive definite), leading to the
expected normal equations:

∆p = −H−1g (C.8)

with,
xref =Π−1(u, D(u))

ui(u,T) =Π(Txref)

r(u,p) =Iref(u)− e−ai(Ii(ui)− bi)
∂W(u, ξ)

∂ξ

∣∣∣∣
0

=
∂Π

∂x

∣∣∣∣
xref

(I3 , −[xref]×)

J(u) =

[
∇Iref

∂W

∂ξ

∣∣∣∣
0

, −Iref(u) , −1

]
g(u,p) =

∑
u∈Ω

r(u,p)J(u)

H(u) =
∑
u∈Ω

J(u)JT (u)

(C.9)
(C.10)
(C.11)

(C.12)

(C.13)

(C.14)

(C.15)

Equations (C.15) and (C.15) are computed once per reference frame.
Since it is an inverse approach, we are updating the reference instead of the tracked

frame. For pose, we have previous ref and updated ref’ which relate as Tref’,ref = Exp(ξ),
having new relative transformation as T′ = Ti,refTref,ref’. This leads to the next pose
update:

T′ = T⊕ Exp(−ξ) (C.16)

Similarly, for affine parameters, we have e−δa(Iref − δb) = e−a(Ii − b), which leads to
Iref = e−(a−δa)(Ii − (b− e(a−δa)δb)) and next updates:

a′ = a− δa (C.17)

b′ = b− ea′δb (C.18)
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Appendix D

Matrix Lie Groups

Matrix Lie groups, such as rotation matrices and rigid body transformations, are contin-
uously used in robotics for state parametrization, being vitally important. These groups
do not belong to an Euclidean space and a different theory (differential geometry) needs
to be developed.

This appendix does not aim to give a full and self-contained introduction to matrix
Lie groups. There exist numerous very well written documents in the literature which
present in different ways this field. Among them, we highlight the work by Chirikjian
[27], giving a very detailed, exhaustive and abstract introduction to general matrix Lie
groups, not only limited to robotics. A more brief and robotics oriented presentation is
given by Sola et al. [123]. This is probably the most condensed and complete document
with all the necessary concepts used in robotic applications. Finally, a more practical
presentation is given by Barfoot [3].

All this previous work lacks some details about specific analytical expression deriva-
tions. This appendix aims to fill some of this gap. In this sense, we highlight and focus
on the next two points:

• Right Jacobian (Jr) and its inverse (J−1
r ) whose derivations are not publicly avail-

able to the best of our knowledge. These Jacobians are extensively used for IMU
preintegration [52], for example for relateing the gyroscope bias updates with changes
in the rotation matrix. In addition, some works, such as [52], give different and not
equivalent expressions for J−1

r , increasing the confusion. In sections D.2.6 and D.2.7
we provide a derivation for Jr and J−1

r to clarify this inconsistency.

• Rotation matrix normalization. We derive the expression for the optimal projec-
tion into the rotation matrix group, which is particularly important when compos-
ing transformations with limited precision in a computer. This corresponds with
the SVD decomposition, which is widely used in the robotics community, but its
derivation can not be found in the literature.

In addition we give a very brief introduction to general matrix Lie groups (section
D.1) and its main concepts and particularize them for rotation matrices (section D.2).
For a self-contained and painless introduction, we invite the reader to go through [123].
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D.1 General Matrix Lie groups

D.1.1 Definition

A Lie group is a smooth manifold whose elements satisfy the group axioms. A smooth
manifold is a topological space which locally resembles euclidean. Differential geometry
generalizes concepts of euclidean spaces to general manifolds. The group structure (G, ◦)
is defined by a set G, a group operation ◦ and the next four axioms:

• Closure: ∀a, b ∈ G : a ◦ b ∈ G

• Associativity: ∀a, b, c ∈ G : (a ◦ b) ◦ c = a ◦ (b ◦ c)

• Identity: ∃e ∈ G : ∀a ∈ G : e ◦ a = a ◦ e = a

• Inverse: ∀a ∈ G : ∃b ∈ G : a ◦ b = b ◦ a = e

For the specific case of matrix Lie groups, elements can be stated as matrices, and the
group operation is the usual matrix multiplication. Notice that this group is not supposed
to be abelian, thus, in general a ◦ b 6= b ◦ a. From now on, for matrix Lie groups, we will
omit ◦ and we will denote the identity element indistinctly as e or I.

Figure D.1: Representation of a Lie group, with its underlying smooth manifold structure
G, its identity element e under group operation ◦. Tangent space at the identity TeG
which defines the Lie algebra g.

