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MAIN ABSTRACT 

In this document, a paper is presented that reports on the optimisation of a system that 

assists in time series prediction. Daily closing prices of a stock are used as the time series 

under which the system is being optimised. Concepts of machine learning, Artificial 

Neural Networks, Genetic Algorithms, and Agent-Based Modeling are used as tools for 

this task. Neural networks serve as the prediction engine and genetic algorithms are used 

for optimisation tasks as well as the simulation of a multi-agent based trading 

environment. The simulated trading environment is used to ascertain and optimise the 

best data, in terms of quality, to use as inputs to the neural network. The results achieved 

were positive and a large portion of this work concentrates on the refinement of the 

predictive capability. From this study it is concluded that AI methods bring a sound 

scientific approach to time series prediction, regardless of the phenomena that is being 

predicted. 
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MAIN INTRODUCTION 
 

Aim of the work. The aim of this work is to describe an Artificial Intelligence (AI) 

approach to the prediction of time series values. Due to its availability and accessibility, 

the time series of daily closing prices for a stock is used (i.e. as proof-of-concept) to 

illustrate how AI techniques can contribute to the attempt of predicting the next day’s 

closing price. 

 

The work performed in this study is aimed at contributing to the research area involved 

with Machine Learning for Decision-Support in Distributed Networks. To put this in an 

elaborative context: this research area concerns itself with how the techniques of machine 

learning can be applied in an internetworked infrastructure of computers, such that 

intelligent decisions are arrived at. This is a vast area of research and because of this, my 

contribution emphasises on some of the optimisation aspects involved with such systems. 

Hence the title of the paper: Optimisation of a Multi-Agent Stock Prediction System. I am 

compelled to mention that the word optimisation is used sparingly in this context. This is 

because the field of optimisation is also vast and can thus not be exhausted in a single 

study. The details of how and which aspects are optimised is the subject of the main 

paper.  

 

The title of the paper is thus qualified as follows:  

• A multi-agent system is conceptualised in the context of distributed networks of 

computers and, 

• the stock prediction capability puts the machine learning techniques into 

perspective. It then follows that the decision-support will stem from the 

predictions being performed by the system.  

 

The paper presented here is intended to be as stand-alone as possible and it is written in a 

publishable style or format. This obviously places a constraint on the amount of 
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information that is included in the paper. However, appendices are included for those 

readers that may need extended details. 

Approach. In this study, Artificial Neural Networks (ANN) and Genetic Algorithms 

(GA) are used for machine learning purposes. ANNs are used as predictive engines 

whereas GAs serve as an optimisation engine that enhances the predictive functions.  The 

philosophy underlying this work is twofold: First it is believed that the information being 

taught to a ANN must be both the right amount, and as ‘clean’ as possible. A GA is used 

to optimise this data and empirical results are used ascertain this fact. Secondly, it is 

known within ANN literature that the ANN architecture must be such that the best 

possible results are facilitated. Hence a GA-borne ANN architecture is developed such 

that predictions are optimised with particular objectives in mind, in my case the 

objectives are Euclidean distance and the correct prediction of direction.  

 

In writing this paper and its supporting appendices, I have avoided becoming too deeply 

involved in the mathematical and statistical foundation for ANN and GA based methods. 

Furthermore, my philosophy urged for the pursuit of methods that yield good 

performance in practice and hence eliminating the need to explore other subservient 

methods. As a consequence, the focus is placed on two-layer Perceptron neural networks 

with hyperbolic tangent units and linear outputs units. This is probably the most 

commonly used network architecture as it works quite well in many practical 

applications. However, besides the appendices, the reader is referred to more fundamental 

textbooks on ANNs for treatment of other types of neural networks. 

 

Supporting software. All simulations are run using the mathematical software package 

MATLAB®: 

• The NETLAB Toolbox, which contains a collection of MATLAB® functions 

that can be used as tools for design and simulation of neural networks. 

• The GAOT Toolbox, which contains a collection of MATLAB® functions that 

can be used as tools for design and simulation of evolutionary machine learning. 
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A detailed description of the contents and use of the two packages can be found in the 

manuals by Ian Nabney and Christopher Houck et al. The manuals are titled: NETLAB - 

Algorithms for Pattern Recognition and A Genetic Algorithm for Function Optimisation: 

A Matlab Implementation respectively. Software and manuals can be downloaded from 

the internet at: 

http://www.tech.plym.ac.uk/spmc/matlab/matlab_toolbox.html  

 

Prerequisites. Primarily, this work addresses professionals in the following research 

fields: electrical engineering, computer science, actuarial science and related commerce 

areas. However, professionals in other research areas may find the work implicitly 

relevant either for self-study or as a guideline for implementation. As a minimum, the 

reader should know about matrix calculus, basic statistics, time series analysis, and basic 

optimisation techniques. It will also be a significant advantage if the reader is acquainted 

with the ANN, GA, and investment fields. 

 

Outline of the paper. Section 1 introduces the paper by motivating and qualifying the 

work performed. Section 2 and 3 briefly outline the theoretical foundation of GAs and 

ANNs respectively. Section 4 outlines the methodology for designing and optimising a 

single component of the system. Results are discussed and interpreted in Section 5; and 

Section 6 concludes this study. 
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Abstract 

In this study we make use of a genetic algorithm (GA) and artificial neural networks (ANN) to perform a 
one-step prediction of the next day’s closing price. A multi-agent framework is conceptualized so that work 
is concentrated on the optimization of a single agent’s prediction engine. An optimal genome using a GA is 
arrived at, and the genome is used to generate an input data matrix of optimized technical indicators. The 
technical indicators are used to train an artificial neural network that performs a prediction. Prediction lags 
are experienced and three approaches from previous literature are explored in order to deal with the lag. 
The first approach involves using additional inputs into the neural network and the lag was reduced from 4 
days to one day. The second approach proposes a method of measuring the predictability by using hit rates. 
The hit rates were calculated as a measure of how well the neural network predicts the next day’s direction 
of change; a hit rate of 72% was achieved. However the method of computing this hit rate was criticized 
and hence a better computation technique is suggested. Lastly, a multi-objective GA approach is 
theoretically suggested, then modified and implemented as a method of addressing the lag by maximising 
the prediction of the next day direction of movement, as well as minimising the mean square error. A 
maximum of 77% and a minimum of 54% direction success were achieved. The study concludes by 
recommending a multi-objective approach that incorporates a timing error (lag) as well as an adaptation 
mechanism for the ANN inputs and architecture.      

 

1 INTRODUCTION 
 

Detecting and predicting trends of market stocks is a difficult task. This is ensured by the 

highly correlated economic, political, and psychosocial factors that affect the stock’s 

fluctuations in price. To this effect, a substantial amount of research in the area of stock 

forecasting has been conducted. Currently, technical and fundamental analyses are the 

dominant forecasting methods in use. Technical analysis is a method of evaluating stocks 

by analysing the statistics generated by market activity, past prices, and volume. In other 

words technical analysis does not attempt to measure a stock’s intrinsic value and/or a 

company’s financial health; instead it provides a framework for studying investor 

behaviour by focusing only on price and volume patterns. Traders using this approach 
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usually have short-term investment horizons and have access to only past prices and 

exchange data. On the other hand, fundamental analysis is a method of evaluating future 

prospects of stocks by analysing the financial statements of the share’s company. 

Followers of this approach want as much data and information on ‘metrics’ like revenues, 

expenses, assets, liabilities, and so forth. 

 

One of the pillars of current financial theory is the Efficient Market Hypotheses (EMH) 

[1]. EMH and the Random Walk Theory state that at any time, the price of a share fully 

captures all known information about the stock and that since all known information is 

used optimally by market participants, price fluctuations are random, because information 

occurs randomly. Thus, a stock price performs a “random walk” and is therefore 

impossible for an investor to outperform the market. In other words, markets are efficient 

in that opportunities for profit are discovered so quickly that they cease to be 

opportunities. To date, researchers and academics debate the validity of EMH and there 

has not been a consensus on the hypothesis. However, in [2] Tan and Yao used a rescaled 

range analysis and market efficiency testing [3] [4] to distinguish between a random 

series and a fractal series, irrespective of the statistical distribution of the underlying 

series. This is a robust statistical test for measuring the amount of noise in a system and is 

used to determine the persistence of trends and the average length of non-periodic cycles. 

The results obtained in their study implied that markets are not random walk and are not 

efficient enough therefore forecasting markets, is possible. 

