30,708 research outputs found

    Optimal Control of Uncertain Systems Using Sample Average Approximations

    Get PDF
    The article of record as published may be found at http://dx.doi.org/10.1137/140983161In this paper, we introduce the uncertain optimal control problem of determining a control that minimizes the expectation of an objective functional for a system with parameter uncertainty in both dynamics and objective. We present a computational framework for the numerical solution of this problem, wherein an independently drawn random sample is taken from the space of uncertain parameters, and the expectation in the objective functional is approximated by a sample average. The result is a sequence of approximating standard optimal control problems that can be solved using existing techniques. To analyze the performance of this computational framework, we develop necessary conditions for both the original and approximate problems and show that the approximation based on sample averages is consistent in the sense of Polak [Optimization: Algorithms and Consistent Approximations, Springer, New York, 1997]. This property guarantees that accumulation points of a sequence of global minimizers (stationary points) of the approximate problem are global minimizers (stationary points) of the original problem. We show that the uncertain optimal control problem can further be approximated in a consistent manner by a sequence of nonlinear programs under mild regularity assumptions. In numerical examples, we demonstrate that the framework enables the solution of optimal search and optimal ensemble control problems

    Piecewise Constant Policy Approximations to Hamilton-Jacobi-Bellman Equations

    Full text link
    An advantageous feature of piecewise constant policy timestepping for Hamilton-Jacobi-Bellman (HJB) equations is that different linear approximation schemes, and indeed different meshes, can be used for the resulting linear equations for different control parameters. Standard convergence analysis suggests that monotone (i.e., linear) interpolation must be used to transfer data between meshes. Using the equivalence to a switching system and an adaptation of the usual arguments based on consistency, stability and monotonicity, we show that if limited, potentially higher order interpolation is used for the mesh transfer, convergence is guaranteed. We provide numerical tests for the mean-variance optimal investment problem and the uncertain volatility option pricing model, and compare the results to published test cases

    A unified framework for solving a general class of conditional and robust set-membership estimation problems

    Full text link
    In this paper we present a unified framework for solving a general class of problems arising in the context of set-membership estimation/identification theory. More precisely, the paper aims at providing an original approach for the computation of optimal conditional and robust projection estimates in a nonlinear estimation setting where the operator relating the data and the parameter to be estimated is assumed to be a generic multivariate polynomial function and the uncertainties affecting the data are assumed to belong to semialgebraic sets. By noticing that the computation of both the conditional and the robust projection optimal estimators requires the solution to min-max optimization problems that share the same structure, we propose a unified two-stage approach based on semidefinite-relaxation techniques for solving such estimation problems. The key idea of the proposed procedure is to recognize that the optimal functional of the inner optimization problems can be approximated to any desired precision by a multivariate polynomial function by suitably exploiting recently proposed results in the field of parametric optimization. Two simulation examples are reported to show the effectiveness of the proposed approach.Comment: Accpeted for publication in the IEEE Transactions on Automatic Control (2014

    Utility-Based Hedging of Stochastic Income

    Get PDF
    In this dissertation, we study and examine utility-based hedging of the optimal portfolio choice problem in stochastic income. By assuming that the investor has a preference governed by negative exponential utility, we a derive a closed-form solution for the indifference price through the pricing methodology based on utility maximization criteria. We perform asymptotic analysis on this closed form solution to develop the analytic approximation for the indifference price and the optimal hedging strategy as a power series expansion involving the risk aversion and the correlation between the income and a traded asset. This gives a fast computation route to assess these quantities and perform our analysis. We implemented the model to perform simulations for the optimal hedging policy and produce the distributions of the hedging error at terminal time over many sample paths histories. In turn, we analyze the performance of the utility-based hedging strategy together with the strategy which arises from employing the traded asset as a substitute for the stochastic income

    A Probabilistic Approach to Robust Optimal Experiment Design with Chance Constraints

    Full text link
    Accurate estimation of parameters is paramount in developing high-fidelity models for complex dynamical systems. Model-based optimal experiment design (OED) approaches enable systematic design of dynamic experiments to generate input-output data sets with high information content for parameter estimation. Standard OED approaches however face two challenges: (i) experiment design under incomplete system information due to unknown true parameters, which usually requires many iterations of OED; (ii) incapability of systematically accounting for the inherent uncertainties of complex systems, which can lead to diminished effectiveness of the designed optimal excitation signal as well as violation of system constraints. This paper presents a robust OED approach for nonlinear systems with arbitrarily-shaped time-invariant probabilistic uncertainties. Polynomial chaos is used for efficient uncertainty propagation. The distinct feature of the robust OED approach is the inclusion of chance constraints to ensure constraint satisfaction in a stochastic setting. The presented approach is demonstrated by optimal experimental design for the JAK-STAT5 signaling pathway that regulates various cellular processes in a biological cell.Comment: Submitted to ADCHEM 201

    Solving optimal control problems governed by random Navier-Stokes equations using low-rank methods

    Full text link
    Many problems in computational science and engineering are simultaneously characterized by the following challenging issues: uncertainty, nonlinearity, nonstationarity and high dimensionality. Existing numerical techniques for such models would typically require considerable computational and storage resources. This is the case, for instance, for an optimization problem governed by time-dependent Navier-Stokes equations with uncertain inputs. In particular, the stochastic Galerkin finite element method often leads to a prohibitively high dimensional saddle-point system with tensor product structure. In this paper, we approximate the solution by the low-rank Tensor Train decomposition, and present a numerically efficient algorithm to solve the optimality equations directly in the low-rank representation. We show that the solution of the vorticity minimization problem with a distributed control admits a representation with ranks that depend modestly on model and discretization parameters even for high Reynolds numbers. For lower Reynolds numbers this is also the case for a boundary control. This opens the way for a reduced-order modeling of the stochastic optimal flow control with a moderate cost at all stages.Comment: 29 page

    Robust nonlinear control of vectored thrust aircraft

    Get PDF
    An interdisciplinary program in robust control for nonlinear systems with applications to a variety of engineering problems is outlined. Major emphasis will be placed on flight control, with both experimental and analytical studies. This program builds on recent new results in control theory for stability, stabilization, robust stability, robust performance, synthesis, and model reduction in a unified framework using Linear Fractional Transformations (LFT's), Linear Matrix Inequalities (LMI's), and the structured singular value micron. Most of these new advances have been accomplished by the Caltech controls group independently or in collaboration with researchers in other institutions. These recent results offer a new and remarkably unified framework for all aspects of robust control, but what is particularly important for this program is that they also have important implications for system identification and control of nonlinear systems. This combines well with Caltech's expertise in nonlinear control theory, both in geometric methods and methods for systems with constraints and saturations

    Control of Complex Dynamic Systems by Neural Networks

    Get PDF
    This paper considers the use of neural networks (NN's) in controlling a nonlinear, stochastic system with unknown process equations. The NN is used to model the resulting unknown control law. The approach here is based on using the output error of the system to train the NN controller without the need to construct a separate model (NN or other type) for the unknown process dynamics. To implement such a direct adaptive control approach, it is required that connection weights in the NN be estimated while the system is being controlled. As a result of the feedback of the unknown process dynamics, however, it is not possible to determine the gradient of the loss function for use in standard (back-propagation-type) weight estimation algorithms. Therefore, this paper considers the use of a new stochastic approximation algorithm for this weight estimation, which is based on a 'simultaneous perturbation' gradient approximation that only requires the system output error. It is shown that this algorithm can greatly enhance the efficiency over more standard stochastic approximation algorithms based on finite-difference gradient approximations
    • …
    corecore