D.1.1.1 Tangent space and Lie Algebra

Since matrix Lie groups are smooth manifolds, it is possible to define a tangent space
at every point of the manifold. For a curve g(t) ∈ G, its velocity ġ := dg(t)/dt belongs
to the tangent space at g(t), which is denoted as Tg(t)G. From this definition of tangent
space, we can define the Lie algebra g of G as:

g := TeG (D.1)

being e the identity element of G. Thus, the Lie algebra is the tangent space of the Lie
group (smooth manifold) at the identity, which is in fact a vector space. To compute the
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Lie algebra g of G, one needs to check the two conditions than an element v∧ ∈ g has to
satisfy. The first one, from the definition of the Lie algebra as the tangent space at the
identity:

v∧ =
d

du

(
g(t+ u)g−1(t)

)∣∣
u=0

= ġg−1 ∈ g ∀t (D.2)

And the second one from the identity element group axiom:

g(t)g−1(t) = e⇒ ġg−1 + g ˙g−1 = 0⇒ ġg−1 = −g ˙g−1 ∈ g (D.3)

Similar procedure can be followed to show that g−1ġ ∈ g. These two conditions will
be necessary in the future to compute the structure of the Lie Algebra for specific cases
such as SO(3) or SE(3).

Since the Lie algebra is a n-dimensional vector space, it is isomorphic to Rn, and one
can define a basis {b∧i }, such that any element v∧ ∈ g can be expressed as:

v∧ =
n∑
i=1

vib∧i

We will denote v = (v1, . . . vn) as the reduced coordinate vector of v∧. Elements on
the Lie algebra and the reduced coordinates are related by mean of hat and vee operators,
defined as:

∧ : Rn → g

∨ : g→ Rn

D.1.2 Exponential and Logarithmic map

How are elements of G and g related? The answer is the equation D.2. This equation
defines an ordinary differential equation, whose solution can be immediately found as:

ġ = v∧g ⇒ g = g0 exp(v∧t)

where g0 ∈ G is a constant. Since g, g0 ∈ G, it follows that exp(v∧t) ∈ G, being the exp
a map from the Lie algebra to the Lie group. For matrix Lie groups, this map is the
exponential matrix, such that:

exp : g→ G : v∧ → g = exp(v∧) =
∞∑
i=0

(v∧)i

i!
(D.4)

For small values of v∧, one can linearly approximate the exponential map as:

exp(v∧) ≈ I + v∧ for v∧ → 0∧ (D.5)

Where I is the identity matrix, which is equivalent to the identity element e for matrix
Lie groups. For notational simplicity, we define a different exponential map, Exp, which
maps from the reduced coordinates of the g to G, such that:

Exp : Rn → G : Exp(v) = exp(v∧)

There exists an inverse map, denoted as logarithm map log : G → g, such that
log(exp(v∧)) = v∧. For matrix Lie groups, it is defined as:

log(g) =
∞∑
i=1

(−1)i+1 (g − I)i

i
(D.6)

Since exp is not a bijective, one-to-one, function, attention needs to be paid when
applying logarithm.
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D.1.3 Adjoint operator

An interesting operator for Lie groups is the adjoint operator Adv. It is defined for any
element v∧ ∈ g and operates for elements in G. It is formally defined as follows:

Adv(g) :=
d

dt

(
g exp(v∧t)g−1

)∣∣∣∣
t=0

∈ g (D.7)

Since it is the derivative of a curve in G at the identity, it belongs to the Lie algebra.
This expression can be extended for matrix Lie groups, taking a linear approximation of
exponential map (equation D.4) at zero:

Adv(g) ≈ d

dt

(
g(I + v∧t)g−1

)∣∣∣∣
t=0

= gv∧g−1 ∈ g (D.8)

This operator defines an homomorphism Adv : G→ GL(g) which takes an element of
G and gives an invertible linear transformation from g onto itself. It is a homomorphism
because:

AdAdv(g2)(g1) = g1(g2v∧g−1
2 )g−1

1 = g1g2v∧(g1g2)−1 = Adv(g1g2)

And linear because:

Adc1v1+c2v2(g) = g(c1v∧1 + c2v∧2 )g−1 = c1Adv1(g) + c2Adv2(g)

Since Adv is a linear operator, we can find its correspondent matrix as follows:

(Adv(g))∨ =
(
Ad∑

i vibi
(g)
)∨

=
∑
i

vi (Adbi
(g))∨ = Ad(g)v (D.9)

being matrix Ad(g) defined as:

Ad(g) := [(Adb1(g))∨ . . . (Adbn(g))∨] (D.10)

Once we have defined and characterized the adjoint operator, the question now is,
what is the adjoint useful for? From equation D.9, we can write:

exp (Adv(g)) =
∑
i=0

(gv∧g−1)
i

i!
= g

(∑
i=0

(v∧)i

i!

)
g−1 = exp

(
(Ad(g)v)∧

)
which leads to:

gExp(v) = Exp (Ad(g)v) g (D.11)

In plain words: given a right transformation Exp(v), we can find an equivalent left
transformation as Exp (Ad(g)v). So, in the robotics field, this means that adjoint relates
transformations or updates in the world and local reference frames. This will be extremely
useful when computing for example visual Jacobians (see appendix section B.3).
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D.1.4 Jacobians

Another important question is how increments in the tangent space g relate with incre-
ments on G.