 

Traditionally, statistical regression models such as the autoregressive integrated moving 

average (ARIMA); popularly known as the Box-Jenkins [5] methodology, dominate time 

series prediction. A time series is an ordered sequence of observations made through 

time,  where a time series prediction is the prediction of future values for 

a specified horizon h,  given historical data. Recent breakthroughs in 

computational intelligence and numerical algorithms have given rise to many methods in 

financial engineering. Artificial Neural Networks (ANN) are one such area and have thus 

gained popularity as a technique for forecasting stock prices. In addition, empirical 

results have shown that neural networks outperform linear regression 

nttx ,...,1,0),( =

0),(ˆ >+ hhtx

[6][7] because 
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stock markets are complex, nonlinear, dynamic and chaotic. This is because ANNs make 

few assumptions as opposed to normality assumptions usually found in statistical models 

– ANNs perform predictions after learning the underlying input/output relationships of 

the data [8]. From a statistician’s point of view, neural networks are analogous to 

nonparametric, nonlinear regression models. 

 

This paper describes the application of artificial intelligence techniques in performing a 

one-step prediction of a single stock. Genetic Algorithms (GA) and ANNs are 

conceptualised in a Multi-Agent framework that performs stock price forecasting. Firstly 

a GA is used to simulate a Multi-Agent stock trading population such that the best agent 

is selected and then equipped with an ANN that performs the prediction. Secondly a GA 

is used to optimize a set of variables that are used as inputs to a predictive ANN. These 

two approaches are used to test the hypotheses that the most profitable trader in a stock 

market will make the best one-step predictions. The best approach of the two was then 

used as a framework under which the prediction system will be based. Technical 

indicators and time series data are used as inputs to the ANN and GA is once again used 

to optimise the final architecture of the ANN. The time series data used was obtained 

from the closing prices of the South African Breweries (SAB) stocks from 31/12/1999 to 

01/01/2004. 

Predictions are performed, and various strategies for performance measurement and 

improvement of the results are presented. Section 2 and 3 briefly outline the basis behind 

GAs and ANNs respectively. For brevity within the paper, a more detailed theoretical 

outline of ANNs and GAs can be studied in appendix B and C respectively. Section 4 

outlines the methodology for designing the agent of interest. Results are discussed and 

interpreted in Section 5; and Section 6 concludes this study.  
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2 GENETIC ALGORITHMS 
 

In this section a brief outline of GAs is presented for the reader that is not interested with 

the in-depth theoretical dynamics. A detailed theoretical framework under which GAs 

operate can be studied in appendix C. The following books are suggested [9][10] for the 

readers who may also be interested in the underlying mathematical workings of GAs.  

 

During the last four decades, interest in problem solving systems based on the principles 

of evolution and hereditary has grown: such systems maintain a family of potential 

solutions; they have a certain selection criteria based on the fitness of individuals, and 

some “genetic” operators. The common term in use, Evolution Programs (EP), for all 

evolution based systems. One such type of an EP is the GA. The structure of an evolution 

program is shown in Figure 1. 

  

A GA is a probabilistic algorithm that maintains a population of individuals, 

{ }t
n

t xxtP ,...,)( 1=  for iteration t . Each individual represents a potential solution to the 

problem and is implemented as some data structure. Each individual solution  is 

evaluated to yield some measure of its “fitness”. Then a new population (iteration 

t
ix

1+t ) 

is formed by selecting the fittest individuals. Some members of the population undergo 

transformations by means of unary and higher order transformations. The former creates 

new individuals by a small alteration (mutation) in a single individual whereas the latter 

creates new individuals by breeding (crossover) parts from several individuals. After 

some specified generations (iterations), the program converges and it is hoped that the 

fittest individual from that population represents a near-optimum solution. 
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PROCEDURE EVOLUTION PROGRAM 
begin 

t = 0 
initialise P(t) 
evaluate P(t) 
while (not termination-condition) 

t = t + 1 
select P(t) from P(t - 1) 
alter P(t) 
evaluate P(t) 

end 
end 
 
Figure 1. The Structure of an Evolution Program [9]
 
 
GAs are extensively used in optimisation problems whose objective functions are 

difficult and do not possess desirable properties such as continuity, differentiability, 

satisfaction of the Lipschitz Condition, etc.  [9]. 

 

3 ARTIFICIAL NEURAL NETWORKS 
 

As in Section 2, only a short overview of ANNs is presented in this section. Readers may 

study further details on ANNS in appendix B and the excellent book by Bishop [11].  

 

ANNs are mathematical models inspired by biological (brain) models. The models 

consist of interconnected elements known as neurons that are arranged in layers. An 

ANN receives signals through the input layer and these signals are propagated and 

transformed through the network towards the output layer. In this study, two forms of the 

so-called feed-forward ANNs are used, Multi-Layer Perceptrons (MLP) and Radial Basis 

Functions (RBF) [11].  Key transformation features of MLPs and RBFs is the 

multiplication of weights (weights express the strength of connections between neurons) 

and linear additions of biases i.e. during a calibration procedure known as training, inputs 

of a neuron are multiplied with the weight that accompanies their connection; the results 

are summed and an additional value (bias) is commonly added to this value. The resulting 

net input is transformed by some transfer function into an activation value of the neuron. 
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This activation value is then propagated to subsequent neurons.  For a MLP, the 

relationship between the input and the output can be expressed as follows [11]: 

( ) ( ) ( ) ( )
⎥
⎦

⎤
⎢
⎣

⎡
+⎟

⎠

⎞
⎜
⎝

⎛
+= ∑∑

==

2
0

1

1
0

1

1

2
k

d

i
jiji

M

j
innerkjk wwxwfwy  (1) 

 

where: 

M represents the number of hidden units 

d represents the number of inputs units 
( )1
jiw and  represent weights in the first and second layer respectively, going from 

input i to hidden unit j and 

( )2
jiw

( )1
0jw  represents the bias for the hidden unit j. 

 

For a RBF 2-layer network equation with n centres is expressed as follows [11]: 

( ) ( )∑
=

+=
n

j
kjkjk bxwxf

0

φ  (2) 

 

where: 

kf  represents the k-th output layer transfer function 

jφ  represents the j-th input layer transfer function 

and w and b represents the weights and biases 

 

The input layer transfer function jφ is a Gaussian transfer function as follows [11]: 

( )
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛ −
−= 2

2

2
exp

j

j
j

x
x

σ

μ
φ  (3)  

where: 

x  represents the input layer transfer function 

μ  represents the fixed centre position and 

σ  represents fixed variance. 
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A critical issue in ANNs is generalisation, and that is, how well an ANN performs with 

out-of-sample data. Too much training data and/or training cycles may lead to the ANN 

learning the noise and losing its generalisation capability (over-training). Too little 

training data and /or cycles may lead to the ANN failing to learn all the necessary 

information contained in the data set (under-training). 

 

It must be noted that experiments performed in this study were conducted using both 

MLPs and RBFs. However, in this paper only results pertaining to MLPs are presented. 

This is because results for both were very similar; hence results pertaining to RBFs were 

omitted for the sake of succinctness and brevity.     

 

4 AGENT DESIGN METHODOLOGY 
 

4.1 The Multi-Agent Framework 
 

In a stock trading environment, stock traders may, under certain circumstances, have a 

need to trade, manage, and track groups of stocks as one entity. This type of trading 

system is commonly referred to as Basket Trading. Basket traders enjoy the benefits of 

being able to personalise investment criteria (e.g. create baskets by sector and investment 

styles) and achieve greater diversification of investments. In Section 4.2 and 4.3, an agent 

is designed and optimised for use in a multi-agent basket-trading framework. From a 

Distributed Artificial Intelligence (DAI) point of view, an agent must simultaneously 

have at least the following main characteristics [12]: 

• It perceives the world in which it is situated 

• It has the capability of interacting with other agents 

• It is proactive in the sense that it may take initiative and persistently pursues its 

own goals 

Among others, the field of DAI deals with agent technology hence I appreciate that each 

agent feature mentioned in [12] may constitute an entire research study. Therefore in 
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fairness to researchers in DAI, this study focuses only on the construction and “pruning” 

of the artificial stock prediction engine for an agent. This renders characteristics such as 

agent communication, mobility, etc, outside the scope of this work. 

 

For the purposes of this study, an investors’ basket of stocks is imagined to be operated 

on by a multi-agent program, which allocates a single agent for each stock in the basket. 

Each agent contains an intelligent engine that is constructed based on two design 

qualities:  

1. The ability to optimally analyse the statistical information contained in the 

particular stock’s time series data. 

2. The ability to use the statistical information for a one-step prediction of the next 

day’s closing price 

The former is achieved by simulating the evolution of a population of agents; who use 

technical analysis tools to generate decision signals (i.e. buy, sell, and hold signals). The 

latter is achieved by optimising an ANN that performs the actual prediction based on the 

technical analysis data determined from the fittest agent parameters yielded by the 

evolution process. 

