4,321 research outputs found

    A survey of variants and extensions of the resource-constrained project scheduling problem

    Get PDF
    The resource-constrained project scheduling problem (RCPSP) consists of activities that must be scheduled subject to precedence and resource constraints such that the makespan is minimized. It has become a well-known standard problem in the context of project scheduling which has attracted numerous researchers who developed both exact and heuristic scheduling procedures. However, it is a rather basic model with assumptions that are too restrictive for many practical applications. Consequently, various extensions of the basic RCPSP have been developed. This paper gives an overview over these extensions. The extensions are classified according to the structure of the RCPSP. We summarize generalizations of the activity concept, of the precedence relations and of the resource constraints. Alternative objectives and approaches for scheduling multiple projects are discussed as well. In addition to popular variants and extensions such as multiple modes, minimal and maximal time lags, and net present value-based objectives, the paper also provides a survey of many less known concepts. --project scheduling,modeling,resource constraints,temporal constraints,networks

    Algorithms for scheduling projects with generalized precedence relations.

    Get PDF
    Project scheduling under the assumption of renewable resource constraints and generalized precedence relations, i.e. arbitrary minimal and maximal time lags between the starting and completion times of the activities of the project, constitutes an important and challenging problem. Over the past few years considerable progress has been made in the use of exact solution procedure for this problem type and its variants. We review the fundamental logic and report new computational experience with a branch-and-bound procedure for optimally solving resource-constrained project scheduling problems with generalized precedence relations of the precedence diagramming type, i.e. start-start, start-finish, finish-start and finish-finish relations with minimal time lags for minimizing the project makespan. Subsequently, we review and report new results for several branch-and -bound procedures for the case of generalized precedence relations, including both minimal and maximal time lags, and demonstrate how the solution methodology can be expected to cope with other regular and nonregular objective functions such a smaximizing the net present value of a project.Networks; Problems; Scheduling; Algorithms; Functions; Net present value;

    A Decision Support System for Dynamic Integrated Project Scheduling and Equipment Operation Planning

    Get PDF
    Common practice in scheduling under limited resource availability is to first schedule activities with the assumption of unlimited resources, and then assign required resources to activities until available resources are exhausted. The process of matching a feasible resource plan with a feasible schedule is called resource allocation. Then, to avoid sharp fluctuations in the resource profile, further adjustments are applied to both schedule and resource allocation plan within the limits of feasibility constraints. This process is referred to as resource leveling in the literature. Combination of these three stages constitutes the standard approach of top-down scheduling. In contrast, when scarce and/or expensive resource is to be scheduled, first a feasible and economical resource usage plan is established and then activities are scheduled accordingly. This practice is referred to as bottom-up scheduling in the literature. Several algorithms are developed and implemented in various commercial scheduling software packages to schedule based on either of these approaches. However, in reality resource loaded scheduling problems are somewhere in between these two ends of the spectrum. Additionally, application of either of these conventional approaches results in just a feasible resource loaded schedule which is not necessarily the cost optimal solution. In order to find the cost optimal solution, activity scheduling and resource allocation problems should be considered jointly. In other words, these two individual problems should be formulated and solved as an integrated optimization problem. In this research, a novel integrated optimization model is proposed for solving the resource loaded scheduling problems with concentration on construction heavy equipment being the targeted resource type. Assumptions regarding this particular type of resource along with other practical assumptions are provided for the model through inputs and constraints. The objective function is to minimize the fraction of the execution cost of resource loaded schedule which varies based on the selected solution and thus, considered to be the model's decision making criterion. This fraction of cost which hereafter is referred to as operation cost, encompasses four components namely schedule delay cost, shipping, rental and ownership costs for equipment

    Automatic MGA trajectory planning with a modified ant colony optimization algorithm

    Get PDF
    This paper assesses the problem of designing multiple gravity assist (MGA) trajectories, including the sequence of planetary encounters. The problem is treated as planning and scheduling of events, such that the original mixed combinatorial-continuous problem is discretised and converted into a purely discrete problem with a finite number of states. We propose the use of a two-dimensional trajectory model in which pairs of celestial bodies are connected by transfer arcs containing one deep-space manoeuvre. A modified Ant Colony Optimisation (ACO) algorithm is then used to look for the optimal solutions. This approach was applied to the design of optimal transfers to Saturn and to Mercury, and a comparison against standard genetic algorithm based optimisers shows its effectiveness

    Offline and online power aware resource allocation algorithms with migration and delay constraints

    Get PDF
    © . This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/In order to handle advanced mobile broadband services and Internet of Things (IoT), future Internet and 5G networks are expected to leverage the use of network virtualization, be much faster, have greater capacities, provide lower latencies, and significantly be power efficient than current mobile technologies. Therefore, this paper proposes three power aware algorithms for offline, online, and migration applications, solving the resource allocation problem within the frameworks of network function virtualization (NFV) environments in fractions of a second. The proposed algorithms target minimizing the total costs and power consumptions in the physical network through sufficiently allocating the least physical resources to host the demands of the virtual network services, and put into saving mode all other not utilized physical components. Simulations and evaluations of the offline algorithm compared to the state-of-art resulted on lower total costs by 32%. In addition to that, the online algorithm was tested through four different experiments, and the results argued that the overall power consumption of the physical network was highly dependent on the demands’ lifetimes, and the strictness of the required end-to-end delay. Regarding migrations during online, the results concluded that the proposed algorithms would be most effective when applied for maintenance and emergency conditions.Peer ReviewedPreprin

