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Project scheduling under the assumption of renewable resource constraints and generalized 

precedence relations, i.e. arbitrary minimal and maximal time lags between the starting and 

completion times of the activities of the project, constitutes an important and challenging 

problem. Over the past few years considerable progress has been made in the use of exact solution 

procedures for this problem type and its variants. We review the fundamental logic and report 

new computational experience with a branch-and-bound procedure for optimally solving resource­

constrained project scheduling problems with generalized precedence relations of the precedence 

diagramming type, i.e. start-start, start-finish, finish-start and finish-finish relations with 

minimal time lags for minimizing the project makespan. Subsequently, we review and report new 

results for several branch-and-bound procedures for the case of generalized precedence relations, 

including both minimal and maximal time lags, and demonstrate how the solution methodology 

can be extended to cope with other regular and nonregular objective functions such as 

maximizing the net present value of a project. 
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Introduction 

The problem of scheduling projects under various types of resource constraints constitutes an 

important and challenging problem which has received increasing attention during the past 

several years. The bulk of the models and procedures designed for coping with these problem 

types aim at scheduling project activities to minimize the project duration subject to constant 

availability constraints on the required set of resources and precedence constraints that indicate 

that activities can only be started when all of their predecessors have already been finished. 

However, real-life project scheduling applications often involve more complicated types of 

precedence relations such as arbitrary minimal and maximal time lags between the starting and 

completion times of the activities, and require more sophisticated regular and nonregular 

objective functions. Over the past few years, considerable progress has been made in the use of 

exact solution procedures for this problem type and its variants. We will review the fundamental 

logic and report new computational experience with solution procedures for optimally solving 

resource-constrained project scheduling problems in which such generalized precedence relations 

and objective functions can be explicitly considered. 

We distinguish between four types of generalized precedence relations (GPRs): start-start 

(SS), start-fmish (SF), finish-start (FS) and finish-finish (FF). These relations specify a minimal 

or maximal time lag between a pair of activities. A minimal time lag specifies that an activity j 

can only start (finish) when its predecessor i has already started (finished) for a certain time 

period. A maximal time lag specifies that an activity should be started (finished) at the latest a 

specific number of time periods beyond the start (finish) of activity i. 

GPRs enhance the capabilities of project scheduling models because they can be used to 

model a wide variety of real-life problem characteristics. Next to the straightforward use of GPRs, 

namely allowing activity overlaps (which will often lead to a substantial decrease of the project 

makespan) and ensuring a maximal delay between the execution of specific activities (useful, for 

instance, when dealing with perishable products or chemical operations), GPRs can be used to 

model a wide variety of specific problem characteristics, including activity release dates and 

deadlines, activities that have to start or terminate simultaneously, non-delay execution of 

activities, several types of mandatory activity overlaps, fixed activity start times, time-varying 

resource requirements and availabilities, set-up times, overlapping production activities (process 

batches, transfer batches) and assembly line zoning constraints. 

The first comprehensive treatment of GPRs is due to Kerbosch and Schell (1975), based on 

the pioneering work of Roy (1962). Other studies include Crandall (1973), Elmaghraby (1977), 

Wiest (1981), Moder et al. (1983), Bartusch et al. (1988), Elmaghraby and Kamburowski (1992), 

Zhan (1994), Neumann and Zhan (1995), Schwindt (1996), Brinkmann and Neumann (1996), 

Schwindt and Neumann (1996), Franck and Neumann (1996), De Reyck and Herroelen (1996b, 

1997, 1998ab), Neumann and Schwindt (1997), Demeulemeester and Herroelen (1997b) and De 

Reyck (1998). 
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The remainder of this paper is organized as follows. Section 1 elaborates on the concept of 

GPRs and clarifies the terminology and project representation used. Section 2 briefly reviews the 

temporal analysis of activity networks with GPRs. A distinction is made between the precedence 

diagramming case, I.e. start-start, start-finish, finish-start and finish-finish relations with 

minimal time lags for minimizing the project makespan (defined as minlCmax using the 

classification scheme of Herroelen et al. 1998), and the case of minimal and maximal time lags 

(gprICma). In Section 3, the resource analysis required by the introduction of additional resource 

constraints is discussed. In Section 4, we discuss the fundamentals of a branch-and-bound 

procedure for optimally solving resource-constrained project scheduling problems with 

generalized precedence relations of the precedence diagramming type. This problem type, when 

extended to cope with activity release dates and deadlines as well as variable resource 

availabilities, is also referred to as the generalized resource-constrained project scheduling 

problem (Demeulemeester and Herroelen 1997b) and is denoted as m,l,valmin,pi,i\ICmax using the 

classification scheme of Herroelen et al. (1998). Subsequently in Section 5, we review several 

branch-and-bound procedures for the case of minimal and maximal time lags (m,ligprICma), and 

demonstrate how the solution methodology can be extended to cope with variable resource 

availabilities and requirements as well as other real-life project characteristics 

(m,l,vaigpr,pi'<\,vrICmax), and with other regular (m,l,vaigpr,pi'0i,vrlreg) and nonregular 

(m,l,vaigpr,Pi,oi,vrlnonreg) objective functions. In Section 6, we briefly describe the modifications 

that the original algorithms have undergone since their development. In Section 7, computational 

experience is reported using a set of randomly generated problem instances. Section 8 is reserved 

for our conclusions. 

1. Terminology and representation 

Assume a project represented in activity-on-the-node format by a directed graph G == (V, E) in 

which V is the set of vertices or activities, and E is the set of edges or GPRs. The non-preemptable 

activities are numbered from 1 to n, where the dummy activities 1 and n mark the beginning and 

the end of the project. The duration of an activity is denoted by d i (l::; i::; n), its start time by 

si (1::; i ::; n) and its finish time by fJ1::; i::; n). There are m renewable resource types, with 

ri!lx (1::; i ::; n, 1::; k ::; m, 1::; x ::; d i ) the resource requirements of activity i with respect to resource 

type k in the xth period it is in progress and akt (1::; k ::; m; 1::; t ::; T) the availability of resource 

type k in time period ]t-1, t] (T is an upper bound on the project length). If the resource 

requirements and availabilities are not time-dependent, they are represented by 

'ik (1::; i::; n, 1::; k::; m) and ak (1::; k::; m) respectively. The minimal and maximal time lags 

between two activities i andj have the form: 



si + sSlfn ::; s j ::; si + SSlJax ; 

fi + FSijin ::; Sj::; fi + FSijax; 
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Si + SFlf in ::; fj ::; si + SFlfax 

+: vvmin <.t' < +: FDmax li+.L·rij -lj-Ii+ L'ij 

where SSlfn represents a minimal time lag between the start time of activity i and the start 

time of activity j (similar definitions apply for SSijax, FStrn , ... ). The various time lags can be 

represented in a standardized form by transforming them to minimal start-start precedence 

relations, using the transformation rules given in Bartusch et al. (1988). Consequently, all GPRs 

are consolidated in the expression Si + lij :-; S j, where lij denotes a minimal start-start time lag. 

