1,503 research outputs found

    Consistency of multidimensional combinatorial substitutions

    Get PDF
    Multidimensional combinatorial substitutions are rules that replace symbols by finite patterns of symbols in Zd\mathbb Z^d. We focus on the case where the patterns are not necessarily rectangular, which requires a specific description of the way they are glued together in the image by a substitution. Two problems can arise when defining a substitution in such a way: it can fail to be consistent, and the patterns in an image by the substitution might overlap. We prove that it is undecidable whether a two-dimensional substitution is consistent or overlapping, and we provide practical algorithms to decide these properties in some particular cases.Comment: 13 pages, v2 includes corrections to match the published versio

    Towards a fully automated computation of RG-functions for the 3-dd O(N) vector model: Parametrizing amplitudes

    Full text link
    Within the framework of field-theoretical description of second-order phase transitions via the 3-dimensional O(N) vector model, accurate predictions for critical exponents can be obtained from (resummation of) the perturbative series of Renormalization-Group functions, which are in turn derived --following Parisi's approach-- from the expansions of appropriate field correlators evaluated at zero external momenta. Such a technique was fully exploited 30 years ago in two seminal works of Baker, Nickel, Green and Meiron, which lead to the knowledge of the β\beta-function up to the 6-loop level; they succeeded in obtaining a precise numerical evaluation of all needed Feynman amplitudes in momentum space by lowering the dimensionalities of each integration with a cleverly arranged set of computational simplifications. In fact, extending this computation is not straightforward, due both to the factorial proliferation of relevant diagrams and the increasing dimensionality of their associated integrals; in any case, this task can be reasonably carried on only in the framework of an automated environment. On the road towards the creation of such an environment, we here show how a strategy closely inspired by that of Nickel and coworkers can be stated in algorithmic form, and successfully implemented on the computer. As an application, we plot the minimized distributions of residual integrations for the sets of diagrams needed to obtain RG-functions to the full 7-loop level; they represent a good evaluation of the computational effort which will be required to improve the currently available estimates of critical exponents.Comment: 54 pages, 17 figures and 4 table

    Combinatorics of Pisot Substitutions

    Get PDF
    Siirretty Doriast

    Decidability Problems for Self-induced Systems Generated by a Substitution

    Get PDF
    International audienceIn this talk we will survey several decidability and undecidability results on topological properties of self-affine or self-similar fractal tiles. Such tiles are obtained as fixed point of set equations governed by a graph. The study of their topological properties is known to be complex in general: we will illustrate this by undecidability results on tiles generated by multitape automata. In contrast, the class of self affine tiles called Rauzy fractals is particularly interesting. Such fractals provide geometrical representations of self-induced mathematical processes. They are associated to one-dimensional combinatorial substitutions (or iterated morphisms). They are somehow ubiquitous as self-replication processes appear naturally in several fields of mathematics. We will survey the main decidable topological properties of these specific Rauzy fractals and detail how the arithmetic properties yields by the combinatorial substitution underlying the fractal construction make these properties decidable. We will end up this talk by discussing new questions arising in relation with continued fraction algorithm and fractal tiles generated by S-adic expansion systems

    Two-dimensional iterated morphisms and discrete planes

    Get PDF

    On Combinatorial Expansions of Conformal Blocks

    Full text link
    In a recent paper (arXiv:0906.3219) the representation of Nekrasov partition function in terms of nontrivial two-dimensional conformal field theory has been suggested. For non-vanishing value of the deformation parameter \epsilon=\epsilon_1+\epsilon_2 the instanton partition function is identified with a conformal block of Liouville theory with the central charge c = 1+ 6\epsilon^2/\epsilon_1\epsilon_2. If reversed, this observation means that the universal part of conformal blocks, which is the same for all two-dimensional conformal theories with non-degenerate Virasoro representations, possesses a non-trivial decomposition into sum over sets of the Young diagrams, different from the natural decomposition studied in conformal field theory. We provide some details about this intriguing new development in the simplest case of the four-point correlation functions.Comment: 22 page

    Classification of integrable discrete equations of octahedron type

    Full text link
    We use the consistency approach to classify discrete integrable 3D equations of the octahedron type. They are naturally treated on the root lattice Q(A3)Q(A_3) and are consistent on the multidimensional lattice Q(AN)Q(A_N). Our list includes the most prominent representatives of this class, the discrete KP equation and its Schwarzian (multi-ratio) version, as well as three further equations. The combinatorics and geometry of the octahedron type equations are explained. In particular, the consistency on the 4-dimensional Delaunay cells has its origin in the classical Desargues theorem of projective geometry. The main technical tool used for the classification is the so called tripodal form of the octahedron type equations.Comment: 53 pp., pdfLaTe

    Gibbs and Quantum Discrete Spaces

    Get PDF
    Gibbs measure is one of the central objects of the modern probability, mathematical statistical physics and euclidean quantum field theory. Here we define and study its natural generalization for the case when the space, where the random field is defined is itself random. Moreover, this randomness is not given apriori and independently of the configuration, but rather they depend on each other, and both are given by Gibbs procedure; We call the resulting object a Gibbs family because it parametrizes Gibbs fields on different graphs in the support of the distribution. We study also quantum (KMS) analog of Gibbs families. Various applications to discrete quantum gravity are given.Comment: 37 pages, 2 figure
    • …
    corecore