 

4.2 Optimising Technical Indicators 
 

4.2.1 Optimising through profits as fitness 
 

This part of the study uses a GA to simulate a multi-agent trading environment based on 

the work mostly done in [13], with a few exceptions.  In our simulations: each agent is 

provided with the same starting capital and they are allowed to trade for 56 days using 

SABs closing prices, with the aim of maximising profits at the end of each 56 day trading 

cycle. Each agent trades the same stock since the goal is to eventually find an optimised 

agent for that particular stock. Fifty-six days of trading defines one generation of trading 

agents. Typically, at the end of each trading day, an agent performs technical analysis and 

analyses the stock using technical indicators.  The mechanics behind stock trading, the 
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complete genome used by the GA including the mathematical formulae for the technical 

indicators can all be studied in appendix A.  

 

Technical indicators used in this study were: Moving Average (MA), Relative Strength 

Index (RSI), Bollinger Bands (BB), Stochastic Oscillator (SO), Price Rate-of-Change 

(ROC), and Moving Average Convergence Divergence (MACD). For each day, the 

value(s) returned by each of the technical indicators are interpreted in accordance with 

technical analysis theory [14] and a buy, sell, or hold signals are generated. The signals 

are then compiled for every agent and an overall buy signal is generated if BUY 

SIGNALS > SELL SIGNALS or vice versa and a hold signal if they are equal. 

 

Each technical indicator mentioned above uses n amount of past closing price days to 

compute its value. For example a simple MA is computed using the following formula: 

( )

n

jprice
MA

n

j
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=
∑
=1  (4)  

where iGn β= for  a short-term MA and iGn α= for a long-term MA. The parameters β 

and α are weighted multipliers and is the i-th parameter (gene) of interest to be 

optimised by the GA. Again the complete genomes for each agent including the decision 

logic used for the various indicators were derived from the studies performed in 

iG

[13] and 

[15]. To save the effort of locating the papers, they are included in appendix A. 

  

A population of 500 evolved over 100 generations is used for training. Fitness was 

determined by the total assets held by each agent at the end of every generation (i.e. the 

sum of its capital and value of all shares at the last day’s closing price). To form a new 

population, arithmetic; heuristic; and simple crossovers were used, while boundary; 

multi-non-uniform; non-uniform; and uniform mutations were used to alter single 

individuals. Tournament selection was used to select the best individuals in a population. 

Figure 2 below shows the results obtained from the simulations:  
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Figure 2. Evolution and prediction results obtained from comparing genomes that were evolved 
using profit as fitness. 
 
 
 As can be seen in Figure 2, the best population converges after 30 generations. It was 

anticipated that the genome yielded by the GA would represent optimal parameters 

needed to determine technical indicators for signal generation and, hence use the genome 

to generate a data matrix that can be used to train an ANN that will perform a one-step 

prediction. This process was then used to test the hypotheses that the most profit-making 

agent will on average make the best predictions. To test this; the most profit-making 

genome was compared to 50 other random genomes. From each of these genomes a data 

matrix with dimensions 6 × 900 (row × column) was generated and used to train a 2-layer 

MLP ANN to make one-step predictions. The MLP had 15 hidden nodes, 6 inputs, 1 
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output and was trained over 500 epochs with 600 days of data, validated and tested with 

150 days of data each. The results showed that after 12 weeks of trading, the most profit-

making agent did not necessarily make the best predictions. In Figure 2 the performance 

in one of the runs shows a randomly chosen (unfit) genome from generation 10 

performing superior to an ‘optimal’ (fit) genome from generation 100.  This meant that 

using profit as a fitness criterion did not necessarily optimise the technical indicators for 

predictive use and hence could not be used to optimise the technical indicators. 

 

4.2.2 Optimising through predictions as fitness 
 

A second alternative that uses validation predictions as fitness was explored. In this 

alternative I used a similar experiment to the one performed in Section 4.2.1 except for 

the following: In the evaluation function of the GA, instead of using the genome to 

compute technical indicators that generate trading signals, I used the genome to generate 

technical indicators that were immediately used to train an MLP network. Within the 

evaluation function, the validation data was forward-propagated and the GA was used to 

minimise the Mean Square Error (MSE) of the predictions. 

 

The results of the experiment are shown in Figure 3. Again, 50 random genomes were 

compared with the best genome this time with the fit genome performing better 

predictions than the unfit genome. The experiment was repeated several times with 

randomly chosen genomes from various generations to check for consistency. 

Based on the results obtained through this approach, the fit genome evolved using 

predictions as fitness was then selected as the genome that an agent will use each time 

technical indicators are generated for use as inputs to an ANN. Both experiments were 

performed using RBF ANNs with similar results being obtained.  
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Figure 3. Evolution and prediction results obtained from comparing genomes that were evolved 
using MLP predictions as fitness. 
 

4.3 Optimising the ANN Architecture 
 

In Section 4.2, technical indicators that are used as inputs to the ANN were optimised. In 

this section, the interest is only in optimising the ANN engine that performs the 

prediction tasks. This is done by arriving at the best architectural attributes of the ANN. 

In general, network topology, neuron characteristics, and training or learning rules 

specifies ANN models. In [16], a distillation of the literature’s best practice criteria for 

evaluating ANNs was outlined. In the study, two criterions were defined and are used in 
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our study to design an architecture that will maximise generalisation capabilities: 

Effectiveness of validation and Effectiveness of implementation. Effectiveness of 

validation is concerned with the issue of whether a study has appropriately evaluated the 

predictive capabilities of the proposed network. On the other hand, effectiveness of 

implementation is concerned with whether a study implemented the ANN in such a way 

that it stood a chance of performing in accordance with benchmark results or even better. 

  

To evaluate effectiveness of validation, three guidelines described in [16] are applied: 

1. Comparisons with well accepted models 

2. Use of ex ante (out-of-sample) validations 

3. Use of a reasonable (75 or more) sample of forecasts 

Guideline 1 will be satisfied by comparing our results with popular regression models as 

well as results obtained from naïve extrapolation (random walk). Using an out-of-sample 

data set of 150 validations satisfies guideline 2 and 3. 

 

Effectiveness of implementation is evaluated using guidelines for evaluating network 

performance suggested by Refenes in [17]: 

4. Convergence 

5. Generalisation 

6. Stability 

Convergence will be ensured by reducing the error (MSE) during training to an 

acceptable value. Generalisation capabilities will be evaluated by ensuring that validation 

errors are similar to training errors. Stability is the consistency of results; using multiple 

samples for training and validation could ensure this. 

 

A GA was used to design the architecture such that the above criteria are adequately met. 

The following were the parameters of interest being optimised by the GA: number of 

hidden nodes, number of training cycles, learning rate, and the training data size. These 

parameters were allowed to range from 2 – 40, 300 – 1000, 0.001 – 1, and 150 – 900 

respectively. A backpropagation algorithm with the scaled conjugate gradient 

optimisation method was used for training with the GA minimising the MSE of the 
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validation samples. An MLP and a RBF were optimised except that with the RBF the 

learning rate was omitted as a parameter of interest. 

 

A population of a 100 ANNs was evolved over 60 generations for both networks. 

Convergence was reached at least around the 9th generation. This fact helps for future 

purposes when processing time becomes an issue. Critically, the amount of training data 

chosen by the GA was such that there was enough data to test and validate the network, 

hence obeying guideline 3.  

 
Figure 4. The evolution of the MLP and RBF architectures 
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5 MAIN RESULTS 
 

5.1 Improving Predictions 
 

The combined validation and testing prediction results shown in Figure 3 seem to have 

converged well for the fit genome because the trend is generally captured. Even the MSE 

indicated that the results were within the acceptable range. However; a zoomed 

visualisation at the plot reveals the existence of a prediction lag effect. By zooming into 

the plot we found that the lag was around 4 days. This means that the network predicted 

that the next day’s closing price would be around what the price was 4 days ago. This lag 

we refer to as timing errors. The issue of timing errors in ANN forecasts has been rarely 

discussed in literature despite the many studies that have reported it [2], [18], and [19]. 

 

As an effort to deal with the timing errors, I decided to use additional input signals with 

the hope that the lag may be reduced or eliminated altogether. This technique assumes 

that additional and relevant information can contribute to the reduction of the observed 

prediction echo. As a result, past values comprising t – 1to t – 4 were used as additional 

inputs to ANN. The ANNs now had 10 inputs and the validation and testing results are 

shown in Figure 5. 

 

After introducing additional input signals, the timing error was reduced to 1 day. The 

improvement can also be noted by the minimum and maximum prediction deviations for 

both ANNs: it can be seen that the deviations in prediction price for the 10 input network 

are lower than those of the 6 input network.  This improvement is also significant in 

terms of the MSEs but still impractical for practical purposes. Section 5.2 discusses the 

cause of this echo effect and tries to offer two possible methods of interpreting the lagged 

predictions. A theoretical solution to eliminating the lagged predictions is also presented 

but because of its anticipated drawbacks; the training scheme is adjusted to yield better 

results. 
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It must also be noted that up to this point, the non-stationary nature of the time series is 

not considered. This aspect is of great importance because it can affect the accuracy of 

the predictions. By catering for non-stationarity, it is anticipated that the prediction 

results can be improved – the extent with which they can be improved is beyond the 

scope of this work. However, this problem can be countered by introducing an 

evolutionary adaptation of the technical indicators and the ANN architecture through a 

GA.  