We are going to first relate increments in a curve parameter t with increments on G.
In this sense, if g : R → G is a curve in G, we have seen ġg−1 and g−1ġ belong to g.
Using standard basis {b∧i |(bi)j = δji } We define the next interesting terms:

ω∧l := ġg−1 =
n∑
i=1

ωl,ib∧i (D.12)

ω∧r := g−1ġ =
n∑
i=1

ωr,ib∧i (D.13)

where ω∧l and ω∧r will also depend on t. These terms allow us to relate increments on the
curve parameter t to increments on the Lie group G, as follows:

ω∧l = ġg−1 =
g(t+ δt)− g(t)

δt
g−1 =

g(t+ δt)g−1 − e
δt

leading to:
g(t+ δt) ≈ (e+ ω∧l δt)g(t) ≈ exp(ω∧l δt)g(t) for δt→ 0

where we have used approximation from equation D.5. Similar steps can be followed for
g−1ġ leading to the two following expressions:

g(t+ δt) ≈ exp(ω∧l δt)g(t) for δt→ 0 (D.14)

g(t+ δt) ≈ g(t) exp(ω∧r δt) for δt→ 0 (D.15)

One could be more interested in relating increments on the Lie algebra with increments
on the Lie group. We redefine the curve g in a compositional way, such that:

g(t) = Exp(v(t))

where v : R→ Rn is a curve in the reduced coordinates of g. Using velocity v̇, expression
D.14 can be rewritten as:

Exp(v(t+δt)) ≈ Exp(v(t)+v̇δt) = Exp(v(t)+δv) ≈ Exp(ωlδt)Exp(v(t)) for δt, δv→ 0

To do that, we rewrite ωl(t) as a linear combination of the velocity v̇, such that:

ωl(t) = Jl(v(t))v̇ (D.16)

being Jl(v(t)) a matrix. We obtain,

Exp(v(t) + δv) ≈ Exp(Jl(v)v̇δt)Exp(v(t)) = Exp(Jl(v)δv)Exp(v(t)) for δv→ 0

Repeating the same for equation D.15, and extending ωr = Jrv̇, we obtain the next
two final equations:

Exp(v + δv) ≈ Exp(Jl(v)δv)Exp(v) for δv→ 0 (D.17)
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Exp(v + δv) ≈ Exp(v)Exp(Jr(v)δv) for δv→ 0 (D.18)

These expressions allow us to relate additive changes (δv) on the Lie algebra g (it is
a vector space), with left and right changes on the Lie group, respectively Exp(Jl(v)δv)
and Exp(Jr(v)δv). We denote matrices Jl(v) and Jr(v) as left and right Jacobians at v.

The final question now is, how do we compute these Jacobians? From definition,
equation D.12, and equation D.16 we have:

(ġg−1)∨ = Jlv̇ ∈ Rn

(ġg−1)∨i = (Jlv̇)i =
∑
j

(Jl)i,j
dvj
dt

Applying chain rule to the left hand side:

(ġg−1)∨i =

(∑
j

∂g

∂vj

dvj
dt
g−1

)∨
i

=
∑
j

(Jl)i,j
dvj
dt

(Jl)i,j =

(
∂g

∂vj
g−1

)∨
i

(D.19)

In a similar way we can derive an expression for the right Jacobians:

(Jr)i,j =

(
g−1 ∂g

∂vj

)∨
i

(D.20)

These two equations, D.19 and D.20, will be used for computing Jacobians for different
Lie groups. A simple relation can be found between both. First, notice that:

Jl =

[(
∂g

∂v1

g−1

)∨
. . .

(
∂g

∂vn
g−1

)∨]
(D.21)

Each column can be further expanded as:(
∂g

∂vi
g−1

)∨
=

(
g

(
g−1 ∂g

∂vi

)
g−1

)∨
=
(
Adg−1 ∂g

∂vi

(g)
)∨

(D.22)

Where we have identified the previously defined adjoint operator (eqn. D.7). We can
rewrite:

Jl = Ad(g)Jr (D.23)

In robotics, these Jacobians will be necessary when working for example with IMU.
When the IMU bias is updated, which belongs to the tangent space g, we are interested
in seeing how the rotation matrix changes. The inverse of these Jacobians, J−1

r (v) and
J−1
l (v), allow us to relate changes but in the other way. From equation D.17 we can

write:

Exp(v + Jl(v)−1δv) ≈ Exp(δv)Exp(v) −→ Log(Exp(δv)Exp(v)) ≈ v + J−1
l (v)δv

(D.24)
We can obtain a similar expression for inverse right Jacobian:

Log(Exp(v)Exp(δv)) ≈ v + J−1
r (v)δv (D.25)
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D.2 SO(3): Group of rotations

We particularize previous general properties to the special orthogonal group SO(3), which
represents 3D rotations.

D.2.1 Definition

The special orthogonal group in dimension n, denoted as SO(n), is a matrix Lie group of
matrices such that:

SO(n) =
{
R ∈ GL(n,R) |RRT = RTR = In , det(R) = +1

}
(D.26)

This group represents rotational matrices in a n dimensional space. Here, we will deal
with SO(3), which is the group of interest in robotics.

