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Abstract

Artificial neural networks show great success in
sleep stage classification, with an accuracy comparable
to human scoring. While their ability to learn
from labelled electroencephalography (EEG) signals is
widely researched, the underlying learning processes
remain unexplored. Variational autoencoders can
capture the underlying meaning of data by encoding
it into a low-dimensional space. Regularizing this
space furthermore enables the generation of realistic
representations of data from latent space samples.
We aimed to show that this model is able to
generate realistic sleep EEG. In addition, the generated
sequences from different areas of the latent space
are shown to have inherent meaning. The current
results show the potential of variational autoencoders
in understanding sleep EEG data from the perspective
of unsupervised machine learning.

1. Introduction

During sleep, we wander through different stages,
characterized by certain physiological features. These
features and their temporal variation is traditionally
recorded in polysomnography (PSG), which is a
multi-signal sleep study based on multiple sensors. The
results of the PSG outline the gold standard diagnostic
method for many sleep disorders (Arnardottir, Islind, &
Óskarsdóttir, 2021; Schmitz et al., 2022). One feature
that varies significantly between different physiological
sleep stages is the brain’s electrical activity, recorded

with electroencephalography (EEG). The EEG outlines
a vital part of the PSG enabling scoring of sleep stages
with the inclusion of eye movements and chin muscle
tone (Berry et al., 2018). Currently in clinical practice,
sleep technologists classify 30-second epochs of PSG
recordings into five sleep stages; wakefulness (Wake),
three non-rapid eye movement sleep (Stages N1, N2,
and N3) and rapid eye movement (REM) sleep. The
classification is done according to the rules set by
the American Academy of Sleep Medicine (AASM)
(Berry et al., 2018). However, the current five-stage
and 30-second epochs process is a simplification that
is needed to alleviate the workload of manual sleep
staging, and both aspects lack a complete scientific
justification (Himanen & Hasan, 2000). Therefore,
the details of underlying feature variation of the
complex sleep EEG recordings remains a subject of
research. In this paper, we propose a method to
explore the relationship between scored sleep stages and
physiological sleep stages.

State-of-the-art machine learning models such as
deep convolutional neural networks (CNNs) are capable
of classifying sleep stages with similar reliability as
sleep technologists (Perslev et al., 2021; Korkalainen
et al., 2019; Phan & Mikkelsen, 2021; Fiorillo et
al., 2019). This is a major achievement for sleep
research in general and has the potential to reduce the
manual workload in clinical practice. However, these
models rely on supervised learning using labelled sleep
recordings (Korkalainen et al., 2019). As a result, they
express high classification accuracies but are limited
to repeating the manual sleep staging which they are
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trained with, in an automatic manner. In addition,
the learning process and the used features are often
untraceable and difficult to visualize.

Samek et al. pointed out, that due to the lack
of transparency at the machine learning models, we
can neither verify them nor learn from them (Samek,
Wiegand, & Müller, 2017). Consequently, there is a
rising demand toward explainable artificial intelligence
(XAI) (Gerlings, Shollo, & Constantiou, 2020), i.e.
machine learning models that not only provide an output
but also enable the understanding how the output was
achieved (Shaban-Nejad, Michalowski, Brownstein, &
Buckeridge, 2021; Linardatos, Papastefanopoulos, &
Kotsiantis, 2021; Rudin, 2019). There is a long
withstanding discussion of the need for unpacking
technology (Orlikowski, Iacono, et al., 2001; Kallinikos,
2002), and more specifically, on unpacking artificial
intelligence (AI) and moving away from the black-box
mentality (Castelvecchi, 2016).