 
Figure 5. The effect of introducing additional input signals in order to improve predictions 

19 



5.2 Interpreting Predictions 
 

The problem of timing errors raises the question of whether this failure to predict prices 

on time is the fault of the network, or is because the nature of the time series does not 

allow timely predictions to be made. In [19], a detailed study of non-linear auto-

regressive time series models and linear moving average type time series showed that it 

was always possible for the best possible prediction schemes for these types of time 

series models to exhibit a time delay. The argument was that the high autocorrelation, of 

previously observed time series values, ensures that the auto-regressive model 

component, which is implicitly contained in ANNs, become dominant. The network gives 

the most weight to the latest value in order to predict the next value. In our case, this 

means that the network says that the best prediction for the next day’s closing price is 

around the value of the currently observed closing price. Autocorrelation was performed 

on our time series and the results as shown in Figure 6 indeed indicate that the high 

autocorrelation could account for an implicitly dominant auto-regressive model 

component. 

 
Figure 6. The autocorrelation of SAB’s time series stock price data 
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As shown in Figure 6, the autocorrelation function decays after 225 days suggesting that 

after 225 days, little or no information about the present closing price is contained in the 

time series. Evidently the most recent price at lag zero has a correlation coefficient close 

to 1 hence supporting the argument that the most recent price will be given the most 

weight by an inherent auto-regressive component. 

 

From this it is important to note that a performance measure such as MSE may be 

misleading so far as the correct timing of predictions is concerned. In Conway’s study 

using ANNs to predict sunspots [19]; it was asserted that the delay effect is attributable to 

a reliance on MSEs, since this is the natural criterion that backpropagation networks use 

to select the best predictions. For possible solutions to this problem, four approaches are 

explored: 

 

The first approach uses a Hit Rate for performance measurement as defined in [21]. 

There Qian and Wah showed that noise did not contribute to prediction accuracy and 

therefore needed to be removed. Therefore their problem involved the prediction of a 

smoothed (low-pass version) signal that lagged behind actual price changes. Their hit rate 

metric was defined as follows: Let ))()(()( tShtSsignhtD −+=+  be the actual direction 

of change for , and  be the predicted direction of 

change. A prediction for a step h is a hit if  and hence the hit rate is 

defined by the following equation: 

)(tS ))(ˆ)(ˆ()(ˆ tShtSsignhtD −+=+

0)(*)(ˆ >++ htDhtD

{ }
{ }0)(ˆ)(

0)(ˆ)()(
≠++
>++

=
htDhtD
htDhtDhH nt ,...,1 for =                                                                    (5) 

 

Figure 7 illustrates the definition. Simply, two thresholds are specified based on the lag 

period; these thresholds are shown as S(t0) and Ŝ(t0) in Figure 7. Whenever both signals 

are above or below their respective thresholds, for example [ ] [ ]3210 ,;, tttttε , it is a hit. In 

contrast, when the signals are on different sides of their respective 

thresholds, [ ] [ 4321 ,;, ttttt ]ε , it is not a hit. 
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Figure 7. An illustration of how hits are interpreted in predictions [21]
 

 

In this study, the same hit rate metric was implemented except that the time series were 

not converted to low pass versions. However, this method has its drawbacks: the hit rates 

are dependent on the time at which the signal is being observed. The results showed that 

hit rates for combined validation and testing samples were as high as 85% and as low as 

34%. By observing predictions in Figure 5, it is easy to see that thresholds defined 

anywhere between samples 0 to 100 will interpret all samples 100 to 290 as hits. These 

results would be clearly misleading. For more meaningful results, a region of 20 samples 

that exhibited little volatility in fluctuations was chosen. The hit rate achieved in this 

region was 72%. This method and hence the results are not seen as holistically objective 

because there is no set rule for defining where in time, the most objective thresholds are. 

Later in this Section, an improved metric for measuring performance in terms of 

percentage Direction Success is introduced. 

 

A second approach involves trading strategies used by Yao and Tan in a study whose 

predictions also experienced lags [2]. Their strategies were as follows: 

Strategy 1 

if (  then buy else sell ) 0ˆˆ 1 >−+ tt xx

Strategy 2 

if (  then buy else sell ) 0ˆ 1 >−+ tt xx
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where  is the actual price at time t, and is the predicted price at time t. Yao and Tan 

assert than the reason for the different strategies lies in the ‘noise’ 

tx tx̂

tζ  such that 

ttt xx ζ+= ˆ . They mentioned that the more accurate strategy depended on tt ζζ −+1 . If 

1+tζ  and tζ have different signs, strategy 1 is better than strategy 2, otherwise the 

opposite holds. In their paper, Yao and Tan did not quantify what this noise is or even 

how it is measured. Hence I borrowed strategy 1 in its pure form without the noise term. 

The sense in strategy 1 is that a trader will perceive stock fluctuations with reference to 

his past predictions. In other words, over a period of time, a trader’s time series 

fluctuations would be replaced by that of predictions. This has the advantage that even if 

there is a one-day lag in the predictions, the ANN will be able to capture periods of sharp 

rises or falls. However, during periods of significant fluctuations, but less spiky, trading 

decisions could still lag. This means that this approach must also be seen as half-

effective. 

 

The third approach draws on the work done by Conway in [20] and is only discussed 

theoretically in this paper. As mentioned earlier, Conway attributed the timing error to an 

inherent performance measure used by the backpropagation algorithm. In this respect, our 

lagged predictions indicate that the MSE performance measure failed to penalise the 

timing errors of the predictions. It follows then that it is important to use multiple 

performance measures (commonly termed multi-objective calibration) during training. In 

his Thesis, Conway adapted a neural network-training scheme so that the error measure 

considers the RMS error and a penalty for delayed predictions.  In his work, a GA was 

used to arrive at the best network. His simulations were similar to our simulations in 

Section 4.2, but his fitness was determined by the network with low RMS error and no 

delay. His results were positive in that the delay had disappeared but with a significant 

increase in RMS error. A succinct description of the trade-off between delay and RMS 

error is also presented in [22]. For our study, this is a conundrum because both the timing 

accuracy and RMS error are critical. Conway’s technique is yet to be tested on our work 

but, due to the expected high RMS errors, it is anticipated that the results would be 

undesirable in practice. 
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5.3 Further Improving Predictions and Performance Measurement 
 

From the three approaches discussed in Section 5.2, unfortunately none proves adequate 

for satisfactorily dealing with prediction lags. However, Conway’s multi-objective 

approach can be seen as the better of the three approaches. In this Section a fourth 

approach that hybridises the first and third approaches is suggested [23]. Here a multi-

objective calibration scheme that improves predictions and provides an objective 

performance measurement technique is explored. 

 

The first approach is advantageous in that it is trying to measure performance by 

quantifying how well the predictions predict the correct direction of the stock’s 

movement for the next day. An example of this importance is illustrated in Figure 8. 

 
Figure 8. A comparison between a model maximised for correct prediction of direction and a model 
that is MSE minimised [23]. 
 

 

24 



In Figure 8 it can be seen that the model with error  will have a higher MSE than the 

model with error . However, intuitively the model with error   is preferable since it 

correctly predicts the direction of movement for the next day, although the MSE may be 

sacrificed. 

1e

2e 1e

 

To this effect, a multi-objective technique that optimises directional success and MSE is 

suggested. But as mentioned earlier, the method of measuring directional success using 

the technique depicted in Figure 7 was seen as unreliable; therefore a different and a 

more reliable set of formulae for calculating percentage direction success error (DSE) 

[23] are shown in equations 6, 7, and 8: 
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           (6) 

ttt yyy ˆˆˆ 1 −=Δ +           (7) 

ttt yyy −=Δ +1           (8) 

In equation 6, 1=tH  if predicted ( tŷΔ ) and actual ( tyΔ ) changes are the same sign, 

otherwise .  0=tH

The multi-objective approach will attempt to minimise the MSE and the DSE. A GA is 

used in a similar fashion to the simulations performed in Section 4.3 to optimise an 

architecture that minimises the MSE and DSE. The GA was set-up to minimise the 

objectives in the following fashion: 

))(*())(*( 21 MSEDSEFitness −+−= ββ        

 (9) 

where 21 ββ >  so that the DSE has greater weight and is given greater preference  in 

determining fitness. A 100 MLP networks were evolved over 600 generations and the 

results are shown in Figure 9. 
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Figure 9. The comparison of evolution results between a multi-objective approach and a single 
objective approach. 
 

 

As expected, there was a trade-off between DSE and MSE. In the simulations, the multi-

objective simulations achieved higher percentage direction successes (between 54% and 

77%) than the single-objective simulations (between 48% and 55%). On the other hand, 

the single-objective simulations achieved higher MSEs than the multi-objective 

simulations.  By observing Figure 8, it can be noted that the multi-objective fitness can be 
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still be improved by increasing the number of generations and intuitively, the population 

size.  