A path <is' ik , ii' ... , it> is called a cycle if S = t. With 'path' we mean a directed path, and with 

'cycle' we mean a directed cycle. The length of a path (cycle) is defined as the sum of the lags 

associated with the arcs belonging to that path (cycle). To ensure that the dummy start and finish 

activities correspond to the start and the completion of the project, we assume that there exists at 

least one path with nonnegative length from node 1 to every other node and at least one path 

from every node i to node n which is equal to or larger than d i• If there are no such paths, we can 

insert arcs (l,i) or (i,n) with weight zero or d i respectively. P(i) = {j I (j, i) E E} is the set of all 

immediate predecessors of node i, Q(i) = {j I (i, j) E E} is the set of all its immediate successors. 

2. Temporal analysis 

The (resource-unconstrained) project scheduling problem with GPRs under the minimum 

makespan objective (gpr!Cma) can be mathematically formulated as follows: 

Minimize sn [1] 

Subject to 

s·+l .. <s· 
L LJ - J (i,j) E E [2] 

si EN i EV [3] 

where N denotes the set of natural numbers. The objective function [1] minimizes the project 

duration (makespan), determined by the completion time (or start time, since dn = 0) of the 

dummy end activity n. Constraints [2] represent the GPRs. Constraints [3] ensure that all start 

times assume nonnegative integer values. Solving this problem can be accomplished by finding a 

precedence-feasible earliest start schedule (ESS), i.e. the minimum start times (esl' es2 , ... , esn ) 

satisfying [2] and [3]. The earliest start of an activity i can be computed by finding the longest 

path from node 1 to node i. 
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2.1. The precedence diagramming case 

The CPM analysis for project networks with zero-lag finish-start precedence relations 

(cpmICmax) can easily be extended to cope with minimal time lags (minICma)' A forward 

computation step eSi = max{ es j + I A\i'j E P(i)} yields an ESS (assuming that es 1 = 0). A backward 

computation step lSi = min {Is j -lij IVj E Q(i)} (assuming that ISn = esn) yields a latest start 

schedule (LSS) which can be used for float calculations and activity criticality analysis. 

2.3. The case of generalized precedence relations 

When maximal time lags are introduced (gprICma), there may not be a schedule that satisfies 

all of the GPRs. There exists a precedence-feasible schedule for G iff G has no cycle of positive 

length (Bartusch et al. 1988). Therefore, if we compute the matrix D = [dijJ, where dij denotes the 

longest path from node i to nodej, a positive path length from node i to itself (dii>O) indicates the 

existence of a cycle of positive length and, consequently, the non-existence of a precedence-feasible 

schedule. The computation of the matrixD can be done by the Floyd-Warshall algorithm in time 

O(n 3 ) (see Lawler 1976). The ESS = (esl' es2 , •.• , esn) is given by (dll' d I2, ... , din)' 

3. Resource analysis 

When we introduce additional renewable resource constraints, we obtain problems 

m,llminlCmax and m,llgprICmax' which can both be conceptually formulated as follows: 

Minimize Sn 

Subject to 

s·+I··<s· 1 lj - J 

I,rik ::;; ak 
iES(t) 

Si EN 

V(i,j) E E 

k = 1,2, ... ,m t = 1,2, ... ,T 

i = 1,2, ... ,n 

[4] 

[5] 

[6] 

[7] 

where Set) is the set of activities in progress in time period ]t-l, t] and T is an upper bound on the 

project duration, for instance T = I, max{di , .max. {Iij }} . The objective function [4] minimizes 
iEV JEQ(l) 
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the project duration. The GPRs are denoted in standardized form by constraints [5]. Constraints 

[6] represent the resource constraints and constraints [7] ensure that the activity start times 

assume nonnegative integer values. 

In the precedence diagramming case, the li) values are restricted to nonnegative values. 

Consequently, an activity can never start before its predecessor. Activity release dates Pi need not 

be specified separately because they can be 'modelled using standardized time lags of the type lli = 

Pi' The algorithm of Demeulemeester and Herroelen (1997b) for the generalized resource­

constrained project scheduling problem (GRCPSP; m,l,valmin,pi'DiICmax)' also deals with 

deadlines Di and variable resource availabilities. 

In the case of GPRs, the li) values may assume arbitrary integer values. In that case also, 

there is no need to specify activity deadlines separately, because they can be modelled using 

negative standardized time lags of the type lil = d i - Dc Also time-varying resource availabilities 

and requirements need not be specified explicitly (Bartusch et al. 1988). Time-varying resource 

availabilities can be handled by creating dummy activities which absorb a certain amount of each 

resource type for which a constant availability (equal to the maximum availability over time of 

that resource type) can then be assumed. These dummy activities should then be assigned a fixed 

start time using appropriate minimal and maximal time lags. Time-varying resource 

requirements can be modelled by splitting up the activities in a number of sub activities with a 

different constant resource requirement for each of the resource types. The sub activities should 

then be connected with appropriate minimal and maximal time lags which ensure a non-delay 

execution of all the sub activities of each activity. Therefore, problem m,l,valgprICmax and problem 

m,l,valgpr,pi,Di,vrICmax can be solved using the same algorithm. 

Problems m,llminlCmax and m,llgprlCmax are known to be strongly NP-hard. For problem 

m, llgprlC max or problem m, 1lmin, DnlC max with an imposed project deadline, even the decision 

problem of detecting problem (in)feasibility is NP-complete (Bartusch et al. 1988). To the best of 

our knowledge, the only exact solution procedures presented in the literature are the branch-and­

bound algorithms of Bartusch et al. (1988), Demeulemeester and Herroelen (1997b) and De Reyck 

and Herroelen (1998a). Because of the extreme complexity of problem m,llgprICmax, quite a 

number of heuristics have been developed (Zhan 1994, Neumann and Zhan 1995, Brinkmann and 

Neumann 1996, Franck and Neumann 1996, Schwindt and Neumann 1996). 

In the next section, we will review two exact solution procedures for project scheduling 

problems with GPRs. Again, we distinguish between the precedence diagramming case 
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(m, l,valmin, Pi' <\ICma), for which the procedure of Demeulemeester and Herroelen (1997b) will be 

reviewed, and the case of generalized precedence relations (m,l,valgpr,p.,o.,vrIC ), for which the 
1;. l max 

fundamentals of the procedure developed by De Reyck and Herroelen (l998a) will be discussed. 

4. A branch-and-bound procedure for the GRCPSP (m,l,valmin,ppoiICmax) 

4.1. The search tree 

The branch-and-bound procedure of Demeulemeester and Herroelen (1997b, further referred 

to as GDH) is an extension of the DH-algorithm presented in Demeulemeester and Herroelen 

(1992,1997a) for the resource-constrained project scheduling problem with zero-lag finish-start 

precedence constraints (m,llcpmICma). It is based on a depth-first solution strategy in which 

nodes in the search tree represent resource- and precedence-feasible partial schedules. Branches 

emanating from a parent node correspond to exhaustive and subset-minimal combinations of 

activities, the delay of which resolves a resource conflict at the parent node (referred to as 

minimal delaying alternatives). The search process closely resembles the one used in the 

procedure of Demeulemeester and Herroelen (1992) for the RCPSP (m,llcpmICmax). The 

modifications involve a different definition of the decision point, a different process of delaying 

temporarily scheduled activities, a different definition of the cutset activities, and a modified 

backtracking scheme. In addition, the procedure relies on a different set of dominance rules and 

bounding calculations. 

