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OPTIMAL CONTROL OF UNCERTAIN SYSTEMS USING SAMPLE
AVERAGE APPROXIMATIONS∗

CHRIS PHELPS† , JOHANNES O. ROYSET‡ , AND QI GONG†

Abstract. In this paper, we introduce the uncertain optimal control problem of determining
a control that minimizes the expectation of an objective functional for a system with parameter
uncertainty in both dynamics and objective. We present a computational framework for the nu-
merical solution of this problem, wherein an independently drawn random sample is taken from the
space of uncertain parameters, and the expectation in the objective functional is approximated by a
sample average. The result is a sequence of approximating standard optimal control problems that
can be solved using existing techniques. To analyze the performance of this computational frame-
work, we develop necessary conditions for both the original and approximate problems and show
that the approximation based on sample averages is consistent in the sense of Polak [Optimization:
Algorithms and Consistent Approximations, Springer, New York, 1997]. This property guarantees
that accumulation points of a sequence of global minimizers (stationary points) of the approximate
problem are global minimizers (stationary points) of the original problem. We show that the uncer-
tain optimal control problem can further be approximated in a consistent manner by a sequence of
nonlinear programs under mild regularity assumptions. In numerical examples, we demonstrate that
the framework enables the solution of optimal search and optimal ensemble control problems.
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1. Introduction. In this paper we consider an extension of nonlinear optimal
control for problems with Mayer-type objective functional to a setting with parameter
uncertainty. We introduce the uncertain optimal control problem (UOCP), where the
objective functional and system dynamics depend on stochastic parameters and the
goal is to find a control that minimizes the expected value of the objective. The
UOCP addresses a number of emerging applications in optimal control that require
design of an open-loop control for an uncertain system such as those arising in optimal
search or ensemble control. In the optimal search problem, the goal is to design a
search plan to maximize the probability of detecting a moving target with unknown
location or goals [30]. In the ensemble control problem, the goal is to determine
a single open-loop control for a large number of structurally identical systems with
parameter variation [27], which can be viewed as a single system with stochastic
parameters [40]. In addition, existing control problems such as trajectory optimization
may benefit from a problem formulation that incorporates inherent uncertainty in
dynamical models, environment [17, 46], and behavior of other agents [11, 37, 44]. In
this paper, we develop a computational framework for the UOCP as well as necessary
conditions for validation and verification of solutions.

Specifically, the UOCP is the following problem: Find an initial state and control
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2 CHRIS PHELPS, JOHANNES O. ROYSET, AND QI GONG

pair η = (ξη, uη) that minimizes the objective functional

(1.1) J(η) = E
P [F (xη(1, ω), ω)],

where E
P is the expectation on the complete probability space (Ω,Σ, P ) and ω ∈ Ω.

Furthermore, xη(t, ω) is the solution to the uncertain dynamical system

ẋη(t, ω) = f(xη(t, ω), uη(t), ω), xη(0, ω) = ξη + ι(ω)(1.2)

almost surely. Here, ξη ∈ R
n, uη : [0, 1] �→ R

m, xη : [0, 1] × Ω �→ R
n, ι : Ω �→ R

n,
f : Rn × R

m × Ω �→ R
n, and F : Rn × Ω �→ R. We note that for a fixed ω ∈ Ω,

(1.2) is a standard deterministic dynamical system, and therefore the existence and
uniqueness of the solution are guaranteed under suitable regularity conditions. Such
conditions then also ensure that the objective functional (1.1) is well defined.

The UOCP is an extension of the constrained nonlinear optimal control problem
with a Mayer objective functional to scenarios with parameter uncertainty. That is,
the standard constrained nonlinear optimal control problem with no parameter uncer-
tainty can be viewed as a special case of the UOCP, in which the space Ω of stochastic
parameters contains only a single element. In the last few decades, a variety of direct
methods have been developed for solving constrained nonlinear optimal control prob-
lems. These methods are based on techniques for approximating a continuous-time
optimal control problem by a discretized finite-dimensional nonlinear program, and
have achieved substantial practical success in many areas [6, 7, 9, 29]. A number of
numerical schemes have been employed for this purpose, including Euler [35, Chap-
ter 4], Runge–Kutta [25, 42], and pseudospectral [19, 26, 38]. However, the apparent
simplicity of such discretization schemes belies deep theoretical issues involved in
the approximation of an optimization problem. When employing a direct approxi-
mation method it is necessary to perform careful analysis in order to demonstrate
that the numerical scheme provides a valid approximation to the original problem.
Indeed, even for standard optimal control problems, there are counterexamples show-
ing that an inappropriately designed discretization may not be convergent [10]. The
aim of this work is to extend the direct methods to the new problem setting with
parameter uncertainty. Using the theory of consistent approximations developed by
Polak [35, Chapter 3], we demonstrate that a numerical scheme based on sample
average approximations produces a meaningful approximation to the UOCP.

A number of related consistency results have recently been developed for two prob-
lems related to the UOCP, including the conditionally deterministic optimal search
problem (CDOSP). The CDOSP is an optimal control problem in which the goal is
to determine the optimal search trajectory for an agent attempting to detect a tar-
get whose motion depends on some unknown parameter, such as initial position or
starting time; see [9, 14, 15]. This problem is a special case of the UOCP where
the unknown parameter appears only in the objective functional and not in the sys-
tem dynamics. In [9], a numerical algorithm based on the approximation of the
expectation by a left-point numerical integration rule is provided for a special case
of searching for a target moving at constant velocity in a channel. In [14, 15] the
authors use a composite-Simpson integration scheme to discretize a two-dimensional
parameter space and develop a computational method for solving the CDOSP. They
also analyze the performance of the computational method using Polak’s consistent
approximation theory [35, section 3.3]. In [32, 33] the authors show that this ap-
proach can be applied to other parameter spaces and numerical integration schemes.
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OPTIMAL CONTROL OF UNCERTAIN SYSTEMS 3

Furthermore, they provide a Pontryagin-like minimum principle for solutions that are
accumulation points of a sequence of global minimizers of the approximate problem.

A similar approach has been taken in the solution of the ensemble control prob-
lem, where the goal is to determine a single open-loop controller that simultaneously
steers a large number of similar systems from an initial state to a desired final state.
The ensemble is represented in this framework as a continuum of structurally identical
dynamical systems indexed by parameters. Interest in this problem arises from the
difficulty of designing compensating pulses for magnetic resonance experiments. Nec-
essary and sufficient conditions for ensemble controllability are provided for a number
of linear and bilinear systems in [27, 29]; however, such conditions for the general
nonlinear ensemble are absent. Even when the ensemble is controllable, determina-
tion of the desired control is difficult, and it is not surprising that such a control is
available in closed form for only a small number of systems. Therefore a new class of
computational methods must be developed to provide numerical solutions to ensemble
control problems.

One approach to overcoming the difficulty of ensemble control is to leverage exist-
ing results on computational optimal control. By developing an objective functional
for the ensemble control problem, it is possible to formulate an optimal control prob-
lem such that the calculated control achieves the desired state transfer of the ensem-
ble. A formulation for such an optimal ensemble control problem (OECP) is suggested
in [28], wherein the goal is to minimize the expectation of the square error of the final
state. By interpreting the ensemble as a single dynamical system with stochastic pa-
rameters, this problem can be fit into the UOCP framework [40]. In [39, 40, 41] the
authors extend the pseudospectral optimal control method [19, 20] to the OECP using
a quadrature scheme. In this approach, the parameter space is discretized accord-
ing to an Legendre–Gauss–Lobatto (LGL)-quadrature scheme, and the time domain
is discretized using an LGL-pseudospectral method, resulting in a high-dimensional
nonlinear program for which a variety of robust and efficient numerical algorithms
are available. The approach is applied to nuclear magnetic resonance [39, 40] and
neuroscience applications [41] with one- and two-dimensional parameter spaces.

Although the approach of using quadrature schemes to approximate the objec-
tive functional has been successfully applied to a number of systems for both the
OECP and the CDOSP, it is inherently limited to problems with few parameters, as
quadrature-based numerical integration methods are known to be computationally ex-
pensive when applied to high-dimensional spaces. In the literature, other techniques
have been used to approximate an uncertain dynamical system by a large but finite
number of decoupled deterministic systems. The stochastic collocation [5] method
is similar to the aforementioned quadrature scheme in that a finite number of nodes
are selected from the parameter space, and the dynamical system is approximated
by a tensor product of polynomials. The polynomial chaos method approximates the
random state vector by using a Galerkin projection onto a set of orthogonal poly-
nomials [45]. This approach has also been used in an optimal control setting with
parameter uncertainty for special cases of the UOCP [12, 13, 23, 24]. However, these
techniques suffer from the same curse of dimensionality as the quadrature approach.
Indeed, as the number of parameters increases, the size of the approximate optimal
control problem increases exponentially, and numerical solution of the approximate
problem quickly becomes intractable. Still, an algorithm to solve the UOCP for
high-dimensional parameter spaces is desirable, as the inclusion of a large number
of parameters allows the formulation to be used for applications with more robust
physical models.
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4 CHRIS PHELPS, JOHANNES O. ROYSET, AND QI GONG

In this paper, we develop a computational framework for the solution of the
UOCP based on sample average approximations. In our approach, a random, inde-
pendently distributed sample is taken from the space of stochastic parameters. Then,
the expectation in the objective functional of the control problem is approximated by
the sample average. The resulting family of standard optimal control problems can
be solved using existing optimal control algorithms, such as Euler (see [35, Chapter
4]), Runge–Kutta [21, 42], and pseudospectral [26, 38] methods. We refer the reader
to [2, 4] for early work on sample average approximations to stochastic optimization,
which also provides our foundation. For a treatment of cases in finite dimensions,
see [43]. The use of Monte Carlo sampling methods for integration avoids compu-
tational issues inherent in quadrature-based approaches, as the number of nodes,
and therefore the dimension of the approximate control problem, does not depend
on the number of stochastic parameters. Consequently, as the number of stochas-
tic parameters grows, Monte Carlo methods become more favorable. Since the rate
of convergence of these methods is only 1 over the square root of the sample size,
the proposed framework might still involve substantial computational cost. However,
we believe further algorithmic studies, beyond the scope of the present paper, might
mitigate this somewhat, for example, through the development of variance reduction
techniques. As with all direct methods for optimal control, it is essential to demon-
strate that the proposed discretization scheme provides a valid approximation to the
UOCP. It is therefore necessary to extend consistency results for standard optimal
control problems [20, 35, 42] to the UOCP in order to assure that the computational
framework based on sample averages provides meaningful results.