 

This multi-objective approach is lucrative in that the timing error can also be 

incorporated in the fitness function. Further work in this study will hence explore the 

possibility of optimising the architecture around a fitness function that incorporates three 

objectives where the third objective is a quantified timing error (TE). In this scenario, the 

following fitness could be used to derive an architecture that has no timing errors and 

minimised MSEs and DSEs: ))(*())(*())(*( 321 TEMSEDSEFitness −+−+−= βββ  
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6 CONLUSIONS 

 

In this paper, a multi-agent framework in which an intelligent engine for an agent is 

constructed is proposed. A GA is used to test the hypotheses that the most profitable 

trader in a specified time-span will always perform better predictions than others based 

on a genome that optimised technical indicators. From the simulations it was shown that 

this hypothesis was not true and hence the genome could not be seen as reliable. 

However, caution needs to be exercised because traders were simulated over a 56-day 

trading span. It is our view that simulations over much longer trading days may yield 

different results. The best genome was however arrived at by using validation MSEs as 

fitness. This genome was used to generate an input data matrix consisting of technical 

analysis data that would be used to train an ANN.  

 

A GA was again used to optimise the ANNs architecture with hidden nodes, training 

cycles, learning rate, and training data size as parameters to be optimised. The predictions 

showed a significant lag of 4 days but after including additional input signals in the form 

of past values, the lag was reduced to one day. This prediction lag is caused by the high 

autocorrelation of the time series, hence facilitating for an implicit dominant 

autoregressive component.  

 

Four approaches from other literature for dealing with the lag were discussed: the hit rate 

approach is dependant on where in time the thresholds are defined and it was advised that 

a stable region should be used to compute the hit rate using this technique. A second 

approach suggested using only the predictions to determine whether a buy signal or a sell 

signal is generated. It was concluded that this approach will be most beneficial during 

periods of sharp fluctuations and therefore is also limited. A third approach suggested a 

multi-objective performance measurements scheme during training. This method exhibits 

a trade-off between timing accuracy and RMS error and it is anticipated that in practice it 

would be rendered impractical. A fourth approach explored a hybrid technique that uses 

an improved measure of quantifying DSE along with MSE in a multi-objective 
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calibration environment. This hybrid approach is recommended as a framework under 

which an agent’s ANN architecture can be optimised.  

 

Further work in this study will explore the possibility of incorporating timing errors in the 

objective function such that the delay in predictions can be eliminated while DSEs and 

MSEs are minimised. Another issue involves the non-stationary nature of the time series. 

It is recommended here that an adaptation mechanism be incorporated in the system to 

adapt the ANN inputs as well as the ANN architecture. 
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APPENDIX A 

STOCK TRADING 
 

1 INTRODUCTION TO STOCK TRADING 
 

1.1 Overview 
 

This appendix deals with the area of financial investments through stock trading. The first 

part of this document provides an introduction to stock trading for the layman. The 

second part of the document describes the tools that were used for the stock trading 

simulations that were performed in Section 4 of the main document. The area of financial 

investment is vast and there exists many different forms of financial investments. For the 

sake of relevancy and succinctness, this appendix only concerns itself with stock trading. 

This introduction follows the introductory template used in [24].   

 

The history of stock trading dates back to before early-mid nineteenth century. Since then 

and up to recent years the average person’s interest in this type of investment has grown 

immensely. Coupled with the advent of technological advances such as computers and 

the Internet, nearly every money-oriented individual can own and trade stocks. However, 

despite the growing interest in stocks, many people still don’t understand how stock 

markets function let alone the risks involved with this type of investment ‘game’.  

 

In this introduction we will start by defining what a stock is; highlight the different types 

of stocks that exist; how stocks are traded; what influences their price fluctuations; how 

to buy stocks; and lastly the different trader personalities found in the stock markets. 
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1.2 Stocks, Shares, Equities; What are they? 
 
Simply put, a stock is ownership of a corporation as evidenced by shares, which are a 

claim on the corporation's earnings and assets. In other words, the more stocks an entity 

acquires, the more ownership that entity has in the company of interest. In the context of 

stock trading, the terms share and equity mean the same thing. 

 

Stock ownership is traditionally represented by a piece of paper that serves as proof of 

ownership for that particular stock – this paper is called a stock certificate. However 

recent advances in computer technology enabled the electronic maintenance of these 

certificates such that seamless trading is facilitated.  

 

It must be noted that being a shareholder does not mean that one has a say in the day-to-

day running of the corporation. Instead, with each share, a shareholder has a vote in the 

election of professional individuals (called a board of directors) who maintain the running 

of the company. The board of directors ensures the smooth profitable maintenance of the 

company and if this does not happen, the shareholders may replace the board 

accordingly. It is not common though that every shareholder owns enough shares to 

influence key transformations of a company. It is usually large institutional shareholders 

and billionaires who have a say into which individuals will run the company. 

 

It is not very concerning that individual shareholders do not have a say in the running of 

the company because of the limited liability involved with owning stocks. For example 

with companies such as partnerships, everybody involved in the partnership is liable if 

the company goes bankrupt. Above all, the greatest advantages of owning stocks are that 

shareholders make money through the stock’s appreciation and dividends paid out by the 

company. Although the latter is not compulsory for companies, the latter is usually 

enough to generate decent yields.  

 

It should be understood that like all business, trading stocks involve risk. In the case 

where a company goes bankrupt or the stock price drops significantly, great monetary 

losses are incurred. On the bright side, taking on greater risks demands greater returns.  
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1.3 The Different Types of Stocks 
 
Two main types of stocks that exist are the common stock and the preferred stock. The 

main difference with the stocks is their representation of the type of ownership interest in 

a corporation. Common stockholders assume the greater risk, but generally exercise the 

greater control and may gain the greater award in the form of dividends and capital 

appreciation in the long run. However if the company goes bankrupt the common 

stockholders will not receive their money until the creditors and preferred stockholders 

have received their respective share of the leftover assets. On the other hand a preferred 

stock is a type of stock that pays a fixed dividend regardless of corporate earnings, and 

which has priority over common stock in the payment of dividends especially in the event 

of liquidation of a company. It carries no voting rights, and should earnings rise 

significantly the preferred holder is stuck with the same fixed dividend while common 

holders collect more. The fixed income stream of preferred stock makes it similar in 

many ways to bonds. 

 

Common stocks and preferred stocks are the main types of stocks but it is also possible in 

some instances to have different classes of stocks. The common reason for this is if the 

company wants to assign different voting powers to certain groups. For example a certain 

group of shareholders may have 20 votes per share while another group has 10 votes per 

share and so on. 

 

1.4 Buying and Selling Stocks 
 

Stocks are traded at the stock exchange like the Johannesburg Stock exchange (JSE) 

where buyers and sellers meet and decide on bid and ask prices. Stock exchanges are 

either a physical location where transactions are carried out on trading floor or virtual, 

where transactions are carried out electronically supported by a network of computers. 

 

Two types of markets are distinguished, the ‘primary’ and the ‘secondary’ markets. The 

primary market is where a company initially creates stocks, whereas in the secondary 
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market traders exchange previously issued stocks without the involvement of the issuing 

companies.  

 

Popular stock exchanges are the New York Stock Exchange (NYSE) where trading is 

predominantly performed on the trading floor, the NASDAQ where most of the trading is 

performed via internetworked computers, the London and Hong Kong Stock Exchanges 

and in London and Hong Kong respectively. 

 

1.5 Stock Fluctuations  
 

The fundamental reason the stock price fluctuates is because of supply and demand. This 

point is easy enough to understand, the difficulty is in comprehending the underlying 

dynamics that govern people’s preferences to certain stocks. What is certain though is 

that the movement of a stock’s price is a reflection of what investors feel the company is 

worth at the time. At any time, the value of a company is its market capitalisation which 

is the stock price multiplied by the number of shares outstanding. Furthermore, the stock 

price is a reflection of what investors expect the stock to be worth in the future. 

 

The leading factor that affects a company’s stock price is its earnings. This is the reason 

why public companies are required to report their earnings several times a year. Earnings 

are important in that analysts base the future value of the company on the earnings 

projection – if a company’s earnings are better than expected, the jumps otherwise the 

opposite holds. 

 

1.6 How to Buy Stocks 
 

There are two main ways of buying stocks. The first and most common way is buying 

through a brokerage entity and the second is through Dividend Reinvestment Plans 

(DRIPs) or Direct Investment Plans (DIPS). The major difference between the two is that 

brokerage forms offer advice and guidance while DRIPs and DIPS do not. Brokerage 
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firms offer various types of options and DRIPs and DIPS also come in myriads of 

‘flavours’, the details of which are beyond the scope of this work. 