D.2.2 so(3)

The Lie algebra of SO(3), denoted as so(3), is the tangent space at the identity which
can be directly computed using D.3:

ġg−1 = −g ˙g−1 ⇒ ṘRT = −RṘT = −(ṘRT )T ∈ so(3) (D.27)

This defines the skew symmetric matrices of dimension 3, which is isomorphic to R3,
since there exists a bijective map, denoted as [·]×:

[·]× : R3 → so(3) : [(v1, v2, v3)]× =

 0 −v3 v2

v3 0 −v1

−v2 v1 0

 (D.28)

This operator is equivalent to the general ∧ operator.

D.2.3 Exponential and Logarithmic map

To compute the exponential map, we just apply equation D.4, taking into account equa-
tion D.73 from D.3:

exp([v]×) =
∞∑
i=0

[v]i×
i!

= I3 +
∞∑
i=0

[v]2i+1
×

(2i+ 1)!
+
∞∑
i=1

[v]2i×
(2i)!

=

I3 +

(
∞∑
i=0

(−1)i‖v‖2i

(2i+ 1)!

)
[v]× +

(
∞∑
i=1

(−1)i+1‖v‖2(i−1)

(2i)!

)
[v]2× = (D.29)

Identifying terms with Taylor series:

∞∑
i=0

(−1)i‖v‖2i

(2i+ 1)!
=

1

‖v‖
∞∑
i=0

(−1)i‖v‖2i+1

(2i+ 1)!
=

sin ‖v‖
‖v‖ (D.30)

∞∑
i=1

(−1)i+1‖v‖2(i−1)

(2i)!
=

1

‖v‖2

(
∞∑
i=0

(−1)i+1‖v‖2i

(2i)!
+ 1

)
=

1− cos ‖v‖
‖v‖2

(D.31)
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Which finally leads to the next closed form (Rodrigues’ rotation formula) for the
exponential map:

exp([v]×) = Exp(v) = I +
sin ‖v‖
‖v‖ [v]× +

1− cos ‖v‖
‖v‖2

[v]2× (D.32)

From the exponential map expression we can immediately compute the inverse element
g−1(v):

g−1(v) = (g(v))T = I3 −
sin ‖v‖
‖v‖ [v]× +

1− cos ‖v‖
‖v‖2 [v]2× = g(−v) (D.33)

since [v]2× is symmetric and [v]× skew. This expression will be useful for later computing
the Jacobian matrix. Similar procedures can be followed for the logarithm map, leading
to next expression:

log(R) = θu =
θ(R−RT )

2 sin θ
where θ = cos−1

(
trace(R)− 1

2

)
and ‖u‖ = 1

(D.34)

D.2.4 Adjoint operator

Using equations D.8 and D.9, and particularizing for SO(3), we can write:

[Ad(R)v]× = R[v]×RT (D.35)

Together with expression D.84 from appendix:

[Ad(R)v]× = [Rv]× (D.36)

Finally leading to:
Ad(R) = R (D.37)

D.2.5 Derivative of a SO(3) action

Given RCW ∈ SO(3), we define ⊕ : SO(3) × R3 −→ R3, an action of SO(3) on R3, which
rotates a 3D vector from reference W to C. In this case, ⊕ stands for the usual matrix
multiplication. For xC = RCWxW, we define the next derivative wrt an increment in the
local reference:

∂xC

∂RCW
,
∂(Exp(ξ)RCWxW)

∂ξ

∣∣∣∣
ξ=0

≈ ∂((I3 + [ξ]×)RcwxW)

∂ξ
=
∂([ξ]×xC)

∂ξ
(D.38)

leading to:

∂cx

∂RCW
=

∂

 −ξ3yc + ξ2zc
ξ3xc − ξ1zc
−ξ2xc + ξ1yc


∂ξ

=

 0 zc −yc
−zc 0 xc
yc −xc 0

 = −[xC]× (D.39)

Similarly, for the inverse transformation xW = RWCxC, and using the same update, we
define the next derivative:

∂xW

∂RCW
,
∂
(

(Exp(ξ)RCW)
T xW

)
∂ξ

∣∣∣∣∣∣
ξ=0

≈ ∂(RWC(I3 − [ξ]×)xW)

∂ξ
= RWC[xW]× (D.40)
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D.2.6 Jacobian derivation

We are not aware of any publicly available derivation for SO(3) Jacobians. Here we
provide one for Jr, using the expression D.20. With this in mind, we first compute ∂g

∂vj
.

By denoting (b∧1 ,b
∧
2 ,b

∧
3 ) the basis of the Lie algebra so(3), and (b1,b2,b3) that one of

the reduced space R3, we have:

∂g

∂vj
=

∂

∂vj

(
I3 +

sin ‖v‖
‖v‖ [v]× +

1− cos ‖v‖
‖v‖2 [v]2×

)
=(

cos ‖v‖
‖v‖ − sin ‖v‖

‖v‖2

)
∂ ‖v‖
∂vj

[v]× +
sin ‖v‖
‖v‖ b∧j + . . .(

sin ‖v‖
‖v‖2 − 2

1− cos ‖v‖
‖v‖3

)
∂ ‖v‖
∂vj

[v]2× +
1− cos ‖v‖
‖v‖2

∂[v]2×
∂vj

(D.41)

where:
∂ ‖v‖
∂vj

=
∂

∂vj

(
(v2

1 + v2
2 + v2

3)1/2
)

=
vj
‖v‖ (D.42)

Using equation D.33 together with D.41, we now compute g−1 ∂g
∂vj
∈ g as follows:

g−1 ∂g

∂vj
=

(
cos ‖v‖
‖v‖ − sin ‖v‖

‖v‖2

)
vj
‖v‖ [v]× +

sin ‖v‖
‖v‖ b∧j + . . .(

sin ‖v‖
‖v‖2 − 2

1− cos ‖v‖
‖v‖3

)
vj
‖v‖ [v]2× +

1− cos ‖v‖
‖v‖2

∂[v]2×
∂vj

+ . . .

