246 research outputs found

    Examining the Size of the Latent Space of Convolutional Variational Autoencoders Trained With Spectral Topographic Maps of EEG Frequency Bands

    Get PDF
    Electroencephalography (EEG) is a technique of recording brain electrical potentials using electrodes placed on the scalp [1]. It is well known that EEG signals contain essential information in the frequency, temporal and spatial domains. For example, some studies have converted EEG signals into topographic power head maps to preserve spatial information [2]. Others have produced spectral topographic head maps of different EEG bands to both preserve information in The associate editor coordinating the review of this manuscript and approving it for publication was Ludovico Minati . the spatial domain and take advantage of the information in the frequency domain [3]. However, topographic maps contain highly interpolated data in between electrode locations and are often redundant. For this reason, convolutional neural networks are often used to reduce their dimensionality and learn relevant features automatically [4]

    Noise Reduction of EEG Signals Using Autoencoders Built Upon GRU based RNN Layers

    Get PDF
    Understanding the cognitive and functional behaviour of the brain by its electrical activity is an important area of research. Electroencephalography (EEG) is a method that measures and record electrical activities of the brain from the scalp. It has been used for pathology analysis, emotion recognition, clinical and cognitive research, diagnosing various neurological and psychiatric disorders and for other applications. Since the EEG signals are sensitive to activities other than the brain ones, such as eye blinking, eye movement, head movement, etc., it is not possible to record EEG signals without any noise. Thus, it is very important to use an efficient noise reduction technique to get more accurate recordings. Numerous traditional techniques such as Principal Component Analysis (PCA), Independent Component Analysis (ICA), wavelet transformations and machine learning techniques were proposed for reducing the noise in EEG signals. The aim of this paper is to investigate the effectiveness of stacked autoencoders built upon Gated Recurrent Unit (GRU) based Recurrent Neural Network (RNN) layers (GRU-AE) against PCA. To achieve this, Harrell-Davis decile values for the reconstructed signals’ signal-to- noise ratio distributions were compared and it was found that the GRU-AE outperformed PCA for noise reduction of EEG signals

    Towards a Deeper Understanding of Sleep Stages through their Representation in the Latent Space of Variational Autoencoders

    Get PDF
    Artificial neural networks show great success in sleep stage classification, with an accuracy comparable to human scoring. While their ability to learn from labelled electroencephalography (EEG) signals is widely researched, the underlying learning processes remain unexplored. Variational autoencoders can capture the underlying meaning of data by encoding it into a low-dimensional space. Regularizing this space furthermore enables the generation of realistic representations of data from latent space samples. We aimed to show that this model is able to generate realistic sleep EEG. In addition, the generated sequences from different areas of the latent space are shown to have inherent meaning. The current results show the potential of variational autoencoders in understanding sleep EEG data from the perspective of unsupervised machine learning

    Brain Music : Sistema generativo para la creación de música simbólica a partir de respuestas neuronales afectivas