 

1.6 Stock Trading Personalities  
 

Stock trading as a ‘discipline’ has its own extensive jargon. One such jargon is the 

vocabulary used for the different types of trader personalities found on the stock markets. 

The following are used for various descriptions: Bulls, Bears, Chickens, and Pigs. 

 

A bull market is when the economy is thriving and stocks are subsequently rising. If a 

trader is optimistic that stocks will go up, they are referred to as “Bulls”. A bear market is 

when the economy is bad, GDP is dropping, and recession is anticipated. If a trader is 

pessimistic and believes that stocks are going to drop, they are called a “Bear”. Chickens 

are overly cautious traders who never want to rake risks. Chickens never see any 

significant returns because of their fear to try things out. Pigs are high-risk traders who 

rely on hot tips to make quick big scores without doing their due-diligence. They are 

impatient and often greedy which usually leads them to grave losses. Bulls and Bears 

make most of their money from Pigs. 

 

1.7 Conclusions 
 
Stocks imply ownership of a portion of the company. It is important to note that it is 

conceivable that one can lose all their investments in stocks with the upside being that 

lots of money can be made if the right investments are made. Common stocks and 

Preferred stocks are the two main types of stocks but certain companies may feel the need 

to create different classes. Traders exchange stocks at the stock market and this can either 

be done on a trading floor or via internetworked computers. While supply and demand 

determine the price of stock, other factors such as earnings and investor confidence play a 

role. To buy stocks, either a brokerage firm or DRIPs/DIPS can be used. Lastly, Bulls 

and Bears make money at the expense of the Pigs. 
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2 STOCK TRADING SIMULATIONS 
 

2.1 Technical Indicators 
 

This section is meant to provide greater detail on the simulations performed in Section 4 

in the main document, and is borrowed from the work done in [13]. As mentioned in the 

main document, there are two main types of analyzing stocks, Fundamental Analysis and 

Technical Analysis. In this section, we outline the technical formulae used for the stock 

prediction task. Section 2.2 of appendix A furthers this discussion by providing the 

decision logic that was used for the indicators used in the simulations. 

 

It was discussed that a Genetic Algorithm (GA) was used to optimise parameters for 

technical indicators such that the optimised technical indicators can be used as input data 

for an artificial neural network (ANN). The genome for each individual in the population 

is shown in Table 1 below. 
Table 1. Gene Description 
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The following technical indicators were used: 

• Moving Average (MA) 

• Relative Strength Index (RSI) 

• Bollinger Bands (BB) 

• Stochastic Oscillator (SO) 

• Price Rate-of-Change (ROC) 

• Moving Average Convergence Divergence (MACD) 

 

The short-term and long-term MA values are calculated as follows: 

N
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i
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where price(i) is the current closing price of a stock, 124GN =  and  for 

the short-term and long-term respectively. 
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The Relative Strength Index (RSI) is a technical analysis indicator that measures relative 

gains, over relative losses, over time. The RSI is calculated as: 
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where   145.2 GN =

 

The Price Rate-of-Change (ROC) indicator assumes cyclical price movements and 

considers the relative change of prices over time to indicate trends. It is calculated as 

follows: 

)()( NipriceipriceROC +−=        (3) 
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where  and  for the short-term and long-term respectively. 182GN = 194GN =

 

The Stochastic Oscillator (SO) is a momentum indicator that measures the price of a 

security relative to the high/low range over a set period of time. It is calculated as 

follows: 

CloseLowestipriceA _)( −=  
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where   21GN =

 

The Moving Average Convergence Divergence (MACD) is an indicator that follows the 

difference between a series of moving averages. The indicator has two lines, the MACD 

line and a signal. A buy signal is generated when the MACD line rises above the signal 

line. A sell is generated when the MACD line fall below the signal. Because the MACD 

is generated from moving averages it is has a unique ability capture wide swinging moves 

in markets. Divergence, trendlines and support lines can also be applied to the MACD to 

generate additional signals. The MACD is calculated: 

)5.4(exp)2(exp 2524 GMAGMAMACD −=       (6) 

where 

prevMANprevMAipriceMA ++−= )))1/(2(*))(((exp     (7) 

where N represents the time period it was measured over  days and the prevMA 

is the previous exponential moving average apart from the first instance, where a simple 

moving average is used. 

2524orGG

 

Lastly, Bollinger Bands (BB) plot trading bands above and below a simple moving 

average. The standard deviation of closing prices for a period equal to the moving 

average employed is used to determine the bandwidth. This causes the bands to tighten in 

quiet markets and loosen in volatile markets. The bands can be used to determine 
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overbought and oversold levels, locate reversal areas, project targets for market moves, 

and determine appropriate stop levels. The upper and lower bands are calculated as: 

∑
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NMAipricestdDev
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)*()5.3( 2827 GstdDevGMAupperBand +=       (8) 
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where  275.3 GN =

 

2.2 Technical Analysis Decision Logic 
 

The following were the decision logic used in the simulations. The decision logic was 

implemented exactly as they were implemented in [13]. 

 

For the MA: 
BOOLEAN A = MA(4G12) < current price 
BOOLEAN B = MA((5G13)+50) < MA(4G12) 
BOOLEAN C = (G2 == 1) 
IF ( A AND B AND C ) OR (NOT C AND ( A OR B ) 
Action: buy 
ELSE 
Action: sell 
ENDIF 
 

For the RSI: 
IF RSI(2.5G14) >= (4G16)+50 
Action: sell 
ELSEIF RSI(2.5G14) <= 5G15 
Action: buy 
ELSE 
Action: hold 
ENDIF 
 

For the ROC: 
IF ROC(2G18) < -G17 
Action: buy 
ELSEIF ROC(2G18) > G17 
Action: sell 
ENDIF 
 

42 



For the SO: 
IF K(1.5G20) > D(G21) 
Action: buy 
ELSE 
Action: sell 
ENDIF 
 

For the MACD: 
IF MACD(2G24,4.5G25) > 
MA(1.5G26,MACD(2G24, 4.5G25)) 
Action: buy 
ELSE 
Action: sell 
ENDIF 
 

For the BB: 
IF lowerBand(3.5G27) >= current price 
Action: buy 
ELSEIF upperBand(3.5G27) <= current price 
Action: sell 
ENDIF 
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APPENDIX B 

ARTIFICIAL NEURAL NETWORKS 

 

1 INTRODUCTION 
 
Artificial Neural Networks (ANNs) have received increased interest in the past few years 

primarily because of their power and ease of use. ANNs are particularly powerful 

because they are nonlinear and deploy sophisticated modeling techniques that are capable 

of modeling extremely complex functions.  

 

ANNs grew out of research in Artificial Intelligence (AI), specifically, attempts to mimic 

and loosely model the biological processes of a neuron (Figure 10). The brain contains in 

excess of 10,000,000,000 of these structures; each connected to some 10,000 other 

neurons. Neurons have a neuronal cell (Soma) with input and output channels (Dendrites 

and Axons) that connect them. Each neuron receives electrochemical input signals at the 

dendrites. If the sum of these electrochemical inputs is powerful enough to activate a 

neuron, it transmits an electrochemical signal along the axon (referred to as ‘firing’). This 

mechanism is propagated throughout the entire neural network with some neurons firing 

and others not.  

 
 Figure 10. A simple biological neuron 
 

To capture the essence of a biological neuron, an artificial neuron is defined as follows: 
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• It receives inputs via a connection that has strength (called weights). These 

weights correspond to the synaptic excitory or inhibitory effect in a biological 

neuron. Each neuron contains a threshold value. The weighted sum of the inputs 

is formed, and the threshold subtracted to compose the activation of the neuron. 

• The activation signal is passed through an activation function that produces the 

output of the neuron.   

 

An analogy of a simple artificial neuron is depicted in Figure 11. These artificial neurons 

are connected together in a layered fashion to create an ANN as shown in Figure 12. The 

blue circles denote neurons and the lines connecting them denote the weights. 

 

 
Figure 11. A depiction of how an artificial neuron relates to a biological neuron  
 

 

 
 
Figure 12. An artificial neural network 
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2 APPLYING NEURAL NETWORKS 
 

Because ANNs work by manipulating inputs variables into output variables, they can be 

used in problem where there is some known information that could be used to infer 

unknown information. Some examples include prediction and control problems – 

fundamentally ANNs are primarily used to solve complex pattern recognition problems.  

 

An important requirement when using ANNs is that the relationship between the 

proposed inputs and outputs is known. This relationship may be noisy and stochastic but 

it must exist. In general the exact nature of this relationship is unknown; otherwise it 

would be modeled directly. A key feature is that an ANN will learn the input/output 

relationship through a process called training. Two forms of training exist: supervised 

learning and unsupervised learning. 

 

In supervised learning the network user assembles a set of training data that contains 

examples of inputs together with the corresponding outputs, and the network learns to 

infer the relationship between the two. The data used for learning is usually taken from 

historical records. Unsupervised learning consists of a set of training algorithms that 

adjust the weights in an ANN by reference to a training data set including input variables 

only. Unsupervised learning algorithms attempt to locate clusters in the input data.  

