20 research outputs found

    A New Kind of Dynamic RWA Algorithm with QoS and Link Protection Under the Constraint of Wavelength Continuity

    Get PDF
    AbstractA new kind of dynamic RWA algorithm with QoS and link protection mechanism under the constraint of wavelength continuity is presented. Using a peculiar link protection method, a protection routing is established with unique links and working routing for every service request. Additionally, the wavelength information is taken into account to make the entire network load balanced with respect to routing choice. It is known that when the network is trouble-free, load balance is needed, and when there are some links destroyed in the network, a protection mechanism is needed. This new algorithm includes these two mechanisms while also adopting a kind of QoS guaranteed mechanism. This allows for a better network performance even under the situation that some links were destroyed and includes a higher quality of service guarantee and a lower rate of service blocking. The simulation results show that this algorithm can significantly improve the rate of service blocking and guarantee the quality of service to meet expectations

    Virtual Topology Reconfrigation of WDM Optical Network with Minimum Physical Node

    Get PDF
    This paper review the reconfiguration of high capacity WDM optical Network, messages are carried in all optical form using light paths. The set of semi-permanent light paths which are set up in the network may be viewed as a virtual topology by higher layers such as SONET, ATM and IP. Reconfiguration is to charge in virtual topology to meet traffic pattern in high layers. It provides a trade off between objective value and the no. of changes to the virtual topology. In another study Objective is to design the logical topology & routing Algorithm on physical topology, so as to minimize the net work congestion while constraining the average delay seen by source destination pair and the amount of processing required at the nodes. Failure handling in WDM Networks is of prime importance due to the nature and volume of traffic, these network carry, failure detection is usually achieved by exchanging control messages among nodes with time out mechanism. Newer and more BW thirsty applications emerging on the horizon and WDM is to leveraging the capabilities of the optical fiber Wavelength  routing  is  the  ability  to  switch  a  signal  at intermediate  nodes  in  a  WDM  network  based  on  their wavelength. Virtual topology can be reconfigured when necessary to improve performance. To create the virtual topology different from the physical topology of the underlying network, is the ability of wavelength routing WDM. Keywords: WDM, Physical Topology, Virtual Topology and Reconfiguratio

    Performance improvement of an optical network providing services based on multicast

    Full text link
    Operators of networks covering large areas are confronted with demands from some of their customers who are virtual service providers. These providers may call for the connectivity service which fulfils the specificity of their services, for instance a multicast transition with allocated bandwidth. On the other hand, network operators want to make profit by trading the connectivity service of requested quality to their customers and to limit their infrastructure investments (or do not invest anything at all). We focus on circuit switching optical networks and work on repetitive multicast demands whose source and destinations are {\em \`a priori} known by an operator. He may therefore have corresponding trees "ready to be allocated" and adapt his network infrastructure according to these recurrent transmissions. This adjustment consists in setting available branching routers in the selected nodes of a predefined tree. The branching nodes are opto-electronic nodes which are able to duplicate data and retransmit it in several directions. These nodes are, however, more expensive and more energy consuming than transparent ones. In this paper we are interested in the choice of nodes of a multicast tree where the limited number of branching routers should be located in order to minimize the amount of required bandwidth. After formally stating the problem we solve it by proposing a polynomial algorithm whose optimality we prove. We perform exhaustive computations to show an operator gain obtained by using our algorithm. These computations are made for different methods of the multicast tree construction. We conclude by giving dimensioning guidelines and outline our further work.Comment: 16 pages, 13 figures, extended version from Conference ISCIS 201

    Light-Hierarchy: The Optimal Structure for Multicast Routing in WDM Mesh Networks