The nodes in the search tree correspond to partial schedules in which finish times 

temporarily have been assigned to a subset of the activities of the project. Scheduling decisions 

are temporary in the sense that scheduled activities may be delayed as the result of decisions 

made at later stages in the search process. Partial schedules are constructed by semi-active 

timetabling\ i.e. each activity is started as soon as possible within the precedence and resource 

constraints. A precedence-based lower bound is calculated by adding the maximal remaining 

critical path length of any of the activities that belong to a delaying alternative to the current 

delaying point. The delaying alternative with the smallest lower bound is chosen for further 

branching. When a complete schedule is constructed or when a partial schedule can be dominated 

using one of the node fathoming rules described below, the procedure backtracks to a previous 

level in the search tree. The procedure is completed upon backtracking to level O. Activity 

t Sprecher and Drexl (1996) correctly claim that the procedure of Demeulemeester and Herroelen (1992) 
does not only generate semi-active schedules. The same applies to the algorithm described here. Only if the 
left-shift dominance rule is extended to examine also local left-shifts prior to the current decision point, the 
schedules are guaranteed to be semi-active. However, the branching scheme and the dominance rules are 
based on the principle of semi-active timetabling. If the search cannot be restricted to semi-active schedules 
only, the branching scheme and the node fathoming rules can no longer be used. 
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deadlines are coped with through a standard critical path-based backward pass computation 

starting from the deadlines. 

4.2. Node fathoming rules 

Three dominance rules are used to prune the search tree. Additional information and proofs 

can be found in Demeulemeester and Herroelen (1997b). 

THEOREM 1. In order to resolve a resource conflict it is sufficient to consider only minimal 

delaying alternatives (which do not contain other delaying alternative as a subset). 

THEOREM 2. Consider a partial schedule PSt (the set of scheduled or completed activities) at level 

p of the search tree in which activity i is started at time t. If activity i was delayed at level p-l of 

the search tree, and if this activity can be left-shifted without violating the precedence or resource 

constraints, then the partial schedule PSt is dominated. 

THEOREM 3. Consider a cutset Ct (the set of unscheduled activities for which at least one direct 

predecessor belongs to PSt) which contains the same activities as a cutset Ct" which was 

previously saved during the search of another path in the search tree, and which was considered 

during the same resource intervaL If t':s t , if all activities in progress at time t' did not finish 

later than the maximum of t and the finish time of the corresponding activities in PSt' and if the 

earliest possible start time of every activity in Ct, is smaller than or equal to the earliest start time 

of the corresponding activity in Ct, then the current partial schedule PSt is dominated. 

Remark here that the definition of the cutset differs slightly from the one formulated in 

Demeulemeester and Herroelen (1997b). In the GRCPSP, contrary to the RCPSP, it is possible 

that an unscheduled activity is precedence constrained by an already scheduled activity, while 

some of its predecessors are not yet scheduled. A subtle change in the definition of the cutset is 

therefore needed. This fact was overlooked in the original implementation of the algorithm. Based 

on new computational experience presented in this paper, we discovered one project example (out 

of the many examined) for which the optimal solution was missed because of this flaw. As will be 

indicated in Section 7.2.3, the correction of the flaw only slightly affects the computational 

results. 



9 

5. A branch-and-bound procedure for the RCPSP-GPR (m,l,valgpr,pi'c\,vrICmax) 

5.1. The search tree 

Essentially, the algorithm of De Reyck and Herroelen (1998a, further referred to as DRH) is 

a hybrid depth-first / laser beam search branch-and-bound algorithm. The nodes in the search 

tree represent the initial project network, described by the longest path matrix D = [d i) , extended 

with extra zero-lag finish-start precedence relations to resolve a number of resource conflicts, 

which results in an extended matrix D' = [d'ijJ. Nodes which represent precedence-feasible but 

resource-infeasible project networks and which are not fathomed by any node fathoming rules 

described below lead to a new branching. Resource conflicts are resolved using the concept of 

minimal delaying alternatives. However, contrary to the GDH procedure, each of these minimal 

delaying alternatives is delayed (enforced by extra zero-lag fmish-start precedence relations i -< j , 

implying si + d i ::; s j ) by each of the remaining activities also belonging to the conflict set S(t*), 

the set of activities in progress in period Jt*-l, t*J (the period of the first resource conflict). 

Consequently, each minimal delaying alternative can give rise to several minimal delaying 

modes. 

In general, the delaying set DS, i.e. the set of all minimal delaying alternatives, is equal to 

DS = {Dd Dd c S(t*) and V resource type k: ~>ik - ~>ik ::; ak and V Dd, E DS \ {Dd}: Dd, cr. Dd) 
iES(t*) iEDd 

The set of minimal delaying modes equals: M = {Mml Mm = {k -< Dd }, k E S(t*) \ Dd , Dd E DS}. 

Activity k is called the delaying activity: k -< Dd implies that k -< l for all l E Dd . 

THEOREM 4. The delaying strategy which consists of delaying all minimal delaying alternatives 

D d by each activity k E S(t*) \ D d will lead to the optimal solution in a finite number of steps. 

PROOF. See De Reyck and Herroelen (1998a). 

Each minimal delaying mode is then examined for precedence-feasibility and evaluated by 

computing the critical path-based lower bound lbo. Each precedence-feasible minimal delaying 

mode with a lower bound lbo<T is then considered for further branching, which occurs from the 

node with smallest lbo. If the node represents a project network in which a resource conflict 

occurs, a new branching occurs. If it represents a feasible schedule, the upper bound T is updated 

and the procedure backtracks to the previous level in the search tree. Branching occurs until at a 

certain level in the tree, there are no delaying modes left to branch from. Then, the procedure 

backtracks to the previous level in the search tree and reconsiders the other delaying modes (not 

yet branched from) at that level. The procedure stops upon backtracking to level O. 
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The fact that semi-active timetabling cannot be applied when dealing with both minimal and 

maximal time lags results in a different solution strategy employed by the GDH and DRH 

procedures. In the GDH procedure, partial schedules based on the precedence relations are 

constructed, until a resource conflict is observed. The remainder of the schedule need not be 

computed. A resource conflict is resolved through the delay of activities participating in the 

conflict, which corresponds to the addition of precedence relations. The search then advances 

through time to subsequent resource conflicts until the dummy end activity is scheduled. Upon 

finding such a complete (precedence- and resource-feasible) schedule, the procedure backtracks, 

which corresponds to a partial destruction of the schedule. Contrary, in the DRH procedure, in 

each node of the search tree, complete (precedence-based) schedules are evaluated. The first 

resource conflict in that schedule is subsequently resolved using additional precedence relations. 