We provide three classes of results for sample average approximations of the
UOCP. First, we employ an extension of the strong law of large numbers to random
lower semicontinuous functions to address the convergence properties of the objective
functional. We demonstrate that accumulation points of a sequence of global minimiz-
ers of the approximate problem are global minimizers of the original problem. This
property shows that the sample average approximation is meaningful in the sense that
if the sequence of optimal solutions to the approximate problem is seen to converge as
the sample size approaches infinity, then the limit must be an optimal solution to the
original problem. Second, we provide necessary optimality conditions for the UOCP
and its approximation using optimality functions based on the L2-Frechet derivative
of the objective functional, which may be used for validation and verification of nu-
merical solutions. By again using the extension of the strong law of large numbers, we
show that accumulation points of a sequence of stationary points of the approximate
problem are stationary points of the original problem. Therefore, the sample average
approximation scheme for the UOCP is consistent in the sense of Polak [35, section
3.3]. The above results deal with the approximation of the UOCP by sample averages.
Since such approximations are standard optimal control problems, further approxi-
mations in the time domain in the usual manner are required. Third, we provide a
consistency result for the approximate problem obtained by sample average approxi-
mations as well as time discretization using Euler’s method. All of these results apply
to both a constrained and an unconstrained formulation of the UOCP.

The paper is organized as follows: Section 2 formulates the UOCP. Section 3
introduces the approximation scheme based on sample averages and evaluates the
convergence properties of the approximate problem as the sample size tends to in-
finity. Section 4 introduces optimality functions for the original and approximate
problems, which provide necessary conditions for optimality. Section 5 demonstrates
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OPTIMAL CONTROL OF UNCERTAIN SYSTEMS 5

a convergence property for the optimality functions, showing that the approximation
based on sample averages is consistent in the sense of Polak. Section 6 shows that
an approximate problem that is further subject to time discretization using Euler’s
method leads to a nonlinear program that is in some sense consistent with the UOCP.
Section 7 applies the computational framework to two examples involving damping a
harmonic oscillator with unknown natural frequency and detecting an intruder in a
channel.

2. Formulation of the uncertain control problem. A number of recently
considered applications in computational optimal control theory, such as optimal
search [32, 33, 34] and ensemble control [39, 40, 41], require the calculation of an
open-loop control for a system with stochastic parameters which will minimize the
expectation of a predetermined cost functional. The UOCP, defined in section 1, is
to find an initial state and control pair η = (ξη, uη) from a given admissible set to
minimize the objective functional (1.1) subject to the uncertain dynamical system
(1.2). In this work we develop a computational framework to solve two versions of
the UOCP for which the admissible sets differ based on the nature of the control
constraint.

Before we define these versions, we introduce the spaces on which we conduct our
analysis. To develop optimality conditions, we make use of an inner product on the
space of decision variables. Therefore we work in the L2 topology. Let Lm

2 [0, 1] be

the space of all functions v : [0, 1] �→ R
m such that

∫ 1

0
‖v(t)‖2 dt < ∞. We carry out

our analysis in a subspace of the Hilbert space

H2 = R
n × Lm

2 [0, 1],

where the inner product and norm on H2 are defined for any η = (ξη, uη), η′ =
(ξη

′
, uη′

) ∈ H2 by

〈η, η′〉H2 = 〈ξη, ξη′〉+ 〈uη, uη′〉2.
Therefore the norm in H2 is given by

‖η‖2H2
= ‖ξη‖2 + ‖uη‖22 .

In this paper we address the two cases of the UOCP, where the control u(t) is
constrained to be in either a compact convex set or an open convex set in R

m for
almost every t ∈ [0, 1]. We therefore define the admissible sets for each of these
problems as follows: Given compact, convex sets ΞC ⊂ R

n and UC ⊂ R
m, we define

the set of admissible controls

UC = {u ∈ Lm
2 [0, 1] |u(t) ∈ UC for almost every t ∈ [0, 1]}.

The set of all admissible state-control pairs for this problem is then given by HC =
ΞC × UC . Similarly, given bounded, open, convex sets ΞO ⊂ R

n and UO ⊂ R, we
define the set of admissible controls

UO = {u ∈ Lm
2 [0, 1] |u(t) ∈ UO for almost every t ∈ [0, 1]}.

The set of all admissible state-control pairs for this problem is then given by HO =
ΞO ×UO.

The sets HC and HO are subsets of the pre-Hilbert space H∞,2 = {(ξ, u) ∈
H2| ‖u‖∞ < ∞}. For mathematical convenience, we assume ΞO ⊂ ΞC and UO ⊂
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6 CHRIS PHELPS, JOHANNES O. ROYSET, AND QI GONG

UC so that HO ⊂ HC . We observe that in this work we define the admissible set
differently from how it is done in Polak [35, Chapter 4], which requires the pointwise
control constraint be satisfied for all t ∈ [0, 1]. Let U ⊂ R

m. We note that for each
u ∈ Lm

2 [0, 1] with u(t) ∈ U for almost every t ∈ [0, 1], there is a member ũ of its
equivalence class such that ũ(t) ∈ U for every t ∈ [0, 1]. Therefore for any given
constraint set U , we can apply the standard results from the theory of differential
equations to controls from our admissible set.

In developing optimality conditions, we evaluate derivatives with respect to the
decision variable η. In order to guarantee that these derivatives exist, we work on
a space H which is slightly larger than HC . To define the space H, let ρ1, ρ2 ∈ R

be constants large enough so that ‖ξη‖ < ρ1, ‖uη‖∞ < ρ2 for all η ∈ HC . The
existence of these constants is guaranteed by the compactness of ΞC and UC . Now let
H = {(ξ, u) ∈ R

n × Lm
2 [0, 1]| ‖ξ‖ < ρ1, ‖u‖∞ < ρ2}. The space H is open in the L∞

topology, and the inclusion HO ⊂ HC ⊂ H holds. The reader should note that all
convergence results on the sets HO,HC , and H are with respect to the L2 topology.

With the appropriate function spaces defined, we now state the UOCPs that are
the focus of this work.

Problem BC : Find an initial state and control pair η = (ξη, uη) ∈ HC to minimize
the objective functional (1.1) subject to the uncertain dynamical system (1.2).

Problem BO: Find an initial state and control pair η = (ξη, uη) ∈ HO to minimize
the objective functional (1.1) subject to the uncertain dynamical system (1.2).

The set UC determines a pointwise control constraint for Problem BC . Because
UC is closed, this formulation can be used to approach uncertain optimal control
problems with pointwise inequality control constraints, as long as the set of points
which satisfy these constraints is convex. Problem BO can be used to approach un-
constrained optimal control problems by making UO large enough that all reasonable
controls lie in the admissible set. To conduct an analysis of Problems BC and BO we
need the following regularity assumptions.

Assumption 1. There exists a compact set X0 ⊂ R
m such that for each η ∈ H,

xη(t, ω) ∈ X0 for all t ∈ [0, 1], ω ∈ Ω, where xη is the solution to (1.2) for η =
(ξη, uη).

This assumption essentially requires that there does not exist ω ∈ Ω such that the
dynamical system given by f(·, ·, ω) has a finite escape time. This assumption will be
valid for a number of dynamical systems frequently encountered in control problems,
for example, input-to-state stable systems and systems for which f is globally Lipschitz
or satisfies a linear growth condition in the state variable.

Assumption 2. For the set X0 defined in Assumption 1 and the set V = {v ∈
R

m| ‖v‖ < ρ2}, for each ω ∈ Ω the function f(·, ·, ω) is continuously differentiable
on X0 × V , and for each x ∈ X0, v ∈ V, f(x, v, ·), it is measurable and bounded on
Ω. Furthermore, there exists a measurable function Lf : Ω �→ [1,∞) such that for all
x′, x′′ ∈ X0 and v′, v′′ ∈ V , the following inequalities hold for every ω ∈ Ω:

‖f(x′, v′, ω)− f(x′′, v′′, ω)‖ ≤ Lf (ω) [‖x′ − x′′‖+ ‖v′ − v′′‖] ,
‖fx(x′, v′, ω)− fx(x

′′, v′′, ω)‖ ≤ Lf (ω) [‖x′ − x′′‖+ ‖v′ − v′′‖] ,
‖fu(x′, v′, ω)− fu(x

′′, v′′, ω)‖ ≤ Lf (ω) [‖x′ − x′′‖+ ‖v′ − v′′‖] .

Assumption 3. For the set X0 defined in Assumption 1, F (·, ω) is continuously
differentiable on X0 for each ω ∈ Ω, and F (x, ·), Fx(x, ·) are measurable for each
x ∈ X0. Furthermore, there exists a measurable function LF : Ω �→ [1,∞) such that
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OPTIMAL CONTROL OF UNCERTAIN SYSTEMS 7

for any x′, x′′ ∈ X0, the following inequalities hold for every ω ∈ Ω:

|F (x′, ω)− F (x′′, ω)| ≤ LF (ω) ‖x′ − x′′‖ ,
‖Fx(x

′, ω)− Fx(x
′′, ω)‖ ≤ LF (ω) ‖x′ − x′′‖ .

Assumptions 2–3 require the differentiability of the functions in the problem for-
mulation with respect to the states and controls, as well as measurability and inte-
grability of the Lipschitz constant with respect to the stochastic parameter ω. These
assumptions will be valid for a variety of problem frameworks in physical and other
applications. For instance, in previously considered optimal search [32, 33] and en-
semble control settings [39, 40, 41], the parameter space is a compact subspace of Rn,
and the functions in the problem formulation are sufficiently smooth; therefore As-
sumptions 2–3 are valid in these cases. These assumptions are used later to establish
convergence properties and optimality conditions for the UOCPs.