In this paper, we aim to take a first step towards
making machine learning models in sleep research more
traceable, which is strongly needed especially in the
healthcare sector. In sleep, just like in any other medical
application of machine learning, the decisions made by
a model come with a high responsibility, as they directly
affect the health of a patient. For this reason, XAI
helps medical professionals to gain trust and increase
the actual usage of those systems (Xie, Gao, & Chen,
2019). Lately, generative machine learning models
have been helpful in XAI through visualizations (Kahng,
Thorat, Chau, Viégas, & Wattenberg, 2019). One of the
most studied type of generative models is a Variational
Autoencoder (VAE), a specifically structured generative
autoencoder (Kingma & Welling, 2019). VAEs have
been used for example to generate interpretable features
of electrocardiography (ECG) (Kuznetsov, Moskalenko,
Gribanov, & Zolotykh, 2021). Moreover, VAEs have
increased the classification accuracy of EEG-based
speech recognition systems (Krishna, Co, Carnahan, &
Tewfik, 2020).

… … …
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Figure 1. General Architecture of a Variational
Autoencoder

Based on the previous findings, we hypothesize that
VAEs have the potential to learn the underlying feature

variations of sleep EEG recordings. In this proof of
concept study, we aim to generate realistic sleep EEG
using VAEs. In addition, we aim to show that VAEs
can make an interpretable latent space using sleep EEG
inputs. We furthermore discuss how this method could
pave the way for a deeper understanding of sleep stages.

2. Related Work

Previously, autoencoders have been used in the
context of sleep staging as a preprocessing step or as an
unsupervised classifier. Najdi et al. used an autoencoder
to learn a compact feature vector of PSG data in a
sleep stage classification algorithm (Najdi, Gharbali,
& Fonseca, 2017). Moreover, Perslev et al. utilized
a typical architecture of convolutional autoencoders
in another supervised sleep stage classification model
(Perslev et al., 2021). Similarly, Prabhudesai et al.
developed a method to automatically learn features from
the raw EEG data with an autoencoder, which were
then used to cluster the data to different sleep stages
(Prabhudesai, Collins, & Mainsah, 2019). Autoencoders
can also be used for unsupervised pre-training before
supervised classification as shown by Wei et al. (Wei,
Zhang, Wang, & Dang, 2018). In this study, we
do not want to outperform the previous models in
terms of classification accuracy but rather deepen the
understanding of the sleep stages by investigating the
properties learned by the autoencoder.

Variational autoencoders have shown their ability
to create a meaningful latent space in other domains
such as language processing (Song, Sun, Chen, Peng, &
Song, 2019), image generation (Razavi, Van den Oord,
& Vinyals, 2019), and cancer diagnosis (Way & Greene,
2018). In the medical field, VAEs are used to gain an
understanding of ECG data (Kuznetsov et al., 2021).
VAEs can also be used for emotion recognition based on
EEG (Li et al., 2020) and extracting features for speech
recognition on EEG data (Krishna, Tran, Carnahan, &
Tewfik, 2020). To the best of our knowledge, VAEs
have not been applied to sleep EEG data before as a
generative model.

3. Theoretical Background

3.1. Variational Autoencoders

Autoencoders are artificial neural networks, which
encode the data into a latent space and then decode
it as closely as possible back into its original shape.
It is a reconstruction-based form of representation
learning, since the model is trained by comparing the
reconstructed output with the original input (Bengio,
Courville, & Vincent, 2013). The fundamental
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concept of autoencoding lies within the autoencoder’s
architecture, consisting of an encoding function, an
intermediary latent space, and a decoding function as
illustrated in Figure 1 (Goodfellow, Bengio, Courville,
& Bengio, 2016).

VAEs make an addition to this architecture by adding
a probabilistic manipulation to the latent space variables
(Kingma & Welling, 2013). In VAEs, the encoder’s
architecture comprises two fully connected layers
connected into two latent vectors. The vectors’ elements
represent the mean and variance of a normal distribution
X ∼ N (µ, σ2) for each latent space dimension.
Furthermore, the encoder comprises a sampling layer,
which maps the measures of the probability distribution
into the final latent space samples. These samples also
compose the input of the decoder (Spinner, Körner,
Görtler, & Deussen, 2018). In contrast to normal
autoencoders, VAEs also function as generative models.
The generative nature of VAEs emerges from the
sampling layer, which enables the sampling of the
probabilistic latent space, as well as from the decoder,
that can be used to generate reconstructions from the
latent space samples (Kingma & Welling, 2013).