However, contrary to the GDH procedure, the procedure cannot proceed through time, because in 

a newly derived schedule, obtained by resolving a resource conflict at time t, a new conflict can 

occur at a time instant t'<t. When a precedence- and resource-feasible schedule is encountered, 

the procedure backtracks to the previous level in the search tree which corresponds to removing 

precedence relations from the project network. 

5.2. Node fathoming rules 

Nodes are fathomed if they represent a precedence-infeasible project network or when lbo 

exceeds (or equals) T. Four additional node fathoming rules (three dominance rules and a new 

lower bound) and a procedure which reduces the solution space and which can be executed as a 

pre-processing rule are added. These rules are given below. Additional information and proofs can 

be found in De Reyck and Herroelen (1998a). 

THEOREM 5. If there exists a minimal delaying alternative D d with activity i E Dd but its real 

successor j ~ Dd (dij ~ 0), we can extend D d with activity j. If the resulting delaying alternative 

becomes non-minimal as a result of this operation, it may be eliminated from further 

consideration. 

THEOREM 6. When a minimal delaying alternative D d gives rise to two delaying modes M m, and 

M m with delaying activities i and j respectively, mode M m is dominated by mode M m if 
2 2 1 

dij + d j ~ d i . If d ij + d j = d i and d ji + d i = d j , either delaying mode Mml or Mm2 can be 

dominated, but not both. 
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Recently, Mingozzi et al. (1998) have developed five new lower bounds for the RCPSP, 

namely lb l , lb2 , lbp ' lbx and lb 3 , derived from different relaxations of a new mathematical 

formulation. Mingozzi et al. (1998) compute lb3 using a heuristic for the maximum weight 

independent set problem. Demeulemeester and Herroelen (l997a) have incorporated another 

version of lb 3 in their GDH algorithm. The procedure of Demeulemeester and Herroelen (1997a) 

for computing lb3 can be extended to the RCPSP-GPR as follows. For each activity i E V, its 

companions are determined (the activities with which it can be scheduled in parallel, respecting 

both the precedence (d\j<di and dji<d) and resource constraints (Vk s m: rik + rjk S ak )). All 

activities i are then entered in a list L in non-decreasing order of the number of companions Cnon­

increasing duration as tie-breaker). The following procedure then yields a lower bound, lb!. For 

each activity, we define a remaining duration d'j . Initially, all d'j are equal to dj . 

lb! = 0 

while L not empty do 

take the first activity (activity i) in L and remove it from L 

lb! = lb! + dr 
for every companionj of i do 

if d·· > 0 then d r = d r -(d· -d··) 
1) J J ' U 

else if d·· > 0 then d r = d r -min{d. -d·· d.} 
J! J J J J'" 

else d r = d r - d J J , 

endif 

if d'j sO, remove activity j from L 

enddo 

enddo 

THEOREM 7. lb! is a valid lower bound for problem m,l,valgpr,Pi,oi,vrICmax' 

lb! is used to fathom nodes for which lb!?:: T. However, whereas lbo is calculated 

immediately upon the creation of a node, the calculation of lb! is deferred until a decision has 

been made to actually branch from that node. The rationale behind this is that (a) lb! is more 

difficult to compute than lbo, and (b) calculating lb! implies calculating the entire matrix D. We 

defer the calculation of lb! and D until the node is actually selected for branching. As a result, 

only lbo is used as a branching criterion. 
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THEOREM 8. If the set of added precedence constraints which leads to the project network in node x 

contains as a subset another set of precedence constraints leading to the project network m a 

previously examined node y in another branch of the search tree, node x can be fathomed. 

THEOREM 9. If :3 i, j E V and k::;; m for which rik + rjk > ak and -d j < dij < di , we can set lij = d i • 

5.3. Extensions to other objective functions 

In real-life project scheduling applications, the minimization of the project length is 

undoubtedly the most popular objective function. Minimizing the project makespan implies that 

the resources tied up in the activities of the project are released as soon as possible, thereby 

making them available for other projects in the future. Also, minimizing the project length 

releases tied-up capital because in many projects, the majority of income payments occur at the 

end of a project (Kolisch 1996). 

Nevertheless, for many actual project scheduling applications, minimizing the project length 

may be a misrepresentation of the actual conditions, in which considerations such as cost 

minimization, tardiness minimization and revenue maximization may be much more relevant. In 

the literature, a rich variety of objective functions has been the subject of extensive study. These 

objective functions can be classified into two distinct classes: regular and nonregular measures of 

performance. A regular measure of performance (which is to be minimized) is a nondecreasing 

function of the activity completion times. When not imposed by resource, precedence or temporal 

constraints, it will not be advantageous to delay activities solely to obtain an improved 

performance under a regular measure of performance. For a nonregular objective function, the 

condition above does not hold. This implies that delaying activities may improve the performance 

of the schedule, even if such a delay is not imposed by any constraints. 

5.3.1. Regular performance measures 

Practical applications of regular measures of performance often take the form of a cost 

function based on the activity completion times. Such cost functions may take the following form: 

• Minimizing project costs determined by a weighted function of the tardiness of the activities 

with respect to pre-set due dates (m,l,valgpr,p)i,vrl L.,WiTi ), where Ti = max{ti -bi,O}, ~ 

represents the due date of activity i (not to be confused with the activity deadlines bi which can 

also be present and which constitute hard constraints that cannot be violated) and wi denotes 

the weight (penalty) associated with an additional delay (of one time period) of activity i 

beyond its due date. We may also want to minimize the number of tardy activities 

(m,l,valgpr,pi,bi,vrlnT) or the maximal activity tardiness (m,l,valgpr,pi,bi,vrIT ma). 
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_ 1 n 

• Minimize the mean flow time: m,l,valgpr,p)\,vriF, where F=-2)fi -Pi) and Pi denotes 
n i=l 

the release date of activity i. 

In the DRH procedure, we evaluate the project networks in each node of the search tree by 

computing an ESS (by means of a longest path matrix D), which yields a critical path-based lower 

bound lbo' If we optimize any other regular measure of performance (m,l,valgpr,p)\,vrireg), we 

can still use the ESS to evaluate the project networks and simply replace the calculation of lbo by 

the regular performance measure under consideration. The branching strategy based on minimal 

delaying modes (Theorem 4) can also be used when dealing with other regular performance 

measures. Also Theorems 5, 6, 8 and 9 are still applicable. Therefore, only two slight 

modifications are needed to extend the procedure. First, we need to replace lbo by the new 

measure and use the resulting value as a lower bound. Second, the lower bound lbE can no longer 

be used as a node fathoming rule since it is based on the minimum makespan objective. 

5.3.2. Nonregular performance measures 

If we optimize a nonregular measure of performance (m,l,valgpr,p))i,vrinonreg), the 

branching strategy based on minimal delaying modes to resolve resource conflicts (Theorem 4) 

can still be used. However, we cannot use the ESS anymore to compute the objective function 

value and replace the calculation of lbo by the performance measure under consideration. Rather, 

the project networks in each node of the search tree should be optimized using the nonregular 

objective function while discarding the resource constraints (gprinonreg). Also resource-feasibility 

should be checked against the schedule obtained by optimizing the nonregular objective function 

for the resource-unconstrained project network. 