 

In this appendix we concern ourselves with supervised learning since it was the training 

method used in this study 

 

3 GATHERING DATA 
 

Once a problem is formulated and it needs ANNs to solve, the next step is to gather the 

necessary data for training purposes. This process requires a decision to be made about 

which variables to use and how many cases will suffice. Choosing variables is generally 

guided by intuition coupled with some expertise in the problem domain. ANNs are 

designed to process numeric data so the common obstacles when dealing with data are 
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unusual ranges of values (e.g. normalizing the data between -1 and 1), missing data, and 

non-numeric data. These obstacles must be overcome by scaling the data to an 

appropriate range for the network, missing data can be substituted by statistically 

plausible values, and non-numeric values can be intelligently converted into numbers 

(e.g. Male = 1 and Female = 2). 

 

The number of training example can be considerably difficult to determine. There are 

some heuristics available but, fundamentally this number is related to the complexity of 

the underlying function we are trying to model. Furthermore, in [16] [17] it is suggested 

that enough data should be collected such there is enough training data, validation data, 

and testing data. 

 

Another problem with data is that there may be training examples that are unreliable. 

Commonly these present themselves as outliers and hence need to be identified and 

removed. 

 

4 NEURAL NETWORK ARCHITECTURES 
   

The two most popular ANN architectures in use today is the Multi-Layer Perceptron 

(MLP) and the Radial Basis Function (RBF), with the former being the more popular of 

the two. 

4.1 The Multi-Layer Perceptron 

4.1.1 Architecture 
 

The basic MLP network is constructed by ordering the units in layers, letting each unit in 

a layer take as input only the outputs of units in the previous layer or external inputs. If 

the network has two such layers, it is referred to as a two-layer network, if it has three 

layers it is referred to as a three-layer network. Due to the structure, this type of network 

is often regarded to as a feedfoward network. Figure 12 illustrates an MLP network 

structure. Important issues in MLP design include specification of the number of hidden 
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layers and the number of units in these layers. However, in [25] it was shown that all 

continuous functions can be approximated to any desired accuracy, in terms of the 

uniform norm, with a network of one hidden layer of sigmoidal (or hyperbolic tangent) 

hidden units and a layer of linear output units. Once the number of layers, and number of 

units in each layer, has been selected, the network's weights and thresholds must be set so 

as to minimize the prediction error made by the network. The weights are adjusted using 

an optimisation algorithm that minimises an error surface obtained from comparing the 

Euclidean distance between the actual values and the predicted values. The best-known 

example of such an algorithm is the backpropagation algorithm. In our study we used a 

modernised second-order algorithm called the Scaled Conjugate Gradient (SCG) [11] 

descent algorithm.   

 

For a MLP, the relationship between the input and the output can be expressed as follows 

[11]: 
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where: 

M represents the number of hidden units 

d represents the number of inputs units 
( )1
jiw and  represent weights in the first and second layer respectively, going from 

input i to hidden unit j and 

( )2
jiw

( )1
0jw  represents the bias for the hidden unit j. 

 

The following are common activation functions for MLPs: 
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4.1.2 Scaled Conjugate Gradient 
 

The SCG algorithm is an advanced method of training MLPs and can be used to 

substitute backpropagation because it usually outperforms backpropagation significantly. 

The SCG algorithm is a recommended technique for networks with a large number of 

weights and/or multiple output units whereas its closely linked variants, Quasi-Newton 

and Levenberg-Marquardt may be better for small networks with low-residual regression 

problems. 

 

SCG is a batch update algorithm: whereas backpropagation adjusts the weights after each 

case, SCG works out the average gradient of the error surface across all cases before 

updating the weights once at the end of the training cycle. Furthermore, there is usually 

no need to select learning and momentum rates for SCG, so it can be much easier to use 

than back propagation. 

 

 SCG works by performing a series of line searches across the error surface. It first works 

out the direction of steepest descent in a similar fashion to backpropagation. However, 

instead of taking a step proportional to a learning rate, SCG projects a straight line in that 

direction of the minimum and then locates a minimum along this line. This process is not 

quick because it only searches for the minimum in one dimension. Subsequently, further 

line searches are conducted at every training cycle. The directions of the line searches, 

called the conjugate directions, are chosen to try to ensure that the directions that have 

already been minimised remain minimised. 

 

It must be noted that the conjugate directions are calculated on the assumption that the 

error surface is quadratic, which is not always so. However, it is a fair working 

assumption, and if the algorithm discovers that the current line search direction isn't 

actually downhill, it simply calculates the line of steepest descent and restarts the search 

in that direction. Once a point close to a minimum is found, the quadratic assumption 

holds true and the minimum can be located very quickly. 
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3.2 The Radial Basis Function 
 

A second type of ANN that finds popular use is the RBF. An RBF is a type of ANN that 

employs a hidden layer of radial units and an output layer of linear units with each hidden 

unit modeling a Gaussian response surface. At the input of each neuron, the distance 

between the neuron center and the input vector is calculated. Applying the basis function 

to this distance then forms the output of the neuron. The RBF network output is formed 

by a weighted sum of the neuron outputs and the unity bias. Since the basis functions are 

nonlinear, it is not necessary to have more than one hidden layer to model any shape of 

function: sufficient radial units are enough to model any function.  

 

For a RBF 2-layer network equation with n centres is expressed as follows [11]: 
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where: 

kf  represents the k-th output layer transfer function 

jφ  represents the j-th input layer transfer function 

and w and b represents the weights and biases 

 

The input layer transfer function jφ   is a Gaussian transfer function as follows [11]: 
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where: 

x  represents the input layer transfer function 

μ  represents the fixed centre position and 

σ  represents fixed variance. 

Because RBFs require only one hidden layer, they have an advantage over MLPs because 

this simplicity removes some design decisions. Secondly, the linear transformation in the 

output layer can be fully optimized using traditional linear modeling techniques. Linear 

modeling techniques are quick and do not suffer local minima which is not the case with 
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MLP training techniques. To this effect RBF networks can be trained in the order of 

magnitudes quicker than MLPs.  

 

However RBFs requires significantly more units to adequately model most functions. 

Consequently, a RBF solution will tend to be slower to execute and more space 

consuming than an MLP. The choice between a RBF and a MLP architecture would be 

determined by the constraints of the problem: If faster training is a priority, then a RBF 

architecture is suitable; other wise if faster execution is a priority, then a MLP 

architecture is suitable. 
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APPENDIX C 

1 GENETIC ALGORITHMS 

 

1.1 Introduction 
 

Simply put, Genetic Algorithms (GAs) belong to a family of evolutionary computational 

models inspired by the process of evolution and natural genetics. They practice survival 

of the fittest by evolving a set of encoded potential solutions (i.e. string structures) until 

the fittest solution is realized. Information is exchanged randomly but they efficiently 

exploit historical information to speculate new search points that exhibit improved 

‘genes’. This feat is achieved by applying recombination operators to the string structures 

such that critical genetic information is preserved [10]. GAs are extensively used in 

optimisation problems whose objective functions are difficult and do not possess 

desirable properties such as continuity, differentiability, satisfaction of the Lipschitz 

Condition, etc.  [9]

 

An implementation of GAs begins with a random population of solutions. These 

solutions are evaluated and allocated reproductive opportunities in such a way that the 

solutions that represent a better solution to the target problem are given more chances to 

be represented in the next generation than the poorer solutions. However, inferior 

solutions can, by chance, survive and also reproduce to the next generation. Through this 

GAs explore all regions of the state space and they exponentially explore promising areas 

through its recombination operators: mutation, crossover, and selection.  

 

A GA is governed by six fundamental issues: solution representation, selection function, 

genetic operators and reproduction function, population initialisation, termination criteria, 

and the evaluation function. The rest of this appendix describes each of these issues. 
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1.2 Solution Representation 
 

A GA requires an effective solution representation for each individual in the population 

of interest. Each solution is a string containing a sequence of genes from a particular 

alphabet. The alphabet may consist of binary digits, floating point numbers, integers, 

symbols, matrices, etc. In [10], Holland’s representation was limited to binary digits but 

subsequent research by Michalewicz [26] showed that real-valued representations move 

the problem closer to the problem representation, which offers higher precision and 

consistent results. A sample genome representation can be viewed in Table 1 in appendix 

A.  

1.3 Selection Function 
 

The selection function in a GA is responsible for selecting the fittest individuals for the 

next generation. Selection is performed based on a probabilistic technique that ensures 

the fittest solution is represented in the next generation. There are several schemes for the 

selection process: roulette wheel, scaling techniques, tournament, elitist models, and 

ranking models. In this appendix we describe the roulette wheel, the ranking models and 

tournament selection because of their general popularity. 