Although the latent space has a simple probabilistic
nature, a reconstruction loss-based optimization alone
can lead to an overly complex, non-continuous, and
unorganized latent space structure. In this case,
generated representations of the latent space can be
hard to interpret or completely unrealistic (Kingma
& Welling, 2013). Therefore, VAEs introduce a
regularization term in the total loss of the model. This
term is added to the reconstruction loss and controls the
structure of the latent space during optimization. The
total loss is therefore a combination of two parts, i.e.

Total loss = reconstruction loss + regularization,

where reconstruction loss is usually the mean squared
error (MSE) or mean absolute error (MAE) between the
input and the output of VAE for one-dimensional signals
(Kuznetsov et al., 2021; Krishna, Tran, et al., 2020).

In the case of VAEs, the regularization term
is defined using Kullback-Leibler (KL) divergence,
which is a statistical distance measure between two
distributions (Kullback & Leibler, 1951). The distance
is computed in each iteration of weight optimization
between distributions of the latent space samples X ∼
N (µ, σ2) and a unit normal distribution I ∼ N (µ =
0, σ2 = 1). Thus, by minimizing the KL divergence,
we force the latent probability distributions to follow
a normal distribution, making the latent space more
organized and continuous (Kingma & Welling, 2013).

The total loss can be written as follows:

Total loss = MSE(input, reconstruction)

+KL(X, I).

Because of the difference in dimensionality between
the input data and the latent space, the MSE and
KL loss are averaged before summation. The
additional regularization enables the creation of a
continuous and potentially meaningful latent space,
but reduces the autoencoder’s ability to accurately
create reconstructions (Asperti & Trentin, 2020).
Nevertheless, we can adjust the balance between
good reconstructions and more continuous latent space
(Alemi et al., 2018). However, better reconstructions
come with the cost of possibly overlapping latent space
clusters and noisier encodings. One of the methods
used in balancing between these two factors is called
β-VAE (Higgins et al., 2017). This method multiplies
the KL loss with a constant β. It has also been shown
that monotonically or cyclically updating the β value
increases the performance of VAEs as well as helps with
an easily vanishing KL term (Fu et al., 2019).

As explained, the latent space of the VAE is
more continuous in contrast to the sparse latent space
created in normal autoencoders. As the latent space
is distributed around the origin and generally shares a
similar value range, a valid output can be generated
from decoding points in the latent space (Spinner et
al., 2018). Due to these special properties of the latent
space in variational autoencoders, the newly generated
samples and their position in the latent space become
interpretable.

3.2. Convolutional Layers

The advantage of convolutional neural networks
(CNN) is that they extract visually meaningful
information. Even though CNNs are most commonly
used for image processing, they have also shown to be a
suitable approach for transforming EEG data (Bashivan,
Rish, Yeasin, & Codella, 2015). A convolutional layer
of a CNN slides a kernel of a filter over the input to
extract features at each position. A filter is therefore a
stack of matrices, the kernels, which factors are learned
during training (O’Shea & Nash, 2015). The kernel
size defines the size of the sliding window which is
passed over the data. Smaller kernels tend to collect
more local information, while larger kernels extract the
global, high-level features (Gu et al., 2018). CNNs
usually comprise multiple convolutional layers with a
different number of filters and different kernel sizes. In
this way, the architecture of the CNN is constructed to
extract information on multiple scales. Furthermore,
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using convolutional layers in VAEs, the size of the input
can be gradually decreased towards the latent space to
reduce dimensionality while extracting information.

4. Method

4.1. Data

For this paper, we used 50 PSG recordings, which
totals in 381.13 hours of EEG data. The data collection
was approved by the National Bioethics Committee
of Iceland (21-070). Informed written consent was
obtained from all participants before measurements.
We have a diverse study population with 27 male, 19
female, and 4 unspecified-gendered participants. The
study population included participants with and without
diagnosed sleep disorders. More information about the
study population can be found in Table 1.