In order to facilitate the analysis of the computational framework for the UOCP
which is the focus of this work, we first state the following results on uncertain dy-
namical systems.

Proposition 2.1. Suppose that Assumptions 1–2 are satisfied. Then, for any
η ∈ H, the uncertain dynamical systems (1.2) have a unique solution xη(·, ω) for each
ω ∈ Ω.

Proof. The proof follows directly from Proposition 5.6.5 of [35].
Proposition 2.2 (Carathéodory functions are jointly measurable [1, Lemma

4.51]). Let (S,Σ) be a measurable space, X a separable metric space, and Y a metriz-
able space. Let f : X × S �→ Y be a function such that
(i) for each x ∈ X, f(x, ·) : S �→ Y is measurable;
(ii) for each s ∈ S, f(·, s) : X �→ Y is continuous.

Then f is called a Carathéodory function, and f : X × S �→ Y is jointly measurable.
Lemma 2.3 (see [31, Lemma 4.1.3]). Suppose that Assumption 1 is satisfied, and

let V be the set defined in Assumption 2. Let κ : Rl×V ×Ω �→ R
l be such that κ(·, ·, ω)

is continuously differentiable for each ω ∈ Ω, and κ(x, u, ·) is measurable for each
x ∈ R

l, v ∈ V . Suppose also that there exists a measurable function K : Ω �→ [1,∞)
such that for every x, x′ ∈ R

n, v, v′ ∈ V , and ω ∈ Ω,

‖κ(x, v, ω)− κ(x′, v′, ω)‖ ≤ K(ω) [‖x− x′‖+ ‖v − v′‖] .
For each η = (ξη, uη) ∈ H, ω ∈ Ω, let χη : [0, 1]× Ω → R

l be the solution to

χ̇η(t, ω) = κ(χη(t, ω), uη(t), ω), χ(0) = ξη.

Then χη is measurable, and for each ω ∈ Ω we have∥∥∥xη′
(t, ω)− xη′′

(t, ω)
∥∥∥ ≤

√
2K(ω)eK(ω) ‖η′ − η′′‖H2

.

3. Approximation of the UOCP using a sample average scheme. In this
section we introduce the approximate optimal control problem based on a sample aver-
age scheme. Sample average approximations have been successfully applied to a wide
variety of problems from the field of stochastic optimization with finite-dimensional
decision spaces [43]. In the sample average approach, a random sample of parameter
values is drawn from the parameter space, and the expectation in the objective func-
tional is approximated by the sample mean. When the sample average approximation
is applied to a stochastic programming problem with a finite-dimensional decision
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8 CHRIS PHELPS, JOHANNES O. ROYSET, AND QI GONG

space, this process results in a sequence of approximating nonlinear programming
(NLP) problems. In this work we use the sample average method to approximate the
UOCP, which has an infinite-dimensional decision space. The resulting approximate
problem is a standard optimal control problem that can be solved using existing tech-
niques from the field of control theory [8]. In addition, we use an extension of the
strong law of large numbers (see [2, 4]) to analyze the convergence properties of such
an approximation.

To apply this approximation scheme, for a given sample size M , we take an
independent P -distributed sample {ω1, ω2, . . . , ωM} from the parameter space Ω and
approximate the objective functional (1.1) by the sample average

(3.1) JM (η)
.
=

1

M

M∑
i=1

F
(
xη(1, ωi), ωi).

The approximate uncertain optimal control problems can then be stated as follows.
Problem BM

C : Find η ∈ HC to minimize the objective functional (3.1), where xη

is the solution to the uncertain dynamical system (1.2).
Problem BM

O : Find η ∈ HO to minimize the objective functional (3.1), where xη

is the solution to the uncertain dynamical system (1.2).
Problems BM

C and BM
O are standard optimal control problems which can be solved

using existing techniques. We discuss the convergence properties of Problems BM
C

and BM
O in the context of epiconvergence of the objective functionals. The concept

of epiconvergence provides a natural framework to analyze the approximation of an
optimization problem, as it allows us to discuss the convergence of the inf and argmin
operators.

3.1. Preliminary results on epiconvergence and random lower semi-
continuous functions. To leverage existing results on the convergence of sample
average approximations, we recall the concepts of epiconvergence and random lower
semicontinuous functions.

Definition 3.1 (see [3]). Let (X, d) be a separable complete metric space. Con-
sider the sequence of lower semicontinuous functions fM : X �→ R. We say that fM
epiconverges to f , denoted fM →epi f , if and only if
(i) lim inf fM (xM ) ≥ f(x) whenever xM → x,
(ii) lim fM (xM ) = f(x) for at least one sequence xM → x.

Definition 3.2 (see [4]). Let (X, d) be a separable complete metric space with
B the Borel sigma-field. Let P be a probability measure on the measurable space
(Ω,Σ) such that Σ is P -complete. A function f : X × Ω �→ R is a random lower
semicontinuous function if and only if
(i) for all ω ∈ Ω, the function x �→ f(x, ω) is lower semicontinuous,
(ii) (x, ω) �→ f(x, ω) is B ⊗ Σ measurable.

In probability theory, the strong law of large numbers guarantees the almost
sure convergence of the sample average as the number of samples drawn approaches
infinity. The following proposition extends this result to random lower semicontinuous
functions.

Proposition 3.3 (see [2, Theorem 2.3]). Let (Ω,Σ, P ) be a probability space
such that Σ is P -complete. Let (X, d) be a separable complete metric space. Suppose
that the function f : X×Ω �→ R is a random lower semicontinuous function and there
exists an integrable function a0 : Ω �→ R such that f(x, ω) ≥ a0(ω) almost surely. Let
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{ω1, . . . , ωM} be an independent P -distributed random draw, and define

f̂(·, ω1, . . . , ωM ) =
1

M

M∑
i=1

f(·, ωi).

Then, as M → ∞, f̂(·, ω1, . . . , ωM ) epiconverges almost surely to E
P f(·, ω).

In general, when approximating an optimization problem, it is difficult to guar-
antee that a global minimizer of the original problem will be an accumulation point of
a sequence of global minimizers of the approximate problem. However, the following
result provides a useful convergence property for the approximate argmin and inf
operators when the sequence of approximating objective functionals is epiconvergent.

Proposition 3.4 (see [3, Theorem 2.5]). Let (X, d) be a separable complete
metric space. Consider a sequence of lower semicontinuous functions fM : X �→ R

such that fM epiconverges to f . If {xM}M∈N ⊂ X is a sequence of global minimizers
of fM , and x̂ is any accumulation point of this sequence (along a subsequence indexed
by a set K ⊂ N), then x̂ is a global minimizer of f and limM∈K infx∈X fM (xM ) =
infx∈X f(x).

3.2. Epiconvergence of JM to J. In the previous section we introduced epi-
convergence as a means to determine the convergence properties of an approximate
optimization problem. In this section we analyze the convergence of our sample
average scheme by demonstrating the epiconvergence of the approximate objective
functional JM to the original objective functional J . To do so, we show that J can be
written as the expectation of a random lower semicontinuous function. To this end
we introduce T : H× Ω �→ R given by

T (η, ω)
.
= F (xη(1, ω), ω).

The following lemma establishes that T is a random lower semicontinuous function.
Lemma 3.5. Suppose Assumptions 1–3 hold, and let LF , Lf be defined as in

Assumptions 2–3. For each ω ∈ Ω, the function T (·, ω) is Lipschitz continuous with
Lipschitz constant LT (ω) =

√
2LF (ω)Lf (ω)e

Lf (ω). Furthermore, T is B ⊗Σ measur-
able, where B is the Borel sigma-field generated by the open sets of H.

Proof. From Assumption 2 and Lemma 5.6.7 of [35], it is known that for each
η, η′ ∈ H and ω ∈ Ω,∥∥∥xη(1, ω)− xη′

(1, ω)
∥∥∥ ≤ √

2Lf(ω)e
Lf (ω) ‖η − η′‖H2

.

It follows from Assumption 3 that

|T (η, ω)− T (η′, ω)| ≤
√
2LF (ω)Lf (ω)e

Lf (ω) ‖η − η′‖H2
.

Here F : R
n × Ω �→ R is measurable by Assumption 3 and Proposition 2.2. For

each η ∈ H, xη(1, ·) is measurable by Lemma 2.3, so that T (η, ·) = F (xη(1, ·), ·) is
measurable. T is therefore B × Σ measurable by Proposition 2.2.

We can now write the objective functional J and approximate objective functional
JM in terms of the random lower semicontinuous function T :

J(η) = E
P
[
T (η, ω)

]
, JM (η) =

1

M

M∑
i=1

T (η, ωi).
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10 CHRIS PHELPS, JOHANNES O. ROYSET, AND QI GONG

Before we establish the epiconvergence JM →epi J using Proposition 3.3, we recall
the following fact.

Lemma 3.6 (see [31, Lemma 4.2.2]). The space HC is a complete, separable
metric space.

We can now demonstrate the epiconvergence of the approximate objective func-
tional using the following assumption.

Assumption 4. Let LT : Ω �→ [1,∞) be defined as in Lemma 3.5. Then LT ∈
L1(Ω).

Note that this assumption is valid when Ω is a compact subset of Rd, and the
functions f and F are continuously differentiable with respect to ω.

Theorem 3.7. Suppose that Assumptions 1–4 hold. Then JM epiconverges
almost surely to J on HC and HO as M → ∞.

Proof. By Lemma 3.6, HC is a separable complete metric space. By Lemma 3.5, T
is B⊗Σ measurable, and there exist scalars a and b such that T (η, ω) ≥ a+bLT (ω) for
all η ∈ HC . By Assumption 4 the function a+ bLT (ω) is integrable. The convergence
JM |HC →epi J |HC almost surely then follows from Proposition 3.3. This convergence,
together with the fact that JM (η) → J(η) almost surely for all η ∈ HO, establishes
the convergence JM |HO →epi J |HO almost surely.