−
(

cos ‖v‖
‖v‖ − sin ‖v‖

‖v‖2

)
vj sin ‖v‖
‖v‖2 [v]2× −

sin2(‖v‖)
‖v‖2 [v]×b∧j + . . .

+

(
sin ‖v‖
‖v‖2 − 2

1− cos ‖v‖
‖v‖3

)
vj sin ‖v‖ [v]× −

1− cos ‖v‖
‖v‖2

sin ‖v‖
‖v‖ [v]×

∂[v]2×
∂vj

+ . . .

−
(

cos ‖v‖
‖v‖ − sin ‖v‖

‖v‖2

)
vj(1− cos ‖v‖)

‖v‖ [v]× +
1− cos ‖v‖
‖v‖2

sin ‖v‖
‖v‖ [v]2×b∧j + . . .

−
(

sin ‖v‖
‖v‖2 − 2

1− cos ‖v‖
‖v‖3

)
vj(1− cos ‖v‖)

‖v‖ [v]2× +

(
1− cos ‖v‖
‖v‖2

)2

[v]2×
∂[v]2×
∂vj

(D.43)

If we reorder this expression and do some simplifications, we arrive to the next ex-
pression, splitted in [v]×, [v]2× and others terms:

g−1 ∂g

∂vj
= vja(v)[v]× + vjb(v)[v]2× + c(v)b∧j + d(v)

∂[v]2×
∂vj

+ . . .

− c2(v)[v]×b∧j − c(v)d(v)[v]×
∂[v]2×
∂vj

+ c(v)d(v)[v]2×b∧j + d2(v)[v]2×
∂[v]2×
∂vj

(D.44)
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where:

a(v) =
1

‖v‖2

(
1 +

cos ‖v‖ sin ‖v‖
‖v‖ − 2 sin ‖v‖

‖v‖

)
b(v) =

1− cos ‖v‖
‖v‖4

c(v) =
sin ‖v‖
‖v‖

d(v) =
1− cos ‖v‖
‖v‖2

(D.45)

Since g−1 ∂g
∂vj
∈ so(3), and being so(3) the space of skew matrices, we are just interested

in skew components of matrix terms from equation D.44, as symmetric component will
be null. Any square matrix M can be decomposed as the sum of a symmetric and skew
matrices, since M = 1

2
(M+MT ) + 1

2
(M−MT ) being M+MT symmetric and M−MT

skew. Let’s denote Skew(M) the skew component of M, we have:

Skew([v]×) = [v]×

Skew([v]2×) = 03

Skew(b∧j ) = b∧j

Skew([v]×b∧j ) =
1

2
(bjvT − vbTj )

Skew([v]2×b∧j ) = −1

2
(vj[v]× + ‖v‖2 b∧j )

Skew
(
∂[v]2×
∂vj

)
= 03

Skew
(

[v]×
∂[v]2×
∂vj

)
= −1

2
(3vj[v]× + b∧j ‖v‖2)

Skew
(

[v]2×
∂[v]2×
∂vj

)
= −‖v

2‖
2

(bjvT − vbTj )

(D.46)

where we have used properties from appendix section D.3. This expression leads to:

g−1 ∂g

∂vj
= (vja(v) + vjc(v)d(v)) [v]× + . . .

c(v)b∧j + . . .

− 1

2

(
c2(v) + ‖v‖2 d2(v)

)
(bjvT − vbTj )

(D.47)

Now, it only remains to apply the vee ∨ operator to g−1 ∂g
∂vj

(see equation D.20).
Noticing that (bjvT − vbTj )∨i = ([v]×)i,j , we obtain using index notation:

Jr(v)i,j =

(
g−1 ∂g

∂vj

)∨
i

= (a(v) + c(v)d(v)) vjvi+c(v)δi,j−
1

2

(
c2(v) + ‖v‖2 d2(v)

)
([v]×)i,j

(D.48)
which in matrix notation is similar to:

Jr(v) = (a(v) + c(v)d(v))vvT + c(v)I3 −
1

2

(
c2(v) + ‖v‖2 d2(v)

)
[v]× (D.49)
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We can now simplify factors as follows:

a(v) + c(v)d(v) =
‖v‖ − sin ‖v‖
‖v‖3

c(v) =
sin ‖v‖
‖v‖ = ‖v‖2 sin ‖v‖ − ‖v‖

‖v‖3 + 1

−1

2

(
c2(v) + ‖v‖2 d2(v)

)
= −1− cos ‖v‖

‖v‖2

(D.50)

Finally, remembering that [v]2× = vvT − ‖v‖2 I3, one can rewrite:

Jr(v) = I3 −
1− cos ‖v‖
‖v‖2 [v]× +

‖v‖ − sin ‖v‖
‖v‖3 [v]2× (D.51)

We remark that it is possible to derive this expression making use of the Baker-
Campbell-Hausdorff formula [27], but we prefer not to introduce this formula to keep as
simple as possible this appendix.