Table 1. Demographic information of the study
population (n=50)

Variable Mean ± SD
Age [years] 44.2 ± 13.4
Weight [kg] 84.1 ± 21.7
Height [cm] 174.9 ± 9.9
BMI [kg/m2] 27.3 ± 5.3
AHI [1/h] 12.0 ± 13.2

SD = standard deviation, BMI = body mass index, AHI =
apnea-hypopnea index

The PSG recordings were conducted at Reykjavik
University as part of the Sleep Revolution project. The
PSG was set up by a professional sleep technologists
and the participants slept at home in their natural
sleeping environment. The Type II PSG recordings
were conducted using a portable PSG device (Nox A1,
Nox Medical, Reykjavik, Iceland) and included EEG as
recommended by the AASM (Berry et al., 2018). We
used the F4-M1 channel from the EEG recordings as a
single-channel input to the VAE, as it is commonly used
in manual sleep staging. Only one channel was used to
keep the feature variation of the input EEGs reasonable.
For visualization and exploration of the latent space,
we used the manual scoring of sleep stages, which
was conducted by an experienced sleep professional
according to the AASM scoring manual (Berry et al.,
2018).

4.2. Preprocessing

The EEG signals were originally saved using 200
Hz sampling frequency in the Noxturnal (Nox Medical)
software and exported to EDF format. The signals
were then preprocessed with Python according to the

following steps. First, we downsampled the signals to 64
Hz to reduce the computational burden and complexity
of EEG signals. Second, we applied high-pass filters
with a cut-off frequency of 0.3 Hz, as recommended in
the AASM scoring manual (Berry et al., 2018). Finally,
we scaled the signal amplitudes into a range between 0
and 1 using min-max scaling. We confirmed that the
EEG signals appeared normal after each preprocessing
step as illustrated in Figure 2. These preprocessing steps
were conducted per subject to preserve the amplitude
variation in each recording.

The recording has a length of approximately 7 hours
per participant. To work with this data in a machine
learning context, we split it into smaller 10-second
sub-sequences. Sleep stages were manually scored in
30 second windows, but we chose the time window of 10
seconds to reduce the length of the time series processed
by the VAE. The 10-second segments were randomly
divided into training (90%) and testing (10%) sets,
resulting in 357.9 hours or 128857 segments of EEG
data for training and 39.8 hours or 14318 segments of
EEG data for testing. In unsupervised machine learning
the division to train and test sets is not mandatory but we
chose to include it for experimental reasons.

0 1000 2000 3000 4000 5000 6000
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0.0000

0.0001
Original

0 250 500 750 1000 1250 1500 1750 2000

0.0001

0.0000

0.0001
After resampling

0 250 500 750 1000 1250 1500 1750 2000
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0.0001
After resampling and filtering

0 250 500 750 1000 1250 1500 1750 20000.475

0.500

0.525

0.550
After resampling, filtering, and scaling

Figure 2. A 30-second sample of the input EEG after
each of the preprocessing steps.

4.3. Optimization

The models were implemented using TensorFlow
version 2.8.0 (Abadi et al., 2015) and Keras application
programming interface. We optimized the VAEs using
the Adaptive Moment Estimation (Adam) algorithm
(Kingma & Ba, 2015) with default Keras configurations.
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The weights were updated in batches of size 100 until
the total loss converged or until 100 training epochs.

During the training of the VAE, both the
reconstruction error as well as the KL divergence
were taken into account. A common problem with
VAEs is the KL divergence collapse problem (Asperti
& Trentin, 2020; Alemi et al., 2018), which arises from
unequal scales of the reconstruction error and the KL
divergence. To ensure a balance between them, we used
the β-VAE method.

5. Experiments

5.1. Dense VAE

As a proof-of-concept of VAEs operating with sleep
EEG data, we ran experiments on the most simple VAE
architecture. This architecture comprised only a single
dense connection between the input and latent space
parameters as well as the latent space sample and the
output of the decoder. Furthermore, we used the input
size of the signal (640 samples) as the latent space
dimension to further increase the simplicity of our
method. We increased the weight of reconstruction loss
in the total loss using constant β = 0.0001 multiplying
the KL term. The learning rate was decreased from 0.01
with 0.001 steps after each iteration until optimization
stopped or the learning rate reached a value of 0.001.
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Figure 3. Three exemplary inputs of 10-second EEG
segments (blue) and their reconstructions (red) using

the dense model.