 

The roulette was developed by Holland [10] and it implements a biased structure where 

each current string in the population has a roulette wheel slot sized in proportion to its 

fitness. The probability for each individual is defined by: iP
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Ranking models assign  based on the rank of solution i  when all solutions are sorted. 

Normalised geometric ranking [27] defines a  for each individual by: 
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where: 

 q = the probability of selecting the best individual 

 r = the rank of the individual, where 1 is the best 

 P = is the population size 

   Pq
qq

)1(1 −−
=′         (3) 

 

Tournament selection does not assign probabilities; it works by selecting j random 

individuals, with replacement, from the population set, and inserts the best of j into the 

new population. The process is continued until N individuals are selected. 

 

1.3 Selection Function 
 

Genetic operators are the basic search mechanism of the GA. Here some members of the 

population undergo transformations by means of unary and higher order transformations. 

The former creates new individuals by a small alteration in a single individual whereas 

the latter creates new individuals by breeding (crossover) parts from several individuals. 

After some specified generations (iterations), the program converges and it is hoped that 

the fittest individual from that population represents a near-optimum solution. An 

example simple crossover is shown below: 

Given two parent chromosomes, green and red, 

10001001110010010  
01010001001000011 

Choose a random bit along the length, say at position 9, and swap all the bits after that 
point so that the above becomes: 
  

10001001101000011 
01010001010010010 

 
There exist different types of crossover techniques and the reader can study them 
extensively in [26] 
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 1.5 Initialisation, Termination, and Evaluation Functions 
 

A GA needs to be seeded with an initial population. A common method is to randomly 

generate an entire population, however, to speed up the process the beginning population 

can be seeded with potentially good solutions. 

 

The GA evolves the solutions from generation to generation until a termination criterion 

is met. Commonly, the GA is terminated after a specified number of generations. Another 

criterion involves population convergence criteria. Because GAs generally forces the 

entire population towards a single solution, when the sum of the deviations among the 

individuals becomes smaller than specified threshold, the algorithm can be terminated. 

The termination criteria mentioned here are not exhaustive hence several other hybrid 

strategies can be implemented. 

 

The evaluation function is the driving force behind the GA. This function is used by the 

GA to calculate the fitness of each solution. An evaluation function is unique to the 

optimisation problem and therefore a different evaluation function must be developed for 

each different problem. 
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APPENDIX D 
 

1 A BRIEF INTRODUCTION TO MULTI-AGENT SYSTEMS 

– AN EXTENDED DEFINITION 

 
In this appendix I provide an overview of Multi-Agent Systems (MAS). Agent 

technology is a very active field of Distributed Artificial Intelligence (DAI), a large area 

of study. With this in mind, this appendix will not deal with in-depth details because 

MASs are extremely problem-domain specific. Instead, this appendix should be viewed 

as more of an extended definition of Agents and MASs.  Agent technology has a strong 

philosophical and mathematical background; for those readers who are interested in these 

in-depth aspects, excellent work has been conducted by Wooldridge and Jennings (among 

others) and their paper in [28] is a good start. 

 

Before any discussion on MASs, it is perhaps necessary to define what an Agent is. 

Several researchers have proposed formal definitions and we retain the following 

notional definitions described in [28]: A weak and a strong notion of agency. 

 

A weak notion of agency is characterised by the following properties: 

• Autonomy: agents operate without the direct intervention of humans or others, and 

have some kind of control over their actions and internal state. 

• Social ability: agents interact with other agents (and possibly humans) via some 

kind of agent-communication language. 

• Reactivity: agents perceive their environment, and respond in a timely fashion to 

changes that occur in it. 

• Pro-activeness: agents do not simply act in response to their environment; they 

are able to exhibit goal-directed behaviour by taking the initiative. 

 

For some researchers in Artificial Intelligence (AI), the term ‘agent’ is conceptualised 

and implemented using concepts that are usually applied to humans; they characterise an 
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agent using mentalistic notions such as knowledge, belief, intention, and obligation. This 

notion is perceived as a stronger definition, and the following are various other attributes 

in the context of agency: 

• Mobility is the ability of an agent to move around an electronic network. 

• Veracity is the assumption that an agent will not knowingly communicate false        

information. 

• Benevolence is the assumption that agents do not have conflicting goals, and that 

every agent will therefore always try to do what is asked of it. 

• Rationality is (crudely) the assumption that an agent will act in order to achieve 

its goals, and will not act in such a way as to prevent its goals being achieved — 

at least insofar as its beliefs permit. 

 

In general, an agent’s computational structure will contain the following: 

• Static knowledge on itself and on other agents (acquaintances). 

• Expertise knowledge that represents treatments and actions that an agent is able to 

carry and which can be described in various forms (production rules, frames, 

logical expressions, etc.). 

• Reasoning: the inferences which draw the problem resolution. 

• Communication; the communication protocols between the agents. 

• Cooperation strategies used by the agents to cooperate with others. 

• Mobility: the ability to transport itself from one machine to another in an 

intelligent manner, retaining its current state. 

 

The abovementioned notions try to define an agent; a MAS can then be seen as system 

composed of a population of autonomous agents which corporate with each other towards 

a common goal. For a MAS to function coherently, the agents must communicate among 

themselves and coordinate activities. Without this functionality, agents become a 

collection of individual entities that may (when in large numbers) become chaotic. 

 

There are several reasons why agents need coordination and good communication: 
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• Preventing chaos: No agent can posses a global view of the entire MAS it 

belongs, as this is infeasible in any community of reasonable complexity. 

Consequently, agents have only local views, goals and knowledge that may 

interfere with rather than support other agents' actions. Coordination is vital to 

prevent chaos during conflicts.  

• Agent's actions are frequently interdependent and hence an agent may need to 

wait for another agent to complete its task before executing its own. Such 

interdependent activities need to be coordinated.  

 

Another important component of agent scheduling is the communication protocols among 

agents. In order to achieve this coordination, the agents might have to interact and 

exchange information; therefore they need to communicate by sending messages. KQML 

(Knowledge Query and Manipulation Language) is a good example of agent 

communication language.  

 

In conclusion to this definition, MASs find an immense use in almost every area of 

distributed computing from air-traffic control to telecommunications. Agent-based 

modeling is another area of AI that uses agent technology to better understand complex 

structures such as the social behaviour of animals and the spreading of viruses.      
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MAIN CONCLUSION 
 

This research work has dealt with ANNs and GAs in the effort to use their machine 

learning power to better approximate future events. As a minimum, the work can be seen 

as lower-bounds for unstructured-decision making.  

 

Perhaps the most appealing aspect of ANNs in this research study was their ability to 

learn, rather than construct a symbolic model of the world. It emerged that ANNs rely 

heavily on the plasticity (i.e. distributed representation) of their own structure to adapt 

directly to experience. Because of this, I feel that learning is among the most important 

aspects of intelligence. Although on-line learning was not implemented in this study, it 

was recommended and hence the pressing question of whether effective learning can 

occur with no prior or initial knowledge. The answer to this question is drawn from the 

experience of constructing the ANN architectures themselves. Hindsight suggests that 

some sort of prior knowledge, usually expressed as an inductive bias, is necessary for 

learning in complex environments. This is because the ability of neural networks to 

converge on a meaningful generalization from a set of training data has proven sensitive 

to the number of artificial neurons, the network topology, and the specific learning 

algorithms used in training. Researchers have commented on the matter of selecting 

appropriate numbers of input values, the ratio between input parameters and hidden 

nodes, and the training trials necessary before convergence can be expected. Another 

issue of importance is the quality and quantity of data. Without extensive and built-in 

knowledge of the problem-domain, a learning algorithm can be totally misled attempting 

to find patterns in noisy, insufficient, or bad data. A GA implementation in this study 

incorporated all these factors as parameters of interest in a vast optimisation problem, 

with successful results. 

 

On the other hand, genetic and emergent models of computation offered this research an 

approach to understanding both human and artificial intelligence. By demonstrating that 

globally intelligent behaviour can arise from the corporation of large numbers of 

restricted, independent, embodied, individual agents, this work has shown that genetic 
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and emergent theories can address the issue of complex intelligence expressed in the 

interrelationships of relatively simple structures. In this work, this was done by 

simulating a multi-agent trading environment that helped in choosing the best attributes 

of a trader. In other words, using an agent-based approach, I have constructed an 

informative miniature model of how the various dynamics relate in trading markets. This 

was successfully done via a GA because the algorithm offers a powerful and flexible 

search of a problem space. It was seen that this is because a genetic search is driven both 

by diversity enforced by mutation and by operators, such as crossover, that preserve 

important aspects of parental information for succeeding generations. 

 

The results of this research are promising, and further work is anticipated over and above 

the techniques that are being used in this work. Finally, all learning paradigms are tools 

for empirical study. As we further explore the invariants of our universe, we begin to 

probe into questions related to the nature of perception, understanding, learning, and 

problem solving. 
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