D.2.7 Inverse Jacobian derivation

In the literature one can find different expressions for J−1
r (v) which are not equivalent,

for example [27] and [52]. Aiming to give some light about this issue, we provide here a
demonstration showing that [27] is the right one.

First, lets notice that at SO(3), both exponential matrix Exp(v) and right Jacobian
Jr(v), are linear combination of I, [v]× and [v]2×. For deriving the inverse Jacobian we
will suppose this is also true for J−1

r (v), such that:

J−1
r (v) = I + α[v]× + β[v]2× (D.52)

To find α and β, we will solve next equation:

I = Jr(v)J−1
r (v) = I +

(
α− 1− c

‖v‖2 + β(1− c)− α‖v‖ − s‖v‖

)
[v]× + . . .

+

(
β − α1− c

‖v‖2 +
‖v‖ − s
‖v‖3 − β ‖v‖ − s‖v‖

)
[v]2×

where we have used properties from D.72 and D.72 and c and s stand for cos ‖v‖ and
sin ‖v‖. Setting both [v]× and [v]2× terms to zero, we get next 2 equations:

−1− c
‖v‖2 + β(1− c) + α

s

‖v‖ = 0 (D.53)

−α1− c
‖v‖2 +

‖v‖ − s
‖v‖3 + β

s

‖v‖ = 0 (D.54)

From D.53 we get:

α =
‖v‖ (1− c)

s
(‖v‖−2 − β) (D.55)

and replacing in D.54 gives:

β

(
s

‖v‖ +
(1− c)2

s ‖v‖

)
=

(
(1− c)2

‖v‖3 s
− ‖v‖ − s
‖v‖3

)
(D.56)
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finally leading to:

β =
(1− c)2 − s ‖v‖+ s2

s2 ‖v‖2 + (1− c) ‖v‖2 =
2(1− c)− s ‖v‖

2(1− c) ‖v‖2 (D.57)

β =
1

‖v‖2 −
sin ‖v‖

2 ‖v‖ (1− cos ‖v‖) =
1

‖v‖2 −
1 + cos ‖v‖

2 ‖v‖ sin ‖v‖ (D.58)

Replacing back into D.55 leads to α = 1/2. We finally get the inverse right Jacobian
as:

J−1
r (v) = I +

1

2
[v]× +

(
1

‖v‖2 −
1 + cos ‖v‖

2 ‖v‖ sin ‖v‖

)
[v]2× (D.59)

D.2.8 SO(3) normalization

When composing rotations in a computer, the loss of precision may lead to elements
which do not belong to SO(3). If using quaternion parametrization, this leads to a norm
different to 1, while using matrix parametrization may lead to non-orthogonal matrices.
For these reasons it is necessary to normalize the rotation element to make it belong
again to the group of rotations.

For matrix representation, this is equivalent to find a projection PR ∈ SO(3) of a
matrix R ∈ R3×3 into the space SO(3). There are several intuitive ways of projecting a
matrix into SO(3): convert to a quaternion parameterization and set the norm to 1, apply
an Gram–Schmidt orthogonalization, compose exponential and logarithm map, such that
PR = Exp(log(R)). Here, we are interested in finding the optimal projection which
minimizes the squared Frobenius norm of the difference, such that:

PR = arg min
PR

‖PR −R‖2
F s.t. PR ∈ SO(3) (D.60)

This problem can be stated as a constrained optimization problem using Lagrange
multipliers. Given that PR has to meet the condition PRPT

R = I, and denoting the
constraint matrix C = PRPT

R − I, we have:

PR = arg min
PR,Λ

{
tr((PR −R)T (PR −R)) +

∑
i

∑
j

λijCij

}
(D.61)

Since C is a symmetric matrix by definition, constraints Cij are equivalent to con-
straints Cji, which forces also symmetry in Λ. One can rewrite second half part as:∑

i

∑
j

λijCij = tr(ΛC) (D.62)

finally leading to:

PR = arg min
PR,Λ

{
tr((PR −R)T (PR −R) + Λ(PRPT

R − I))
}

(D.63)

Taking the derivatives of the cost function c(PR,Λ) w.r.t. PR, and given that (see
[105]):

∂tr(AT (X)A(X))

∂X
= 2A(X) (D.64)
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∂tr(AXTX)

∂X
= X(A + AT ) (D.65)

This leads to the following derivatives of the cost function:

∂c(PR,Λ)

∂PR

= −2(R−PR) + PR(Λ + ΛT ) (D.66)

Setting this expression to zero and taking the symmetry of Λ, we get:

R = PR(I + Λ) −→ PR = R(I + Λ)−1 (D.67)

Hence, RTR = (I + Λ)2, which finally leads to:

R = PR(I + Λ) −→ PR = R(RTR)−1/2 (D.68)

Given the eigen decomposition R = USVT ,

RTR = VSSVT −→ (RTR)1/2 = VSVT sinceVSVTVSVT = VSSVT (D.69)

(RTR)−1/2 = VS−1VT −→ R(RTR)−1/2 = USVTVS−1VT = UVT (D.70)

PR = UVT where R = USVT (D.71)

where D.71 is the optimal projection given the Frobenius norm.