Theorem 3.7 and Proposition 3.4 show that our sample average scheme has the
property that accumulation points of a sequence of global minimizers of the approxi-
mate problem are global minimizers of the original problem.

4. Optimality conditions. Absent convexity, it is not generally possible to
determine whether a numerically computed solution to an optimal control problem
is a global minimizer. Necessary conditions, such as Pontryagin’s minimum principle
[22, 36], provide a method to assess the optimality of a numerically computed solution.
Polak [35, Chapter 4] provides necessary conditions for the standard nonlinear optimal
control problem in terms of optimality functions, which determine the stationary
points of the objective functional. In this section we apply this approach to derive
optimality functions for the nonstandard uncertain Problems BC , BO, B

M
C , and BM

O

which are based on the L2-Frechet derivative of the objective functional.
Definition 4.1. An upper semicontinuous function θ : X �→ R is an optimality

function for a problem B
(i) if θ(x) ≤ 0 for all x ∈ X,
(ii) if x is a local minimizer of B, then θ(x) = 0.

To establish the Frechet derivatives of the objective functionals, we first state the
Frechet derivative of T .

Proposition 4.2. Suppose that Assumptions 1–3 are satisfied.
(i) For any ω ∈ Ω, η ∈ H, and δη ∈ H∞,2, T (·, ω) has a Frechet derivative at η

given by

DT (η; δη;ω) = 〈∇ηT (η, ω), δη〉H2 .

The gradient ∇ηT (η, ω) = (∇ξT (η, ω),∇uT (η, ω))
T ∈ H∞,2 is given by

∇ξT (η, ω) = pη(0, ω),(4.1)

∇uT (η, ω)(s) = fT
u (xη(s, ω), uη(s), ω)pη(s, ω),(4.2)

and pη(s, ω) is the solution to the adjoint equation
(4.3)
ṗη(s, ω) = −fT

x (xη(s, ω), u(s), ω)pη(s, ω) for s ∈ [0, 1], pη(1, ω) = Fx(x
η(1, ω), ω).
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OPTIMAL CONTROL OF UNCERTAIN SYSTEMS 11

(ii) The gradient ∇ηT (·, ω) is Lipschitz continuous on HC .
(iii) For any η ∈ H and δη ∈ H∞,2, T (·, ω) has a Frechet differential DT (η; δη;ω)

at η.
Proof. The proposition follows directly from Corollary 5.6.9 of [35].
The existence of the Frechet derivative in Proposition 4.2 allows us to introduce

the Frechet derivatives of J and JM by employing Fubini’s theorem.
Lemma 4.3. Suppose that Assumptions 1–4 are satisfied. Then for any η ∈ H,

δη ∈ H∞,2, the following hold:
(i) J has a Frechet differential DJ(η; δη) at η given by DJ(η; δη) = 〈∇J(η), δη〉H2

with the gradient given by

(4.4) ∇J(η) = E
P [∇ηT (η, ω)] .

(ii) The gradient ∇J is Lipschitz continuous on HC.
(iii) JM has a Gateaux differential DJM (η; δη) at η given by DJM (η; δη) =

〈∇JM (η), δη〉H2 , with the gradient given by

(4.5) ∇JM (η) =
1

M

M∑
i=1

∇ηT (η, ωi).

(iv) The gradient ∇JM is Lipschitz continuous on HC .
Proof. We prove (i) and (ii); (iii) and (iv) follow by an identical argument with Ω

replaced by {ω1, . . . , ωM} and P replaced by the counting measure normalized to 1.
Proof of (i): Let δη ∈ H∞,2, η ∈ H, ω ∈ Ω. BecauseH is open in the L∞ topology

there exists a λ∗ > 0 such that η + λδη ∈ H for all λ ∈ [0, λ∗]. From Lemma 3.5,
T (·, ω) is Lipschitz continuous in η with Lipschitz constant LT (ω) for each ω ∈ Ω,
and by Assumption 4 we have LT (ω) ∈ L1(Ω). From this fact we have

|T (η + λδη, ω)− T (η, ω)| ≤
(
LT (ω) ‖δη‖H2

)
λ.

Therefore for each ω ∈ Ω, η ∈ H, λ ∈ [0, λ∗],∣∣∣∣T (η + λδη, ω)− T (η, ω)

λ

∣∣∣∣ ≤ LT (ω) ‖δη‖H2
.

Then the Gateaux derivative of J is given by

DJ(η; δη) = lim
λ↓0

E
P [T (η + λδη, ω)]− E

P [T (η, ω)]

λ

= lim
λ↓0

E
P

[
T (η + λδη, ω)− T (η, ω)

λ

]

= E
P

[
lim
λ↓0

T (η + λδη, ω)− T (η, ω)

λ

]
= E

P [DT (η, δη;ω)] ,

where we have used the dominated convergence theorem. Let δη = (ξδη , uδη). Note
that

E
P

[∫ 1

0

〈
[∇uT (η, ω)(t)] , u

δη(t)
〉
dt

]
≤ E

P
[‖∇T (η, ω)‖H2

‖δη‖H2
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12 CHRIS PHELPS, JOHANNES O. ROYSET, AND QI GONG

is bounded, so that we can write

DJ(η; δη) = E
P
[〈∇ξT (η, ω), ξ

δη
〉]

+ E
P

[∫ 1

0

〈∇uT (η, ω)(t), u
δη(t)

〉
dt

]

= E
P
[〈∇ξT (η, ω), ξ

δη
〉]

+

∫ 1

0

E
P
[〈∇uT (η, ω)(t), u

δη(t)
〉]

dt

=
〈
E
P [∇ξT (η, ω)] , ξ

δη
〉
+

∫ 1

0

〈
E
P [∇uT (η, ω)(t)] , u

δη(t)
〉
dt

=
〈
E
P [∇ηT (η, ω)] , δη

〉
H2

,

where we have used Fubini’s theorem. To demonstrate that the Gateaux derivative
DJ is the Frechet derivative of J , consider the quantity

lim
‖δη‖H2

→0

‖J(η + δη)− J(η)−DJ(η; δη)‖H2

‖δη‖H2

= lim
‖δη‖H2

→0

∥∥EP [T (η + δη, ω)− T (η, ω)−DT (η; δη;ω)]
∥∥
H2

‖δη‖H2

≤ lim
‖δη‖H2

→0
E
P

[
‖T (η + δη, ω)− T (η, ω)−DT (η; δη;ω)‖H2

‖δη‖H2

]

= E
P

[
lim

‖δη‖H2
→0

‖T (η + δη, ω)− T (η, ω)−DT (η; δη;ω)‖H2

‖δη‖H2

]

= 0,

where we have used the dominated convergence theorem.
The proof of (ii) follows directly from the Lipschitz continuity of ∇ηT (η, ω).
We now introduce nonpositive optimality functions for Problems BC , B

M
C , BO,

and BM
O , based on the Frechet derivatives defined in Lemma 4.3:

θC(η)
.
= min

η′∈HC

DJ(η; η′ − η) +
1

2
‖η′ − η‖2H2

,(4.6)

θMC (η)
.
= min

η′∈HC

DJM (η; η′ − η) +
1

2
‖η′ − η‖2H2

,(4.7)

θO(η)
.
= −1

2
‖∇J(η)‖2H2

,(4.8)

θMO (η)
.
= −1

2

∥∥∇JM (η)
∥∥2

H2
.(4.9)

Proposition 4.4. Suppose that Assumptions 1–4 hold. Then the functions
θC , θ

M
C , θO, and θMO are continuous optimality functions for Problems BC , B

M
C , BO,

and BM
O , respectively.

Proof. The proof for functions θC , θ
M
C follows directly from Lemma 4.3 and the

arguments used in the proof of Theorem 4.2.3a in [35], with J or JM replacing f0,
HC replacing H, and Lemma 4.3 replacing Corollary 5.6.9. The proof for functions
θO, θ

M
O follows directly from Lemma 4.3 and the arguments used in the proof of

Theorem 4.2.3c in [35], with J or JM replacing f0, H replacing HO, and Lemma 4.3
replacing Corollary 5.6.9.

In general, the necessary condition based on the L2 variation of the objective
functional will not be equivalent to Pontryagin’s minimum principle except in the case
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where the Hamiltonian is convex in u. However, it can be shown that for Problem BO,
under certain regularity conditions, the necessary condition θO(η) = ‖∇J(η)‖2H2

= 0
is equivalent to the stationarity of the Hamiltonian given by

H(x, λ, u, t) = E
P
[
f(x(t, ω), u(t), ω)T p(t, ω)

]
,

where p is the adjoint to the state variable x. To see this, suppose the initial condition
is fixed, and note that the stationarity of the Hamiltonian implies that

∂

∂u
H(x, λ, u, t) = E

P
[
fu(x(t, ω), u(t), ω)

T p(t, ω)
]
= 0

for almost all t when f is sufficiently smooth. Therefore ‖∇J(η)‖2H2
=

∫ 1

0
‖EP

[
fu(x(t),

u(t), ω)p(t, ω)
]‖2dt = 0.

For ProblemBC , the approach of [32, 33] can be extended to produce a Pontryagin-
like necessary condition for global minimizers that are accumulation points of global
minimizers of the approximate Problem BM

C . A direct extension of Pontryagin’s
minimum principle to the UOCP is desirable, as it may lead to insights into new
optimization algorithms, but this approach is not pursued here. For work relating to
this topic see [16, pp. 80–82].

5. Consistency of the approximation. In section 3 we analyzed the conver-
gence of the approximation scheme for Problems BC and BO using the concept of
epiconvergence. Epiconvergence of the objective functionals guarantees that accumu-
lation points of a sequence of global minimizers of the approximate Problems BM

C

and BM
O will be global minimizers of the original Problems BC and BO. However,

epiconvergence is not sufficient to guarantee that accumulation points of a sequence
of stationary points of the approximate problem are stationary points of the orig-
inal problem. In this section, we demonstrate such a property, thus showing that
the approximation scheme based on sample averages is consistent in the sense of
Polak [35, section 3.3].