Our experiment to reconstruct EEG with a simple
dense VAE clearly showed the ability of VAEs to work
with highly complex EEG inputs. The reconstructions
shown in Figure 3 were achieved after 100 epochs of
training. Despite the desired reconstructions, this model
was unsuitable for the intention to explore the sleep EEG

data through latent space, as the latent space had no
dimension reduction relative to the input data.

5.2. CNN VAE

Moving from high-dimensional latent space to
reducing the dimensions into something that can
be visualized, we chose to experiment with three
dimensions in the latent space. Following the major
change in the dimensional reduction of input data, the
purpose was not to reach similar reconstructions as
shown with our simple dense model. Instead, we
experimented with whether the VAE can still extract
features relative to input data and generate realistic
EEG samples. For meaningful feature extraction,
we included a CNN layer in the VAE’s architecture.
Keeping the experiment simple, only one convolutional
or respectively deconvolutional layer was added to both
the encoder and decoder. We used 256 filters with
kernels of size 5 for the convolutions. Then, we reduced
the length of the sequence with max-pooling. In the
following layer, we flattened the sequence into one
dimension, before connecting it to the latent vectors.
Here, instead of forwarding the exact position in the
latent space to the decoder, the mean and variance of
a normal distribution were used to sample a position in
the latent space. At this point the data was compressed
to a vector of length three, which was then transformed
back into its original shape by the following layers.

In the decoder, we used a dense layer which mirrored
the transformation of the sampling and a reshape layer
that mirrored the transformation of the flattening layer
in the encoder. Then, an up-sampling layer was used
to mirror the max-pooling. Finally, a deconvolutional
layer with one filter and kernel size 5 brought the data
back into their original shape. Both in the encoder and in
the decoder, we used Rectified Linear Units (ReLU) as
activation functions. For the optimization of this model,
we gradually increased the weight of the KL divergence
from β = 0.01 to β = 1 in 100 epochs. In this manner,
the model should first learn the reconstructions, after
which the latent space is made regular (Higgins et al.,
2017). A constant learning rate of 0.001 was used for
optimization of this model. In the following Results
section, we refer to the results achieved with the CNN
VAE.

6. Evaluation

6.1. Turing Test

The Turing test is an experimental set-up developed
by Alan Turing to test the intelligence of a machine
(Turing, 2009). Originally, the test was designed to
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Figure 4. Generated artificial EEG segments (10 seconds) sampled with linear intervals from the first and the third
axis of the latent space, keeping the second dimension coordinate constantly as zero.

determine whether an interrogator can distinguish a
human from an AI in a dialogue with both of them.
We used the principles of this test by confronting a
sleep technologist with both real and artificially created
EEG sequences. This way, we evaluated whether the
sequences generated by our VAE were realistic.

We sampled 10-second segments randomly from the
input EEG signals. In addition, we created artificial
EEG segments by randomly sampling each of the latent
space coordinates from a uniform distribution between
-3 and 3 and passing the resulting point to the decoder.
In the first step, the totalling 50 signal segments were
then distributed randomly on a 5x10 grid including 46
real and four artificial EEG sequences. A sleep expert
was asked to point the four artificial EEG sequences out.
In a second step, we confronted the sleep technologist
with a 3x6 grid (18 sequences) including likewise four
artificially created EEG sequences.