D.3 Useful maths

Here we provide and derive some useful expressions for previous sections. We start with
v]2×, such that:

[v]2× =

 0 −v3 v2

v3 0 −v1

−v2 v1 0

2

=

 −v2
2 − v2

3 v1v2 v1v3

v1v2 −v2
1 − v2

3 v2v3

v1v3 v2v3 −v2
1 − v2

2

 = vvT − ‖v‖2 I3

(D.72)
Notice that [v]2× is symmetric. Thus,

[v]3× =

 0 v3(v2
1 + v2

2 + v2
3) −v2(v2

1 + v2
2 + v2

3)
−v3(v2

1 + v2
2 + v2

3) 0 v1(v2
1 + v2

2 + v2
3)

v2(v2
1 + v2

2 + v2
3) −v1(v2

1 + v2
2 + v2

3) 0

 = −‖v‖2 [v]×

(D.73)

We also compute the derivative ∂[v]2×
∂vj

which will be usefull in the next step:

∂[v]2×
∂vj

= vbTj + bjvT − 2vjI3 (D.74)

as well as other multiplication terms, such that:

[v]×b∧j = bjvT − vjI3 (D.75)

[v]2×b∧j = [v]×bjvT − vj[v]× (D.76)
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and:

[v]×
∂[v]2×
∂vj

= [v]×vbTj + [v]×bjvT − 2vj[v]× (D.77)

[v]2×
∂[v]2×
∂vj

= [v]2×vbTj + [v]2×bjvT − 2vj[v]2× (D.78)

Now, we may also show that [Rv]× = R[v]×RT with R ∈ SO(3). First, let’s compute
(R[v]×RT )2: (

R[v]×RT
)2

=R[v]2×RT (D.79)

=R
(
vvT − ‖v‖2 I3

)
RT (D.80)

=(Rv)(Rv)T − ‖v‖2 I3 (D.81)

=(Rv)(Rv)T − ‖Rv‖2 I3 (D.82)

= ([Rv]×)2 (D.83)

where we have used equation D.72 and the fact that ‖Rv‖ = ‖v‖. We finally obtain:

[Rv]× = R[v]×RT (D.84)
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Appendix E

Supplementary material for
ORB-SLAM3

E.1 Reference systems and extrinsic calibration

Extrinsic calibration consists of the set of parameters which define how different sensors
are related. When working on a multi-sensor SLAM system, different reference frames
have to be defined for each sensor. This multiple definition does not imply having multiple
optimizable frames. Instead, we define a unique optimizable reference frame, denoted as
Body (B). All other sensors relate to this by means of a SE(3) rigid transformation
which, at ORB-SLAM3, is supposed to be known from calibration. For stereo-inertial or
monocular inertial ORB-SLAM3 configurations, we make B to be coincident with IMU,
while right and left cameras are defined w.r.t it. Thus, once IMU is initialized, we have
the following reference frames (see figure E.1):

• World (W): Defines a fixed reference system, whose zW axis points in opposite
direction of the gravity vector g. Translation and yaw are freely set by the SLAM
system and remain fixed once initialized.

• Body (B): This is the optimizable reference and it is supposed to be coincident with
the IMU. We assume the gyroscope and the accelerometer share the same reference
system. Body pose TWB and velocity vB in W are the optimizable variables.

• Cameras (C1 and C2): These are coincident with visual sensors, such as zC is point-
ing forward, along the optical axis. yC points down and xC right, both coincident
with image directions u and v. Cameras and body poses relate as:

TWC1 = TWBTBC1 (E.1)
TWC2 = TWBTBC1TC1C2 (E.2)

TBC1 ,TC1C2 ∈ SE(3) are the extrinsic parameters, known from calibration and need
to be included in the .yaml calibration file, as shown in listings E.1 and E.2.
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Figure E.1: Defined coordinate systems for stereo-inertial ORB-SLAM3.