Definition 5.1 (see [35]). Let X be a complete separable metric space, and let
GM : X �→ R, G : X �→ R be lower semicontinuous functions. Let Problem CM be
the problem of finding x ∈ X to minimize GM , and let Problem C be the problem of
finding x ∈ X to minimize G. Let the corresponding optimality functions for Problems
CM and C be given by ΓM : X �→ R and Γ : X �→ R. We say that the sequence
(CM ,ΓM )M∈N is a consistent approximation to the pair (C,Γ) if the following hold:
(i) GM epiconverges to G.
(ii) If {xM}∞M=1 is a sequence converging to x, then lim supM→∞ ΓM (xM ) ≤ Γ(x).

We have already shown the almost sure epiconvergence of the approximate objec-
tive functional JM to the objective functional J in Theorem 3.7. Recall that Lf (ω)
is the Lipschitz constant for the dynamics f , and LF (ω) is the Lipschitz constant for
the objective functional F . To establish the convergence properties of the optimality
function θMC , we introduce the following assumption.

Assumption 5. There exist constants L′
f , L

′
F ∈ [1,∞) such that Lf(ω) ≤ L′

f

and LF (ω) ≤ L′
F almost surely.

Note that this assumption will be valid in the case that Ω is a compact subset
of Rnω and f, F are continuously differentiable. Therefore the assumption is satisfied
for previously considered applications such as optimal search [32, 33] and ensemble
control [39, 40, 41].

The following lemma addresses the measurability and continuity of the gradient
of the objective functional.
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14 CHRIS PHELPS, JOHANNES O. ROYSET, AND QI GONG

Lemma 5.2. Suppose that Assumptions 1–5 hold. Let η ∈ H. Then the following
are true:
(i) ∇ηT (η, ·)(·) : Ω× [0, 1] → R is measurable.
(ii) There exists a compact set U0 ⊂ R

m such that ∇uT (η, ω)(t) ∈ U0 for all η ∈
H, ω ∈ Ω, t ∈ [0, 1].

(iii) There exists L′
∇T ∈ [1,∞) such that L∇T (ω) ≤ L′

∇T almost surely, where
L∇T (ω) is the Lipschitz constant of ∇T (·, ω).

(iv) For each M , L∇JM ≤ L′
∇T almost surely, where L∇JM is the Lipschitz constant

of ∇ηJ
M .

Proof. Part (i) follows directly from (4.1)–(4.2) and the application of Lemma 2.3
to the adjoint system (4.3). Part (ii) follows from Lipschitz continuity of fu (As-
sumption 2) and p (Lemma 2.3) and the boundedness of the set H. Part (iii) follows
from Assumption 5 and the proof of Lemma 5.6.9b of [35]. Part (iv) follows from
(iii) and the fact that ∇JM (·, ω) = 1

M∇T (·, ωM
i ), where {ωM

i }Mi=1 is an independent
P -distributed random draw from Ω.

To simplify notation, for a given η∗ ∈ HC , we introduce the following functions:
(i) κM

η∗ : HC �→ R; η �→ 〈∇JM (η∗), η
〉
H2

,

(ii) κη∗ : HC �→ R; η �→ 〈∇J(η∗), η〉H2
,

(iii) μM
η∗ : HC �→ R; η �→ 〈∇JM (η), η∗

〉
H2

,

(iv) μη∗ : HC �→ R; η �→ 〈∇J(η), η∗〉H2
.

Lemma 5.3. Suppose that Assumptions 1–4 are satisfied. Then the following
hold:
(i) κM

η∗ → κη∗ uniformly almost surely for each η∗ in HC .

(ii) μM
η∗ →epi μη∗ almost surely for each η∗ in H2.

Proof. Proof of (i): For a given t ∈ [0, 1], because the ∇uT (η, ωi)(t) for i =
1, . . . ,M are identically distributed, the strong law of large numbers, (4.4), and (4.5)
imply that ∇JM (η∗)(t) → ∇J(η∗)(t) almost surely. Therefore ∇JM (η∗) → ∇J(η∗)
pointwise almost surely as M → ∞. Recall that ‖η‖H2

≤ ρ1 + ρ2 for all η ∈ HC .
Therefore for each ε > 0, there exists K ∈ N such that for each M > K, we have∥∥∇JM (η∗)−∇J(η∗)

∥∥
H2

< ε
ρ1+ρ2

by the dominated convergence theorem. Then

∣∣κM
η∗(η) − κη∗(η)

∣∣ = ∣∣〈∇JM (η∗)−∇J(η∗), η〉H2

∣∣ ≤ ∥∥∇JM (η∗)−∇J(η∗)
∥∥
H2

‖η‖H2

<
ε

ρ1 + ρ2
(ρ1 + ρ2) = ε.

Proof of (ii): First note that by Lemma 5.2, 〈∇ηT (η, ω), η
∗〉H2

is continuous
in η and measurable in ω and therefore is a random lower semicontinuous function
by Proposition 2.2 and Definition 3.2. Because μη∗(·) = E

P 〈∇ηT (·, ω), η∗〉H2
by

the proof of Lemma 4.3, μη∗ is the expectation of a random lower semicontinuous
function and is bounded by Lemma 5.2(iii). The result then follows from (4.4), (4.5),
and Proposition 3.3.

5.1. Consistency of the approximation of Problem BC . Lemma 5.3 allows
us to establish the almost sure consistent approximation of Problem BC .

Theorem 5.4. Suppose that Assumptions 1–5 hold. Then the sequence (BM
C , θMC )M∈N

is almost surely a consistent approximation to the pair (BC , θC) on the decision space
HC .

Proof. The almost sure epiconvergence of JM to J on HC is established in
Theorem 3.7.
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It remains to show that lim supM→∞ θMC (ηM ) ≤ θC(η) whenever ηM → η. Sup-
pose that ηM ∈ HC and ηM → η. First we write

θMC (ηM ) = min
η′∈HC

{〈∇JM (ηM ), η′ − ηM
〉
H2

+
1

2

∥∥η′ − ηM
∥∥2
H2

}
= min

η′∈HC

{〈∇JM (ηM ), η′
〉
H2

+
1

2

∥∥η′ − ηM
∥∥2
H2

}
− 〈∇JM (ηM ), ηM

〉
H2

= min
η′∈HC

{〈∇JM (ηM )−∇JM (η), η′
〉
H2

+
〈∇JM (η), η′

〉
H2

+
1

2

∥∥η′ − ηM
∥∥2
H2

}
− 〈∇JM (ηM ), ηM

〉
H2

= min
η′∈HC

{〈∇JM (ηM )−∇JM (η), η′
〉
H2

+ κM
η (η′) +

1

2

∥∥η′ − ηM
∥∥2
H2

}
− 〈∇JM (ηM ), ηM − η

〉
H2

− μM
η (ηM ).(5.1)

Similarly,

θC(η) = min
η′∈HC

[
κη(η

′) +
1

2
‖η′ − η‖2H2

]
− μη(η).(5.2)

We examine the behavior of lim supM→∞ θMC (ηM ) by looking at each expression in
(5.1).

Note that HC is bounded; therefore we have by Lemma 5.2(iv)〈∇JM (ηM )−∇JM (η), η′
〉
H2

≤ ∥∥∇JM (ηM )−∇JM (η)
∥∥
H2

‖η′‖H2

≤ L∇JM

∥∥ηM − η
∥∥
H2

‖η′‖H2
→ 0

uniformly in η′ on HC . Similarly, because∥∥η′ − ηM
∥∥2
H2

− ‖η′ − η‖2H2
=
∥∥ηM∥∥2

H2
− ‖η‖2H2

+ 2〈η − ηM , η′〉H2 → 0

uniformly in η′ on HC , we have
∥∥η′ − ηM

∥∥2
H2

→ ‖η′ − η‖2H2
uniformly in η′. This,

combined with the uniform convergence κM
η → κη, shows that

min
η′∈HC

〈∇JM (ηM )−∇JM (η), η′
〉
H2

+ κM
η (η′) +

1

2

∥∥η′ − ηM
∥∥2

H2
(5.3)

→ min
η′∈HC

κη(η
′) +

1

2
‖η′ − η‖2H2

.

Because 〈∇JM (ηM ), ηM − η〉H2 → 0 almost surely and μM
η epiconverges to μη, we

have from (5.1)–(5.3)

lim sup
M→∞

θMC (ηM ) ≤ θC(η) almost surely.

5.2. Consistency of the approximation of Problem BO. We now demon-
strate the almost sure consistent approximation of Problem BO.

Theorem 5.5. Suppose that Assumptions 1–4 hold. Then the sequence (BM
O , θMO )M∈N

is almost surely a consistent approximation to the pair (BO, θO) on the decision space
HO.

Proof. The almost sure epiconvergence of JM to J on HO was established in
Theorem 3.7. It remains to establish the convergence properties of the optimality
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16 CHRIS PHELPS, JOHANNES O. ROYSET, AND QI GONG

functions. Suppose that ηM ∈ HO and ηM → η ∈ HO. Recall that H2 is a complete
Hilbert space. By Lemma 5.3(ii) and the Riesz representation theorem, for each
f ∈ H∗

2 we have lim infM→∞ f(∇JM (ηM )) ≥ f(∇J(η)) almost surely. By the Hahn–
Banach theorem there exists f∗ ∈ H∗

2 such that ‖f∗‖H∗
2

= 1 and f∗(∇J(η)) =

‖∇J(η)‖H2
. Furthermore, for each M , we have

f∗(∇JM (ηM ) ≤ ‖f∗‖H∗
2

∥∥∇JM (ηM )
∥∥
H2

=
∥∥∇JM (ηM )

∥∥
H2

.

Therefore

‖∇J(η)‖H2
= f∗(∇J(η)) ≤ lim inf

M→∞
f∗(∇JM (ηM )) ≤ lim inf

M→∞
∥∥∇JM (ηM )

∥∥
H2

.