6.2. Manual Review

In order to verify that our model could not only
generate realistic EEG sequences, but also created a
meaningful latent space, we manually reviewed the
generated sequences with the sleep technologist. In
this experiment, we showed the sleep technologist two
maps of artificial EEG segments on a 5x10 grid sampled

and decoded from the latent space. One map showed
samples from the first and second axis of the latent
space, while a second map showed the first and third
axis. In both maps, the excluded dimension was kept
at a constant value of zero. For visualisation purposes,
we extracted the mean from each segment and fixed the
y-axis limits of the subplots to be constant. To gain an
understanding of different axes, sleep technologist was
asked to give an estimation of the sleep stage of different
EEG sequence. We furthermore asked for the presence
of sleep stage specific patterns and artifacts.

7. Results

The Turing test-like experiment showed that the
sleep technologist was not able to identify any of the
four artificial EEG sequences from the real examples
in a set-up of 50 sequences. Also, in a set-up of 18
sequences, the sleep technologist was unable to identify
the four artificial ones. From this, we conclude that our
VAE can generate realistically looking EEG sequences.

Using the CNN VAE, the generated artificial EEG
sequences showed different features according to the
latent space position they originated from. Figure 4
shows a map of points sampled from the first and
third axis of the latent space, keeping the second axis
coordinate constant at zero. The variation of the
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Figure 5. Signal segments (10 seconds) sampled from the latent space axes 0, and 2.

sequences sampled from different positions were clearly
visible. We can observe lower amplitude signals to
originate from the center of the latent space while
amplitudes increased when increasing values of the first
and third axis. In some parts of the latent space the VAE
also generated sequences that do not look like EEG at
all or resemble artifacts. These sequences might arise
due to noncontinuous area of latent space or might be
learned from artifacts in the training data.

The sleep technologist confirmed by manual review
that samples from certain positions along axes of the
latent space resemble certain sleep stages. It needs to be
noted, that this was not a proper scoring according to the
AASM rules, but instead a subjective estimation based
solely on the shape of the signal. However, this variation
showed that the samples were not randomly generated,
and that the axis of the latent space contains meaning
and reflects features typical for different sleep stages.
Figure 5 shows samples generated from exemplary
positions in the latent space. In this visualization, the
second axis was held at a constant value of 0. The
sequence in the top left corner was perceived as REM
or N1 sleep by the sleep technologist, while the sample
in the bottom left corner was perceived as deep sleep
(N3).

Figure 6 shows clustering of the training data along
the first axis of the latent space. In the three-dimensional
visualization of the latent space, the sleep stages were
slightly organized into clusters. However, depending on
which axis was visualized, more clusters not related to
the sleep stages become visible.

8. Discussion

In this paper, we aimed to show that VAEs can
be applied to sleep EEG data. This is an important
contribution to the field of information technology in

sleep research as this model proposes novel methods to
generate insights into sleep structure. The main novelty
of this work is that it follows the principles of XAI, by
making the latent space interpretable and the learning
process traceable. Secondly, the proposed model is fully
unsupervised, and hence does not require any manually
scored data nor carry the bias introduced by manual
scoring during the training.

The present results indicate that VAEs are able to
generate realistic but synthetic samples of EEG with
varying features that are common to sleep EEG data.
In addition, we showed that the created latent space
was not random, but reflected features of different sleep
stages in different positions along the axes. Finally,
the results illustrate that a simple convolutional VAE
was capable of generating preliminary clustering of the
EEG data in the latent space. Therefore, we suggest
that this method could open a way to understand sleep
stages in a more sophisticated manner than previously
achieved through manual analysis and unpack some
of the criticized mystery related to AI. It also shows
preliminary potential of comparing unsupervised sleep
staging to supervised sleep staging and manual sleep
staging through labeling of the latent clusters.

