Many problems in computational science and engineering are simultaneously
characterized by the following challenging issues: uncertainty, nonlinearity,
nonstationarity and high dimensionality. Existing numerical techniques for such
models would typically require considerable computational and storage
resources. This is the case, for instance, for an optimization problem governed
by time-dependent Navier-Stokes equations with uncertain inputs. In particular,
the stochastic Galerkin finite element method often leads to a prohibitively
high dimensional saddle-point system with tensor product structure. In this
paper, we approximate the solution by the low-rank Tensor Train decomposition,
and present a numerically efficient algorithm to solve the optimality equations
directly in the low-rank representation. We show that the solution of the
vorticity minimization problem with a distributed control admits a
representation with ranks that depend modestly on model and discretization
parameters even for high Reynolds numbers. For lower Reynolds numbers this is
also the case for a boundary control. This opens the way for a reduced-order
modeling of the stochastic optimal flow control with a moderate cost at all
stages.Comment: 29 page