Consequently lim supM→∞ θMO (ηM ) ≤ θO(η) almost surely.

6. The time-discretized problem. In sections 3–5 we analyzed a computa-
tional framework for the UOCP based on sample average approximations. This pro-
cess creates a sequence of approximating standard optimal control problems which
can be solved using existing techniques. In this section, we address the convergence
properties of the method which uses the Euler discretization to solve the approxi-
mate Problem BM

C . This approach can be generalized to other direct discretization
algorithms such as Runge–Kutta [25, 42], as well as to the unconstrained Problem
BM

O .
First we introduce the framework with which we will perform our discrete ap-

proximation, taken from [35, Chapter 5]. This will involve an approximation of
the admissible set as well as an approximation of the objective functional. For
k ∈ {0, 1, . . . , N − 1}, let

(6.1) πN,k(t) =

{√
N for all t ∈ [k/N, (k + 1)/N) if k ≤ N − 1,

0 otherwise.

For any integer N ≥ 1, we define the subspace LN ⊂ Lm
∞,2[0, 1] by

LN =

{
u ∈ Lm

∞,2[0, 1]

∣∣∣∣u(t) =
N−1∑
k=0

ukπN,k(t)

}
,

and

HN = R
n × LN ⊂ H∞,2.

We then define the admissible set for the approximate problem as

HC,N =HC ∩HN .

HC,N is the set of all admissible initial state and control pairs for Problem BC , with
the additional requirement that the control be constant on each interval [ i

N , i+1
N ) for

i ∈ {0, . . . , N − 1}.
For each ω ∈ Ω and η ∈ HN , we approximate the dynamics (1.2) using the Euler

integration formula:

xη
N

(
k + 1

N
,ω

)
− xη

N

(
k

N
, ω

)
=

1

N
f

(
xη
N

(
k

N
, ω

)
, uη

(
k

N

))
, k ∈ {0, . . . , N − 1},

xη
N (0, ω) = ξη + ι(ω).
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For a detailed derivation of this approximation scheme and its relation to the NLP
problem, see Polak [35, Chapter 5].

Recall that the objective functional to the UOCP is given by J(η) = E
P [T (η, ω)],

where T (η, ω) = F (xη(1, ω), ω). Let TN : H × Ω �→ R be the time-discretized ap-
proximation to T , i.e., TN(η, ω) = F (xη

N (1, ω), ω). Given a random P -distributed
draw {ω1, . . . , ωM} from Ω, we can define the sample average and time-discretized
approximation to the objective functional J by

(6.2) JMN =
1

M

M∑
i=1

TN(η, ωi).

Combining this objective functional with the discretized dynamics

xη
N

(
k + 1

N
,ωi

)
− xη

N

(
k

N
, ωi

)
=

1

N
f

(
xη
N

(
k

N
, ωi

)
, uη

(
k

N

))
,

k ∈ {0, . . . , N − 1}, i ∈ {1, . . . ,M},
xη
N (0, ωi) = ξη + ι(ωi), i ∈ {1, . . . ,M},(6.3)

we can define the fully discretized problem.
Problem BMN

C : Find an initial state and control pair η = (uη, ξη) ∈ HC,N to
minimize the objective functional (6.2) subject to the constraints (6.3).

In order to approximate Problem BC by Problem BMN
C , our desire is to assign to

each sample size M ∈ N a number N (M) of time discretization nodes in such a way
that JMN (M) →epi J . To this end we introduce the following assumption.

Assumption 6. For the function N : N �→ N, we have N (M) → ∞ as M → ∞.
In section 3 we showed that JM →epi J as M → ∞. It is well known that

JMN →epi JM as N → ∞ (see [35, Chapter 4]). However, these conditions are not
sufficient to guarantee that JMN (M) →epi J as M → ∞ for arbitrary assignments
N : N → N. We demonstrate such a property by analyzing the error introduced by
the time discretization approximation. Our approach is based on the fact that the
effect of such a time discretization on a standard optimal control problem (which we
can consider as a special case in which the value of the parameter ω is fixed) is known
and is determined by Lf , LF . That is, we can use existing results to uniformly bound
(in both η and ω) the error introduced to the UOCP by approximating T (η, ω) by
TN(η, ω).

Proposition 6.1. Suppose that Assumptions 1–6 are satisfied. Then there exists
a KT such that

(6.4) |TN(η, ω)− T (η, ω)| ≤ KT /N

for every η = (ξ, u) ∈ HC almost surely.
Proof. The proof follows from Assumption 5, the boundedness of the set HC , and

the proofs of Theorems 5.6.23 and 5.6.24 in [35].
The fact that this convergence is uniform in both η and ω allows us to address

the convergence JMN →epi J .
Theorem 6.2. Suppose Assumptions 1–6 are satisfied. Then JMN (M) →epi J

almost surely.
Proof. In order to establish epiconvergence we must show that

(i) lim inf JMN (M)(ηM ) ≥ J(η) whenever ηM → η,
(ii) lim JMN (M)(ηM ) = J(η) for at least one sequence ηM → η.
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18 CHRIS PHELPS, JOHANNES O. ROYSET, AND QI GONG

To do so, note that Assumption 5 implies the existence of a constant LT ∈ [1,∞)
such that |T (η, ω) − T (η′, ω)| ≤ LT ‖η − η′‖ for all η, η′ ∈ HC almost surely. Then
consider the difference∣∣∣J(η)− JMN (M)(ηM )

∣∣∣ ≤ ∣∣J(η)− JM (ηM )
∣∣+ ∣∣∣JM (ηM )− JMN (M)(ηM )

∣∣∣
=
∣∣J(η)− JM (ηM )

∣∣+
∣∣∣∣∣ 1M

M∑
i=1

T (η, ωi)− TN (M)(ηM , ωi)

∣∣∣∣∣
≤ ∣∣J(η)− JM (ηM )

∣∣+
∣∣∣∣∣ 1M

M∑
i=1

T (η, ωi)− T (ηM , ωi)

∣∣∣∣∣
+

∣∣∣∣∣ 1M
M∑
i=1

T (ηM , ωi)− TN (M)(ηM , ωi)

∣∣∣∣∣
≤ ∣∣J(η)− JM (ηM )

∣∣+ LT ‖η − ηM‖+ KT

N (M).

The result then follows from Assumption 6 and the almost sure epiconvergence of JM

to J .
This result establishes that the UOCP can be approximated by a sequence of

high-dimensional NLP problems by using a sample average scheme to approximate
the expectation over the parameter space and an Euler scheme to discretize the time
domain. The resulting numerical solutions will be meaningful in the sense that an
accumulation point of a sequence of global minimizers of the approximate problem will
be a global minimizer of the original problem. In order to establish a similar result for
stationary points, we must develop optimality conditions for the approximate problem
and analyze the approximation of the adjoint variables. Such a result is beyond the
scope of this work.

7. Numerical examples. In sections 2–6 we proposed a computational frame-
work for the UOCP and demonstrated that it can be approximated by a sequence
of high-dimensional NLP problems under mild regularity assumptions. In this sec-
tion we provide two examples which demonstrate this process. The first example
deals with a simple harmonic oscillator and is included for the purpose of illustrating
the main ideas in an accessible manner. Of course, the oscillator can be stabilized
using a standard closed-loop control. However, the example highlights the ability
to handle ensemble control problems where it might not be practical to construct
a closed-loop controller due to sensor or actuator limitations. The second example
involves 10 stochastic parameters distributed according to a complex joint probability
distribution and illustrates the framework in a context where numerical integration
by quadrature rules is computational costly and/or difficult to implement.

The resulting problems are approximated numerically by taking a random sample
of size M from the parameter space using a Monte Carlo method and approximating
the objective functional using the sample average. The resulting standard optimal
control problem is discretized using a LGL-pseudospectral method with N nodes in
the time domain. This yields an MNnu-dimensional NLP problem (here nu is the
dimension of the control input) which then is solved using the sequential quadratic
programming package SNOPT [18]. Although a consistency result for the time- and
space-discretized problem using an LGL-pseudospectral scheme in the time domain is
beyond the scope of this work, such a technique is used in this section as it provides
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faster convergence for the adjoint variables and can therefore better demonstrate the
convergence of the optimality functions.

7.1. Harmonic oscillator. Consider the problem of designing a controller to
stabilize a harmonic oscillator with natural frequency ω uniformly distributed on
[δ0, δ1]. The oscillator in question is modelled by the uncertain dynamical system[

ẋ1

ẋ2

]
=

[
0 −ω
ω 0

] [
x1

x2

]
+

[
u1

u2

]
,

[
x1(0)
x2(0)

]
=

[
1
0

]
(7.1)

for all ω ∈ [δ0, δ1], t ∈ [0, tf ]. The difficulty in this problem lies in the fact that a
control which stabilizes the oscillator for a specific value of the parameter, such as
the worst case scenario, may cause dispersion in the other states. An example of this
dispersion is illustrated in Figure 1, which shows a sample of end states x(tf , ω), ω ∈
[0, 2π] for a control designed using Pontryagin’s minimum principle to calculate the
optimal solution for the problem with a single parameter value.

We address this problem using an optimal control framework. We introduce a
UOCP where the goal is to find a control which minimizes the cost functional

J(u) = E
P

[
β
[
(x1(tf , ω))

2 + (x2(tf , ω))
2
]
+ γ

∫ tf

0

[
(u1(t))

2 + (u2(t))
2
]
dt

]

= β E
P
[
(x1(tf , ω))

2 + (x2(tf , ω))
2
]
+ γ

∫ tf

0

[
(u1(t))

2 + (u2(t))
2
]
dt.(7.2)

Here β and γ are scale factors which weight the priority of minimizing the error of
the final state against that of minimizing the expended control energy. This objective
functional can be used to design a control which achieves an end state in a desired
neighborhood of zero.

We use the computational framework to numerically calculate an optimal control
for this UOCP for two scenarios, with and without the presence of control constraints.