A nonregular performance measure which is gaining more popularity is the maximization of 

the net present value (npv) ofthe project, in which positive and negative cash flows are associated 

n di 

with the activities (m,l,valgpr,p))i,vr,ciinpv): Maximize I Cie -aft with Ci = Igit eu(di-t ) , the 
i=l t=l 

cash flow (positive or negative) associated with each activity compounded up to its completion. 

For a review of project scheduling problems in which financial considerations are explicitly 

included, we refer the reader to Herroelen et al. (1997). When maximizing the project npv, the 

evaluation and optimization of the project networks in each node should be accomplished by 

maximizing the npv of the corresponding (precedence-feasible, but not necessarily resource-

feasible) project without taking the resource constraints into account (gpr,on,ciinpv). Algorithms 
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for the unconstrained max-npv project scheduling problem (cpm,on,cilnpv) can be found in Russell 

(1970), Grinold (1972), Elmaghraby and Herroelen (1990), Herroelen and Gallens (1993) and 

Herroelen et al. (1996). Unfortunately, none of these algorithms can cope with GPRs 

(gpr,Pi,oi,cilnpv). De Reyck and Herroelen (1996b) have developed an exact recursive enumeration 

procedure for optimizing the npv in project networks with GPRs (gpr,Pi,oi,cJnpv), which will be 

briefly reviewed in the next section. 

5.3.3. Maximizing the net present value of projects: the resource-unconstrained case 

The algorithm of De Reyck and Herroelen (1996b) for problem gpr,p;lJi,cilnpv is based on the 

intuitive idea that activities carrying positive cash flows should be executed as early as possible, 

whereas activities with a negative cash flow should be delayed as much as possible. The 

procedure consists of 3 steps. In STEP 1, the longest path matrix D is computed. If the project is 

precedence-feasible, the early tree is computed, which spans all activities scheduled at their 

earliest start time. For every activity i, a predecessor j is determined for which dI,j + d j,i :::: dI,i , 

upon which activities j and i are linked. 

The current tree is computed in STEP 2 of the algorithm by delaying all activities i with a 

negative cash flow ci and no successor in the early tree as much as possible within the early tree, 

i.e. without affecting the start times of the successor activities in the constraint digraph. This 

results in a local optimum which cannot be improved by delaying single activities and will reduce 

the number of recursions required in STEP 3 of the procedure which examines the simultaneous 

delay of activities. If any activity i has been delayed while computing the current tree, STEP 2 is 

repeated. After STEP 2 has been repeated a sufficient number of times, the procedure enters a 

recursive search in STEP 3, in which partial trees PT (with a negative npv) are identified that can 

be disconnected from the current tree and shifted forwards in time in order to increase the npv of 

the project. When such a partial tree is found, the algorithm computes the maximal shift of the 

partial tree by identifying the maximal possible increase in the start times of the activities 

belonging to the partial tree without violating any of the precedence constraints, keeping all 

activities not belonging to PT at their current start times. Therefore, a new arc is determined 

with minimal displacement, i.e. an arc (k,l) (k E PT, l ~ PT) with minimal value for 

dI,l -dI,k -dk,l. We disconnect the partial tree from the remainder of the current tree and we 

add the arc (k,l) to the current tree, thereby relinking the forward-shifted partial tree to the 

current tree. Then, we update the completion times of the activities in the partial tree as follows: 

\;j j E PT: dl,j:::: dI,j + k~}~ {dI,l - dl,k - dk,l } . If a shift has been found and implemented, the 

l~PT 
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recursive procedure is restarted until no further shift can be accomplished. Then, the optimal 

schedule with its corresponding npv is reported. 

5.3.4. Maximizing the net present value of projects: the resource-constrained case 

De Reyck and Herroelen (1998b) have developed a branch-and-bound procedure for problem 

m,l,valgpr,p)\,vr,cilnpv based on the DRH algorithm for the minimum makespan case, using the 

recursive search procedure described above for the calculation of a bound on the project npv. Each 

time a node in the branch-and-bound tree is chosen to branch from, the corresponding longest 

path matrix D is computed and the schedule which optimizes the project npv is computed, 

yielding an upper bound on the npv. However, in the DRH procedure, when a number of nodes 

are created at a certain level of the search tree (not yet chosen to be branched from), the matrices 

D are not yet computed. Therefore, it is not possible to use the algorithm for the unconstrained 

npv maximization to compute an upper bound on the project npv. Therefore, the computation of 

the upper bound ub on the project npv is not made upon creation of a node, but is deferred until a 

decision has been made to actually branch from it. As a result, another criterion (a myopic 

criterion based on the cash flows of the delayed activities) is used in order to select the node to 

branch from at a certain leveL 

Another often encountered example of a nonregular performance measure is the 

minimization of the weighted earliness-tardiness ofthe activities in a project, in which a due date, 

earliness penalties as well as tardiness penalties are associated with the activities 

n lSi 

(m,l,vaigpr,pi,<\,vrlearlyltardy): I.Wi I.I t + d i -0 ilXit . In that case, the project network in each 
i=l t=esi 

node of the search tree should be optimized such that a minimum penalty value due to earliness 

or tardiness of the activities is obtained, while the activities are subject to GPRs only 

(gpr,Pi,oilearly I tardy). Exact solution procedures for optimizing due date performance in project 

networks are sparse. To the best of our knowledge, if the precedence relations among the 

activities are allowed to be GPRs, no solution procedure is available at all for minimizing 

earliness-tardiness-based objective functions. This constitutes a promising area for future 

research. 

5.3.5. Multiple objective functions 

From the discussion above, it is clear that project management has the choice between a wide 

variety of performance measures. These measures may pertain to the makespan of the project, the 

tardiness of activities or subprojects, the activity flow times, the levelness of the resource 

profile(s) and may even include financial considerations. In many situations, several of these 
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objective functions may be relevant at the same time. Often, however, the relevant objectives are 

in conflict. In that case, a trade-off will be present in the sense that the project manager will have 

to decide which performance measure is the most important, in which order they should be 

considered or which weights should be assigned to each of the measures. 

This gives rise to the problem of scheduling projects under multiple objectives. We 

distinguish between the case where (a) multiple objectives are considered in some pre-specified 

order or have been assigned a weight determining the trade-off between the various measures, 

and (b) where the solution method should present a series of alternative solutions from which the 

decision maker should select a solution based on hislher perspectives of the relation between the 

various performance measures. In the former case, the solution procedure can unambiguously 

determine the optimal solution because the multiple objectives can be merged into a single 

objective function. In the latter case, the solution procedure cannot determine an optimal 

schedule because a trade-off between the various performance measures has not been firmly 

established. The procedure should then present a number of efficient solutions, from which the 

decision maker can select a schedule. 

