212 research outputs found

    A forecasting of indices and corresponding investment decision making application

    Get PDF
    Student Number : 9702018F - MSc(Eng) Dissertation - School of Electrical and Information Engineering - Faculty of Engineering and the Built EnvironmentDue to the volatile nature of the world economies, investing is crucial in ensuring an individual is prepared for future financial necessities. This research proposes an application, which employs computational intelligent methods that could assist investors in making financial decisions. This system consists of 2 components. The Forecasting Component (FC) is employed to predict the closing index price performance. Based on these predictions, the Stock Quantity Selection Component (SQSC) recommends the investor to purchase stocks, hold the current investment position or sell stocks in possession. The development of the FC module involved the creation of Multi-Layer Perceptron (MLP) as well as Radial Basis Function (RBF) neural network classifiers. TCategorizes that these networks classify are based on a profitable trading strategy that outperforms the long-term “Buy and hold” trading strategy. The Dow Jones Industrial Average, Johannesburg Stock Exchange (JSE) All Share, Nasdaq 100 and the Nikkei 225 Stock Average indices are considered. TIt has been determined that the MLP neural network architecture is particularly suited in the prediction of closing index price performance. Accuracies of 72%, 68%, 69% and 64% were obtained for the prediction of closing price performance of the Dow Jones Industrial Average, JSE All Share, Nasdaq 100 and Nikkei 225 Stock Average indices, respectively. TThree designs of the Stock Quantity Selection Component were implemented and compared in terms of their complexity as well as scalability. TComplexity is defined as the number of classifiers employed by the design. Scalability is defined as the ability of the design to accommodate the classification of additional investment recommendations. TDesigns that utilized 1, 4 and 16 classifiers, respectively, were developed. These designs were implemented using MLP neural networks, RBF neural networks, Fuzzy Inference Systems as well as Adaptive Neuro-Fuzzy Inference Systems. The design that employed 4 classifiers achieved low complexity and high scalability. As a result, this design is most appropriate for the application of concern. It has also been determined that the neural network architecture as well as the Fuzzy Inference System implementation of this design performed equally well

    Machine Learning for Decision-Support in Distributed Networks

    Get PDF
    Student Number : 9801145J - MSc dissertation - School of Electrical and Information Engineering - Faculty of EngineeringIn this document, a paper is presented that reports on the optimisation of a system that assists in time series prediction. Daily closing prices of a stock are used as the time series under which the system is being optimised. Concepts of machine learning, Artificial Neural Networks, Genetic Algorithms, and Agent-Based Modeling are used as tools for this task. Neural networks serve as the prediction engine and genetic algorithms are used for optimisation tasks as well as the simulation of a multi-agent based trading environment. The simulated trading environment is used to ascertain and optimise the best data, in terms of quality, to use as inputs to the neural network. The results achieved were positive and a large portion of this work concentrates on the refinement of the predictive capability. From this study it is concluded that AI methods bring a sound scientific approach to time series prediction, regardless of the phenomena that is being predicted

    Alternative Sources of Energy Modeling, Automation, Optimal Planning and Operation

    Get PDF
    An economic development model analyzes the adoption of alternative strategy capable of leveraging the economy, based essentially on RES. The combination of wind turbine, PV installation with new technology battery energy storage, DSM network and RES forecasting algorithms maximizes RES integration in isolated islands. An innovative model of power system (PS) imbalances is presented, which aims to capture various features of the stochastic behavior of imbalances and to reduce in average reserve requirements and PS risk. Deep learning techniques for medium-term wind speed and solar irradiance forecasting are presented, using for first time a specific cloud index. Scalability-replicability of the FLEXITRANSTORE technology innovations integrates hardware-software solutions in all areas of the transmission system and the wholesale markets, promoting increased RES. A deep learning and GIS approach are combined for the optimal positioning of wave energy converters. An innovative methodology to hybridize battery-based energy storage using supercapacitors for smoother power profile, a new control scheme and battery degradation mechanism and their economic viability are presented. An innovative module-level photovoltaic (PV) architecture in parallel configuration is introduced maximizing power extraction under partial shading. A new method for detecting demagnetization faults in axial flux permanent magnet synchronous wind generators is presented. The stochastic operating temperature (OT) optimization integrated with Markov Chain simulation ascertains a more accurate OT for guiding the coal gasification practice

    A survey of the application of soft computing to investment and financial trading

    Get PDF

    Expanding the theoretical framework of reservoir computing

    Get PDF

    Fuelling the zero-emissions road freight of the future: routing of mobile fuellers

    Get PDF
    The future of zero-emissions road freight is closely tied to the sufficient availability of new and clean fuel options such as electricity and Hydrogen. In goods distribution using Electric Commercial Vehicles (ECVs) and Hydrogen Fuel Cell Vehicles (HFCVs) a major challenge in the transition period would pertain to their limited autonomy and scarce and unevenly distributed refuelling stations. One viable solution to facilitate and speed up the adoption of ECVs/HFCVs by logistics, however, is to get the fuel to the point where it is needed (instead of diverting the route of delivery vehicles to refuelling stations) using "Mobile Fuellers (MFs)". These are mobile battery swapping/recharging vans or mobile Hydrogen fuellers that can travel to a running ECV/HFCV to provide the fuel they require to complete their delivery routes at a rendezvous time and space. In this presentation, new vehicle routing models will be presented for a third party company that provides MF services. In the proposed problem variant, the MF provider company receives routing plans of multiple customer companies and has to design routes for a fleet of capacitated MFs that have to synchronise their routes with the running vehicles to deliver the required amount of fuel on-the-fly. This presentation will discuss and compare several mathematical models based on different business models and collaborative logistics scenarios
    • …
    corecore