Problem SO: Find a control u : [0, 1] �→ (−1000, 1000)×(−1000, 1000) to minimize
the objective functional (7.2) subject to the uncertain dynamical system (7.1), where
tf = 1, δ0 = 0, δ1 = 2π, β = 1000, γ = 1.

This problem approximates the unconstrained problem by allowing the admissible
controls to take values in a large open subset of R2. Note that because the initial
state is fixed, for notational convenience we will take the decision space to be UO,
the set of all u ∈ L2

2[0, 1] such that u(t) ∈ (−1000, 1000)× (−1000, 1000) for almost
every t ∈ [0, 1]. We use the computational framework proposed in this paper to
calculate a control which stabilizes the system in the face of this state dispersion. A
sample computed trajectory for M = 52 with 54 time discretization nodes is shown
in Figure 2, and the optimal control and sample of optimal final states are shown in
Figure 3. When this result is compared to the method of using Pontryagin’s minimum
principle to stabilize a single parameter value (see Figure 1), it is clear that the UOCP
method reduces the dispersion of the end state while keeping the control energy within
reasonable bounds. Tuning the parameters β and γ in the objective functional can
further reduce dispersion of the end state at the cost of increased control energy.

The antisymmetry of the state dynamics and the quadratic form of the cost
functional give this problem an easily verifiable necessary condition. First we cast the
problem in the form of section 2. We introduce the auxiliary state x3 and define the
state dynamics by The antisymmetry of the state dynamics and the quadratic form
of the cost functional give this problem an easily verifiable necessary condition. First
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Fig. 1. Dispersion of end states of the uncertain harmonic oscillator with Ω = [0, 2π] for a
control designed using Pontyagin’s minimum principle to stabilize (a) the median case (ω = π) and
(b) the worst case (ω = 2π).

we cast the problem in the form of section 2. We introduce the auxiliary state x3 and
define the state dynamics by

⎡
⎣ ẋ1(t, ω)

ẋ2(t, ω)
ẋ3(t, ω)

⎤
⎦ =

⎡
⎣ 0 −ω 0

ω 0 0
0 0 0

⎤
⎦
⎡
⎣ x1(t, ω)

x2(t, ω)
x3(t, ω)

⎤
⎦+

⎡
⎣ u1(t)

u2(t)
γ(u1(t))

2 + (u2(t))
2

⎤
⎦ ,(7.3)

⎡
⎣ x1(0, ω)

x2(0, ω)
x3(0, ω)

⎤
⎦ =

⎡
⎣ 1

0
0

⎤
⎦ .
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Fig. 2. A sample of optimal state trajectories for the problem of stabilizing a harmonic oscillator
with unknown natural frequency, with no control constraint. The optimal control is computed using
the numerical framework proposed in this paper together with the NLP package SNOPT.

The cost functional is then given by

J(u) =E
P [F (x(1, ω), ω)], F (x, ω) =βx2

1 + βx2
2 + γx3.(7.4)

Finally, the adjoint equation defined in (4.3) is given by

⎡
⎣ ṗ1(t, ω)

ṗ2(t, ω)
ṗ3(t, ω)

⎤
⎦ =

⎡
⎣ 0 −ω 0

ω 0 0
0 0 0

⎤
⎦
⎡
⎣ p1(t, ω)

p2(t, ω)
p3(t, ω)

⎤
⎦ ,

⎡
⎣ p1(1, ω)

p2(1, ω)
p3(1, ω)

⎤
⎦ =

⎡
⎣ 2βx1(1, ω)

2βx2(1, ω)
γ

⎤
⎦ .

(7.5)

The necessary condition defined in section 4 then requires that for an optimal solution
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Fig. 3. The optimal control and a sample of final values for the optimal state for the uncon-
strained problem.

we have − 1
2 ‖∇J(u)‖H2

= 0, where ∇J is the Frechet derivative given by

∇J(u) = E
P [fT

u (x(t, ω), u(t), ω)p(t, ω)]

= E
P

[
p1(t, ω) + 2γu1(t)
p2(t, ω) + 2γu2(t)

]

=

[
2γu1(t)
2γu2(t)

]
+ E

P

[
p1(t, ω)
p2(t, ω)

]
.(7.6)

The optimality function − 1
2 ‖∇J(u)‖H2

provides a necessary condition which can be
used for validation and verification of solutions. That is, if a sequence of numerically
computed solutions to the approximate problem converge, but their associated opti-
mality values diverge, the limit point cannot be an optimal solution to the original
problem. For the harmonic oscillator UOCP considered in this section, we fix the
number of time discretization nodes at 54 and increase the sample size M to analyze
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Fig. 4. The objective functional and optimality function for the unconstrained problem as a
function of the sample size M .

the behavior of these values as the sample size increases. For a given sample size M ,
we determine the optimal control u∗

M for the approximate Problem BM , then cal-
culate the objective and optimality values J(u∗

M ) and θO(u
∗
M ). The optimality and

objective values, as a function of the sample size M , are shown in Figure 4. We next
consider a pointwise control-constrained UOCP for the harmonic oscillator.

Problem SC : Find a control u : [0, 1] �→ [−3, 3]× [−3, 3] to minimize the objective
functional (7.2) subject to the uncertain dynamical system (7.1), where tf = 1, δ0 =
0, δ1 = 2π, β = 1000, γ = 1.

Because the initial state is fixed, for notational convenience we will take the de-
cision space to be UC , the set of all u ∈ L2

2[0, 1] such that u(t) ∈ [−3, 3] × [−3, 3]
for almost every t ∈ [0, 1]. As with the unconstrained problem, the optimal con-
trol is computed numerically using the framework proposed in this paper, with an
LGL-pseudospectral discretization with 54 nodes in the time domain. A sample of
computed state trajectories for M = 42 is shown in Figure 5. The corresponding
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Fig. 5. A sample of optimal state trajectories for the problem of stabilizing a harmonic oscillator
with unknown natural frequency, in the presence of a pointwise control constraint.

optimal controls, as well as a sample of ending states, are shown in Figure 6.
In section 4 it is shown that an optimal solution must satisfy the necessary con-

dition θC(u) = 0, where θC is given by (4.6). By substituting (7.6) we have

θC(u) = min
u∈UC

(
〈∇J, u′ − u〉2 + 1

2
‖u′ − u‖22

)

=− 〈∇J, u〉2 + 1

2
‖u‖22 + min

u′∈UC

(
〈∇J − u, u′〉+ 1

2
‖u′‖22

)
.

The value of the objective functional J(u∗
M ) and optimality function θC(u

∗
M ) for a

number of sample sizes M is shown in Figure 7. The state variables x(t, ω) and
adjoint variables p(t, ω) are calculated by computing an optimal control for 54 LGL-
pseudospectral nodes in the time domain and solving the resulting state-adjoint sys-
tem. The value of θC is then approximated using the MATLAB quadratic program-
ming package quadprog.

D
ow

nl
oa

de
d 

05
/1

3/
16

 to
 2

05
.1

55
.6

5.
22

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

OPTIMAL CONTROL OF UNCERTAIN SYSTEMS 25

0 0.2 0.4 0.6 0.8 1
−4

−2

0

2

4
Computed optimal controls for constrained problem

t

u 1

0 0.2 0.4 0.6 0.8 1
−4

−2

0

2

4

t

u 2

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
Distribution of ending state for constrained system

x
1

x 2

Fig. 6. The optimal control and a sample of final values for the optimal state for the constrained
problem.

7.2. Intruder detection in a channel. We next consider an intruder detection
problem inspired by [9]. A single searcher is attempting to detect a nonevading target
moving down a channel. We assume the searcher has imperfect sensors and a turn-rate
constraint. The objective is to find a trajectory for the searcher which maximizes the
probability of detecting the target in the time horizon [0,75]. The searcher is assumed
to be a Dubins vehicle with known constant velocity v. The dynamics of the searcher
are given by

ẋ1(t) = v cosx3(t), ẋ2(t) = v sinx3(t),(7.7)

ẋ3(t) = u(t), |u(t)| ≤ K for all t ∈ [0, 75],

where (x1, x2) represents the position of the searcher and x3 is the heading angle.
The control, u, is the turning rate of the vehicle. In the simulation, we set v = 1 and
K = 0.25. We let the channel be given by the rectangle R = [−20, 20] × [−10, 10].
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Fig. 7. The value of the objective functional and optimality function for the constrained problem
as a function of the sample size M .

For each ω = (ω1, ω2, . . . , ω10) ∈ R
10, we define the target trajectory y(t, ω) ∈ R

2 by

y1(t) = ω1 + ω2t+
1

2
ω3t

2 +
1

6
ω4t

3 +
1

24
ω5t

4,

y2(t) = ω6 + ω7t+
1

2
ω8t

2 +
1

6
ω9t

3 +
1

24
ω10t

4.

Let A ⊂ R
10 be the rectangle defined by ω1 ∈ [0, 20], ω5 ∈ [−10, 10], ω2, ω7 ∈ [− 1

4 ,
1
4 ],

ω3, ω7 ∈ [− 1
40 ,

1
40 ], ω4, ω9 ∈ [− 1

800 ,
1

800 ], ω5, ω10 ∈ [− 1
20000 ,

1
20000 ], and let

B ⊂ R
10 = {ω ∈ R

10|y(t, ω) ∈ R for all t ∈ [0, 75],

ẏ1(t, ω) < 0 for all t ∈ [0, 75]}.
Note that B is the set of all parameter values for which the corresponding target
trajectory is in the channel and is moving from right to left for all times t ∈ [0, 75].
We set Ω = A ∩B.
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The effectiveness of the search is given by

r̃(x(t), y(t, ω)) = β Φ
(F k −D ‖x(t)− y(t, ω)‖2 − b

σ

)
,

where Φ is the standard normal cumulative distribution function, β is the scan oppor-
tunity rate, F k is the figure of merit, and σ reflects the variability in the signal excess.
In the simulation we use the values β = 1, F k = 20, b = 20, D = 1, and σ = 10. For
more information about the formulation of this model, see [9, 14, 15, 30, 31]. The
problem then becomes to minimize the functional

(7.8) E
P

[
exp

(
−
∫ 75

0

r̃(x(t), y(t, ω))dt

)]

subject to the dynamics (7.7), where P is the uniform distribution on Ω. It is easily
seen that this problem can be transformed into the form (1.1).