The artificial EEG sequences generated with the
VAE were not distinguishable from real EEG segments
to an expert sleep technologist. Although this
observation contains the bias of a subjective opinion of
a single sleep technologist, it shows that the artificial
sequences can be considered realistic. It furthermore
indicates that even the simple neural network model
can learn some features representing the input data. It
should also be noted, that the method is scalable to
studying neural networks of different architectures in
the encoder and decoder. This method could therefore
help in understanding some of the already existing sleep
staging models (Perslev et al., 2021; Korkalainen et al.,
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2019; Phan & Mikkelsen, 2021; Fiorillo et al., 2019).
The variation within our latent space, representing

features that might be attributed to different sleep stages,
shows how the model built an understanding of the
EEG sequences in an interpretable way. The high
complexity inherent in the combination of thousands of
weights within the neural network prevents us from fully
tracing what is learned during the training. However,
the continuous latent space created by the VAE is a
sophisticated visual approach to understand the features
that are learned by the model. In order to get a more
holistic evaluation of the methodology, it would require
an in-depth analysis by multiple sleep technologists.
That is however outside the scope of this paper. In
addition, more quantitative analyses of the generated
EEG signals are needed in the future.
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Figure 6. Embedding of EEG sequences used in
training within the three-dimensional latent space,

colored by sleep stage. Values on the axes represent
means of the latent space samples. Colors: Yellow =

REM, Green = N3, and Purple = Wake.

Compressing the data into a three-dimensional and
continuous latent space comes with a certain cost.
First, the low dimensionality creates a tight bottleneck
in which inevitably information is lost. Second, the
sampling layer introduces randomness to the model.
Hence, the autoencoder faces a trade-off between
accurate reconstructions of the input signals (as seen
in the dense model) and a meaningful latent space
suitable for generating data (as seen in the CNN
model). Regarding the high complexity of our input
signal, a sequence of a multi-frequency biosignal with
a length of 640 samples, it is hard to achieve accurate
reconstructions even with the dense model that operated
without any dimensionality reduction. However, the
purpose of the model is not to perfectly reconstruct
compressed input signals, but to create a latent space

from which realistic EEG can be generated. From
this perspective, the reconstructions are not an issue,
as the individual peaks and troughs are irrelevant
for realistic EEGs, while the general frequency and
recurring patterns matter more (Berry et al., 2018).

Moving away from manual review, we can also
perceive an irregular distribution of sleep stages in
the latent space when using the manual sleep stage
scoring as labels. The slight clustering of sleep stages
within the latent space hints towards further possibilities
for unsupervised sleep staging. However, to achieve
this, more sophisticated models that better capture the
feature variation of input EEGs are likely needed.
One possibility could be a concatenated model with
separate branches of convolutional and dense layers, as
proposed in (Kuznetsov et al., 2021). However, adding
complexity to the model might make the optimization
of the model more difficult. This in turn highlights
the need for more adaptive optimization methods such
as VAEs with calibrated decoder (Rybkin, Daniilidis,
& Levine, 2020) or VAEs utilizing single-parameter,
continuous Bernoulli distributions (Loaiza-Ganem &
Cunningham, 2019). Furthermore, some clusters we
observed in the latent space, which were not related to
sleep stages might represent other factors, e.g. patient
demographics. In order to study this assumption, other
attributes such as age, gender, and sleeping disorders
need be considered in the future. Another method
could be splitting the data before training into subgroups
based on other attributes and comparing the latent spaces
that are created. Especially training one model on
recordings by participants with obstructive sleep apnea
(OSA) and another model on participants without any
sleep disorders could reveal differences in their EEG
features. Before these experiments are possible, more
methodological studies on using VAE with sleep EEG
data need to be conducted.

9. Conclusion

We can conclude, that this paper is preliminary work
that explored the possibilities of VAEs in sleep research,
opening up several new research directions in the future.
This study contributes an addition to traditional machine
learning-assisted sleep research in the following ways: i)
by introducing a method for generating realistic artificial
EEG; ii) by showing potential of providing in-depth
understanding of sleep EEG and sleep staging through
XAI, and; iii) by creating the foundation for attempting
unsupervised sleep staging through clustering in the
latent space. Our findings are relevant for the field of
sleep research and health information systems in general
because we show how a VAE can act as a generative and
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interpretable model for EEG data. Generating realistic
EEG sequences is not only relevant for sleep research
but can also be used as a method in various medical
domains, and as such, apply to a variety of health
information systems issues. We hope that introducing
XAI in sleep research could increase the acceptance
and usage of AI systems by sleep professionals in the
hospital and beyond.
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