    Many-Task Computing and Blue Waters

    Full text link
    This report discusses many-task computing (MTC) generically and in the context of the proposed Blue Waters systems, which is planned to be the largest NSF-funded supercomputer when it begins production use in 2012. The aim of this report is to inform the BW project about MTC, including understanding aspects of MTC applications that can be used to characterize the domain and understanding the implications of these aspects to middleware and policies. Many MTC applications do not neatly fit the stereotypes of high-performance computing (HPC) or high-throughput computing (HTC) applications. Like HTC applications, by definition MTC applications are structured as graphs of discrete tasks, with explicit input and output dependencies forming the graph edges. However, MTC applications have significant features that distinguish them from typical HTC applications. In particular, different engineering constraints for hardware and software must be met in order to support these applications. HTC applications have traditionally run on platforms such as grids and clusters, through either workflow systems or parallel programming systems. MTC applications, in contrast, will often demand a short time to solution, may be communication intensive or data intensive, and may comprise very short tasks. Therefore, hardware and software for MTC must be engineered to support the additional communication and I/O and must minimize task dispatch overheads. The hardware of large-scale HPC systems, with its high degree of parallelism and support for intensive communication, is well suited for MTC applications. However, HPC systems often lack a dynamic resource-provisioning feature, are not ideal for task communication via the file system, and have an I/O system that is not optimized for MTC-style applications. Hence, additional software support is likely to be required to gain full benefit from the HPC hardware

    A survey on financial applications of metaheuristics

    Get PDF
    Modern heuristics or metaheuristics are optimization algorithms that have been increasingly used during the last decades to support complex decision-making in a number of fields, such as logistics and transportation, telecommunication networks, bioinformatics, finance, and the like. The continuous increase in computing power, together with advancements in metaheuristics frameworks and parallelization strategies, are empowering these types of algorithms as one of the best alternatives to solve rich and real-life combinatorial optimization problems that arise in a number of financial and banking activities. This article reviews some of the works related to the use of metaheuristics in solving both classical and emergent problems in the finance arena. A non-exhaustive list of examples includes rich portfolio optimization, index tracking, enhanced indexation, credit risk, stock investments, financial project scheduling, option pricing, feature selection, bankruptcy and financial distress prediction, and credit risk assessment. This article also discusses some open opportunities for researchers in the field, and forecast the evolution of metaheuristics to include real-life uncertainty conditions into the optimization problems being considered.This work has been partially supported by the Spanish Ministry of Economy and Competitiveness (TRA2013-48180-C3-P, TRA2015-71883-REDT), FEDER, and the Universitat Jaume I mobility program (E-2015-36)

    Longterm schedule optimization of an underground mine under geotechnical and ventilation constraints using SOT

    Get PDF
    Long-term mine scheduling is complex as well time and labour intensive. Yet in the mainstream of the mining industry, there is no computing program for schedule optimization and, in consequence, schedules are still created manually. The objective of this study was to compare a base case schedule generated with the Enhanced Production Scheduler (EPSÂź) and an optimized schedule generated with the Schedule Optimization Tool (SOT). The intent of having an optimized schedule is to improve the project value for underground mines. This study shows that SOT generates mine schedules that improve the Net Present Value (NPV) associated with orebody extraction. It does so by means of systematically and automatically exploring the options to vary the sequence and timing of mine activities, subject to constraints. First, a conventional scheduling method (EPSÂź) was adopted to identify a schedule of mining activities that satisfied basic sets of constraints, including physical adjacencies of mining activities and operational resource capacity. Additional constraint scenarios explored were geotechnical and ventilation, which negatively effect development rates. Next, the automated SOT procedure was applied to determine whether the schedules could be improved upon. It was demonstrated that SOT permitted the rapid re-assessment of project value when new constraint scenarios were applied. This study showed that the automated schedule optimization added value to the project every time it was applied. In addition, the reoptimizing and re-evaluating was quickly achieved. Therefore, the tool used in this research produced more optimized schedules than those produced using conventional scheduling methods.Master of Applied Science (MASc) in Natural Resources Engineerin

    Simulation and optimization model for the construction of electrical substations

    Get PDF
    One of the most complex construction projects is electrical substations. An electrical substation is an auxiliary station of an electricity generation, transmission and distribution system where voltage is transformed from high to low or the reverse using transformers. Construction of electrical substation includes civil works and electromechanical works. The scope of civil works includes construction of several buildings/components divided into parallel and overlapped working phases that require variety of resources and are generally quite costly and consume a considerable amount of time. Therefore, construction of substations faces complicated time-cost-resource optimization problems. On another hand, the construction industry is turning out to be progressively competitive throughout the years, whereby the need to persistently discover approaches to enhance construction performance. To address the previously stated afflictions, this dissertation makes the underlying strides and introduces a simulation and optimization model for the execution processes of civil works for an electrical substation based on database excel file for input data entry. The input data include bill of quantities, maximum available resources, production rates, unit cost of resources and indirect cost. The model is built on Anylogic software using discrete event simulation method. The model is divided into three zones working in parallel to each other. Each zone includes a group of buildings related to the same construction area. Each zone-model describes the execution process schedule for each building in the zone, the time consumed, percentage of utilization of equipment and manpower crews, amount of materials consumed and total direct and indirect cost. The model is then optimized to mainly minimize the project duration using parameter variation experiment and genetic algorithm java code implemented using Anylogic platform. The model used allocated resource parameters as decision variables and available resources as constraints. The model is verified on real case studies in Egypt and sensitivity analysis studies are incorporated. The model is also validated using a real case study and proves its efficiency by attaining a reduction in model time units between simulation and optimization experiments of 10.25% and reduction in total cost of 4.7%. Also, by comparing the optimization results by the actual data of the case study, the model attains a reduction in time and cost by 13.6% and 6.3% respectively. An analysis to determine the effect of each resource on reduction in cost is also presented
    • 

    corecore