Due to the irregular shape of the parameter space Ω, this problem would be
particularly challenging if we were to apply quadrature-based methods. However,
the proposed framework is easily implemented with sampling carried out using the
acceptance-rejection method. Using 54 nodes in the time domain and M = 5000, we
obtain the searcher trajectory in Figure 8. We note that the figure shows only 10 of
the 5000 target trajectories.

−20 −15 −10 −5 0 5 10 15 20
−10

−5

0

5

10
t = 0 − t = 37.5

 

 
Searcher Trajectory
Target Trajectories

−20 −15 −10 −5 0 5 10 15 20
−10

−5

0

5

10
t = 37.5 − t =75

 

 
Searcher Trajectory
Target Trajectories

Fig. 8. Computed trajectory for a searcher attempting to detect an intruder in the channel for
M = 5000. For reference, 10 possible target trajectories are shown. The target moves right to left
down the channel, and the searcher starts at (0, 0) at time t = 0. The arrows in the figure indicate
the orientation of the trajectories.

In this section we demonstrate that the numerical method proposed in this paper
can be used to control a system with stochastic parameters either with or without
pointwise control constraints. In addition, we assess the validity of the numerically
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computed solutions using the necessary conditions developed in this work. The prob-
lem setting opens a wide variety of possible application areas for this method, includ-
ing optimal search and ensemble control. This technique is based on a sample aver-
age scheme which scales favorably as the number of stochastic parameters increases.
Therefore it can be applied to systems with a large number of stochastic parameters
previously beyond the reach of techniques such as those in [32, 33, 39, 40, 41]. Even
though the computational cost remains reasonable in these examples (60 minutes for
the first example and 35 minutes for the second, using Intel Core i7–4700HQ 2.40
GHz with 16 GB RAM), the problem of optimal control under uncertainty remains
challenging, and we anticipate much future algorithmic work to improve this further.
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[5] I. Babuška, F. Nobile, and R. Tempone, A stochastic collocation method for elliptic partial
differential equations with random input data, SIAM J. Numer. Anal., 45 (2007), pp. 1005–
1034.

[6] N. S. Bedrossian, S. Bhatt, W. Kang, and I. M. Ross, Zero-propellant maneuver guidance:
Rotating the international space station with computational dynamic optimization, IEEE
Control Syst. Mag., 29 (2009), pp. 53–73.

[7] N. Bedrossian, M. Karpenko, and S. Bhatt, Overclock my satellite, IEEE Spectr., 49 (2012),
pp. 54–62.

[8] A. E. Bryson and Y. C. Ho, Applied Optimal Control, Hemisphere, New York, 1975.
[9] H. Chung, E. Polak, J. O. Royset, and S. Sastry, On the optimal detection of an under-

water intruder in a channel using unmanned underwater vehicles, Naval Res. Logist., 58
(2011), pp. 804–820.

[10] J. Cullum, Finite-dimensional approximations of state-constrained continuous optimal control
problems, SIAM J. Control, 10 (1972), pp. 649–670.

[11] X. C. Ding, A. Rahmani, and M. Egerstedt, Optimal multi-UAV convoy protection, in
Proceedings of the Second International Conference on Robot Communication and Coor-
dination (ROBOCOMM ’09), Odense, Denmark, 2009.

[12] J. Fisher and R. Bhattacharya, Linear quadratic regulation of systems with stochastic pa-
rameter uncertainties, Automatica J. IFAC, 45 (2009), pp. 2831–2841.

[13] J. Fisher and R. Bhattacharya, Optimal trajectory generation with probabilistic system
uncertainty using polynomial chaos, J. Dyn. Syst. Meas. Control, 133 (2010), 014501.

[14] J. Foraker, J. O. Royset, and I. Kaminer, Search-trajectory optimization: Part I, Formu-
lation and theory, J. Optim. Theory Appl., to appear, doi:10.1007/s10957-015-0768-y.

[15] J. Foraker, J. O. Royset, and I. Kaminer, Search-trajectory optimization: Part II, Al-
gorithms and computations, J. Optim. Theory Appl., to appear, doi:10.1007/s10957-015-
0770-4.

[16] R. Gabasov and F. M. Kirillova, Principi maksimuma v teorii optimal’novo upravleniya,
Izdat. Nauka i Tekhnika, Minsk, 1974.

[17] A. S. Gadre, S. Du, and D. J. Stilwell, A topological map based approach to long range oper-
ation of an unmanned surface vehicle, in Proceedings of the American Control Conference
(ACC), 2012, pp. 5401–5407.

[18] P. E. Gill, W. Murray, and M. A. Saunders, SNOPT: An SQP algorithm for large-scale
constrained optimization, SIAM Rev., 47 (2005), pp. 99–131.

[19] Q. Gong, W. Kang, and I. M. Ross, A pseudospectral method for the optimal control of con-
strained feedback linearizable systems, IEEE Trans. Automat. Control, 51 (2006), pp. 1115–
1129.

[20] Q. Gong, I. M. Ross, W. Kang, and F. Fahroo, Connections between the covector mapping
theorem and convergence of pseudospectral methods for optimal control, Comput. Optim.
Appl., 41 (2008), pp. 307–335.

D
ow

nl
oa

de
d 

05
/1

3/
16

 to
 2

05
.1

55
.6

5.
22

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

OPTIMAL CONTROL OF UNCERTAIN SYSTEMS 29

[21] W. W. Hager, Runge-Kutta methods in optimal control and the transformed adjoint system,
Numer. Math., 87 (2000), pp. 247–282.

[22] R. F. Hartl, S. P. Sethi, and R. G. Vickson, A survey of the maximum principles for
optimal control problems with state constraints, SIAM Rev., 37 (1995), pp. 181–218.

[23] F. S. Hover, Gradient dynamic optimization with Legendre chaos, Automatica J. IFAC, 44
(2008), pp. 135–140.

[24] F. S. Hover and M. S. Triantafyllou, Application of polynomial chaos in stability and
control, Automatica J. IFAC, 42 (2006), pp. 789–795.

[25] S. Kameswaran and L. T. Biegler, Convergence rates for direct transcription of optimal
control problems using collocation at Radau points, Comput. Optim. Appl., 41 (2008),
pp. 81–126.

[26] W. Kang, Rate of convergence for the Legendre pseudospectral optimal control of feedback
linearizable systems, J. Control Theory Appl., 8 (2010), pp. 391–405.

[27] J.-S. Li, Ensemble control of finite-dimensional time-varying linear systems, IEEE Trans. Au-
tomat. Control, 56 (2011), pp. 345–357.

[28] J.-S. Li and N. Khaneja, Ensemble control of linear systems, in Proceedings of the 2007 46th
IEEE Conference on Decision and Control, New Orleans, LA, 2007, pp. 3768–3773.

[29] J.-S. Li, J. Ruths, and D. Stefanatos, A pseudospectral method for optimal control of open
quantum systems, J. Chem. Phys., 131 (2009), 164110.

[30] M. Mangel, Search theory: A differential equations approach, in Search Theory: Some Recent
Developments, D. V. Chudnovsky and G. V. Chudnovsky, eds., Dekker, New York, 1989,
pp. 55–101.

[31] C. Phelps, Computational Optimal Control of Nonlinear Systems with Parameter Uncertainty,
Ph.D. thesis, University of California, Santa Cruz, Santa Cruz, CA, 2015.

[32] C. Phelps, Q. Gong, J. O. Royset, and I. Kaminer, Consistent approximation of an optimal
search problem, in Proceedings of the 2012 IEEE 51st Annual Conference on Decision and
Control (CDC 2012), Maui, HI, 2012, pp. 630–637.

[33] C. Phelps, Q. Gong, J. O. Royset, C. Walton, and I. Kaminer, Consistent approximation
of a nonlinear optimal control problem with uncertain parameters, Automatica J. IFAC,
50 (2014), pp. 2987–2997.

[34] C. Phelps, J. O. Royset, and Q. Gong, Sample average approximations in optimal control of
uncertain systems, in Proceedings of the 2013 IEEE 52nd Annual Conference on Decision
and Control (CDC 2013), Florence, Italy, 2013, pp. 1958–1965.

[35] E. Polak, Optimization: Algorithms and Consistent Approximations, Springer, New York,
1997.

[36] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The
Mathematical Theory of Optimal Processes, Interscience Publishers, John Wiley & Sons,
New York, London, 1962.

[37] S. A. P. Quintero, F. Papi, D. J. Klein, and L. Chisci, Optimal UAV coordination for target
tracking using dynamic programming, in Proceedings of the 2010 49th IEEE Conference
on Decision and Control, Atlanta, GA, 2010, pp. 4541–4546.

[38] I. M. Ross and M. Karpenko, A review of pseudospectral optimal control: From theory to
flight, Annu. Rev. Control, 36 (2012), pp. 182–197.

[39] J. Ruths and J.-S. Li, Optimal ensemble control of open quantum systems with a pseudospec-
tral method, in Proceedings of the 2010 49th IEEE Conference on Decision and Control,
Atlanta, GA, 2010, pp. 3008–3013.

[40] J. Ruths and J.-S. Li, Optimal control of inhomogenous ensembles, IEEE Trans. Automat.
Control, 57 (2012), pp. 2021–2032.

[41] J. Ruths, A. Zlotnik, and J.-S. Li, Convergence of a pseudospectral method for optimal
control of complex dynamical systems, in Proceedings of the 2011 50th IEEE Conference
on Decision and Control and European Control Conference, Orlando, FL, 2011, pp. 5553–
5558.

[42] A. Schwartz and E. Polak, Consistent approximations for optimal control problems based
on Runge–Kutta integration, SIAM J. Control Optim., 34 (1996), pp. 1235–1269.

[43] A. Shapiro, D. Dentcheva, and A. Ruszczyński, Lectures on Stochastic Programming: Mod-
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