If multiple regular performance measures are considered, each one given a weight to 

determine its importance vis-a.-vis the other measures (or a rank order), the DRH procedure can 

still be used. In that case, the ESS can still be used to evaluate the resource-unconstrained 

project networks in each node of the search tree. If, however, nonregular performance measures 

are considered, the problem becomes much more complex. In that case, the resource­

unconstrained projects should be optimized taking into account the weighted nonregular (and 

regular) objective functions. Also when no weights or strict order can be assigned to the measures, 

the solution approach should be modified rather extensively. In that case, the procedure should 

present multiple viable alternatives and allow the user to determine which schedule he/she 

prefers based on the associated values for the various objective functions. 

6. Modifications to the original algorithms 

The GDH and DRH procedures have been recoded and compiled using Microsoft Visual C++ 

4.0 under Windows NT for use on a Dell Pentium Pro-200Mhz personal computer. The GDH code 

requires 91 kb, whereas the data structures are allowed to use up to 16 Mb. This memory is 

mainly allocated to the application of the cutset dominance rule. For the DRH code, which 

requires 90 kb, only 400 kb should be reserved for storing the data. 

The GDH procedure has undergone some modifications since its development. First, we have 

corrected the application of the cutset dominance rule as explained in Section 4.2. Secondly, we 

now only consider efficient cutsets when applying the cutset dominance rule: every time a new 

cutset is saved, all cutsets that are dominated by it are removed, resulting in a significantly 

smaller set of cutsets and a substantial speed-up of the dominance rule. The codes of both 

algorithms have been modified in order to take full advantage of modern 32-bit compiler 
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architecture. This results in a significant efficiency gain. The major change in the GDH procedure 

involves a new coding scheme for the cutset dominance rule. Similar adjustments have been 

described for the case with zero-lag finish-start precedence relations (see Demeulemeester and 

Herroelen 1997a). Other changes involve merging different resource types into one global 

resource type (using 32-bit integers). Additional code polishing also leads to an increase in 

performance. For technical details we refer the reader to Demeulemeester and Herroelen (1997a). 

7. Computational experience 

7.1. Previous computational experience 

7.1.1. The GRCPSP (m,l,valmin,pi,SiICma) 

Computational experience with the GDH procedure is reported by Demeulemeester and 

Herroelen (1997b) on the problem set consisting of the 110 RCPSP instances assembled by 

Patterson (1984). The results were very promising and indicated that the algorithm was, on the 

average, only 2.5 times slower than the similar procedure designed for the RCPSP. For the 

Simpson problem set, consisting of the same 110 RCPSP instances extended with variable 

resource availabilities by Simpson et a1. (1992), the procedure also performed substantially better 

than the procedure of Simpson et a1. (1992). A third problem set consisted of ten problem 

instances based on Patterson problem 72 in which ready times, deadlines and precedence 

diagramming constraints were introduced. All ten instances could be solved very quickly (in at 

most 32.08 seconds). 

The changes in the coding of the GDH procedure results in a dramatic decrease in the 

computation times for these problem instances. Using the Pentium Pro-200Mhz computer, the 

average computation time for the Simpson problem set decreases by a factor of more than one 

thousand (0.009 seconds versus 9.273 seconds). For the ten problems based on Patterson problem 

72, the spped-up factor is only 12 (0.434 seconds versus 0.035 seconds). 

7.1.2. The RCPSP-GPR (m,l,valgpr,Pi,Si,vrICma) 

De Reyck and Herroelen (1998a) report computational results on three different problem sets 

in order to validate the DRH procedure against the serial and parallel heuristics developed by 

Franck and Neumann (1996). These heuristics improve upon the procedures developed by 

Neumann and Zhan (1995), Zhan (1994) and Brinkmann and Neumann (1996). All three data 

sets have been generated using the random problem generator ProGen/max developed by 

Schwindt (1996). The first problem set consists of 1,080 100-activity instances. The second set 

consists of 1,440 100-activity problem instances. The third set consists of 7,200 instances with 10 

up to 100 activities. 
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Table I shows some computational results on the first problem set. These results are obtained 

using Microsoft Visual C++ 2.0 under Windows NT for a Digital Venturis Pentium-60 personal 

computer with 16Mb of internal memory. The branch-and-bound procedure is truncated after a 

specific amount of running time (1, 10 and 100 seconds). The results include the number of 

problems solved to optimality (for which the optimum was found and verified), the number of 

problems for which the optimal solution is obtained (but not necessarily verified), the number of 

problems for which the best known solution is obtained, the number of unsolved problems (for 

which a feasible solution could not be determined and neither infeasibility of the instance could 

be proven), the average deviation from a lower bound and the average deviation from the best 

known solution. The lower bound lb used to compute the deviations, is the maximum of the 

critical path-based lower bound lbo, the resource-based lower bound lb, c 'f!t{f ~ a.,r,k I ak 1} 

and lbl (computed in the root node of the search tree after pre-processing). The column labelled 

F&N in Table I contains the results obtained by Franck and Neumann (1996), which are obtained 

by running a collection of 44 different heuristics which rank among the best currently available. 

The best known solution referred to in Table I is the best of the solutions obtained with various 

versions of the DRH algorithm running for up to 1 hour per problem and with the heuristic (F&N) 

solutions, and can therefore be considered as near-optimal. 

Table I. The results on problem set I 

F&N DRH -1 sec DRH - 10 sec DRH -100 sec 

Problems solved to optimality 196 (18%) 543 (50%) 592 (55%) 609 (56%) 

Problems for which optimal solution is found 220 (20%) 578 (54%) 596 (55%) 609 (56%) 

Problems for which best known solution is found 378 (35%) 606 (56%) 652 (60%) 682 (63%) 

Unsolved problems 21 (2%) 205 (19%) 86 (8%) 68 (6%) 

Average deviation from lb 17.02% 5.99% 9.77% 10.00% 

Average deviation from best known solution 7.20% 2.20% 2.54% 2.31% 

The DRH procedure manages to solve more than 50% of the 100-activity problem instances to 

optimality within 1 second of computation time. However, increasing the allowed computation 

time from 1 second to 100 seconds leads to an increase of only 12% in the problem instances 

solved to optimality (from 543 to 609). The average deviation from the best known solution (lower 

bound) never exceeds 2.54% (10.00%), whereas the F&N heuristics result in an average deviation 

of 7.20% (17.02%). Less reassuring, however, is that, especially for small time limits, a relatively 

large number of problems remains unsolved. The F&N heuristics do a better job on this issue. 

This inspired us to develop another approach which is based on finding a feasible solution 

first, rather than going immediately for the optimal solution. When no feasible solution has been 

obtained yet, this approach uses a new criterion (referred to as time window slack TWS) to decide 
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on which node to branch from, based on feasibility criteria. The node that entails the highest 

chance of leading to a feasible solution is selected first, regardless of its lower bound (which is 

only used as a tie-breaker). When a feasible solution is obtained, again the lower bound is used as 

a branching criterion. Using this new approach, the number of unsolved problems decreases to 27 

(2.5%), 8 (0.7%) and 6 (0.6%) for the three time limit settings, whereas the number of problems 

solved to optimality does not significantly differ from the original approach. The average 

deviation from the best known solution (lower bound) increases somewhat, but never exceeds 

4.5% (14%), thereby still outperforming the heuristics. More details can be found in De Reyck and 

Herroelen (1998a). 