    Get PDF
    Based on the false assumption that multicast incapable (MI) nodes could not be traversed twice on the same wavelength, the light-tree structure was always thought to be optimal for multicast routing in sparse splitting Wavelength Division Multiplexing (WDM) networks. In fact, for establishing a multicast session, an MI node could be crosswise visited more than once to switch a light signal towards several destinations with only one wavelength through different input and output pairs. This is called Cross Pair Switching (CPS). Thus, a new multicast routing structure light-hierarchy is proposed for all-optical multicast routing, which permits the cycles introduced by the CPS capability of MI nodes. We proved that the optimal structure for minimizing the cost of multicast routing is a set of light-hierarchies rather than the light-trees in sparse splitting WDM networks. Integer linear programming (ILP) formulations are developed to search the optimal light-hierarchies. Numerical results verified that the light-hierarchy structure could save more cost than the light-tree structure

    Optimal multicast routing using genetic algorithm for WDM optical networks

    Get PDF
    We consider the multicast routing problem for large-scale wavelength division multiplexing (WDM) optical networks where transmission re-quests are established by point-to-multipoint connections. To realize multicast routing in WDM optical networks, some nodes need to havelight (optical) splitting capability. A node with splitting capability can forward an incoming message to more than one output link. We con-sider the problem of minimizing the number of split-capable nodes in the network for a given set of multicast requests. The maximum number of wavelengths that can be used is specified a priori. A genetic algorithm is proposed that exploits the combination of alternative shortest paths for the given multicast requests. This algorithm is examined for two realis-tic networks constructed based on the locations of major cities in Ibaraki Prefecture and those in Kanto District in Japan. Our experimental re-sults show that the proposed algorithm can reduce more than 10% of split-capable nodes compared with the case where the split-capable node placement optimization is not performed while the specified number of wavelengths is not exceeded.Includes bibliographical reference

    Photonic spike processing: ultrafast laser neurons and an integrated photonic network

    Full text link
    The marriage of two vibrant fields---photonics and neuromorphic processing---is fundamentally enabled by the strong analogies within the underlying physics between the dynamics of biological neurons and lasers, both of which can be understood within the framework of nonlinear dynamical systems theory. Whereas neuromorphic engineering exploits the biophysics of neuronal computation algorithms to provide a wide range of computing and signal processing applications, photonics offer an alternative approach to neuromorphic systems by exploiting the high speed, high bandwidth, and low crosstalk available to photonic interconnects which potentially grants the capacity for complex, ultrafast categorization and decision-making. Here we highlight some recent progress on this exciting field.Comment: 11 pages, 8 figure

    Longest Path Reroute to Optimize the Optical Multicast Routing in Sparse Splitting WDM Networks

    Get PDF
    Limited by the sparse light-splitting capability in WDM networks, some nodes need to reroute the optical packet to different destination nodes with the high cost of routing for reducing packet loss possibility. In the paper, the longest path reroute optimization algorithm is put forward to jointly optimize the multicast routing cost and wavelength channel assignment cost for sparse splitting WDM networks. Based on heuristic algorithms, the longest path reroute routing algorithm calls multiple longest paths in existing multicast tree to reroute the path passing from the nodes which are violating the light-splitting constraint to the nodes which are not violating light-splitting constraint with few wavelength channels and low rerouting cost. And a wavelength cost control factor is designed to select the reroute path with the lowest cost by comparing the multicast rerouting path cost increment with the equivalent wavelength channel required cost increment. By adjusting wavelength cost control factor, we can usually get the optimized multicast routing according to the actual network available wavelength conversion cost. Simulation results show that the proposed algorithm can get the low-cost multicast tree and reduce the required number of wavelength channels

    Blocking performance of tree establishment in time-space switched optical networks

    Get PDF
    Multicasting in the optical layer has gained significant importance in the recent years due to several factors. Most of the research work in this area concentrate either on minimizing the number of wavelengths required to meet a given static demand or on multicast route selection algorithms to achieve efficient utilization of fiber bandwidth. Very few significant research has been found, to the best of authors\u27 knowledge, in developing an analytical model for evaluating the blocking performance of tree establishment in optical networks, which motivates this research. In this paper, an analytical model for evaluating the blocking performance of multicast tree establishment in time-space switched optical networks is developed. The performance of different switch architectures are then studied using the analytical model. it is observed that if the multicast tree has very low degree of branching, the blocking probability of establishing the tree is the same as that of establishing a path with same number of links
    corecore