1 Tbc: !!opencv -matrix
2 rows: 4
3 cols: 4
4 dt: f
5 data: [ -0.9995250 , 0.0075019 , -0.0298901 , 0.0455748 ,
6 0.0296153 , -0.0343973 , -0.9989693 , -0.0711618 ,
7 -0.0085223 , -0.9993800 , 0.0341588 , -0.0446812 ,
8 0.0, 0.0, 0.0, 1.0]

Listing E.1: Transformation matrix from left camera (1) to body. Values are those
from TUM-VI dataset

1 Tlr: !!opencv -matrix
2 rows: 3
3 cols: 4
4 dt: f
5 data: [ 0.9999994 , 0.0007916 , 0.0006940 , 0.1010634 ,
6 -0.0008233 , 0.9988994 , 0.0468954 , 0.0019462 ,
7 -0.0006561 , -0.0468960 , 0.9988995 , 0.0010153]

Listing E.2: Transformation matrix from right camera (2) to left camera (1). Values
are those from TUM-VI dataset

These extrinsic transformations can be obtained from calibration software such as
Kalibr [111]. For stereo pinhole cameras (i.e. EuRoC dataset), the right camera
reference frame C2 is not used. Instead, right images are stereo rectified, such as
v1 ≡ v2, and u2 observation is directly transformed into the C1 reference frame. For
stereo fisheye cameras, rectification is not necessary.

For pure visual solutions, B is coincident with the left camera C1. Right camera, only
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for non rectified stereo, is related by a SE(3) transformation. World reference is set to
the first keyframe reference and remains fixed as long as no loop closing or map merging
are performed.

E.2 Intrinsic calibration

Those are calibration parameters which only depend on the sensor itself. Here, we dis-
tinguish inertial and visual sensors.

E.2.1 IMU intrinsic parameters

IMU readings (ã and ω̃) are affected by measurement noise (ηa, ηg) and bias (ba,bg),
such as:

ã =a + ηa + ba (E.3)
ω̃ =ω + ηg + bg (E.4)

where a and ω are the true acceleration (gravity not subtracted) and angular velocity at
B. Measurement noises are assumed to follow centered normal distributions, such that:

ηa ∼ N (0, σ2
aI3) (E.5)

ηg ∼ N (0, σ2
gI3) (E.6)

where σa and σg are both noise densities, which are characterized in the IMU data-sheet.
They need to be provided at the calibration file, with m/s2/

√
(Hz) and rad/s/

√
(Hz)

units, as shown in listing E.3.
1 IMU.NoiseGyro: 0.00016 # rad/s^-0.5
2 IMU.NoiseAcc: 0.0028 # m/s^-1.5
3 IMU.Frequency: 200 #s^-1

Listing E.3: Noise densities for IMU. Values are from TUM-VI dataset

When integrating the IMU measurements and estimating its covariance, used noise
densities σa,f will depend on IMU sampling frequency f , which will be also provided
along the calibration file. This is internally managed by ORB-SLAM3, which computes
σa,f = σa/

√
f

Regarding bias, it is supposed to evolve according to a Brownian motion. Given two
consecutive instants i and i+ 1, this is characterized by:

bai+1 = bai + ηarw with ηarw ∼ N (0, σ2
a,rwI3) (E.7)

bgi+1 = bgi + ηgrw with ηgrw ∼ N (0, σ2
g,rwI3) (E.8)

where σa,rw and σg,rw need to be supplied with the calibration file, as shown in listing E.4.

1 IMU.GyroWalk: 0.000022 # rad/s^-1.5
2 IMU.AccWalk: 0.00086 # m/s^-2.5

Listing E.4: Random walk variances for IMU biases. Values are from TUM-VI dataset.
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E.2.2 Camera intrinsic parameters

Depending on camera set-up we will need to provide different calibration parameters. At
ORB-SLAM3 we distinguish next visual cases:

• Monocular pinhole camera. Camera focal length (fx, fy) and central point (cx, cy)
in pixel lengths, as introduced in the appendix section B.1.1, together with 4 or
5 distortion coefficients for a radial-tangential distortion model [131] need to be
provided along the calibration file as shown in listing E.5. Those can be calibrated
using opencv 1 or Kalibr.

1 Camera.fx: 458.654
2 Camera.fy: 457.296
3 Camera.cx: 367.215
4 Camera.cy: 248.375
5

6 Camera.k1: -0.28340811
7 Camera.k2: 0.07395907
8 Camera.p1: 0.00019359
9 Camera.p2: 1.76187114e-05

Listing E.5: Left pinhole camera intrinsic parameters for Euroc dataset.

• Monocular fisheye camera. Camera parameters (fx, fy, cx, cy) similar to the pinhole
camera case and 4 distortion coefficients, see the appendix section B.1.2, for an
equidistant distortion model (Kanala-Brandt) need to be provided. An example is
shown in code E.6.

1 Camera.k1: 0.0034823894022493434
2 Camera.k2: 0.0007150348452162257
3 Camera.k3: -0.0020532361418706202
4 Camera.k4: 0.00020293673591811182

Listing E.6: Left fisheye camera intrinsic parameters for TUM-VI dataset.

• Stereo pinhole camera. For this case we will rectify left and right images. If left
and right images are not already rectified, as in the EuRoC dataset, we will need
to provide rectification parameters. From extrinsic left-right transformation and
distortion parameters, these can be easily computed, using for example opencv li-
brary2. If images are already stereo rectified, as in the KITTI dataset, only common
camera parameters (f and c) and stereo baseline need to be provided.

• Stereo fisheye camera. Left and right camera matrices and equidistant distortion
parameters.

1https://docs.opencv.org/3.4.15/d9/d0c/group__calib3d.html
2https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_

reconstruction.html#stereorectify
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