7.2. New computational results 

7.2.1. Benchmark problem set 

In this section, we present new computational experience with the two enhanced branch-and­

bound procedures on a new benchmark problem set consisting of 1,620 randomly generated 

instances. The parameters used to generate the new problem set are given in Table II. The 

indication [x,y] means that the corresponding value is randomly generated in the interval [x,y] , 

whereas x; y; z means that three settings for that parameter were used in a full factorial 

experiment. For each combination of parameter values, 10 instances have been generated. 

Table II. The parameter settings of the new problem sets 

Control parameter 

number of activities 

activity durations 

number of resource types 

minimum 1 maximum number of resources used per activity 

activity resource demand 

resource factor, RF (Pascoe 1966) 

resource strength, RS (Kolisch et al. 1995) 

number of initial and terminal activities 

maximum number of predecessors and successors 

order strength, as (Mastor 1970) 

% maximal time lags 

number of cycle structures (Brinkmann and Neumann 1996) 

minimum 1 maximum number of nodes per cycle structure 

coefficient of cycle structure density (Schwindt 1996) 

cycle structure tightness (Schwindt 1996) 

Values 

10;20;30 

[2,10] 

4 

1/4 

[1,10] 

0.50; 1.00 

0.00; 0.25; 0.50 

[2,4] 

3 

0.35; 0.50; 0.65 

0%; 10%; 20% 

[1,10] 

2/30 

0.3 

0.5 

The resource factor RF (Pascoe 1966) reflects the average portion of resources requested per 

activity. If RF=I, then each activity requests all resources. RF=O indicates that no activity 
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1 n K {l, ifrik >0 
requests any resource: RF == --I, I, . . The resource strength RS (Cooper 1976) is 

nK i=l k=l 0, otherwIse 

redefined by Kolisch et al. (1995) as (ak - rkmin ) / (rrax - rkmin ), where ak is the total availability of 

renewable resource type k, r,~in == .max rik (the maximum resource requirement for each 
l=l, ... ,n 

resource type), and rrax is the peak demand for resource type k in the precedence-based early 

start schedule. The resource availability is assumed to be constant over time. 

The order strength OS is defined as the number of precedence relations, including the 

transitive ones, divided by the theoretical maximum of such precedence relations, namely n(n-

1)/2, where n denotes the number of activities (Mastor 1970). Because OS only applies to acyclic 

networks, it is applied to the acyclic skeleton of the generated project networks obtained by 

ignoring all maximal time lags (for details see Schwindt 1996). For the definition of cycle 

structures and related measures, we refer the reader to Schwindt (1996). 

7.2.2. Overall results 

The problems without any maximal time lags correspond to instances of the GRCPSP, 

whereas the problems with 10% and 20% maximal time lags correspond to instances of the 

RCPSP-GPR. Therefore, we solved the former (540) instances with the GDH procedure, and the 

latter (1,080) instances with the DRH procedure. A time limit of 1,000 seconds is imposed. The 

overall results can be found in Table III. 

Table III. Overall results 

0% 10% 20% All problems 

Optimal CPU-time Optimal CPU-time Optimal CPU-time Optimal CPU-time 

n = 10 180 0.001 180 0.00 180 0.00 540 0.00 

n = 20 180 0.005 180 0.11 180 0.12 540 0.08 

n = 30 180 0.021 177 36.37 178 34.27 535 23.56 

All problems 540 0.009 537 12.16 538 11.46 1,615 7.88 

The GRCPSP instances can be solved to optimality within very small CPU-times using the 

GDH procedure. However, the RCPSP-GPR instances, solved using the DRH procedure, require 

much more time. Five out of the 1,080 instances cannot be solved to (verified) optimality within 

1,000 seconds. This illustrates the much higher complexity of the RCPSP-GPR versus the 

GRCPSP. The main reason for the difference in complexity is that for solving the RCPSP-GPR, 

semi-active timetabling cannot be applied. Consequently, most of the concepts developed for the 

minimal time lag case will not be transferable to the GPR-case. The fundamental logic of the 

GDH procedure, namely its branching strategy, is based on the principle of semi-active 
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timetabling and can therefore not be applied for the GPR case. Also the dominance rules, 

including the left-shift dominance rule and the powerful cutset dominance rule, which is mainly 

responsible for the efficiency of the GDH procedure, are not applicable anymore. Consequently, 

the DRH procedure is based on a different branching strategy and a new set of dominance rules 

and lower bounds. 

The fact that the branching strategy and the dominance rules which are applicable for the 

GPR case are less powerful than those used for the precedence diagramming case, can be 

illustrated by comparing the performance of both algorithms on the problem instances with 

minimal time lags only. Whereas the GDH procedures solves all 540 instances to optimality with 

an average CPU-time of 0.009 seconds, the more general DRH procedure cannot solve 12 out of 

the 540 instances within 1,000 seconds. Naturally, when no maximal time lags are present, the 

DRH procedure is no longer efficient because it is designed for the inclusion of maximal time lags. 

In that case, the GDH procedure should be used. Similarly, when all precedence relations are of 

the zero-lag finish-start type, the procedure of Demeulemeester and Herroelen (1992, 1997a) 

should be used instead. The efficiency of the DRH procedure heavily depends on the relative 

number of maximal time lags in the problem instances. The more maximal time lags, the more 

effective the dominance and bounding rules, and the more efficient the DRH procedure. 

7.2.3. The modified cutset dominance rule 

We examined the impact of the new cutset dominance rule on the efficiency of the GDH 

procedure by implementing the original (erroneous) cutset dominance rule in the new procedure. 

The results indicate that the efficiency of the procedure does not substantially differ. For all but 1 

instance, the optimal solution is obtained despite the use of the erroneous cutset dominance rule. 

The computation times using the corrected cutset dominance rule are only slightly higher (0.009 

versus 0.008 seconds). 