    Get PDF
    gráficas, tablasEsta tesis de maestría presenta una metodología de aprendizaje profundo multimodal innovadora que fusiona un modelo de clasificación de emociones con un generador musical, con el propósito de crear música a partir de señales de electroencefalografía, profundizando así en la interconexión entre emociones y música. Los resultados alcanzan tres objetivos específicos: Primero, ya que el rendimiento de los sistemas interfaz cerebro-computadora varía considerablemente entre diferentes sujetos, se introduce un enfoque basado en la transferencia de conocimiento entre sujetos para mejorar el rendimiento de individuos con dificultades en sistemas de interfaz cerebro-computadora basados en el paradigma de imaginación motora. Este enfoque combina datos de EEG etiquetados con datos estructurados, como cuestionarios psicológicos, mediante un método de "Kernel Matching CKA". Utilizamos una red neuronal profunda (Deep&Wide) para la clasificación de la imaginación motora. Los resultados destacan su potencial para mejorar las habilidades motoras en interfaces cerebro-computadora. Segundo, proponemos una técnica innovadora llamada "Labeled Correlation Alignment"(LCA) para sonificar respuestas neurales a estímulos representados en datos no estructurados, como música afectiva. Esto genera características musicales basadas en la actividad cerebral inducida por las emociones. LCA aborda la variabilidad entre sujetos y dentro de sujetos mediante el análisis de correlación, lo que permite la creación de envolventes acústicos y la distinción entre diferente información sonora. Esto convierte a LCA en una herramienta prometedora para interpretar la actividad neuronal y su reacción a estímulos auditivos. Finalmente, en otro capítulo, desarrollamos una metodología de aprendizaje profundo de extremo a extremo para generar contenido musical MIDI (datos simbólicos) a partir de señales de actividad cerebral inducidas por música con etiquetas afectivas. Esta metodología abarca el preprocesamiento de datos, el entrenamiento de modelos de extracción de características y un proceso de emparejamiento de características mediante Deep Centered Kernel Alignment, lo que permite la generación de música a partir de señales EEG. En conjunto, estos logros representan avances significativos en la comprensión de la relación entre emociones y música, así como en la aplicación de la inteligencia artificial en la generación musical a partir de señales cerebrales. Ofrecen nuevas perspectivas y herramientas para la creación musical y la investigación en neurociencia emocional. Para llevar a cabo nuestros experimentos, utilizamos bases de datos públicas como GigaScience, Affective Music Listening y Deap Dataset (Texto tomado de la fuente)This master’s thesis presents an innovative multimodal deep learning methodology that combines an emotion classification model with a music generator, aimed at creating music from electroencephalography (EEG) signals, thus delving into the interplay between emotions and music. The results achieve three specific objectives: First, since the performance of brain-computer interface systems varies significantly among different subjects, an approach based on knowledge transfer among subjects is introduced to enhance the performance of individuals facing challenges in motor imagery-based brain-computer interface systems. This approach combines labeled EEG data with structured information, such as psychological questionnaires, through a "Kernel Matching CKA"method. We employ a deep neural network (Deep&Wide) for motor imagery classification. The results underscore its potential to enhance motor skills in brain-computer interfaces. Second, we propose an innovative technique called "Labeled Correlation Alignment"(LCA) to sonify neural responses to stimuli represented in unstructured data, such as affective music. This generates musical features based on emotion-induced brain activity. LCA addresses variability among subjects and within subjects through correlation analysis, enabling the creation of acoustic envelopes and the distinction of different sound information. This makes LCA a promising tool for interpreting neural activity and its response to auditory stimuli. Finally, in another chapter, we develop an end-to-end deep learning methodology for generating MIDI music content (symbolic data) from EEG signals induced by affectively labeled music. This methodology encompasses data preprocessing, feature extraction model training, and a feature matching process using Deep Centered Kernel Alignment, enabling music generation from EEG signals. Together, these achievements represent significant advances in understanding the relationship between emotions and music, as well as in the application of artificial intelligence in musical generation from brain signals. They offer new perspectives and tools for musical creation and research in emotional neuroscience. To conduct our experiments, we utilized public databases such as GigaScience, Affective Music Listening and Deap DatasetMaestríaMagíster en Ingeniería - Automatización IndustrialInvestigación en Aprendizaje Profundo y señales BiológicasEléctrica, Electrónica, Automatización Y Telecomunicaciones.Sede Manizale

    Large-scale Foundation Models and Generative AI for BigData Neuroscience

    Full text link
    Recent advances in machine learning have made revolutionary breakthroughs in computer games, image and natural language understanding, and scientific discovery. Foundation models and large-scale language models (LLMs) have recently achieved human-like intelligence thanks to BigData. With the help of self-supervised learning (SSL) and transfer learning, these models may potentially reshape the landscapes of neuroscience research and make a significant impact on the future. Here we present a mini-review on recent advances in foundation models and generative AI models as well as their applications in neuroscience, including natural language and speech, semantic memory, brain-machine interfaces (BMIs), and data augmentation. We argue that this paradigm-shift framework will open new avenues for many neuroscience research directions and discuss the accompanying challenges and opportunities

    Data Augmentation techniques in time series domain: A survey and taxonomy

    Full text link
    With the latest advances in Deep Learning-based generative models, it has not taken long to take advantage of their remarkable performance in the area of time series. Deep neural networks used to work with time series heavily depend on the size and consistency of the datasets used in training. These features are not usually abundant in the real world, where they are usually limited and often have constraints that must be guaranteed. Therefore, an effective way to increase the amount of data is by using Data Augmentation techniques, either by adding noise or permutations and by generating new synthetic data. This work systematically reviews the current state-of-the-art in the area to provide an overview of all available algorithms and proposes a taxonomy of the most relevant research. The efficiency of the different variants will be evaluated as a central part of the process, as well as the different metrics to evaluate the performance and the main problems concerning each model will be analysed. The ultimate aim of this study is to provide a summary of the evolution and performance of areas that produce better results to guide future researchers in this field.Comment: 33 pages, 9 figure
    corecore