7.2.4. Results with truncated procedures 

Table IV presents the results with a truncated version of the DRH procedure. We did not 

report any results with a truncated GDH procedure since it is able to solve all of the instances 

with minimal time lags to optimality with very small computational effort. Therefore, we report 

the results with the DRH procedure only (also for the instances without maximal time lags). The 

results reported are the number of instances for which the optimal solution is found (not 

necessarily verified, including the problems proven to be infeasible) and the average deviation 

from the best known solution (all but 5 solutions are known to be optimal). The deviations are 

only computed for the instances which are feasible and for which the truncated procedure was 

able to find a feasible solution. 
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Table IV. Heuristic results 

0% 10% 20% All problems 

Optimal %dev. Optimal %dev. Optimal %dev. Optimal %dev. 

n = 10 180 0.00% 180 0.00% 180 0.00% 540 0.00% 

time limit n = 20 168 0.26% 178 0.06% 179 0.01% 525 0.11% 

1 SECOND n = 30 112 2.23% 152 1.23% 148 1.68% 412 1.71% 

All problems 460 0.83% 510 0.43% 507 0.56% 1,477 0.61% 

n = 10 180 0.00% 180 0.00% 180 0.00% 540 0.00% 

time limit n = 20 177 0.05% 180 0.00% 180 0.00% 537 0.02% 

10 SECONDS n = 30 131 1.31% 167 0.59% 164 0.76% 462 0.89% 

All problems 488 0.46% 527 0.20% 524 0.25% 1,539 0.30% 

n = 10 180 0.00% 180 0.00% 180 0.00% 540 0.00% 

time limit n = 20 180 0.00% 180 0.00% 180 0.00% 540 0.00% 

100 SECONDS n = 30 151 0.65% 172 0.30% 173 0.14% 496 0.36% 

All problems 511 0.22% 532 0.10% 533 0.05% 1,576 0.12% 

Although the DRH procedure cannot solve all instances to optimality when the imposed time 

limit is rather small, the obtained heuristic solutions are of high quality, especially when the 

relative amount of maximal time lags is rather high. The results conform to the results of 

previous computational experiments (De Reyck and Herroelen 1998a), which show a similar 

performance of the truncated DRH procedure on instances with up to 100 activities (see also 

Table 1). 

7.2.5. Impact of problem characteristics 

In Table V, the impact of the order strength as on the complexity of the problem instances is 

examined. Clearly, as has a negative impact on the problem complexity, measured by the 

number of problems solved to optimality and the required CPU-time. This result is in line with 

other results reported in the literature (De Reyck 1995, Schwindt 1996, De Reyck and Herroelen 

1998a). 

Table V. Impact of as 

os = 0.35 OS = 0.50 OS = 0.75 

Optimal CPU-time Optimal CPU-time Optimal CPU-time 

n = 10 180 0.00 180 0.00 180 0.00 

n = 20 180 0.89 180 0.31 180 0.06 

n = 30 166 136.22 175 58.29 177 22.38 

All problems 526 45.71 535 19.53 537 7.48 
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The impact of the resource-based measures RF and RS is given in Tables VI and VII. RF has 

a strong impact on the complexity of the problem. The higher RF, the harder the corresponding 

problem instances. These results conform to the conclusions drawn by other research for related 

problem types (Kolisch et al. 1995, De Reyck and Herroelen 1998a). The effect of RS is not 

monotonously increasing or decreasing. On the contrary, it is bell-shaped, the hardest instances 

corresponding to an intermediate RS setting (equal to 0.25). However, there is a clear difference 

between the complexity of problems with small or large RS values. Problems with small RS 

values (RS=O) are much more difficult than problems with a high RS value (RS=0.5). Therefore, 

the 'top' of the bell-shaped complexity curve is skewed towards RS=O. The impact of RS 

corresponds to the conjecture of Elmaghraby and Herroelen (1980) and the results of De Reyck 

and Herroelen (1996a) for the RCPSP. 

Table VI. Impact of RF 

RF= 0.50 RF= 1.00 

Optimal CPU-time Optimal CPU-time 

n = 10 270 0.00 270 0.78 

n = 20 270 0.00 269 14.66 

n = 30 270 0.06 249 129.94 

All problems 810 0.02 788 48.46 

Table VII. Impact of RS 

RS = 0.00 RS = 0.25 RS = 0.50 

Optimal CPU-time Optimal CPU-time Optimal CPU-time 

n = 10 180 0.00 180 0.00 180 0.00 

n = 20 180 0.98 180 0.21 180 0.07 

n = 30 173 93.63 166 112.35 179 10.91 

All problems 533 31.54 526 37.52 539 3.66 

7.2.6. Variable resource availabilities 

When the resource availabilities are allowed to vary over time, the complexity of the 

GRCPSP and the RCPSP-GPR increases. The GDH procedure needs to be explicitly equipped 

with the ability to handle such time-varying resource availabilities, which will result in an 

increased number of decision periods and nodes in the search tree. The DRH procedure need not 

be modified in order to be able to handle time-varying resource availabilities (or, for that matter, 

variable resource requirements). The introduction of dummy activities and appropriate time lags, 

as discussed in Section 3, will transform an instance with variable availabilities (and 

requirements) into an equivalent instance with constant availabilities (and requirements). 
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Naturally, the increased number of activities in the project network will have a substantial effect 

on the efficiency ofthe DRH procedure. 

In order to estimate the effect of introducing variable resource availabilities on the 

performance of the GDH procedure, we modified the 540 instances with minimal time lags only as 

follows. The constant availabilities are replaced by variable availabilities which are constant for 

an interval equal to 5 time periods. The availability is varied from interval to interval by 

increasing, respectively decreasing the availability with 1 or 2 units (or by keeping it constant), 

each with equal probability. Each time the resource availability dropped below the maximal 

demand by any of the activities for that resource type, the availability was assigned that maximal 

demand. The computational results indicate that the performance of the GDH procedure does not 

suffer significantly from this relaxed assumption. The average computation time increases from 

0.009 to 0.018 seconds, while the average number of nodes in the search tree increases from 781 

to 1,492. 

8. Conclusions 

In this paper, we reVieW a number of algorithms for project scheduling problems with 

resource constraints and generalized precedence relations. These generalized precedence relations 

specify minimal and/or maximal time lags between the starting and completion times of activities, 

and allow to model various types of activity overlaps (either permissible or mandatory), and also 

allow to model a wide variety of characteristics of real-life project scheduling applications. Also 

several objective functions are dealt with, including all kinds of regular performance measures 

and the nonregular measure of maximizing the net present value of a project. 

The algorithms are enhanced and recoded in order to gain computational efficiency taking 

full advantage of modern 32-bit compiler architecture. We report new computational results using 

these algorithms on a problem set consisting of randomly generated problem instances. A 

comparison with results reported in the literature reveals that the algorithms presented here 

constitute the state-of-the-art for project scheduling with generalized precedence relations. When 

the optimal solution cannot be guaranteed, a truncated version of the algorithms can be used to 

provide high-quality solutions at acceptable computational cost. The experiments also highlight 

the fundamental difference in complexity between the precedence diagramming case, i.e. the case 

with minimal time lags only, and the generalized precedence relations case, in which both 

minimal and maximal time lags are allowed. 

An investigation into the relationship between the complexity of a problem instance, defined 

by the computational effort required for its solution, and its intrinsic characteristics, reveals that 

the network morphology as well as the resource constrainedness of the problems significantly 

influence the required computational effort. The more dense the project network becomes, 

measured by an increase in the order strength, the easier it is to obtain the optimal solution. 

When more activities require the use of resources, measured by an increase in the resource factor, 
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the harder the instances become. The impact of the resource-constrainedness, measured by the 

resource strength, has a bell-shaped impact on the computational complexity of resource­

constrained project scheduling problems with generalized precedence relations. Instances with a 

low or high resource-constrainedness are easier to solve than instances with an intermediate 

resource-constrainedness, although the most difficult problems are relatively highly resource­

constrained. 
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